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Abstract—Quantum Hamiltonian identification is important  identification algorithms have been developed to estimate
for characterizing the dynamics of quantum systems, calibrating unknown dynamical parameters of linear or nonlinear input-
guantum devices and achieving precise quantum control. In this output systemg [5][7]. In recent years, the problem of quan-

paper, an effective two-step optimization (TSO) quantum Hamil- . P
tonian identification algorithm is developed within the framework (UM System identification has attracted more and more at-

of quantum process tomography. In the identification method, tention due to the rapid development of emerging quantum
different probe states are inputted into quantum systems and the technology [[8], [9] and increasing demand of characterizing

output states are estimated using the quantum state tomography quantum devices. For example, a framework for quantum
protocol via linear regression estimation. The time-independent system identification has been established’if [10] to classify

system Hamiltonian is reconstructed based on the experimental h h k led bout t t is attainabl
data for the output states. The Hamiltonian identification method ow much knowledge about a quantum system IS attainable

has computational complexityO(d®) where d is the dimension of from a given experimental setup. Guta and Yamampbto [11]
the system Hamiltonian. An error upper bound O(d—f\l) is also considered a class of passive linear quantum input-output
established, whereN is the resource number for the tomography Systems, and investigated the problem of identifiability and
of each output state, and several numerical examples demonstrate how to optimize the identification precision by preparing good
the effectiveness of the proposed TSO Hamiltonian identification input states and performing appropriate measurements on the

method. output states.
Index Terms—Quantum system, Hamiltonian identification, In this paper, we focus on the problem of quantum Hamil-
process tomography, computational complexity. tonian identification (QHI), which is a key task in char-
acterizing the dynamics of quantum systems and achieving
I. INTRODUCTION high-precision quantum control. There exist some results on

S wm technol devel th . . OHI and various aspects of QHI have been investigated
d quandl;m ehc notog_y_ cve opsl; ere 1s artl increasi I2]-[15]. For example, a symmetry-preserving observer has
emand for characterizing an unknown quantum proc&sg, , developed for the Hamiltonian identification of a two-

since it is vital to "ef'fy and ben(_:hm_ark quantum devic Rvel quantum system _[16]. The identifiability problem for
for quantum computation, communication and metrolagy [1 . Hamiltonian corresponding to a dipole moment has been

The standard solution to characterizing a quantum proces?n\?estigated [17] and the question of how to utilize quantum

Quantum Process Tomography (QPT), Where_ln usually kno\%ntrol to identify such Hamiltonian has been addressed [18].
input quantum states (probe states) are applied to the Proceps

sed-loop learning control has been presented to optimally
and the output states are measured to reconstruct the quar\%ﬁtifying Hamiltonian information [[19] and compressed
processl[2]{[4]. Hamiltonian identification for closed quantu y

ensing has been proposed to enhance the efficiency of iden-
systems is a special class of QPT that corresponds to a uni 9 brop y

¢ di tial t10 ch ¢ rl@fgtion algorithms for Hamiltonian with special structures
quantum process and IS an essential component to charac e[ZITJT, [21]. Several Hamiltonian identification algorithms have
the dynamics of a quantum system.

Svstem identification has b delv i tigated in cl been developed using only measurement in a single fixed basis
_oyslem identification has been widely investigated in Ca2'2]—[24]. Wanget al. [25] utilized dynamical decoupling to
sical (non-quantum) systems and control theory, and m

ntify Hamiltonians for quantum many-body systems with
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corresponding output states are measured after a fixed timdl. PRELIMINARIES AND QUANTUM PROCESS
evolution under the Hamiltonian to be identified. These ottp TOMOGRAPHY

states are reconstructed using the quantum state tomggragh
technique via linear regression estimation (LRE)! [29].rdsi ) . _ . i
the information of estimated output states, the Hamiltonia FOr @ MatrixAmn = [aj], its Frobenius norm is defined as
is reconstructed via an identification algorithm. The main

m n
contributions of this paper are summarized as follows. [[All =,/ ZZ a5 = \/Tr(ATA).
i=1]=1

« The quantum Hamiltonian identification (QHI) problem! WO important properties of the Frobenius norm are:

Matrix and Vectorization Fundamentals

is formulated within the framework of quantum process I|A| = [|UA]| (1)
tomography (QPT) and several relevant points in QPT are ’
clarified in order to present an efficient QHI algorithm. [|ABJ| < ||All-]IB]l, (2)

« A Two-Step Optimization (TSO) identification algorithm . . .
is presented and its computational complexity is analyze\?f.hereu IS anym>m unltary_matnx.
Our identification algorithm has the computational com- The tensor product of matricégn.n = [&i;] andBpxq = [bu]
plexity O(d®) whered is the dimension of the quantum'S d€fined as follows:
system. a;lB B - anB
« Analytical results of estimation error are presented and A©B— aB  aoB - axB
an error upper bound is established@(s%), whereN = | oo
is the resource number in the tomography of each output amB awB -+ amB mpxnq
state. e introduce the vectorization function ve€iyxn — Cmn.
« Numerical examples are presented to demonstrate ‘\ﬁéer a MatrixAmxn = [a]
performance of our QHI algorithm. It is then compared < = (&),
with the QHI method using measurement time traces inveq Am.n) = [a11,21, ..., Bm1, 12, .-, 312 s @1n; o> Bmn) | -
[27], and our identification algorithm shows an efficienc

advantage over the method ifi [27] in terms of thdhe function ve¢) (also denoted ak)) or |-) in the physics
computational time. community) is linear. Its common properties are listed as

follows [30], [31]:

®3)

The structure of this paper is as follows. In Sectloh Il veq|a)(b[) = |b)* ® |a), (4)
we present some preliminaries and briefly introduce QPT. 6T
Sectior 1l formulates the QHI problem within the framework vedAXB) = (B' ® AjvedX), )
of QPT. Sectiof IV presents a TSO Hamiltonian identification (A,B) = (vedA),veqB)), (6)
algorithm and analyzes the computational complexity. iSect : ‘
V] analyzes the estimation error theoretically and estabis Tri(veqA)veqB)’) = AB'. (7)
an upper bound. In Sectidn VI, we present two numerical Tro(vedAvedB)T) = (BTA)T. ®)

examples to demonstrate performance and also compare our
identification algorithm with the QHI method using time ®ac |n this paper, we also define that vé¢) maps ad? x 1 vector

in [27]. Sectiorl V1) concludes this paper. into a d x d square matrix rather than matrices with other
sizes. In[(¥) and{8), TfX) means partial trace on the space
H; whereX belongs to the spadd; ® Hjy. Similarly Try(X)
means partial trace on the spdde.

Notation: a* denotes the conjugate e Anxn denotes an
m-row andn-column matrix;AT is the transpose oA; A' is
the conjugate and transpose &ifH denotes a Hilbert space;
R andC are the sets of all real and complex numbers, respec-
tively; | is the identity matrix (dimension omitted if withoutB. Quantum System and Evolution

ambiguity); ||A[| denotes the Frobenius norm &f Tr(A) is  The state of a closed quantum system can be described by
the trace ofA; |) is a unit complex vector representing & ynit complex vectofy) in the underlying Hilbert space and

quantum (pure) statep is a density matrix representing ajts dynamics is governed by the Schrodinger equation
quantum statea is the estimate of; (A,B) represents the

inner product ofA and B defined as(A,B) = Tr(A'B); (a,b) iﬁ|w(t)> =H|y(t)) (9)
denotes the inner product afandb with (a,b) = a'b; Cq is ot 7

the set of alld-dimension complex vectorg}4.q is the set whereH is the system Hamiltonian and we det 1 using

of all d x d complex matrices; vée) denotes the vectorizationatomic units in this paper. When the quantum system under
function; vecl(-) is the inverse function of vectorization fromconsideration is an open quantum system or the quantum
Cq42 to Cyxg; A® B denotes the tensor product Afand B; state is a mixed state, we need to use a Hermitian positive
Tr1(X) means partial trace on spallie whereX e Hy ®Hy; & semidefinite matrixp satisfying T{p) = 1 to describe the

is the Dirac Delta function; as a subscript means an integequantum state. For a closed quantum system with $tate
index, otherwisé means imaginary unit; i.ei,= v/—1. we havep = |)(y|. Its evolution from the initial stat@(0)



to p(t) at timet can be determined by a unitary propagatdd. Standard Quantum Process Tomography

U:
We rephrase the framework of general quantum process

_ t
pt) =U(t)p(OU (), (10) tomography in([1] in the matrix form and later we will conside
QHI problem under this framework.

_ Mt T
whereU (t) = e if H is independent of. . . By expanding{A;} in (IJ) in a fixed family of basis matrices
For an open quantum system, the dynamics of its st?ﬁtg} we obtain
el I}

can be described by a master equation. Alternatively, t
transformation from an input stagg, to an output stat@gyt A = ZC”’EJ’, (13)
is given by Kraus operator-sum representat(an [1] ]

Pout = E(Pin) = ZAipinAiTa (11) and then
' E(p) = ZEjPEEXjka
where the quantum operatighmapspin to pout and {Ai} is ]
a set of mappings from the input Hilbert space to the output y i :
Hilbert space withy; A'A; < 1. In this paper, we only consider Wt _Xig(iZifiicilﬁ If we define the matribC = [c;] and the
trace-preserving operations which means that the conmasse matrix X = [xij], then
relation -
T X=C'C", (14)
SAA=I (12)
' which indicates thatX must be Hermitian and positive

is satisfied. In particular, we considérdimensional quantum semidefinite.X is called theprocess matrix38]. The com-
systems and hava; € Cqyq. pleteness constraint equatidnl(12) becomes

ijkEJEj =1. (15)
C. Quantum Measurement and Quantum State Tomography 1,

We aim to identify the system Hamiltonidhfrom the input 1 i gifficult to further simplify this relationship beforthe
states (usually known) and the output states. TO.‘?XtraOY"”fstructure of{E/} is determined. Note that the matri and
mation from the output quantum states, a positive-operaig process are in a one-to-one correspondence. Hence, we
valued measurement (POVM) is usually performed on theggn, optain a full characterization 6fby reconstructing [J.
states. A POVM is a sefM;}, where all the elements are Let {om} be a complete basis set Gf,q. For example
Hermitian positive semidefinite ang; M = I. When a set of all Pauli matricesg, — (o 1) o — (o,i) and o, — (1 0) '
POVM is performed, the probability of outcomeccurring is , A AN L AR e

P ' P y 9 together withl,,,, form a complete basis set diy.o. If

g(gia/rl\r/lmnedtgy the _Botr.n Rulg :Tr(pMi)t. A spe(;PaI clar?sr?f we let {pm} be linearly independent matrices (with respect
are the projective measurement opera{@s, whic to addition between matrices, and multiplication between a

are projectors satistyingiPj = ;. scalar and a matrix) and we inpg#t, to the process, then

In real experiments, it is impossible to implement infinitel g process output can be expanded uniquely in the basis set
many measurements. Hencpg, can only be approxmatedépn}. ™

within a limited accuracy. The methodology for designin
the measurement operatofhl;} and estimatingo from ex-
perimental data is called quantum state tomography, where
usually a large number of identified independent copies of
p are used. Common quantum state tomography methdets simplicity, we choos€p,} to be the same set dom}
include Maximum likelihood estimatiori [32]-[34], Bayesia although they could be different. We then need to find the
mean estimation_[32]/[[35] and linear regression estinmatioelationship betweeiX and A, which is independent of the
(LRE) [29]. In this paper, the LRE method will be used irbasesE;}. Considering the effects of the basgs} on {pm},
numerical simulation and error analysis although our QHWe have

method is also applicable to other quantum state tomography EoEf ik
methods. In the LRE method, the quantum state reconstructio jPmb = ;ﬁm n
problem is converted into a parameter estimation problam fo

a linear regression model and the least-squares method Emmce,

be used to obtain estimates of the unknown parameters. The Ko x )
LRE method of quantum state tomography was first presented ;Zﬁm“pnxlk - Z mnPn-
in [29] and it has also been used to experimentally recoatstru )

q_uantun_1 _states for various ta_sks [36].1[37]. Its advantagesFrom the linear independence £,
high efficiency and an analytical error upper bound make it

especially beneficial in presenting numerical results anore Ky

analysis for our TSO QHI method. %B Xjk = Amn (18)

Pout = €(Pin) = E(Pm) = ZAmnPn- (16)

(17)

}, one can obtain



To rewrite this equation into a compact form, define the matrilll. PROBLEM FORMULATION OF HAMILTONIAN

A = [Amd and arrange the elemengd%, into a matrixB: IDENTIFICATION
11 21 ... pl 22 .. pdd The objective of this paper is to develop a new algorithm
2111 2211 2112 2212 2c112d2 to identify a time-independent Hamiltonidh If we compare
with the Kraus representation {11), it is clear that the
........................................... p
B— 1 21 12 2 d2d2 unitary propagatod (t) is the only Kraus operator. Then from
3 o 2 o e (I3) we know that the matri€ is a row vector. Hence, from
22 22 22 22 22 (I4) we knowX is of rank one. It is worth mentioning that,
...................................... 22 . fOf any g|Ven prOCGS§, although the KI’aUS Operator'sum
11 21 ... pl2 22 ... pdd _ ot . g
w2 Page 22 Pazge 4202 ?4X34 representation is not unique, the process maXriis in fact
19 uniquely determined. Although there might be other Kraus
so that we have operator-sum representations where the number of opsrator
BvedX) = vedqA). (20) is more than 1, the conclusion thétis of rank one is always

true. WhenX is of rank one, the semidefinite requirement is
naturally satisfied. LeX = gg' andg = vedG).

Now we need to determine basis s€ifi} and {pm}.
Proper choice of these basis sets can greatly simplify the QH
problem, and we thus choose both of them as the natural
pasis{|j)(k|}1<jk<d, because the natural basis can simplify
the completeness requirement](15) and Problém 1. These
advantages can be demonstrated as follows.

Proposition 1:1f {E;} is chosen as the natural basis and
the relationship between j andk is i = (j —1)d+k, then the
. . . ) . A completeness constraint readg X e lg.
[[Age— || = |[vedAge) — vedA)|| = || BveqX) — vedA)||, The proof of Propositiofl1 is presented in Apperldix A.
The natural basis is also useful in transforming Prodlém 1

Here, B is determined once the basé¢g} and {pmn} are
chosen, and\ is obtained from experimental dat8, X and
A are in general complex matrices. Note thatshould be
Hermitian and positive semidefinite and satisfy the coirgtra
(I5). Hence, direct inversion or pseudo-inversiolBahay fail

to generate a physical solution. We try to find a physical es
mateX which will generate an outpyl as close as possible
to the estimated results’ from quantum state tomography.
Becaused, andp’ are characterized b§(ge andA separately,
we should minimizg|Age—A||. Since

we will take ||BveqX) — veqA)|| as a performance index.

. . Lo . into an optimization problem in a more convenient form:
The problem is now the following optimization problem: Probl 5 Gi h trixB and . tal dat
Problem 1:Given the matrixB and experimental data » roblem 2. lven ne matrixt and experimental gata

A, find a Hermitian and positive semidefinite estimate 7\ find 2 Heﬂrm|t|an7fmdilposrqve semidefinite. estimate
minimizing ||BvedX) — vedA)||, such that[(T5) is satisfied. minimizing ”X — vec (B vedA))||, such that constraint

It is difficult to obtain an analytical solution to Probldrh 1.®) IS Sat'Sf'e_d' . .
In this paper, we do not directly solve Problémn 1 since the Problem(2 is _not neces_sa_rlly equwalent to Problgm 1. We
problem of QHI can be further specified based on Proljlem need to determlng wheB is invertible and when thesg two
After one obtains an estimal it is straightforward to obtain problems are equivalent. To answer these two questions, we

Kraus operators{A;}. Since X is Hermitian, it has spectral give the following cond|t|20n5 to charactent ]
Theorem 1Let {E}&; be a set of matrices in the space

decomposition )
G Caxa and let{pm}%_, be a set of linearly independent bases
X= Zlui|Vi><Vi|, of Cqyq. Define B through [I¥) and[(19). TheqE} is a
i= set of linearly independent bases ©f.q4 if and only if B
wherevu; are real eigenvalues. Then is invertible. ,
P2 Theorem 21Let {E; id:1 be a set of matrices i€4,4 and
oL Zl\/u_i|Vi><Vi|7 let {pm}?nil be a set of normal orthogonal bases @f.q.
i= Define B through [I¥) and[(19). TheKE;} forms normal
and orthogonal basis ofy.q if and only if B is unitary.

A :ZcijEj- The detailed proofs of Theore 1 and TheorEm 2 are
7 presented in AppendixIB and Appendik C, respectively. Under

Though X and £ are in one-to-one correspondence, thttge conditions in Theoref & is unitary, and we have

notable property of the Kraus operator-sum representésion |IBveqX) —vedA)|| =]|lvedX)— B lvedA)|
its non-uniqueness; i.e., there may be more than one differe = [|X —vecL(B-tveqA))||,
sets of Kraus operators that give rise to the same pragess

This comes from the procedure of decomposiimto CTC*, which means Problef 1 is equivalent to Problém 2 in this case.

which is in fact non-unique because The natural basis set satisfies the requirements in Theldrem 1
T T T e and Theorem]2.
X=CC'=(CuHuc) With the natural basig|j)(k|}1<jk<da for {Ei} and {pm},

holds for any unitary). Hence, the deduction & from X is We have
non-unique. Tri(vedG)vedG)") = I = GG',



which means the completeness constrdint (12) is equivident 2) : For Probleni3, note that
the requirement thaG is unitary. Hence, we can transform A ALt A At 2
Problem[2 into the following problem which is critical for ||vec(G)\fec(G)A—vec(S)\iec(S)J|
QHI. = Tr{[veqG)veq G)" — veq§veq 9 1)?}
Problem 3: Assume that{pm} m1 Is a set of normal = [vedG)'vedG))? + [vedS)Tveq §))?

orthogonal bases of the spad&j.q, {E} is chosen as At A At X
{|J)<k|}1<J k<d,» and the relationship betwedn j andk is — 2veqG) veqS)vedS) veqG)

= (j—1)d+k. Given the unitary matri8 and experlmental = d*+ (TS9P -2 Tr(G'S)%
data/\ find a unitary matrixG minimizing |veqG)veq G)T— Hence, Problem 2 is equivalent to maximizingly —

T oA N
vec (B vecéA))H h ) I ITr(GTS)|2 among all unitaryG. We make a polar decom-
Remark 1.Note that we can experimentally measure on osition [44] of S to obtamS VQ whereV — S(STS)*é is

Hermitian physical variables. Hence, we cannot directlg u ara
. . . . Unitary andQ = (S S)? is positive semidefinite. We make a
|17kl (j # K) as probe states. According to] [1], whery spectral decomposition 0@ to obtainQ = ZRZT, whereZ is

\'fvh‘;'r‘ee|i";‘r':t("’|"1‘ﬁf|<li>|) /|\I(>F2<k£n|(;r|>_<>+|: ?|r}(;|+_||>|§>_)|/3§|2ﬁl:: unitary andR = diag(Ru1, Ros, .., Rag) With Rjj > 0. Without
Ioss of generality, we assunm >0 forall 1< j<d. Let

£([3)k) can be obtained from =7'GWZ, and assume th&f“ = ;&% with f; >0 and
E(NKD = E(+)(+D)+ |5(|—><—|) (21) O< {$; < 2m. BecauseF is unitary, we must have; < 1.
HENN) = FE(K) (K]). Hence, we have

Lz =[TGVQ))?

IV. HAMILTONIAN IDENTIFICATION ALGORITHM |Tr(|f|;§ 2
AND COMPUTATIONAL COMPLEXITY —I5, RiiF a2 (25)
DALY .
A. Solution to Problerh]3: Two-step Optimization (TSO) =(3;F R“ costpj) + (3 FiR;j simpj)Z,
The direct solution to Problefn] 3 is difficult [39] and we, i,

split it into two sub-problems (which is the reason we nam-Ehen we letatllj =0 for all j and we obtain

our method Two-Step Optimization): R sing
Problem 31: Let D = vec 1(BfvedA)) be a g|venAma- % =tan{y = tan{l, = ... = tan{y.
trix. Find ad x d matrix S minimizing ||veqSjvedS)" — D). 3 j FjRjj cosy;

Problem 32: Let Sbe given. Find al x d unitary matrix Note thath(lf) _ Lz(ei%'f) for any di € R. Hence, we can

S minimizi ¢ Ayt & &t
G Slmn;g:ngrg\é?e%eﬁ? —veqSjvedS)|l. choose(; = 0, which meang}; =0 or mfor 2< j <d. To
' ' maximizeL, we should let all; equal to 0. Thereford,, =
Ly = |[vedSvedST—DJ|? (3;7iRjj)2 which indicates "= 1 for all j. If all the diagonal
_ & at A & at At elements of a unitary matrix are equal to one, then it must
B Tr{[vAecJJr(S)ver(i) D) [Yiqé)vefﬁs) P I} At be the identity matrix. Hence, for the optimal value we have
= [vedS)'ved S)|” —vedS) (D +D')vedS) + Tr(DD'). . considering an extra global phase, we finally have the
Then by partial differentiation we obtain the conjugatediat OPtimal solution
matrix
o _ =2vedS)veqSveqS) — (DT +D)veqs), (22)
dvedS)* ’ where ¢y € R. Combining the results of Problef.IB and
Probleni 32, we obtain the final solution.
After we solve Problem]3, we should calculate the Kraus
(B + B)vedd) — 2vedd)vedGveds). (23) operatorA (which is also the unitary propagatdxt)) from G,
and finally we calculatéd from A. Note thatU (t) must be a
Therefore the optimal VQS) must be an eigenvector ()IDT+ unitary matrix. Then the questions arise of how to calcufate
D) corresponding to the positive eigenvalue 28&vedS).  from G, and whether the matri& calculated fronG is always
Then unitary? We answer these questions as follows.
L= [vec(é)Tvec(é)]z—vec(é)T(I5+I5T)vec(§)+Tr(I5I5T) Proposition 2: Under the ass_umptions of Problem 3,
_ Tr(IﬁIﬁT) B [2vec(§)Tvec(é)]2/4. suppose we have obtained a solution

X =veqG)vedG)".

6=t — 5§y}

which leads to

SinceD' +D is Hermitian, we have the spectral decompo-

sition 2 Then there is essentially only one Kraus operaﬁt@alculqted
At AL A 5 5\t from G. A must be unitary and in fach is equal toé?G',
B0~ 3 ivedR)ved)', (24 herepe k.

A i i o Proof: Denote ve(G); as thej-th element of ve(G).
where B € Cqxq and a1 > ... > Og2. To minimize Ly, we Sjnce

should choose 2vég)fved$) = a1 andS= /%P X =vedG)vedG)",



then

2 ~
= 2?,2k:1EJPEJXjk ) )
5911 EipE{[vedG) veq G);]

/(;'D
>

Zﬁw,n::l. |m> <n|Veqé‘)(m—l)d+np

<591 ) (sved Gy 1

= Y-t IM (NGrmp 3§11 1) (5IGis

= GlpG
= d9GTpe 19G*.

2 ~ 2 ~
59 EjvedG)jp s ElveqG);

(26)

Therefore, there is essentially only one Kraus operatoichvh
is @G with ¢ € R undetermined, anéd = €9G' is unitary.

[ |

Remark 2:If SandG are the solutions to ProblemI3

and Probleni_ @, respectively, then for angy, @ € R, €25 Box 2.
and€®G are also optimal solutions, respectively. Hence, there

is in fact an undetermined global phase ) which can

also be seen from Propositibh 2. This stems from the glob%l
phase in the Hamiltonian, which is physically unobservable .
Through proper prior knowledge, this global phase can be
eliminated. For example, in_[27] the prior knowledge of
TrH = 0 is assumed. In our simulations of Section VI, w

use the assumption that the smallest eigenvalué &f set to

a determined value.

After obtainingA, we need to solvé= e ™Mt to obtainH.
Note that in real physical systems we always reqtiréeo be

Hermitian. Another question which naturally arises is vieet 7

every solutionH of the equatiomA = e Ht is Hermitian? We

introduce Theorem 1.43 from_[40] as well as its proof, since

the proof provides a method to obtath

Lemma 1 ([40]): Ac Cn«n is unitary if and only ifA= "
for some HermitiarH. In this representatioll can be taken

to be Hermitian positive definite.

Proof: The Schur decomposition & has the formA =

QDQ' with Q unitary and
D = diag(exp(if;})) = exp(i®),
where®© = diag(6;) € Rnxn. Hence,

A= Qexp(ie)Q" = exp(iQeQ") = exp(iH),

whereH =HT. Without loss of generality we can talé > 0,

which implies thatH is positive definite.

e

Box 1

Measurement Hamiltont
i Dout amil t(;nan Din ;:::s
A
Step 1: QST - - — - Box 2
\
R Y Step6 .
pout H G
Step 2 Step 5
A Step 3 - Step 4 -
A D S

Fig. 1. General procedure of the quantum Hamiltonian ifieation method,
where QST indicates quantum state tomography and this fapases on

In AppendixD we give an example of a sufficient condition
r Assumptior L, which might be more convenient to deter-
minet in practice. Now with Assumptioph] 1 satisfied ahg
et, we design an algorithm to recover the Hamiltonian from
a unitaryG as the following.
Algorithm 1: (i) Perform a Schur decomposition &7
to get GT = QJQ" with Q unitary, andJ = exp(i®), where
O©=diag§)), 0< 6, << ..<fy<2m

(ii) If Og— 61 <, go to step (iii); otherwise, find the small-
estk so Ehaték— 6, > m. Then forj =k k+1,...,d, replace
0; with 8; —2m. This step aims to ensure the reconstructed
Hamiltonian has spectral region no larger thgn- h;.
(iii) Let B = max 6;. For all 1< j <d, take 6, = 6; —
hit — 8o. If we denote® = diag 6;), thenH = —QOQT/t is
the final estimated Hamiltonian.

B. General Procedure and Computational Complexity

In Fig. I, we summarize the general procedure of the
QHI framework. All steps in Box 2 are data processing
steps performed on a computer. Step 1 is quantum state
tomography, which includes the acquisition of experimenta
data and post-processing of the experimental data. In Husmp
we do not consider the time spent on experiments, since it
depends on the experimental realization. In the following,
briefly summarize each step and illustrate their corresimand

| . .
Lemmall satisfies our needs perfectly. Instead of using th@TPutational complexity.

general matrix logarithm function, we can just use the ASCh_LIJ_
decomposition to obtain the logarithm of unitary matix

Step 1 Choose basis sefE;} and {pm} and calculateB.
en use quantum state tomography to reconstruct experimen

Furthermore, from the proof of Lemnid 1 we notice that aﬁ;\l output states of the system. The number of resource €opie
6; should lie in a region no larger tham otherwise they can

not be uniquely determined. This indicates that the sampli
period should be small enough. This can also be viewed aé
result of Nyquist sampling theorem, as stated_in [27]. Henc
in this paper we employ the following assumption.
Assumption 1The evolution timet satisfies

m
0<t<m,

(27)

N in state tomography determines the estimation error, but
Hoes not affect the computational complexity of the estiomat
Igorithm. Generally the calculation Bfaccording to[(1l7) has

Q d1) computational complexity. However, under the natural
basis, this complexity can be reduced to om@yd?*). For
state reconstruction, we employ the method of quantum state
tomography using LRE for our numerical simulations. The
computational complexity of LRE state tomographyd&d®)
offline andO(d*) online [29]. Considering there ad¥ output

wherehy and h; are the largest and smallest eigenvalues sfates to be reconstructed, the total computational coditple

HamiltonianH, respectively.

of our LRE method for QHI ig0(d®).



Step 2 Use [I6) to determind. Generally the computa-  Suf ficiency: Define W(j,k) as ad? x d?> matrix where
tional complexity to solve(16) i©(d'?). But it is only O(d?) W(j,k)’s element in positionim,n) is the numberBl, and
using the orthogonal property under the natural basis. denote(x,y) = (x— 1)K +vy for 1 < x,y < K. Using equation

Step 3 Calculate D = vec 1(BfveqA)). Generally the @), we consider each element\of(j, k),

complexity isO(d®). But under the natural basis, we already

N W(j,k)
know the specific structure and value Bf(see [ZP)). Thus, (Pa)(st) . :
the complef()ity now is onhO(d*). ( ) = Vec(*pmq))T(e*'f|9>*<h|* ®f'9|m><”|)‘iedp(s,t)) -
Step 4 CalculateS according to the spectral decomposition ((a” @ {p|)(|g)* ® Im)({h" ® ()(|t)" ©1s)) (28)

|
of D+ DT. The computational complexity is determined by B ((q|6g) ?i{'m))«hlt) ®(nls))
spectral decomposition, which i©(d®) (the computational G49%pmOih Osn
complexity of spectral decomposition is cubic in a HermmitiaHence, each matrixV(j,k) has exactly one 1 and all other

matrix’s dimension, see [41]). . elements are 0. From equatidn(53) we know each row8 of
Step 5 Use matrix polar decomposition to obta(d = has exactly one 1 and all other elements are 0. When indices
S(STS)*%. The computational complexity i©(d®) [41]. j andk run from 1 tod?, the index combinatiorig, h,m, n)

Step 6 Use the Schur decomposition to obtain the final estiever repeats, therefold,(j1,k1) andW(jz2,kz) have different
mated Hamiltoniard from G. The computational complexity positions of 1 as long as index péij1,ki1) # (jz2,kz). This
of Schur decomposition i©(d®) [41], [42]. means each row oB has no more than one 1. Sing&eis
Our Hamiltonian identification procedure has the followingguare, we know that each row Bfhas exactly one 1. Hence,
advantages. Firstly, the framework is general, since we fd# IS @ permutation matrix.
mulate it within the QPT framework. We do not impose any Necessity WhenB is a permutation matrix, from equation
restriction (such as sparseness) on the Hamiltonian. Sigcon(83) we know that each matrivV(j,k) has exactly one 1
Step 1 has the potential for parallel processing. One caid all other elements are 0. According\és permutation
deal with data on hand to reconstruct existing output stateperty and equatiori (54) we know this property for each
while at the same time inputting new probe states to tW¥(j,k) also holds for each matrif; @ E;. This means that
process and making measurements on them. Thirdly, th@ch matrixg; has exactly one nonzero element, denoted as
computational complexity can be analyzed. Regardlesseof thi- Then we havegx; = 1 holds for everyk, j = 1,2,...,d%.
time spent in experiments, all steps in our QHI frameworket j =k, and we findx; = €%. Then we know6; = 6, =
have clear computational complexity (at meXd®)). Finally, - = 842 = 6, where 8 is any fixed real number. SincB
it is possible to analytically investigate an error uppeutd IS invertible, from Theorenl]1 we knoyE;} is a linearly

and a detailed error analysis is presented in Se€fion v.  independent set. Thus each pair of matrices{i)} have
different positions o&®. Hence, we can writéE;} = €% {pm}.
[

C. Practical Consideration of Storage Requirements From the proof of Theoreri]l3, one can also deduce an
One issue in the calculations is that the dimensioB afay equation to directly calculatB. Substituting this into equation

increase rapidly. When there are 4 qubBshas 2? elements. @8), we obtain

If it takes one byte to store one elementBfthen we need B(J'kqu) = SygBpmndsn = B((Q}ngp(%?)- (29)

4GB of storage space, which is already a very heavy task for a T

common PC. We notice thitgenerated from the natural basisl herefore, one can easily write doBwhen the sized is

is a permutation matrix. This is vital to computation efficig. gIven.

A permutation matrix is a (square in this paper) matrix such A special case of the sufficiency of Theoréin 3; i.e., when

that all elements are 0 except exactly one 1 in each colurbfi} and {pm} are the same natural basis sets with the same

and each row. order of elements, also appeared (in][43]. Our theorem and
Notice that afterB is determined from equation§ {17) andProof here is more general. Using this theorem, we only need

([@9), its real usage is in Probldm 3, where we need to multigl§ Store all 1's positions B, which only requiresl* storage

B' to a vector. This multiplication task can be done in afPace. This is a great reduction compared vith and the

alternative way whereB's full storage is avoided. To be COst is only some more coding in calculating multiplication

specific, we aim to mak® sparse. Hence, we only need tdy B- Furthermore, the computational complexity in writing

store the information of its very small number of nonzeroWn B is also reduced to onl(d*).

elements and thus ignore a large number of zero elements,

while still being able to perform the multiplication. Thidaa V. ERROR ANALYSIS

is realized by the followng theorem: The error in the Hamiltonian identification method under
Theorem 3:Let {Ei}!"; be a set of matrices iffy.d. consideration has only three possible sources. The first one
Choose{pm}‘r’él:{|j><k|}1§j,k5d. DefineB through [1¥) and occurs in state estimation, where measurement frequency in
(@9). Then{E} = €%{pm} if and only if B is a permutation practical simulations or experiments is used to approxémat
matrix. Here,0 € R is any fixed global phase. the measurement probability. The second one is that state
Proof: Using Theoren{]2 we know that equatidn](52Jeconstruction algorithm might produce errors. The thing o
holds. is that our TSO QHI algorithm may also produce errors. In this



section, we give an error upper bound. We first fix the given 4) Error in step 4: We present a lemma to be used in this
evolution timet and analyze the error of our QHI methodpart.

Then we utilize the similar method to analyze the relatigmsh Lemma 2:Let b andc be two complex vectors with the
between the error and the tinhe same finite dimension and assume that they are not both zero

] ) ) simultaneously. Then we have
A. Upper Error Bound for Fixed Evolution Time

Theorem 4:If {E} and {pm} are chosen as natural [[bb" — CCTH m|n||e'9b— o < \/§||bbT—CCT||.
basis ofCq4.q and the evolution time is fixed and satisfies bl +1lcl| — VA TEESIEIE
Assumpt|or1[]]., then the estlrr;?tlon error qf the TSO QHIlhe detailed proof of Lemmid 2 can be found in Apperdix E.
methodE||H — H|| scales a©D(%=), whereN is the number : ) -

. VN We first estimatg|S||.
of resources in state tomography for each output state.

Proof: The proof of this theorem is divided into the 2 a8 01 s o

following seven parts. 1§52 =Tr(S'9) 7Tr(P1 Pr) = o
1) Error in step 1: The quantum state tomography algo- +
rithm used in this paper is from [29], and the upper bound dReMember thafiy is the largest eigenvalue &f +D". Using

(34)

the state estimation error is given by Theoren(B,
SUPETT(p — p)2 = %Tr(XTX) (30) |G1—2d| < [|(D+D") - 2D|| < 2||D—D|| = 28,
p
wherep is the true state and its estimatorM is the number We thus have
of measurement basel, is the number of experiments (i.e., 2d — 2Ap < @1 < 2d + 2A,.

number of copies op) in state tomographyX is a matrix
determined by the measurement basis set (for detaild, 88e [2Therefore,

Henceforth, we denote this error upper bound (i.e., the RHS o A _

(30)) asAs:. Following the deduct|0n in the Methods section VA= <[[S]=Va1/2< vd+An. (35)
of [29], one can prové\g ~ O( ) In the following, we will

We also need to estimafs— S||. Using LemmaR, we have
label other errors in the form ai with a subscript. 15— g ap

When pn, is Hermitian, E||€(pm) — £(pm)||2 < Ast. When IIS—9|= ||veo(S) vec(S)||
Pm is not Hermitian, its process output is in fact calculated< V2||veqSveq ST —veqSveq 9)T||
according to equatioi (21) rather than directly probed.déen — \/HvedSNZJrHveC(S )2

we must analyze this situation specifically. Under the ohoic < \/E”"eqs"eo(s) *Veo(s)"eo(s) I

of {Pm} ri\s the natural basis, fgrs£ Kk, _ [\/a 1o )]||vec(S)vec(S) —D||
EIE(]]) (k) — €I KDIZ . < [%+o(1)][||vec(8)vec(8) —D||+||D-D||]
= e Sl = ol v ey~ 41160
< (1+|||+|1+'|+|1+'|)2As z < [ﬁ+0(1)][llvedG)vedG) —D||+|ID-DI|
— (6+4V2)s o [ +0(1)] 26— Dl ~ Zbn. o
2) Error in step 2: Now we calculate the error in the 5) Error in step 5: We introduceWeyl's Perturbation The-
experimental data: orem which can be found in_[44].
E||A—A||2 Lemma 3 ([44]):Let A, B be Hermitian matrices with

eigenvaluesAi(A) > ... > An(A) and A1(B) > ... > An(B),

EZmZn,k({\rTm /\r;n)(/\mk—)\mk)énk reSpeCtive|y. Then

ESmYnk(Amn— Aan) Amc— Amid Tr(0 1)

= EZnT{Ealhin— Aol Sdnc—Andnd (5p) max|Aj (A) ~Aj(B)| <[|A~B]|. (37)
= E3nTr(E(om) — £(pm)* . |
= [ZJ 12k_1 Kt ||g(|J><k| (KNI Remark 3:The original version of Lemmia 3 was for t.he
+Z| 1||5(||><||) SUNANIP] o_perato_r norm. Howevgr, from [44] we knovy for any finite-
< (6+4v2)d(d— 1)Aq + dAg. dimension square matrix, its operator norm is not largen tha
- its Frobenius norm. Therefore this theorem also holds for
Also, we denoteds = [|A—A]|. the Frobenius norm, which is our main focus throughout this

3) Error in step 3: From Theoreni13, we knovB' is a aper.

permutation matrix. Hence, its effect on VAg is merely a For the true value we ha#’S=G'G =1 and||S/| = V.
series of interchanging two elements of (& and thusD = Denote||STS sfs| = - Agrs. From the spectral decomposition

vec” (BTveo(/\)) is just a reordering of\'s elements. For the &t§_ JEUT, whereE — diag1+ty,1+1p,...1+1tg). Hence,
same reasorl) — D is just reordermg of\ — A. Therefore tj € R. Then ’ .

D-Dl||l= Dy —D; 3— A—A|| = A, 33
|| || ;| jk Jk|) || || A ( ) ||STS STS”Z || |||2*||E |||2 th A



Thus we know Now using Lemmd&}4, we have

A &2 At aN(E_ & A —H12
IG=9[*= Tr[(G"'-S)(G-9)] G A )
= d-2T/SS+Tr(S9 < ZZj,k[l—Czos(ej_ek)HMjH X ,
= d-23; I+ +5(1+t) = 23 kIMjk|" =25 jcog 6k — 6;)|Mj]
- S (VITG 12y = 20 2Re(y @) My ) (44)
J M lJ Ji+tj2+21/1+tj ) — Tr(li_I)TZRqueflej zkelek|Mjk|A2)
= Xitla— gl +olt)] =785+ O(Asﬁs)-(%) = Tr(€% 1©+d% ©) — 2RdTr(e ®MeOM™)]
_ — 19— Md°MTII2 = 110498 — 0deot )2
For Agtg, using property[(2), we have _ HGT—GT||2:||||G_H§|2_Q Qe=Q|
Ags= [|SS-9's] Hence . .
< ||5'5-S'g|+|S's-S'g)| IH—H|[~O([|G-G)) (45)
< [ISI-1S=9|+ 1Sl - IS S]] (39) 7) Total Error: We combine equation (#5], (42, {32) and
= (/ISI+Vd)IS-9| (30) to obtain
< d+A d)||S—9 - 2
< (VA VOIS S| EIIA—HI[2 ~E[O(|6—GI[2)] ~ E[O(83)]

(VIFBA+ V) Zo7 ~ 4. (46)

~ O(d?As) ~ O(L),

Combining [38) and{39), we obtain which concludes the proof of Theordrh 4. |
From Theoreril4, we can also obtain the following corollary.

A A 1
1G—S]~ QASTS < 2. (40) Corollary 1: If {E;} and{pm} are chosen as natural basis
of Cyxd, and the evolution timé is fixed and satisfies As-
From subsectiof TV-A, we know there is in fact an extraumptior[l, then the TSO Hamiltonian identification method
degree of freedonp in the estimated®®GT and it can be is asymptotically unbiased.
eliminated using prior knowledge. Here, we take
B. Upper Error Bound vs Evolution Time

IG-Gl|= mqj””ei‘pé— Gl|. Using a similar idea to the above, we can characterize the
estimation error for different evolution times
Theorem 51f {E;} and{pm} are chosen as a natural basis
Then we have - m o
of Cqxq andN is fixed, then the estimation error of the TSO
IG—c||< |IG-§|+|I5-9|+|/S—G]| Hamiltonian identification method scales&gH —H|| ~ O(%)
= G &L (41)  wh isfi i
_ ||G— SH + ||S— SH wheret satisfies Assumptionl 1.

The proof of this theorem is similar to the proof of Theorem
Now by substituting equation§ {36) arfd(40) infal(41), V\@ Note from [(4#), we have
have L 2)H—HI<lI6-al, (@1)
IG-cll< [IG-§[+]15- (42) which combined i [2) (32 0) londs o
< 2Dp+ 205 ~O(An). which combined wit (@ ),_[(3 ) ancEB ) eads to the con-
vd clusion in the theorem. It is worth pointing out that in this
theorem, the evolution time cannot be arbitrarily large¢hea

6) Error in step 6: In this part we need the following it must be upper bounded according to Assumpiilon 1. Hence,

lemma: ) this scaling only holds in a certain region.
Lemma 4:For 6 € [-1,71, 562 < 1—cosh.
Based on differential analysis up to the second-order deriv VI. NUMERICAL RESULTS

tive, the proof of Lemmal4 is straightforward and hence we e perform numerical simulations using MATLAB on PC.

omit the details. o It is worth mentioning that the selection of natural bases is
Suppose the system Hamiltonian has a spectral decompaty a mathematical representation tool in the identifarati

sition tH = —QOQ', where © = diag(6;). Sincet satisfies algorithm. When performing measurements on the output
Assumption[]L, we have & 6; < rt for every j = 1,2,...,d.  states, our framework is applicable to many general mea-
Let M = Q'Q, which is also unitary. Then, we have surement bases, such as cube bases [45], MUB bases [46]-
. [48], SIC-POVMs [49], etc. In our simulations for the TSO
t2L||:| N H|P? R method, we choose cube measurement bases. The single-qubit
= [|QeQ"-QeQ'|2=||© - MeMT|]? cube measurement set consists of six measurement operators

Tr(@2+@2) — 2Tr(GMOMT) {2 oy 1201 and the multi-qubit cube measurement set

zi(é12+612)_221,k 06 Mix |2 is the tensor product of the single-qubit cube set. After the
3 k(07 + 62) My |2 — 23 1 B; 6 My |2 measurements, we then use the LRE method to reconstruct
3 i k(8 — 82 M2 ' the output states.

(43)
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3
logioN; N
Fig. 2. MSE versus the logarithm of the total resource nunhper Fig. 4. MSE versus number of qubilé.
° Moreover, we present an example to illustrate the relation-
af ] ship between the MSE and the qubit number. Ngtdenote
| | the number of qubits; i.ed = 2"a. We perform simulations
when Ny increases from 1 to 5. We set
2l ]
3 - o 1 09+0.9i \“N
5 1 ~\ 09-009i 2
°I andt = 0.01. ForNg =5, the distance between the largest and
At ] smallest eigenvalues &f is 19387. The number of copies for
Al ] state tomography is®3< 1000 for each output state. The result
is in Fig.[4 and each point is repeated 10 times. We observe
s 4 a5 3 25 2 as 4 that asNy increases, the errorbar decreases. This is because
st as Nq increases, the error is also increasing. Therefore, the
Fig. 3. MSE versus the logarithm of the different evolutiamest. fluctuations gradually become relatively small. We examine

various Hamiltonians and obtain similar results. Furthenen
we observe that the upper error bound in Thedrém 4 indicates

A. Performance lllustration a slope larger than that of the fitted line in Fig. 4. The

First we illustrate the relationship between the Me pservation may come from the fac_tthatthe boun.d in.Theorem
Squared Error (MSE) and the resource number. Netoe is an upper bound and the experimental result in[Big. 4 does
the total number of resources; i.e., the total number ofpinOt necessarily reach the bound.
of different quantum states used as probes. Considdring (21
we haveN = 3d22*dN. H is the real Hamiltonian, andi B. Performance Comparison
its estimation through TV=A. In Figl]2, the vertical axis is Now we compare the performance of the TSO QHI method
log;oETr(H —H)?2 and the horizontal axis is Iggh\;. The real with the QHI approach developed by Zhang and Sarovar in
Hamiltonian is taken as [27], which is based on the eigenstate realization algarith

5 01 3 4 in classical identification (abbreviated as the ERA method
01 -1 18 09 hereafter).

H=1 "5 18 2 o7 |- (48)  The ERA method can be used to give a general solution to
4 09 -07i 3 QHI although it was originally presented for the identifioat

of partial parameters in the system Hamiltonian. The ERA
The distance between its largest and smallest eigenvauemethod first converts QHlI into a system identification prable

11.95. The evolution timé = 0.1 and each point is repeatedn the real domain, where the transfer function of the equiv-
for 10 times. The fitting slope is-1.01314+ 0.0154, which alent linear system can be obtained. From temporal records
matches the theoretical result in Theorem 4. of system observables, it can reconstruct the transfettibmc
Now we demonstrate the relationship between the MSE amtlen equating the coefficients of the transfer function wit
the evolution time. For the same 2-qubit Hamiltonian[in] (48unknown parameters to those from the experimental data, the
we fix the number of copies in state tomography for eadfRA method leads to a set of multivariate polynomial equa-
output state as®3« 1000 and perform simulations for differenttions, whose solution yields the estimates of the Hamiktoni
evolution timest. The result is in Fig[d3 and each pointparameters.
is repeated 10 times. The fitting slope-£2.0891+ 0.0215, This approach is only efficient if the number of parameters
which matches the theoretical result in Theofdm 5. to be identified in the Hamiltonian is small. This is because
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5 ‘ : VIl. CONCLUSION

et We have presented a new TSO Hamiltonian identification
il ' ] method and analyzed its computational complexity. Thiside
tification method is applicable to general time-independen
Hamiltonians for closed quantum systems. We have also pro-
vided a theoretical upper bound for the identification eaiod
demonstrate the performance of the identification algorith
using numerical examples. Future work includes the exdansi
of the TSO algorithm to quantum process tomography for open
guantum systems and the investigation of whether quantum
entanglement can enhance the performance of Hamiltonian
2L : i identification.

logioT

Fig. 5. Running timeT bit numbeky for the ERA method in[27] APPENDIXA
1g. o. unning umel versus qubit num q or the metnoa InLL
and our TSO method. PROOF OF PROPOSITION 1

Proof: In this paper, whenever we need to endow orders
to number pairgx,y) (1 < x,y < K) we identify (x,y) with
solving multivariate polynomial equation takes a consadbés (x— 1)K +y unless declared otherwise.
amount of time, especially for high dimensional systemor f  When {E;} is chosen ag|j)(k|}1<jk<d, €xpand[(I5) as
full Hamiltonian identification with complex quantum systs.

; . 1 . d
In fact, common algorithms solving multivariate polynoinia

Xshuy MU tl= 5 dusXstuy V)t

equations can be super-exponential when the number of vari- ¢ &5_1 st.év-1
ables scales up [50]. o 4
To illustrate the efficiency of the TSO Hamiltonian iden- = Z X(st)(sv) V) (t]
tification method, we compare it with the ERA method by sty=1
numerical simulations, which we performed on a single ttiyea d
computer cluster with 2 Intel Xeon E5-2680v3 CPUs and 256 =g :tvzldVM {t]-

GB memory. We consider the following Hamiltonian for a 1D
chain ofNg qubits, which is the example investigated|in [27]Therefore, we must have

d d
Ng No—1 X(st)(sv) = Ov = Y X((s-1)d+1)((s-1)d+v)
H= %Uzk-i- Y &0kt +akakth).  (49) s; s;
k=1 k=1 fort,v=1,2,...,d, which is just TiX = Ig. [ |
Here wy and & are unknown parameters to be identifiég. APPENDIX B

are the coupling strength betweé&fth and (k+ 1)-th spins,
o, = 3(ox+ioy) ando_ = 1(0x—igy). Running on the same PROOF OF THEORENI

computer cluster, we compare the consumed time of our TSO Proof: Using equation[(5), we vectorize equati¢n](17) to
QHI method versus the ERA method for the casedlpf= 3, obtain _

4, and 5. For the TSO method, we do not utilize the prior (Ex @ Ej)vedpm) = Y Bhivedpn). (50)
structural knowledge (1D-chain) of the targeted Hamilaoni n

whereas this information is used in the ERA method. Figet {W(jvk)}?izl be a family ofd* matrices. The matrix
shows the numerical result, where the vertical axis is they(j k)} is d? % d2 and its element in positiofm, n) is the

running timgT (in uni_ts pf seconds) in a Iogqrithmic Sca|enumberﬁ,%ﬁq. Let V = (vedpy),vedpy),...,vedpg)). From
and the horizontal axis is the number of quiitg The red equation [(5D) we have

diamonds are the times from the ERA method, whereas the

blue dots are for the TSO identification method. The numerica (Ex @EjV =VW(j k). (51)
results show that the TSO method is much faster (e.g., aroun
100 times faster foNg = 4) than the ERA method even if we
do not use the prior knowledge of Hamiltonian’s structute.
is worth mentioning that the efficiency of the TSO algorithm

usually depends on the system size but not the number of W(j,k) =V YE: QE))V. (52)
parameters for a given system size, while the performance o ] 2 ] )

of the ERA method significantly depends on the system sizeSUf ficiency. Since {Ei}{_; is a set of linearly indepen-
as well as the number of parameters to be identified. THENt Matrices forming a basis of the spaCg.q, we know
efficiency advantage of TSO algorithm becomes remarkable’ds ® Ej }?,kzl is a set of linearly independent matrices form-
the system size and the number of parameters to be identifieg a basis of the spacg., 42. Therefore {W(j,k) ??k:l is
increase. also a set of linearly independent matrices forming a basis

%ince {pm}‘r’ril is a set of linearly independent matrices
orming a basis of the spacE&qy.q, V must be invertible.
herefore we know
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of Cyz,q2- We then know{vedqW(j,k)") }dk 1 is a set of any matrix is no larger than the submultiplicative norm of
linearly independent column vectors formmg a basis of thBe matrix. Hence, the prior knowledge in Example 1 is a

spaceCya, 4, Which leads to the conclusion that

B= [vedqW(1,1)7),vedW(1,2)T),...,veqW(2,1)T),
vedW(2,2)T),...,veqW(d?,d?)")]
(53)
must be invertible.
Necessity When B is invertible, from equation[(33) we

sufficient condition for Assumptiol] 1 to be satisfied.

APPENDIXE
PROOF OF LEMMA2

know that{veqW(j,k)T) ??kzl is a set of linearly independent Proof:
column vectors forming a basis of the sp&tg. ;. Therefore |69 —c|? = (e 0b' —c)(d®b—c)
{W(j,k) ?szl is a set of linearly izndependent basis@fz , 42. = b'b+cle— (€0bc + e 0b'c). (56)
and from equatior (B2)E; ® Ej}?\k:l is also a set of linearly _
independent basis Gﬂfdzxdz ' Let bc = re'?, wherer > 0,¢ € R. Then
Now suppose tha{tEl}d 1 is not linearly mdependent Then " ) ; ; o 0.
— | —I —I
from equation[(52), one can easily pro{; ®EJ}J 1 IS not |[€°b—c||* = bTb‘F ce- (re®e”'?+re""e?) (57)
linearly independent, which leads to a contradiction. Henc =b'b+clc—2rcod6 - ).
we have proved necessit
P Y Therefore, we should také = ¢ to obtain
APPENDIXC e 2 T T
PROOF OF THEORENII2 min||€”b—cf["=b'b+clc—2r. (58)
Proof: We follow the notations in the Proof of Theorem
@ Since{pm}ﬂf:1 is a set of normal orthogonal basis of spacgve have
Cyxd, we knowV is unitary. Therefore, we know ||bb1'_ ccT||2 _ Tr(bbTbbT+CCTCCT _ 2bchcT)
i = th2 1 (cTe)2 _ o2 (59)
W(j,k) =V (Ef ® Ej)V. (54) = (b'b)*+ (c'c)= — 2r=.
Suf ficiency. Since {E;}¢ 1 is a set of normal orthogonal  From the Cauchy-Schwartz inequality,
basis of the spac€q.q, We have
Spa)(kj) = Fpkliaj = (Ep, E) (Eq,Ej) = (Ep @ Eq, E{ @ Ej), r=1(b.c)| < lbll-||cf| = vbTbVcTe.
which means{E}; <§§>E,}dk_1 is a set of normal orthogonal We thus have
basis of the spac@dzxdz Therefore from[(54), we know that o .
{W(j, k)}dk , is also a set of normal orthogonal basis of the o b+c €ming ||€°b — c||?
space(Cdzxdz HenceB must be unitary. = (b*b+cTc) r(b'™b+c'c)
Necessity. Since B is unitary, from [GB) we know < (bTb) +(cfe)?— (bTb-l-CTC) (60)
{W(j,k) ?‘Zkzl is a set of normal orthogonal basis Gfg,, 2. < (b™b)%2+ (cfc)?— bTbcTc
According to [54), we knowWE; ® Ej}?‘zk:]_ is also a set of < (bTE (T 2)2
normal orthogonal basis @, 4. Hence, we have = ||bb" —ccl|[<.
(Ep @ Eq, B @ Ej) = O(p(k.j) = Opidaj = (Ep E§><Ean(j%-5) On the other hand,
Now we concentrate on the third equality [n(55). Setting (vVbTb+v/cTc)2ming ||€9b — ¢| |2
2
p= k_ g=j, we obtain 1= |(Ej,Ej)|*. Since (Ej,E;j) = = (b'b+cle+ 2vbThvcfe)(b'b+cc— 2r)
Tr(E Ej) is a positive real number, we must hailg,Ej) =1 = (b'b+cfc)2— 4rvbTbv/cTe
for every j = 1,2,...,d2. Setting p =k, we obtain & = +2(bTb+CTC (\/ﬁ) cfe—r)
(Eq,Ej), which means tha{Ei}id:Z1 is a set of normal orthog- > (bfb ( 0)2 +2btbete— 4“/% o (61)
onal basis of the spad@y.q. ] - + TR /oF
= (b b) +(cTe)? +2(\/b bvcfe—r)? —2r?
T 2
APPENDIXD E (%8 (T 2)
EXAMPLES OF ELIMINATING MULTIVALUED = [lbb"—cc'l[~
SOLUTIONS -
Example 1:Let ||-||x be any submultiplicative matrix
norm (i.e.,|| - ||x satisfies[(R)). Suppose we knanpriori that
|[H||x is upper bounded by a known valig,. Then we can ACKNOWLEDGEMENT

set the evolution timé < 2h
The proof is stralghtforwardTheorem lin Chapter 10.3

The authors would like to thank Zhibo Hou and Guo-Yong

of [B1] states that the absolute value of the eigenvalue ¥fang for helpful discussions.
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