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A Quantum Hamiltonian Identification Algorithm:
Computational Complexity and Error Analysis

Yuanlong Wang, Daoyi Dong, Bo Qi, Jun Zhang, Ian R. Petersen, Hidehiro Yonezawa

Abstract—Quantum Hamiltonian identification is important
for characterizing the dynamics of quantum systems, calibrating
quantum devices and achieving precise quantum control. In this
paper, an effective two-step optimization (TSO) quantum Hamil-
tonian identification algorithm is developed within the framework
of quantum process tomography. In the identification method,
different probe states are inputted into quantum systems and the
output states are estimated using the quantum state tomography
protocol via linear regression estimation. The time-independent
system Hamiltonian is reconstructed based on the experimental
data for the output states. The Hamiltonian identification method
has computational complexityO(d6) where d is the dimension of
the system Hamiltonian. An error upper bound O( d3√

N
) is also

established, whereN is the resource number for the tomography
of each output state, and several numerical examples demonstrate
the effectiveness of the proposed TSO Hamiltonian identification
method.

Index Terms—Quantum system, Hamiltonian identification,
process tomography, computational complexity.

I. INTRODUCTION

A S quantum technology develops, there is an increasing
demand for characterizing an unknown quantum process

since it is vital to verify and benchmark quantum devices
for quantum computation, communication and metrology [1].
The standard solution to characterizing a quantum process is
Quantum Process Tomography (QPT), wherein usually known
input quantum states (probe states) are applied to the process
and the output states are measured to reconstruct the quantum
process [2]-[4]. Hamiltonian identification for closed quantum
systems is a special class of QPT that corresponds to a unitary
quantum process and is an essential component to characterize
the dynamics of a quantum system.

System identification has been widely investigated in clas-
sical (non-quantum) systems and control theory, and many
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identification algorithms have been developed to estimate
unknown dynamical parameters of linear or nonlinear input-
output systems [5]-[7]. In recent years, the problem of quan-
tum system identification has attracted more and more at-
tention due to the rapid development of emerging quantum
technology [8], [9] and increasing demand of characterizing
quantum devices. For example, a framework for quantum
system identification has been established in [10] to classify
how much knowledge about a quantum system is attainable
from a given experimental setup. Guţă and Yamamoto [11]
considered a class of passive linear quantum input-output
systems, and investigated the problem of identifiability and
how to optimize the identification precision by preparing good
input states and performing appropriate measurements on the
output states.

In this paper, we focus on the problem of quantum Hamil-
tonian identification (QHI), which is a key task in char-
acterizing the dynamics of quantum systems and achieving
high-precision quantum control. There exist some results on
QHI and various aspects of QHI have been investigated
[12]-[15]. For example, a symmetry-preserving observer has
been developed for the Hamiltonian identification of a two-
level quantum system [16]. The identifiability problem for
a Hamiltonian corresponding to a dipole moment has been
investigated [17] and the question of how to utilize quantum
control to identify such Hamiltonian has been addressed [18].
Closed-loop learning control has been presented to optimally
identifying Hamiltonian information [19] and compressed
sensing has been proposed to enhance the efficiency of iden-
tification algorithms for Hamiltonian with special structures
[20], [21]. Several Hamiltonian identification algorithms have
been developed using only measurement in a single fixed basis
[22]-[24]. Wanget al. [25] utilized dynamical decoupling to
identify Hamiltonians for quantum many-body systems with
arbitrary couplings. Coleet al. [26] discussed the estimation
error in identifying a two-state Hamiltonian and Zhanget al.
[27] presented a QHI protocol using measurement time traces.
Most of these existing results have limitations for practical
applications (e.g., estimating a single parameter [24], [28],
identifying special Hamiltonian [22], [26]), and there are few
theoretical results on the analysis of computational complexity
and upper bounds on estimation errors. This paper presents an
identification algorithm for general time-independent Hamil-
tonians and analyzes its computational complexity and upper
bounds on estimation errors.

Our quantum Hamiltonian identification is presented within
the framework of quantum process tomography. Some differ-
ent input states are prepared for quantum systems and the
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corresponding output states are measured after a fixed time
evolution under the Hamiltonian to be identified. These output
states are reconstructed using the quantum state tomography
technique via linear regression estimation (LRE) [29]. Using
the information of estimated output states, the Hamiltonian
is reconstructed via an identification algorithm. The main
contributions of this paper are summarized as follows.

• The quantum Hamiltonian identification (QHI) problem
is formulated within the framework of quantum process
tomography (QPT) and several relevant points in QPT are
clarified in order to present an efficient QHI algorithm.

• A Two-Step Optimization (TSO) identification algorithm
is presented and its computational complexity is analyzed.
Our identification algorithm has the computational com-
plexity O(d6) whered is the dimension of the quantum
system.

• Analytical results of estimation error are presented and
an error upper bound is established asO( d3√

N
), whereN

is the resource number in the tomography of each output
state.

• Numerical examples are presented to demonstrate the
performance of our QHI algorithm. It is then compared
with the QHI method using measurement time traces in
[27], and our identification algorithm shows an efficiency
advantage over the method in [27] in terms of the
computational time.

The structure of this paper is as follows. In Section II
we present some preliminaries and briefly introduce QPT.
Section III formulates the QHI problem within the framework
of QPT. Section IV presents a TSO Hamiltonian identification
algorithm and analyzes the computational complexity. Section
V analyzes the estimation error theoretically and establishes
an upper bound. In Section VI, we present two numerical
examples to demonstrate performance and also compare our
identification algorithm with the QHI method using time traces
in [27]. Section VII concludes this paper.

Notation: a∗ denotes the conjugate ofa; Am×n denotes an
m-row andn-column matrix;AT is the transpose ofA; A† is
the conjugate and transpose ofA; H denotes a Hilbert space;
R andC are the sets of all real and complex numbers, respec-
tively; I is the identity matrix (dimension omitted if without
ambiguity); ||A|| denotes the Frobenius norm ofA; Tr(A) is
the trace ofA; |ψ〉 is a unit complex vector representing a
quantum (pure) state;ρ is a density matrix representing a
quantum state; ˆa is the estimate ofa; 〈A,B〉 represents the
inner product ofA and B defined as〈A,B〉 = Tr(A†B); 〈a,b〉
denotes the inner product ofa andb with 〈a,b〉= a†b; Cd is
the set of alld-dimension complex vectors;Cd×d is the set
of all d×d complex matrices; vec(·) denotes the vectorization
function; vec−1(·) is the inverse function of vectorization from
Cd2 to Cd×d; A⊗B denotes the tensor product ofA and B;
Tr1(X) means partial trace on spaceH1 whereX ∈H1⊗H2; δ
is the Dirac Delta function;i as a subscript means an integer
index, otherwisei means imaginary unit; i.e.,i =

√
−1.

II. PRELIMINARIES AND QUANTUM PROCESS
TOMOGRAPHY

A. Matrix and Vectorization Fundamentals

For a matrixAm×n = [ai j ], its Frobenius norm is defined as

||A||=
√

m

∑
i=1

n

∑
j=1

a2
i j =

√

Tr(A†A).

Two important properties of the Frobenius norm are:

||A||= ||UA||, (1)

||AB|| ≤ ||A|| · ||B||, (2)

whereU is anym×m unitary matrix.
The tensor product of matricesAm×n = [ai j ] andBp×q= [bkl ]

is defined as follows:

A⊗B=









a11B a12B · · · a1nB
a21B a22B · · · a2nB
. . . . . . . . . . . . . . . . . . . . . . .
am1B am2B · · · amnB









mp×nq

. (3)

We introduce the vectorization function vec :Cm×n 7→ Cmn.
For a matrixAm×n = [ai j ],

vec(Am×n) = [a11,a21, ...,am1,a12, ...,am2, ...,a1n, ...,amn]
T .

The function vec(·) (also denoted as|·〉〉 or |·) in the physics
community) is linear. Its common properties are listed as
follows [30], [31]:

vec(|a〉〈b|) = |b〉∗⊗|a〉, (4)

vec(AXB) = (BT ⊗A)vec(X), (5)

〈A,B〉= 〈vec(A),vec(B)〉, (6)

Tr1(vec(A)vec(B)†) = AB†. (7)

Tr2(vec(A)vec(B)†) = (B†A)T . (8)

In this paper, we also define that vec−1(·) maps ad2×1 vector
into a d× d square matrix rather than matrices with other
sizes. In (7) and (8), Tr1(X) means partial trace on the space
H1 whereX belongs to the spaceH1⊗H2. Similarly Tr2(X)
means partial trace on the spaceH2.

B. Quantum System and Evolution

The state of a closed quantum system can be described by
a unit complex vector|ψ〉 in the underlying Hilbert space and
its dynamics is governed by the Schrödinger equation

i
∂
∂ t

|ψ(t)〉= H|ψ(t)〉, (9)

whereH is the system Hamiltonian and we seth̄ = 1 using
atomic units in this paper. When the quantum system under
consideration is an open quantum system or the quantum
state is a mixed state, we need to use a Hermitian positive
semidefinite matrixρ satisfying Tr(ρ) = 1 to describe the
quantum state. For a closed quantum system with state|ψ〉,
we haveρ = |ψ〉〈ψ |. Its evolution from the initial stateρ(0)
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to ρ(t) at time t can be determined by a unitary propagator
U :

ρ(t) =U(t)ρ(0)U†(t), (10)

whereU(t) = e−iHt if H is independent oft.
For an open quantum system, the dynamics of its state

can be described by a master equation. Alternatively, the
transformation from an input stateρin to an output stateρout

is given by Kraus operator-sum representation [1]

ρout = E(ρin) = ∑
i

AiρinA†
i , (11)

where the quantum operationE mapsρin to ρout and{Ai} is
a set of mappings from the input Hilbert space to the output
Hilbert space with∑i A

†
i Ai ≤ I . In this paper, we only consider

trace-preserving operations which means that the completeness
relation

∑
i

A†
i Ai = I (12)

is satisfied. In particular, we considerd-dimensional quantum
systems and haveAi ∈ Cd×d.

C. Quantum Measurement and Quantum State Tomography

We aim to identify the system HamiltonianH from the input
states (usually known) and the output states. To extract infor-
mation from the output quantum states, a positive-operator
valued measurement (POVM) is usually performed on these
states. A POVM is a set{Mi}, where all the elements are
Hermitian positive semidefinite and∑i Mi = I . When a set of
POVM is performed, the probability of outcomei occurring is
determined by the Born Rulepi = Tr(ρMi). A special class of
POVM are the projective measurement operators{Pi}, which
are projectors satisfyingPiPj = δi j Pj .

In real experiments, it is impossible to implement infinitely
many measurements. Hence,pi can only be approximated
within a limited accuracy. The methodology for designing
the measurement operators{Mi} and estimatingρ from ex-
perimental data is called quantum state tomography, where
usually a large number of identified independent copies of
ρ are used. Common quantum state tomography methods
include Maximum likelihood estimation [32]-[34], Bayesian
mean estimation [32], [35] and linear regression estimation
(LRE) [29]. In this paper, the LRE method will be used in
numerical simulation and error analysis although our QHI
method is also applicable to other quantum state tomography
methods. In the LRE method, the quantum state reconstruction
problem is converted into a parameter estimation problem for
a linear regression model and the least-squares method can
be used to obtain estimates of the unknown parameters. The
LRE method of quantum state tomography was first presented
in [29] and it has also been used to experimentally reconstruct
quantum states for various tasks [36], [37]. Its advantagesof
high efficiency and an analytical error upper bound make it
especially beneficial in presenting numerical results and error
analysis for our TSO QHI method.

D. Standard Quantum Process Tomography

We rephrase the framework of general quantum process
tomography in [1] in the matrix form and later we will consider
QHI problem under this framework.

By expanding{Ai} in (11) in a fixed family of basis matrices
{Ei}, we obtain

Ai = ∑
j

ci j E j , (13)

and then

E(ρ) = ∑
jk

E jρE†
kx jk,

with x jk = ∑i ci j c∗ik. If we define the matrixC = [ci j ] and the
matrix X = [xi j ], then

X =CTC∗, (14)

which indicates thatX must be Hermitian and positive
semidefinite.X is called theprocess matrix[38]. The com-
pleteness constraint equation (12) becomes

∑
j ,k

x jkE†
k E j = I . (15)

It is difficult to further simplify this relationship beforethe
structure of{Ei} is determined. Note that the matrixX and
the processE are in a one-to-one correspondence. Hence, we
can obtain a full characterization ofE by reconstructingX [1].

Let {ρm} be a complete basis set ofCd×d. For example,
all Pauli matricesσx =

(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

and σz =
(

1 0
0 −1

)

,
together with I2×2, form a complete basis set ofC2×2. If
we let {ρm} be linearly independent matrices (with respect
to addition between matrices, and multiplication between a
scalar and a matrix) and we inputρm to the process, then
each process output can be expanded uniquely in the basis set
{ρn}; i.e.,

ρout = E(ρin) = E(ρm) = ∑
n

λmnρn. (16)

For simplicity, we choose{ρn} to be the same set as{ρm}
although they could be different. We then need to find the
relationship betweenX and λ , which is independent of the
bases{Ei}. Considering the effects of the bases{ρn} on{ρm},
we have

E jρmE†
k =∑

n
β jk

mnρn. (17)

Hence,

∑
n

∑
jk

β jk
mnρnx jk = ∑

n
λmnρn.

From the linear independence of{ρn}, one can obtain

∑
jk

β jk
mnx jk = λmn. (18)
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To rewrite this equation into a compact form, define the matrix
Λ = [λmn] and arrange the elementsβ jk

mn into a matrixB:

B=























β 11
11 β 21

11 · · · β 12
11 β 22

11 · · · β d2d2

11

β 11
21 β 21

21 · · · β 12
21 β 22

21 · · · β d2d2

21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
β 11

12 β 21
12 · · · β 12

12 β 22
12 · · · β d2d2

12

β 11
22 β 21

22 · · · β 12
22 β 22

22 · · · β d2d2

22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
β 11

d2d2 β 21
d2d2 · · · β 12

d2d2 β 22
d2d2 · · · β d2d2

d2d2























d4×d4

(19)
so that we have

Bvec(X) = vec(Λ). (20)

Here, B is determined once the bases{Ei} and {ρm} are
chosen, andΛ is obtained from experimental data.B, X and
Λ are in general complex matrices. Note thatX should be
Hermitian and positive semidefinite and satisfy the constraint
(15). Hence, direct inversion or pseudo-inversion ofB may fail
to generate a physical solution. We try to find a physical esti-
mateX̂ which will generate an output̂ρ ′

ge as close as possible
to the estimated resultŝρ ′ from quantum state tomography.
Becausêρ ′

ge andρ̂ ′ are characterized bŷΛge andΛ̂ separately,
we should minimize||Λ̂ge− Λ̂||. Since

||Λ̂ge− Λ̂||= ||vec(Λ̂ge)− vec(Λ̂)||= ||Bvec(X̂)− vec(Λ̂)||,

we will take ||Bvec(X̂)− vec(Λ̂)|| as a performance index.
The problem is now the following optimization problem:

Problem 1: Given the matrixB and experimental data
Λ̂, find a Hermitian and positive semidefinite estimateX̂
minimizing ||Bvec(X̂)− vec(Λ̂)||, such that (15) is satisfied.

It is difficult to obtain an analytical solution to Problem 1.
In this paper, we do not directly solve Problem 1 since the
problem of QHI can be further specified based on Problem 1.
After one obtains an estimatêX, it is straightforward to obtain
Kraus operators{Âi}. Since X̂ is Hermitian, it has spectral
decomposition

X̂ =
d2

∑
i=1

ui |vi〉〈vi |,

whereui are real eigenvalues. Then

ĈT =
d2

∑
i=1

√
ui |vi〉〈vi |,

and
Âi = ∑

j
ci j E j .

Though X and E are in one-to-one correspondence, the
notable property of the Kraus operator-sum representationis
its non-uniqueness; i.e., there may be more than one different
sets of Kraus operators that give rise to the same processE .
This comes from the procedure of decomposingX into CTC∗,
which is in fact non-unique because

X =CTC∗ = (CTUT)(U∗C∗)

holds for any unitaryU . Hence, the deduction ofC from X is
non-unique.

III. PROBLEM FORMULATION OF HAMILTONIAN
IDENTIFICATION

The objective of this paper is to develop a new algorithm
to identify a time-independent HamiltonianH. If we compare
(10) with the Kraus representation (11), it is clear that the
unitary propagatorU(t) is the only Kraus operator. Then from
(13) we know that the matrixC is a row vector. Hence, from
(14) we knowX is of rank one. It is worth mentioning that,
for any given processE , although the Kraus operator-sum
representation is not unique, the process matrixX is in fact
uniquely determined. Although there might be other Kraus
operator-sum representations where the number of operators
is more than 1, the conclusion thatX is of rank one is always
true. WhenX is of rank one, the semidefinite requirement is
naturally satisfied. LetX = gg† andg= vec(G).

Now we need to determine basis sets{Ei} and {ρm}.
Proper choice of these basis sets can greatly simplify the QHI
problem, and we thus choose both of them as the natural
basis{| j〉〈k|}1≤ j ,k≤d, because the natural basis can simplify
the completeness requirement (15) and Problem 1. These
advantages can be demonstrated as follows.

Proposition 1:If {Ei} is chosen as the natural basis and
the relationship betweeni, j andk is i = ( j −1)d+k, then the
completeness constraint reads Tr1X = Id.

The proof of Proposition 1 is presented in Appendix A.
The natural basis is also useful in transforming Problem 1

into an optimization problem in a more convenient form:
Problem 2: Given the matrixB and experimental data

Λ̂, find a Hermitian and positive semidefinite estimateX̂
minimizing ||X̂ − vec−1(B−1vec(Λ̂))||, such that constraint
(15) is satisfied.

Problem 2 is not necessarily equivalent to Problem 1. We
need to determine whenB is invertible and when these two
problems are equivalent. To answer these two questions, we
give the following conditions to characterizeB.

Theorem 1:Let {Ei}d2

i=1 be a set of matrices in the space
Cd×d and let{ρm}d2

m=1 be a set of linearly independent bases
of Cd×d. Define B through (17) and (19). Then{Ei} is a
set of linearly independent bases ofCd×d if and only if B
is invertible.

Theorem 2:Let {Ei}d2

i=1 be a set of matrices inCd×d and
let {ρm}d2

m=1 be a set of normal orthogonal bases ofCd×d.
Define B through (17) and (19). Then{Ei} forms normal
orthogonal basis ofCd×d if and only if B is unitary.

The detailed proofs of Theorem 1 and Theorem 2 are
presented in Appendix B and Appendix C, respectively. Under
the conditions in Theorem 2,B is unitary, and we have

||Bvec(X̂)− vec(Λ̂)|| = ||vec(X̂)−B−1vec(Λ̂)||
= ||X̂− vec−1(B−1vec(Λ̂))||,

which means Problem 1 is equivalent to Problem 2 in this case.
The natural basis set satisfies the requirements in Theorem 1
and Theorem 2.

With the natural basis{| j〉〈k|}1≤ j ,k≤d for {Ei} and {ρm},
we have

Tr1(vec(G)vec(G)†) = Id = GG†,
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which means the completeness constraint (12) is equivalentto
the requirement thatG is unitary. Hence, we can transform
Problem 2 into the following problem which is critical for
QHI.

Problem 3: Assume that{ρm}d2

m=1 is a set of normal
orthogonal bases of the spaceCd×d, {Ei} is chosen as
{| j〉〈k|}1≤ j ,k≤d, and the relationship betweeni, j and k is
i = ( j −1)d+k. Given the unitary matrixB and experimental
dataΛ̂, find a unitary matrixĜ minimizing ||vec(Ĝ)vec(Ĝ)†−
vec−1(B†vec(Λ̂))||.

Remark 1:Note that we can experimentally measure only
Hermitian physical variables. Hence, we cannot directly use
| j〉〈k| ( j 6= k) as probe states. According to [1], whenj 6=
k, one can take| j〉〈 j|, |k〉〈k|, |+〉〈+| and |−〉〈−| as inputs
where|+〉= (| j〉+ |k〉)/

√
2 and |−〉 = (| j〉+ i|k〉)/

√
2. Then

E(| j〉〈k|) can be obtained from

E(| j〉〈k|) = E(|+〉〈+|)+ iE(|−〉〈−|)
− 1+i

2 E(| j〉〈 j|)− 1+i
2 E(|k〉〈k|). (21)

IV. HAMILTONIAN IDENTIFICATION ALGORITHM
AND COMPUTATIONAL COMPLEXITY

A. Solution to Problem 3: Two-step Optimization (TSO)

The direct solution to Problem 3 is difficult [39] and we
split it into two sub-problems (which is the reason we name
our method Two-Step Optimization):

Problem 3.1: Let D̂ = vec−1(B†vec(Λ̂)) be a given ma-
trix. Find a d×d matrix Ŝ minimizing ||vec(Ŝ)vec(Ŝ)†− D̂||.

Problem 3.2: Let Ŝ be given. Find ad×d unitary matrix
Ĝ minimizing ||vec(Ĝ)vec(Ĝ)†− vec(Ŝ)vec(Ŝ)†||.

1) : For Problem 3.1, let

L1 = ||vec(Ŝ)vec(Ŝ)†− D̂||2

= Tr{[vec(Ŝ)vec(Ŝ)†− D̂][vec(Ŝ)vec(Ŝ)†− D̂†]}
= [vec(Ŝ)†vec(Ŝ)]2− vec(Ŝ)†(D̂+ D̂†)vec(Ŝ)+Tr(D̂D̂†).

Then by partial differentiation we obtain the conjugate gradient
matrix

∂L1

∂vec(Ŝ)∗
= 2vec(Ŝ)†vec(Ŝ)vec(Ŝ)− (D̂†+ D̂)vec(Ŝ), (22)

which leads to

(D̂†+ D̂)vec(Ŝ) = 2vec(Ŝ)†vec(Ŝ)vec(Ŝ). (23)

Therefore the optimal vec(Ŝ) must be an eigenvector of(D̂†+
D̂) corresponding to the positive eigenvalue 2vec(Ŝ)†vec(Ŝ).
Then

L1 = [vec(Ŝ)†vec(Ŝ)]2− vec(Ŝ)†(D̂+ D̂†)vec(Ŝ)+Tr(D̂D̂†)

= Tr(D̂D̂†)− [2vec(Ŝ)†vec(Ŝ)]2/4.

SinceD̂†+ D̂ is Hermitian, we have the spectral decompo-
sition

D̂†+ D̂ =
d2

∑
i=1

α̂ivec(P̂i)vec(P̂i)
†, (24)

where P̂i ∈ Cd×d and α̂1 ≥ ... ≥ α̂d2. To minimize L1, we

should choose 2vec(Ŝ)†vec(Ŝ) = α̂1 and Ŝ=
√

α̂1
2 P̂1.

2) : For Problem 3.2, note that

||vec(Ĝ)vec(Ĝ)†− vec(Ŝ)vec(Ŝ)†||2

= Tr{[vec(Ĝ)vec(Ĝ)†− vec(Ŝ)vec(Ŝ)†]2}
= [vec(Ĝ)†vec(Ĝ)]2+[vec(Ŝ)†vec(Ŝ)]2

−2vec(Ĝ)†vec(Ŝ)vec(Ŝ)†vec(Ĝ)

= d2+[Tr(Ŝ†Ŝ)]2−2|Tr(Ĝ†Ŝ)|2.
Hence, Problem 3.2 is equivalent to maximizingL2 =
|Tr(Ĝ†Ŝ)|2 among all unitaryĜ. We make a polar decom-
position [44] of Ŝ to obtainŜ= V̂Q̂, whereV̂ = Ŝ(Ŝ†Ŝ)−

1
2 is

unitary andQ̂ = (Ŝ†Ŝ)
1
2 is positive semidefinite. We make a

spectral decomposition on̂Q to obtainQ̂= ẐR̂Ẑ†, whereẐ is
unitary andR̂= diag(R̂11, R̂22, ..., R̂dd) with R̂j j ≥ 0. Without
loss of generality, we assumêRj j > 0 for all 1≤ j ≤ d. Let
F̂ = Ẑ†Ĝ†V̂Ẑ, and assume that̂Fj j = r̂ jeiψ̂ j with r̂ j ≥ 0 and
0 ≤ ψ̂ j < 2π . BecauseF̂ is unitary, we must have ˆr j ≤ 1.
Hence, we have

L2 = |Tr(Ĝ†V̂Q̂)|2
= |Tr(F̂R̂)|2
= |∑ j R̂j j r̂ j eiψ̂ j |2
= (∑ j r̂ j R̂j j cosψ̂ j)

2+(∑ j r̂ j R̂j j sinψ̂ j)
2.

(25)

Then we let ∂L2
∂ψ̂ j

= 0 for all j and we obtain

∑ j r̂ j R̂j j sinψ̂ j

∑ j r̂ j R̂j j cosψ̂ j
= tanψ̂1 = tanψ̂2 = ...= tanψ̂d.

Note thatL2(F̂) = L2(eiψ̂0F̂) for any ψ̂0 ∈ R. Hence, we can
chooseψ̂1 = 0, which meansψ̂ j = 0 or π for 2≤ j ≤ d. To
maximizeL2, we should let allψ̂ j equal to 0. Therefore,L2 =
(∑ j r̂ j R̂j j )

2, which indicates ˆr j = 1 for all j. If all the diagonal
elements of a unitary matrix are equal to one, then it must
be the identity matrix. Hence, for the optimal value we have
F̂ = I . Considering an extra global phase, we finally have the
optimal solution

Ĝ= eiψ̂V̂ = eiψ̂ Ŝ(Ŝ†Ŝ)−
1
2 ,

where ψ̂ ∈ R. Combining the results of Problem 3.1 and
Problem 3.2, we obtain the final solution.

After we solve Problem 3, we should calculate the Kraus
operatorÂ (which is also the unitary propagatorÛ(t)) from Ĝ,
and finally we calculatêH from Â. Note thatÛ(t) must be a
unitary matrix. Then the questions arise of how to calculateÂ
from Ĝ, and whether the matrix̂A calculated fromĜ is always
unitary? We answer these questions as follows.

Proposition 2: Under the assumptions of Problem 3,
suppose we have obtained a solution

X̂ = vec(Ĝ)vec(Ĝ)†.

Then there is essentially only one Kraus operatorÂ calculated
from Ĝ. Â must be unitary and in fact̂A is equal toeiφ ĜT ,
whereφ ∈R.

Proof: Denote vec(Ĝ) j as the j-th element of vec(Ĝ).
Since

X̂ = vec(Ĝ)vec(Ĝ)†,
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then

Ê(ρ) = ∑d2

j ,k=1E jρE†
k x̂ jk

= ∑d2

j ,k=1E jρE†
k [vec(Ĝ) jvec(Ĝ)∗k]

= ∑d2

j=1E jvec(Ĝ) jρ ∑d2

k=1E†
k vec(Ĝ)∗k

= ∑d
m,n=1 |m〉〈n|vec(Ĝ)(m−1)d+nρ
×∑d

s,t=1 |t〉〈s|vec(Ĝ)∗(s−1)d+t

= ∑d
m,n=1 |m〉〈n|Ĝnmρ ∑d

s,t=1 |t〉〈s|Ĝ∗
ts

= ĜTρĜ∗

= eiφ ĜTρe−iφ Ĝ∗.

(26)

Therefore, there is essentially only one Kraus operator, which
is eiφ ĜT with φ ∈R undetermined, and̂A= eiφ ĜT is unitary.

Remark 2:If Ŝ and Ĝ are the solutions to Problem 3.1
and Problem 3.2, respectively, then for anyφ1,φ2 ∈ R, eiφ1Ŝ
andeiφ2Ĝ are also optimal solutions, respectively. Hence, there
is in fact an undetermined global phase in̂G, which can
also be seen from Proposition 2. This stems from the global
phase in the Hamiltonian, which is physically unobservable.
Through proper prior knowledge, this global phase can be
eliminated. For example, in [27] the prior knowledge of
TrH = 0 is assumed. In our simulations of Section VI, we
use the assumption that the smallest eigenvalue ofH is set to
a determined value.

After obtainingÂ, we need to solvêA= e−iĤt to obtainĤ.
Note that in real physical systems we always requireĤ to be
Hermitian. Another question which naturally arises is whether
every solutionĤ of the equationÂ= e−iĤt is Hermitian? We
introduce Theorem 1.43 from [40] as well as its proof, since
the proof provides a method to obtain̂H.

Lemma 1 ([40]): A∈Cn×n is unitary if and only ifA=eiH

for some HermitianH. In this representationH can be taken
to be Hermitian positive definite.

Proof: The Schur decomposition ofA has the formA=
QDQ† with Q unitary and

D = diag(exp(iθ j )) = exp(iΘ),

whereΘ = diag(θ j) ∈ Rn×n. Hence,

A= Qexp(iΘ)Q† = exp(iQΘQ†) = exp(iH ),

whereH =H†. Without loss of generality we can takeθ j > 0,
which implies thatH is positive definite.

Lemma 1 satisfies our needs perfectly. Instead of using the
general matrix logarithm function, we can just use the Schur
decomposition to obtain the logarithm of unitary matrixÂ.
Furthermore, from the proof of Lemma 1 we notice that all
θ j should lie in a region no larger thanπ , otherwise they can
not be uniquely determined. This indicates that the sampling
period should be small enough. This can also be viewed as a
result of Nyquist sampling theorem, as stated in [27]. Hence,
in this paper we employ the following assumption.

Assumption 1:The evolution timet satisfies

0< t <
π

hd −h1
, (27)

wherehd and h1 are the largest and smallest eigenvalues of
HamiltonianH, respectively.

ρout
Hamiltonian

H

ρin

Measurement

Step 1: QST

ρ̂out

Step 2

Λ̂
Step 3

D̂
Step 4

Ŝ

Ĝ

Step 5

Step 6
Ĥ

Input

Box 2

Box 1

States

Fig. 1. General procedure of the quantum Hamiltonian identification method,
where QST indicates quantum state tomography and this paperfocuses on
Box 2.

In Appendix D we give an example of a sufficient condition
for Assumption 1, which might be more convenient to deter-
mine t in practice. Now with Assumption 1 satisfied andh1

set, we design an algorithm to recover the Hamiltonian from
a unitaryĜ as the following.

Algorithm 1: (i) Perform a Schur decomposition of̂GT

to get ĜT = Q̂ĴQ̂† with Q̂ unitary, andĴ = exp(iΘ̂), where
Θ̂ = diag(θ̂ j), 0≤ θ̂1 ≤ θ̂2 ≤ ...≤ θ̂d < 2π .

(ii) If θ̂d− θ̂1 < π , go to step (iii); otherwise, find the small-
est k so thatθ̂k − θ̂1 ≥ π . Then for j = k,k+1, ...,d, replace
θ̂ j with θ̂ j −2π . This step aims to ensure the reconstructed
Hamiltonian has spectral region no larger thanhd −h1.

(iii) Let θ̂0 = maxj θ̂ j . For all 1≤ j ≤ d, take θ̄ j = θ̂ j −
h1t − θ̂0. If we denoteΘ̄ = diag(θ̄ j ), then Ĥ = −QΘ̄Q†/t is
the final estimated Hamiltonian.

B. General Procedure and Computational Complexity

In Fig. 1, we summarize the general procedure of the
QHI framework. All steps in Box 2 are data processing
steps performed on a computer. Step 1 is quantum state
tomography, which includes the acquisition of experimental
data and post-processing of the experimental data. In this paper
we do not consider the time spent on experiments, since it
depends on the experimental realization. In the following,we
briefly summarize each step and illustrate their corresponding
computational complexity.

Step 1. Choose basis sets{Ei} and{ρm} and calculateB.
Then use quantum state tomography to reconstruct experimen-
tal output states of the system. The number of resource copies
N in state tomography determines the estimation error, but
does not affect the computational complexity of the estimation
algorithm. Generally the calculation ofB according to (17) has
O(d11) computational complexity. However, under the natural
basis, this complexity can be reduced to onlyO(d4). For
state reconstruction, we employ the method of quantum state
tomography using LRE for our numerical simulations. The
computational complexity of LRE state tomography isO(d6)
offline andO(d4) online [29]. Considering there ared2 output
states to be reconstructed, the total computational complexity
of our LRE method for QHI isO(d6).
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Step 2. Use (16) to determinêΛ. Generally the computa-
tional complexity to solve (16) isO(d12). But it is only O(d2)
using the orthogonal property under the natural basis.

Step 3. Calculate D̂ = vec−1(B†vec(Λ̂)). Generally the
complexity isO(d8). But under the natural basis, we already
know the specific structure and value ofB (see (29)). Thus,
the complexity now is onlyO(d4).

Step 4. CalculateŜaccording to the spectral decomposition
of D̂+ D̂†. The computational complexity is determined by
spectral decomposition, which isO(d6) (the computational
complexity of spectral decomposition is cubic in a Hermitian
matrix’s dimension, see [41]).

Step 5. Use matrix polar decomposition to obtain̂G =

Ŝ(Ŝ†Ŝ)−
1
2 . The computational complexity isO(d3) [41].

Step 6. Use the Schur decomposition to obtain the final esti-
mated HamiltonianĤ from Ĝ. The computational complexity
of Schur decomposition isO(d3) [41], [42].

Our Hamiltonian identification procedure has the following
advantages. Firstly, the framework is general, since we for-
mulate it within the QPT framework. We do not impose any
restriction (such as sparseness) on the Hamiltonian. Secondly,
Step 1 has the potential for parallel processing. One can
deal with data on hand to reconstruct existing output states
while at the same time inputting new probe states to the
process and making measurements on them. Thirdly, the
computational complexity can be analyzed. Regardless of the
time spent in experiments, all steps in our QHI framework
have clear computational complexity (at mostO(d6)). Finally,
it is possible to analytically investigate an error upper bound
and a detailed error analysis is presented in Section V.

C. Practical Consideration of Storage Requirements

One issue in the calculations is that the dimension ofB may
increase rapidly. When there are 4 qubits,B has 232 elements.
If it takes one byte to store one element ofB, then we need
4GB of storage space, which is already a very heavy task for a
common PC. We notice thatB generated from the natural basis
is a permutation matrix. This is vital to computation efficiency.
A permutation matrix is a (square in this paper) matrix such
that all elements are 0 except exactly one 1 in each column
and each row.

Notice that afterB is determined from equations (17) and
(19), its real usage is in Problem 3, where we need to multiply
B† to a vector. This multiplication task can be done in an
alternative way whereB’s full storage is avoided. To be
specific, we aim to makeB sparse. Hence, we only need to
store the information of its very small number of nonzero
elements and thus ignore a large number of zero elements,
while still being able to perform the multiplication. This idea
is realized by the following theorem:

Theorem 3:Let {Ei}d2

i=1 be a set of matrices inCd×d.
Choose{ρm}d2

m=1 = {| j〉〈k|}1≤ j ,k≤d. DefineB through (17) and
(19). Then{Ei} = eiθ{ρm} if and only if B is a permutation
matrix. Here,θ ∈ R is any fixed global phase.

Proof: Using Theorem 2 we know that equation (52)
holds.

Su f f iciency: Define W( j,k) as a d2 × d2 matrix where
W( j,k)’s element in position(m,n) is the numberβ jk

nm, and
denote(x,y) = (x−1)K+ y for 1≤ x,y≤ K. Using equation
(4), we consider each element ofW( j,k),

W( j,k)(p,q)(s,t)
= vec(ρ(p,q))

†(e−iθ |g〉∗〈h|∗⊗eiθ |m〉〈n|)vec(ρ(s,t))
= (〈q|∗⊗〈p|)(|g〉∗⊗|m〉)(〈h|∗⊗〈n|)(|t〉∗⊗|s〉)
= (〈q|g〉∗⊗〈p|m〉)(〈h|t〉∗⊗〈n|s〉)
= δqgδpmδthδsn.

(28)

Hence, each matrixW( j,k) has exactly one 1 and all other
elements are 0. From equation (53) we know each row ofB
has exactly one 1 and all other elements are 0. When indices
j and k run from 1 tod2, the index combination(g,h,m,n)
never repeats, therefore,W( j1,k1) andW( j2,k2) have different
positions of 1 as long as index pair( j1,k1) 6= ( j2,k2). This
means each row ofB has no more than one 1. SinceB is
square, we know that each row ofB has exactly one 1. Hence,
B is a permutation matrix.

Necessity: WhenB is a permutation matrix, from equation
(53) we know that each matrixW( j,k) has exactly one 1
and all other elements are 0. According toV ’s permutation
property and equation (54) we know this property for each
W( j,k) also holds for each matrixE∗

k ⊗E j . This means that
each matrixE j has exactly one nonzero element, denoted as
x j . Then we havex∗kx j = 1 holds for everyk, j = 1,2, ...,d2.
Let j = k, and we findx j = eiθ j . Then we knowθ1 = θ2 =
... = θd2 = θ , where θ is any fixed real number. SinceB
is invertible, from Theorem 1 we know{E j} is a linearly
independent set. Thus each pair of matrices in{E j} have
different positions ofeiθ . Hence, we can write{E j}=eiθ{ρm}.

From the proof of Theorem 3, one can also deduce an
equation to directly calculateB. Substituting this into equation
(28), we obtain

β jk
(s,t)(p,q) = δqgδpmδthδsn= β (m,n)(g,h)

(s,t)(p,q) . (29)

Therefore, one can easily write downB when the sized is
given.

A special case of the sufficiency of Theorem 3; i.e., when
{Ei} and{ρm} are the same natural basis sets with the same
order of elements, also appeared in [43]. Our theorem and
proof here is more general. Using this theorem, we only need
to store all 1’s positions inB, which only requiresd4 storage
space. This is a great reduction compared withd8, and the
cost is only some more coding in calculating multiplication
by B. Furthermore, the computational complexity in writing
down B is also reduced to onlyO(d4).

V. ERROR ANALYSIS

The error in the Hamiltonian identification method under
consideration has only three possible sources. The first one
occurs in state estimation, where measurement frequency in
practical simulations or experiments is used to approximate
the measurement probability. The second one is that state
reconstruction algorithm might produce errors. The third one
is that our TSO QHI algorithm may also produce errors. In this
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section, we give an error upper bound. We first fix the given
evolution time t and analyze the error of our QHI method.
Then we utilize the similar method to analyze the relationship
between the error and the timet.

A. Upper Error Bound for Fixed Evolution Time

Theorem 4: If {Ei} and {ρm} are chosen as natural
basis ofCd×d and the evolution timet is fixed and satisfies
Assumption 1, then the estimation error of the TSO QHI
methodE||Ĥ −H|| scales asO( d3√

N
), whereN is the number

of resources in state tomography for each output state.
Proof: The proof of this theorem is divided into the

following seven parts.
1) Error in step 1: The quantum state tomography algo-

rithm used in this paper is from [29], and the upper bound on
the state estimation error is given by

sup
ρ

ETr(ρ̂ −ρ)2 =
M
4N

Tr(XTX)−1, (30)

whereρ is the true state and̂ρ its estimator,M is the number
of measurement bases,N is the number of experiments (i.e.,
number of copies ofρ) in state tomography,X is a matrix
determined by the measurement basis set (for details, see [29]).
Henceforth, we denote this error upper bound (i.e., the RHS of
(30)) as∆st. Following the deduction in the Methods section
of [29], one can prove∆st ∼ O(d4

N ). In the following, we will
label other errors in the form of∆ with a subscript.

When ρm is Hermitian,E||Ê(ρm)−E(ρm)||2 ≤ ∆st. When
ρm is not Hermitian, its process output is in fact calculated
according to equation (21) rather than directly probed. Hence,
we must analyze this situation specifically. Under the choice
of {ρm} as the natural basis, forj 6= k,

E||Ê(| j〉〈k|)−E(| j〉〈k|)||2
= E||[Ê(|+〉〈+|)−E(|+〉〈+|)]+ i[Ê(|−〉〈−|)−E(|−〉〈−|)]

− 1+i
2 [Ê(| j〉〈 j|)−E(| j〉〈 j|)]− 1+i

2 [Ê(|k〉〈k|)−E(|k〉〈k|)]||2
≤ (1+ |i|+ |1+i

2 |+ |1+i
2 |)2∆st

= (6+4
√

2)∆st.
(31)

2) Error in step 2: Now we calculate the error in the
experimental data:

E||Λ̂−Λ||2
= E∑m∑n,k(λ̂ ∗

mn−λ ∗
mn)(λ̂mk−λmk)δnk

= E∑m∑n,k(λ̂ ∗
mn−λ ∗

mn)(λ̂mk−λmk)Tr(ρ†
nρk)

= E∑mTr[∑n(λ̂ ∗
mn−λ ∗

mn)ρ†
n ∑k(λ̂mk−λmk)ρk]

= E∑mTr(Ê(ρm)−E(ρm))
2

= E[∑d
j=1 ∑d

k=1,k6= j ||Ê(| j〉〈k|)−E(| j〉〈k|)||2
+∑d

l=1 ||Ê(|l〉〈l |)−E(|l〉〈l |)||2]
≤ (6+4

√
2)d(d−1)∆st+d∆st.

(32)

Also, we denote∆Λ = ||Λ̂−Λ||.
3) Error in step 3: From Theorem 3, we knowB† is a

permutation matrix. Hence, its effect on vec(Λ) is merely a
series of interchanging two elements of vec(Λ), and thusD =
vec−1(B†vec(Λ)) is just a reordering ofΛ’s elements. For the
same reason,̂D−D is just reordering ofΛ̂−Λ. Therefore

||D̂−D||= (∑
j ,k

|D̂ jk −D jk|2)
1
2 = ||Λ̂−Λ||= ∆Λ. (33)

4) Error in step 4: We present a lemma to be used in this
part.

Lemma 2:Let b andc be two complex vectors with the
same finite dimension and assume that they are not both zero
simultaneously. Then we have

||bb†− cc†||
||b||+ ||c|| ≤ min

θ∈R
||eiθ b− c|| ≤

√
2||bb†− cc†||

√

||b||2+ ||c||2
. (34)

The detailed proof of Lemma 2 can be found in Appendix E.
We first estimate||Ŝ||.

||Ŝ||2 = Tr(Ŝ†Ŝ) =
α̂1

2
Tr(P̂†

1 P̂1) =
α̂1

2
.

Remember that̂α1 is the largest eigenvalue of̂D+ D̂†. Using
Theorem 3,

|α̂1−2d| ≤ ||(D̂+ D̂†)−2D|| ≤ 2||D̂−D||= 2∆Λ.

We thus have

2d−2∆Λ ≤ α̂1 ≤ 2d+2∆Λ.

Therefore,
√

d−∆Λ ≤ ||Ŝ||=
√

α̂1/2≤
√

d+∆Λ. (35)

We also need to estimate||Ŝ−S||. Using Lemma 2, we have

||Ŝ−S||= ||vec(Ŝ)− vec(S)||
≤

√
2||vec(Ŝ)vec(Ŝ)†−vec(S)vec(S)†||√

||vec(Ŝ)||2+||vec(S)||2

≤
√

2||vec(Ŝ)vec(Ŝ)†−vec(S)vec(S)†||√
2d−∆Λ

= [ 1√
d
+o(1)]||vec(Ŝ)vec(Ŝ)†−D||

≤ [ 1√
d
+o(1)][||vec(Ŝ)vec(Ŝ)†− D̂||+ ||D̂−D||]

= [ 1√
d
+o(1)][minS̃∈Cd×d

||vec(S̃)vec(S̃)†− D̂||+ ||D̂−D||]
≤ [ 1√

d
+o(1)][||vec(G)vec(G)†− D̂||+ ||D̂−D||]

= [ 1√
d
+o(1)] ·2||D̂−D|| ∼ 2√

d
∆Λ.

(36)
5) Error in step 5: We introduceWeyl’s Perturbation The-

orem, which can be found in [44].
Lemma 3 ([44]): Let A, B be Hermitian matrices with

eigenvaluesλ1(A) ≥ ... ≥ λn(A) and λ1(B) ≥ ... ≥ λn(B),
respectively. Then

max
j

|λ j(A)−λ j(B)| ≤ ||A−B||. (37)

Remark 3:The original version of Lemma 3 was for the
operator norm. However, from [44] we know for any finite-
dimension square matrix, its operator norm is not larger than
its Frobenius norm. Therefore this theorem also holds for
the Frobenius norm, which is our main focus throughout this
paper.

For the true value we haveS†S= G†G= I and ||S||=
√

d.
Denote||Ŝ†Ŝ−S†S||= ∆S†S. From the spectral decomposition
Ŝ†Ŝ= ÛÊÛ†, whereÊ = diag(1+ t1,1+ t2, ...1+ td). Hence,
t j ∈ R. Then

||Ŝ†Ŝ−S†S||2 = ||ÛÊÛ†− I ||2 = ||Ê− I ||2 = ∑
j

t2
j = ∆2

S†S.
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Thus we know

||Ĝ− Ŝ||2 = Tr[(Ĝ†− Ŝ†)(Ĝ− Ŝ)]

= d−2Tr
√

Ŝ†Ŝ+Tr(Ŝ†Ŝ)
= d−2∑ j

√

1+ t j +∑ j(1+ t j)

= ∑ j(
√

1+ t j −1)2 = ∑ j
t2j

2+t j+2
√

1+t j

= ∑ j t
2
j [

1
4 − 1

8t j +o(t j)] =
1
4∆2

S†S
+o(∆2

S†S
).
(38)

For ∆S†S, using property (2), we have

∆S†S= ||Ŝ†Ŝ−S†S||
≤ ||Ŝ†Ŝ− Ŝ†S||+ ||Ŝ†S−S†S||
≤ ||Ŝ†|| · ||Ŝ−S||+ ||S|| · ||Ŝ†−S†||
= (||Ŝ||+

√
d)||Ŝ−S||

≤ (
√

d+∆Λ +
√

d)||Ŝ−S||
∼ (

√
d+∆Λ +

√
d) 2√

d
∆Λ ∼ 4∆Λ.

(39)

Combining (38) and (39), we obtain

||Ĝ− Ŝ|| ∼ 1
2

∆S†S≤ 2∆Λ. (40)

From subsection IV-A, we know there is in fact an extra
degree of freedomφ in the estimatedeiφ ĜT and it can be
eliminated using prior knowledge. Here, we take

||Ĝ−G||= min
φ

||eiφ Ĝ−G||.

Then we have

||Ĝ−G|| ≤ ||Ĝ− Ŝ||+ ||Ŝ−S||+ ||S−G||
= ||Ĝ− Ŝ||+ ||Ŝ−S||. (41)

Now by substituting equations (36) and (40) into (41), we
have

||Ĝ−G|| ≤ ||Ĝ− Ŝ||+ ||Ŝ−S||
≤ 2∆Λ + 2√

d
∆Λ ∼ O(∆Λ).

(42)

6) Error in step 6: In this part we need the following
lemma:

Lemma 4:For θ ∈ [−π ,π ], 2
π2 θ 2 ≤ 1− cosθ .

Based on differential analysis up to the second-order deriva-
tive, the proof of Lemma 4 is straightforward and hence we
omit the details.

Suppose the system Hamiltonian has a spectral decompo-
sition tH = −QΘQ†, where Θ = diag(θ j). Since t satisfies
Assumption 1, we have 0≤ θ j ≤ π for every j = 1,2, ...,d.
Let M = Q̂†Q, which is also unitary. Then, we have

t2||Ĥ −H||2
= ||Q̂Θ̂Q̂†−QΘQ†||2 = ||Θ̂−MΘM†||2
= Tr(Θ̂2+Θ2)−2Tr(Θ̂MΘM†)

= ∑ j(θ̂ 2
j +θ 2

j )−2∑ j ,k θ̂ jθk|M jk|2
= ∑ j ,k(θ̂ 2

j +θ 2
k )|M jk|2−2∑ j ,k θ̂ jθk|M jk|2

= ∑ j ,k(θ̂ j −θk)
2|M jk|2.

(43)

Now using Lemma 4, we have

4t2

π2 ||Ĥ −H||2
≤ 2∑ j ,k[1− cos(θ̂ j −θk)]|M jk|2
= 2∑ j ,k |M jk|2−2∑ j ,k cos(θk− θ̂ j)|M jk|2
= 2d−2Re(∑ j ,k ei(θk−θ̂ j )|M jk|2)
= Tr(I + I)−2Re(∑ j e

−iθ̂ j ∑k eiθk|M jk|2)
= Tr(eiΘ̂e−iΘ̂ +eiΘe−iΘ)−2Re[Tr(e−iΘ̂MeiΘM†)]

= ||eiΘ̂ −MeiΘM†||2 = ||Q̂eiΘ̂Q̂†−QeiΘQ†||2
= ||ĜT −GT ||2 = ||Ĝ−G||2.

(44)

Hence
||Ĥ −H|| ∼ O(||Ĝ−G||) (45)

7) Total Error: We combine equations (45), (42), (32) and
(30) to obtain

E||Ĥ −H||2 ∼ E[O(||Ĝ−G||2)]∼ E[O(∆2
Λ)]

∼ O(d2∆st)∼ O(d6

N ),
(46)

which concludes the proof of Theorem 4.
From Theorem 4, we can also obtain the following corollary.

Corollary 1: If {Ei} and{ρm} are chosen as natural basis
of Cd×d, and the evolution timet is fixed and satisfies As-
sumption 1, then the TSO Hamiltonian identification method
is asymptotically unbiased.

B. Upper Error Bound vs Evolution Time

Using a similar idea to the above, we can characterize the
estimation error for different evolution timest:

Theorem 5:If {Ei} and{ρm} are chosen as a natural basis
of Cd×d andN is fixed, then the estimation error of the TSO
Hamiltonian identification method scales asE||Ĥ−H|| ∼O(1

t )
wheret satisfies Assumption 1.

The proof of this theorem is similar to the proof of Theorem
4. Note from (44), we have

2t
π
||Ĥ −H|| ≤ ||Ĝ−G||, (47)

which combined with (42), (32) and (30) leads to the con-
clusion in the theorem. It is worth pointing out that in this
theorem, the evolution time cannot be arbitrarily large, rather
it must be upper bounded according to Assumption 1. Hence,
this scaling only holds in a certain region.

VI. NUMERICAL RESULTS

We perform numerical simulations using MATLAB on PC.
It is worth mentioning that the selection of natural bases is
only a mathematical representation tool in the identification
algorithm. When performing measurements on the output
states, our framework is applicable to many general mea-
surement bases, such as cube bases [45], MUB bases [46]-
[48], SIC-POVMs [49], etc. In our simulations for the TSO
method, we choose cube measurement bases. The single-qubit
cube measurement set consists of six measurement operators:
{ I±σx

2 ,
I±σy

2 , I±σz
2 }, and the multi-qubit cube measurement set

is the tensor product of the single-qubit cube set. After the
measurements, we then use the LRE method to reconstruct
the output states.
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Fig. 2. MSE versus the logarithm of the total resource numberNt .
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Fig. 3. MSE versus the logarithm of the different evolution times t.

A. Performance Illustration

First we illustrate the relationship between the Mean
Squared Error (MSE) and the resource number. LetNt be
the total number of resources; i.e., the total number of copies
of different quantum states used as probes. Considering (21),
we haveNt =

3d2−d
2 N. H is the real Hamiltonian, and̂H

its estimation through IV-A. In Fig. 2, the vertical axis is
log10ETr(Ĥ−H)2 and the horizontal axis is log10Nt . The real
Hamiltonian is taken as

H =









5 0.1 3i 4i
0.1 −1 1.8 0.9
−3i 1.8 2 0.7i
−4i 0.9 −0.7i 3









. (48)

The distance between its largest and smallest eigenvalues is
11.95. The evolution timet = 0.1 and each point is repeated
for 10 times. The fitting slope is−1.0131± 0.0154, which
matches the theoretical result in Theorem 4.

Now we demonstrate the relationship between the MSE and
the evolution time. For the same 2-qubit Hamiltonian in (48),
we fix the number of copies in state tomography for each
output state as 36×1000 and perform simulations for different
evolution timest. The result is in Fig. 3 and each point
is repeated 10 times. The fitting slope is−2.0891± 0.0215,
which matches the theoretical result in Theorem 5.

1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Nq

lo
g
1
0
M
S
E

Fig. 4. MSE versus number of qubitsNq.

Moreover, we present an example to illustrate the relation-
ship between the MSE and the qubit number. LetNq denote
the number of qubits; i.e.,d = 2Nq. We perform simulations
whenNq increases from 1 to 5. We set

H =

(

1 0.9+0.9i
0.9−0.9i 2

)⊗Nq

andt = 0.01. ForNq = 5, the distance between the largest and
smallest eigenvalues ofH is 193.87. The number of copies for
state tomography is 36×1000 for each output state. The result
is in Fig. 4 and each point is repeated 10 times. We observe
that asNq increases, the errorbar decreases. This is because
as Nq increases, the error is also increasing. Therefore, the
fluctuations gradually become relatively small. We examine
various Hamiltonians and obtain similar results. Furthermore,
we observe that the upper error bound in Theorem 4 indicates
a slope larger than that of the fitted line in Fig. 4. The
observation may come from the fact that the bound in Theorem
4 is an upper bound and the experimental result in Fig. 4 does
not necessarily reach the bound.

B. Performance Comparison

Now we compare the performance of the TSO QHI method
with the QHI approach developed by Zhang and Sarovar in
[27], which is based on the eigenstate realization algorithm
in classical identification (abbreviated as the ERA method
hereafter).

The ERA method can be used to give a general solution to
QHI although it was originally presented for the identification
of partial parameters in the system Hamiltonian. The ERA
method first converts QHI into a system identification problem
in the real domain, where the transfer function of the equiv-
alent linear system can be obtained. From temporal records
of system observables, it can reconstruct the transfer function.
Then equating the coefficients of the transfer functions with
unknown parameters to those from the experimental data, the
ERA method leads to a set of multivariate polynomial equa-
tions, whose solution yields the estimates of the Hamiltonian
parameters.

This approach is only efficient if the number of parameters
to be identified in the Hamiltonian is small. This is because
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Fig. 5. Running timeT versus qubit numberNq for the ERA method in [27]
and our TSO method.

solving multivariate polynomial equation takes a considerable
amount of time, especially for high dimensional systems or for
full Hamiltonian identification with complex quantum systems.
In fact, common algorithms solving multivariate polynomial
equations can be super-exponential when the number of vari-
ables scales up [50].

To illustrate the efficiency of the TSO Hamiltonian iden-
tification method, we compare it with the ERA method by
numerical simulations, which we performed on a single thread,
computer cluster with 2 Intel Xeon E5-2680v3 CPUs and 256
GB memory. We consider the following Hamiltonian for a 1D
chain ofNq qubits, which is the example investigated in [27]:

H =
Nq

∑
k=1

ωk

2
σk

z +
Nq−1

∑
k=1

δk(σk
+σk+1

− +σk
−σk+1

+ ). (49)

Here ωk and δk are unknown parameters to be identified.δk

are the coupling strength betweenk-th and (k+1)-th spins,
σ+ = 1

2(σx+ iσy) andσ− = 1
2(σx− iσy). Running on the same

computer cluster, we compare the consumed time of our TSO
QHI method versus the ERA method for the cases ofNq = 3,
4, and 5. For the TSO method, we do not utilize the prior
structural knowledge (1D-chain) of the targeted Hamiltonian,
whereas this information is used in the ERA method. Fig.
5 shows the numerical result, where the vertical axis is the
running timeT (in units of seconds) in a logarithmic scale,
and the horizontal axis is the number of qubitsNq. The red
diamonds are the times from the ERA method, whereas the
blue dots are for the TSO identification method. The numerical
results show that the TSO method is much faster (e.g., around
100 times faster forNq = 4) than the ERA method even if we
do not use the prior knowledge of Hamiltonian’s structure. It
is worth mentioning that the efficiency of the TSO algorithm
usually depends on the system size but not the number of
parameters for a given system size, while the performance
of the ERA method significantly depends on the system size
as well as the number of parameters to be identified. The
efficiency advantage of TSO algorithm becomes remarkable as
the system size and the number of parameters to be identified
increase.

VII. CONCLUSION

We have presented a new TSO Hamiltonian identification
method and analyzed its computational complexity. This iden-
tification method is applicable to general time-independent
Hamiltonians for closed quantum systems. We have also pro-
vided a theoretical upper bound for the identification errorand
demonstrate the performance of the identification algorithm
using numerical examples. Future work includes the extension
of the TSO algorithm to quantum process tomography for open
quantum systems and the investigation of whether quantum
entanglement can enhance the performance of Hamiltonian
identification.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: In this paper, whenever we need to endow orders
to number pairs(x,y) (1 ≤ x,y ≤ K) we identify (x,y) with
(x−1)K+ y unless declared otherwise.

When{Ei} is chosen as{| j〉〈k|}1≤ j ,k≤d, expand (15) as

d

∑
s,t,u,v=1

x(s,t)(u,v)|v〉〈u|s〉〈t|=
d

∑
s,t,u,v=1

δusx(s,t)(u,v)|v〉〈t|

=
d

∑
s,t,v=1

x(s,t)(s,v)|v〉〈t|

= Id =
d

∑
t,v=1

δtv|v〉〈t|.

Therefore, we must have

d

∑
s=1

x(s,t)(s,v) = δtv =
d

∑
s=1

x((s−1)d+t)((s−1)d+v)

for t,v= 1,2, ...,d, which is just Tr1X = Id.

APPENDIX B
PROOF OF THEOREM 1

Proof: Using equation (5), we vectorize equation (17) to
obtain

(E∗
k ⊗E j)vec(ρm) =∑

n
β jk

mnvec(ρn). (50)

Let {W( j,k)}d2

j ,k=1 be a family of d4 matrices. The matrix
{W( j,k)} is d2×d2 and its element in position(m,n) is the
number β jk

nm. Let V = (vec(ρ1),vec(ρ2), ...,vec(ρd2)). From
equation (50) we have

(E∗
k ⊗E j)V =VW( j,k). (51)

Since {ρm}d2

m=1 is a set of linearly independent matrices
forming a basis of the spaceCd×d, V must be invertible.
Therefore we know

W( j,k) =V−1(E∗
k ⊗E j)V. (52)

Su f f iciency: Since {Ei}d2

i=1 is a set of linearly indepen-
dent matrices forming a basis of the spaceCd×d, we know
{E∗

k ⊗E j}d2

j ,k=1 is a set of linearly independent matrices form-

ing a basis of the spaceCd2×d2. Therefore,{W( j,k)}d2

j ,k=1 is
also a set of linearly independent matrices forming a basis
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of Cd2×d2. We then know{vec(W( j,k)T)}d2

j ,k=1 is a set of
linearly independent column vectors forming a basis of the
spaceCd4×1, which leads to the conclusion that

B= [vec(W(1,1)T),vec(W(1,2)T), ...,vec(W(2,1)T),
vec(W(2,2)T), ...,vec(W(d2,d2)T)]

(53)
must be invertible.

Necessity: When B is invertible, from equation (53) we
know that{vec(W( j,k)T )}d2

j ,k=1 is a set of linearly independent
column vectors forming a basis of the spaceCd4×1. Therefore
{W( j,k)}d2

j ,k=1 is a set of linearly independent basis ofCd2×d2,

and from equation (52){E∗
k ⊗E j}d2

j ,k=1 is also a set of linearly
independent basis ofCd2×d2.

Now suppose that{Ei}d2

i=1 is not linearly independent. Then
from equation (52), one can easily prove{E∗

k ⊗E j}d2

j ,k=1 is not
linearly independent, which leads to a contradiction. Hence,
we have proved necessity.

APPENDIX C
PROOF OF THEOREM 2

Proof: We follow the notations in the Proof of Theorem
1. Since{ρm}d2

m=1 is a set of normal orthogonal basis of space
Cd×d, we knowV is unitary. Therefore, we know

W( j,k) =V†(E∗
k ⊗E j)V. (54)

Su f f iciency: Since{Ei}d2

i=1 is a set of normal orthogonal
basis of the spaceCd×d, we have

δ(p,q)(k, j) = δpkδq j = 〈E∗
p,E

∗
k 〉〈Eq,E j〉= 〈E∗

p⊗Eq,E
∗
k ⊗E j〉,

which means{E∗
k ⊗E j}d2

j ,k=1 is a set of normal orthogonal
basis of the spaceCd2×d2. Therefore from (54), we know that
{W( j,k)}d2

j ,k=1 is also a set of normal orthogonal basis of the
spaceCd2×d2. HenceB must be unitary.

Necessity: Since B is unitary, from (53) we know
{W( j,k)}d2

j ,k=1 is a set of normal orthogonal basis ofCd2×d2.

According to (54), we know{E∗
k ⊗E j}d2

j ,k=1 is also a set of
normal orthogonal basis ofCd2×d2. Hence, we have

〈E∗
p⊗Eq,E

∗
k ⊗E j〉= δ(p,q)(k, j) = δpkδq j = 〈E∗

p,E
∗
k 〉〈Eq,E j〉.

(55)
Now we concentrate on the third equality in (55). Setting

p = k = q = j, we obtain 1= |〈E j ,E j〉|2. Since 〈E j ,E j〉 =
Tr(E†

j E j) is a positive real number, we must have〈E j ,E j〉= 1
for every j = 1,2, ...,d2. Setting p = k, we obtain δq j =

〈Eq,E j〉, which means that{Ei}d2

i=1 is a set of normal orthog-
onal basis of the spaceCd×d.

APPENDIX D
EXAMPLES OF ELIMINATING MULTIVALUED

SOLUTIONS

Example 1:Let || · ||x be any submultiplicative matrix
norm (i.e.,|| · ||x satisfies (2)). Suppose we knowa priori that
||H||x is upper bounded by a known valuehm. Then we can
set the evolution timet < π

2hm
.

The proof is straightforward.Theorem 1in Chapter 10.3
of [51] states that the absolute value of the eigenvalue of

any matrix is no larger than the submultiplicative norm of
the matrix. Hence, the prior knowledge in Example 1 is a
sufficient condition for Assumption 1 to be satisfied.

APPENDIX E
PROOF OF LEMMA 4

Proof:

||eiθ b− c||2 = (e−iθ b†− c†)(eiθ b− c)
= b†b+ c†c− (eiθ bc†+e−iθ b†c).

(56)

Let b†c= reiφ , wherer > 0,φ ∈ R. Then

||eiθ b− c||2 = b†b+ c†c− (reiθ e−iφ + re−iθ eiφ )
= b†b+ c†c−2r cos(θ −φ). (57)

Therefore, we should takeθ = φ to obtain

min
θ

||eiθ b− c||2 = b†b+ c†c−2r. (58)

We have

||bb†− cc†||2 = Tr(bb†bb†+ cc†cc†−2bb†cc†)
= (b†b)2+(c†c)2−2r2.

(59)

From the Cauchy-Schwartz inequality,

r = |〈b,c〉| ≤ ||b|| · ||c||=
√

b†b
√

c†c.

We thus have

b†b+c†c
2 minθ ||eiθ b− c||2

= 1
2(b

†b+ c†c)2− r(b†b+ c†c)
≤ (b†b)2+(c†c)2− r(b†b+ c†c)
≤ (b†b)2+(c†c)2−2r

√
b†bc†c

≤ (b†b)2+(c†c)2−2r2

= ||bb†− cc†||2.

(60)

On the other hand,

(
√

b†b+
√

c†c)2 minθ ||eiθ b− c||2
= (b†b+ c†c+2

√
b†b

√
c†c)(b†b+ c†c−2r)

= (b†b+ c†c)2−4r
√

b†b
√

c†c
+2(b†b+ c†c)(

√
b†b

√
c†c− r)

≥ (b†b)2+(c†c)2+2b†bc†c−4r
√

b†b
√

c†c
= (b†b)2+(c†c)2+2(

√
b†b

√
c†c− r)2−2r2

≥ (b†b)2+(c†c)2−2r2

= ||bb†− cc†||2.

(61)
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