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Understanding turbulence is the key to our comprehension of many natural and technological
flow processes. At the heart of this phenomenon lies its intricate multi-scale nature, describing
the coupling between different-sized eddies in space and time. Here we analyse the structure of
turbulent flows by quantifying correlations between different length scales using methods inspired
from quantum many-body physics. We present results for interscale correlations of two paradigmatic
flow examples, and use these insights along with tensor network theory to design a structure-resolving
algorithm for simulating turbulent flows. With this algorithm, we find that the incompressible
Navier-Stokes equations can be accurately solved even when reducing the number of parameters
required to represent the velocity field by more than one order of magnitude compared to direct
numerical simulation. Our quantum-inspired approach provides a pathway towards conducting
computational fluid dynamics on quantum computers.

Turbulence can phenomenologically be described by
mutually interacting eddies stretching across an ex-
tremely broad range of length and time scales [1, 2].
These spatial scales range from the largest size of the en-
ergy containing eddies (known as the integral scale, `), to
the smallest ones, known as the Kolmogorov microscale,
η. The separation between these scales is `/η ∼ Re3/4

where Re is the Reynolds number. A salient feature of
turbulent flows is the scale-locality of the turbulent en-
ergy cascade [3–6], in the sense that eddies at a given
length scale predominantly interact with other eddies of
similar scale.

Since the pioneering work of Orszag and Patterson [7],
direct numerical simulation (DNS) of the Navier-Stokes
equations has been widely regarded as the computational
method with the highest fidelity in capturing the dynam-
ics of turbulent flows. Virtually all classical DNS meth-
ods such as spectral polynomial/Fourier, finite volume
and finite element are scale-resolving, where increasing
the number of variables (e.g. grid points M) resolves
finer and finer scales. However, the wide separation of
turbulent flow scales limits the range of Reynolds num-
bers that can be computationally considered. Straight-
forward estimates indicate that simulation of an incom-
pressible flow inside a three-dimensional volume ∼ (10`)3

with Re ∼ 105 would require decades of CPU time on a
1 teraflop computer.

For mitigating this huge numerical complexity, the im-
portance of exploiting so-called coherent structures of
turbulence [8] has long been recognised. This eventually
led to the rise of structure-resolving methodologies (e.g.,
proper orthogonal decomposition) [9] that extract and
exploit correlated structures of the solution. They rep-
resent the flow field down to the Kolmogorov microscale

through a superposition of modes, but with their num-
ber being much smaller than the total number of grid
points in DNS. Up to now, the majority of the developed
techniques have been used for diagnostic purposes. Using
reduced order models for predictive purposes is hampered
by difficulties in identifying suitable modes and remains
an active area of research [10].

A similar challenge has been successfully tackled in
a completely different area of physics. Quantum many-
body systems are described by elements of a vector space
whose dimension grows exponentially with the number of
particles [11, 12]. This makes direct simulations quickly
impossible with increasing system size. Tensor network
methods [13, 14] made a revolutionary advance in simu-
lating quantum systems with local interactions by remov-
ing unrealised long-distance correlations, thus enabling
the simulation of physical systems that are otherwise in-
tractable [15, 16]. The correlations of interest for quan-
tum systems are known as quantum entanglement [17],
and weakly entangled systems or those where quantum
correlations are concentrated at the boundaries between
different parts of the system (i.e., they are structured to
follow a so-called area law [18]) can be efficiently simu-
lated with tensor network methods.

Here we adapt these successful strategies for treat-
ing quantum many-body systems towards exploiting the
scale-locality of turbulence. This quantum inspired ap-
proach allows us to develop structure-resolving methods
for both diagnostic and predictive purposes. We first
introduce tools from tensor network theory to analyse
different length scales of flow in a manner different from
both the traditional wavenumber approach [19–22] and
more recent investigations in real space [5]. Then, we ap-
ply these diagnostic tools to study DNS solutions of two
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paradigmatic flow configurations: a 2-D temporally de-
veloping jet (TDJ) [23] and the 3-D Taylor-Green vortex
(TGV) [24]. Our study reveals that the scale-locality of
turbulence restricts the amount of correlation present be-
tween different length scales. This motivates us to encode
turbulence in a simple tensor network called matrix prod-
uct state (MPS). The connectivity of the MPS network
is well adapted to describing scale-local flows and hence
exploiting the structures of turbulence. We design an al-
gorithm for simulating the incompressible Navier-Stokes
equations (INSE) in the compressed MPS format. This
algorithm remains accurate even when reducing the num-
ber of variables parametrising the solution (NVPS) by
more than one order of magnitude. The conceptual sim-
ilarity between the tensor network algorithm presented
here and those used in quantum physics opens the pos-
sibility of conducting computational fluid dynamics on a
quantum computer.

RESULTS

Quantifying interscale correlations. Throughout
this work we follow the standard approach in computa-
tional fluid dynamics and discretise the computational
domain. Each spatial dimension is discretised by 2N grid
points, where N is a positive integer. In this way, the
velocity field

V (t, rq) =

K∑

i=1

ui(t, rq)êi (1)

and its Cartesian components ui are discrete functions of
the grid points rq, where K is the spatial dimension and
êi are Cartesian unit vectors. We measure the interscale
correlations by using the Schmidt (singular value) decom-
position to systematically divide the computational grid
into sub-grids, as illustrated in Fig. 1a for K = 2. We
decompose (for details, see the Schmidt decomposition
section in Methods) each component ui on this 2N × 2N

grid into functions R and f on a coarse and a fine subgrid,
respectively,

ui(t, rq) =

d(n)∑

α=1

λα(t)Rα(t,Xk)fα(t,xl), rq = Xk + xl.

(2)

Positions Xk correspond to a quadratic grid with 2n×2n

points (coarse grid), and xl correspond to a fine sub-grid
with 2N−n×2N−n grid points. The functions Rα and fα
obey the orthonormality condition

∑

k

Rα(t,Xk)Rβ(t,Xk) =
∑

l

fα(t,xl)fβ(t,xl) = δαβ ,

(3)

where δαβ is the Kronecker delta. The parameter n =
1, . . . , N −1 labels the possible bipartitions of the square
lattice in coarse and fine grids [see Fig. 1a for N = 10
and n = 2]. The Schmidt number d(n) denotes the num-
ber of retained terms in the summation in Eq. (2), and
each product Rαfα is weighted by a Schmidt coefficient
λα ≥ 0. These coefficients appear in descending order
λ1 ≥ λ2... ≥ λd(n), thus varying d(n) will only add or re-
move the least important of the orthonormal basis func-
tions. Here we take d(n) as a quantitative measure for
the interscale correlations of turbulent flows at a given
bipartition n of the lattice: d(n) = 1 corresponds to an
uncorrelated product state, and with increasing d(n) the
flow becomes more strongly correlated between the coarse
and the fine grid. Note that while the d(n) = 1 product
state exhibits no interscale correlations, it is still highly
correlated in space because the fine grid dependence is
repeated.

Truncating the Schmidt decomposition in Eq. (2) ap-
proximates ui in an orthonormal time-dependent basis
that evolves with the fluid flow to optimally capture spa-
tially correlated structures. This is in contrast to classical
scientific computing techniques (implemented through
e.g. finite difference or spectral methods) where the bases
are structure-agnostic, i.e., they are chosen a priori and
disregard any structure in the solution.

We first apply the decomposition in Eq. (2) to DNS
solutions of the INSE [see Eq. (7)] for the TDJ shown
in the top row of Fig. 2a. The TDJ comprises a cen-
tral jet flow along the x-direction, and Kelvin-Helmholtz
instabilities in the boundary layer of the jet eventually
cause it to collapse (see Eqs. (9) through (15) in Methods
for initial flow conditions). We decompose each velocity
component according to Eq. (2), which is an exact rep-
resentation if d(n) = Γ2-D(n) with (for details, see Sup-
plementary Sec. 2)

Γ2-D(n) = min(4n, 4N−n) . (4)

Fig. 1b shows the Schmidt numbers d99(n, t) such that
Eq. (2) represents the DNS solutions for the velocity
fields with 99% accuracy in the L2 norm (more details
on the Schmidt coefficients can be found in Supplemen-
tary Sec. 1). We find that d99(n, t) are well below their
maximal values Γ2-D(n) for n > 1. More specifically,
we define χ99 = max d99(n, t) as the maximal value of
d99 for all n and time steps. We obtain χ99 = 25,
and the interscale correlations captured by Eq. (2) with
d(n) = min

(
Γ2-D(n), 25

)
are shown by the blue-shaded

area M in Fig. 1b. d99(n, t) is entirely contained within
this blue area. Note that the Schmidt numbers are shown
on a logarithmic scale in Fig. 1b, and thus the areaM is
much smaller than the area D corresponding to DNS.

We obtain qualitatively similar results for the DNS so-
lutions to the TGV in 3-D, where vortex stretching causes
a single, large, ordered fluctuation to collapse into a tur-
bulent flurry of small scale structures (see top row in
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FIG. 1: Interscale correlations of turbulent fluid flows. (a) and (b) correspond to a square with edge length
Lbox on a 210 × 210 grid. (a) illustrates the subgrid structure when decomposing a function ui according to Eq. (2)

for n = 2. Red dots are the 22 × 22 grid points Xk of the coarse grid. Each blue square attached to the Xk

indicates the quadratic subgrid with the 28 × 28 grid points xk of the fine grid. (b) shows the Schmidt numbers
d99(n, t) on a logarithmic scale such that the decomposition in Eq. (2) results in a 99% accurate representation of
DNS solutions to the INSE at four different times [see Fig. 2]. The domain D indicated by the black dashed line
corresponds to DNS. The grey shaded area W is for solutions on a 28 × 28 grid. The blue shaded area M is for
d(n) ≤ 25 in Eq. (2). (c) Same as in (b) but for the 3-D simulations shown in Fig. 3. In (b) and (c), T0 is the

characteristic time scale on which the quickest particles in the initial flow fields can traverse the box (see Set-up of
numerical experiments section in Methods). (d) Scaling of χ99 = max d99(n, t) with the Reynolds number for the

2-D and 3-D systems in (b) and (c), respectively.

Fig. 3a for visualisation, and (16) in Methods for initial
flow conditions). In three spatial dimensions, the repre-
sentation in Eq. (2) is exact if d(n) equals (for details,
see Supplementary Sec. 2)

Γ3-D(n) = min(8n, 8N−n) . (5)

The Schmidt numbers d99(n, t) resulting in a 99% accu-
rate representation of the DNS solutions are shown in
Fig. 1c. We find χ99 = 207 such that all values of d99

in Fig. 1c are contained within the blue-shaded area M
corresponding to d(n) = min

(
Γ3-D(n), 207

)
in Eq. (2).

Since χ99 is much smaller than the upper vertex of the
area D at Γ3-D(4) = 212, the interscale correlations of
DNS solutions are far from being saturated (more details
on the Schmidt coefficients can be found in Supplemen-
tary Sec. 1).

Next we investigate how the maximal Schmidt num-
ber χ99 scales with the Reynolds number Re, and the
results are shown in Fig. 1d. We find that χ99 saturates
in the 2-D case for Re & 200. This suggests that in-
terscale correlations of 2-D flows are bounded in anal-
ogy to quantum correlations in gapped 1-D quantum
systems with local interactions [18]. In the 3-D case,
χ99 increases according to a power law. The NVPS for
d(n) = min

(
Γ3-D(n), χ99

)
scales as∼ χ2

99 logM (see Sup-
plementary Sec. 2). Kolmogorov’s theory [3] states that
the number of grid points M = 8N must scale with the
Reynolds number like M ∼ (`/η)3 ∼ Re9/4 to resolve
all spatial scales. This implies that the NVPS of M
only scales as ∼ Re1.42 log Re, which is a substantially
slower increase with Re compared to the NVPS of DNS,
∼M ∼ Re9/4.
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Tensor network algorithm. The previous results
demonstrate that it is beneficial to find a representa-
tion of flow fields where limiting the amount of inter-
scale correlations directly translates into a reduction of
the NVPS. This can be achieved by expressing each ve-
locity component in a compressed tensor network for-
mat known as matrix product state (MPS) or tensor
train decomposition [13, 14, 25, 26]. Our MPS encod-
ing of function values is chosen such that it is consistent
with the decomposition in Eq. (2) (see Supplementary
Sec. 2). It comprises products of N matrices Aωn with
dimension d(n − 1) × d(n), where 2N is the number of
grid points in each spatial direction, n = 1, . . . , N and
d(0) = d(N) = 1 [27, 28]. The matrix Aωn is associated
with a length scale Lbox/2

n, and its dimension d(n) con-
trols the maximum amount of correlations allowed be-
tween neighbouring scales. The nearest neighbour cor-
relations are mediated directly by each matrix product,
while correlations between further distant length scales
can only be captured indirectly by traversing several ma-
trix products. These properties make MPS well suited
for the description of scale-local turbulent flows where
correlations between vastly different length scales are ex-
pected to be small.

Here we consider MPSs of bond dimension χ where
we set d(n) = min

(
Γ2-D(n), χ

)
in 2-D and d(n) =

min
(
Γ3-D(n), χ

)
in 3-D. The bond dimension χ controls

the level of compression in the MPS format. For exam-
ple, the interscale correlations captured by an MPS with
bond dimension χ = 25 (χ = 207) are represented by
the blue-shaded area in Fig. 1b (Fig. 1c). If χ is kept
constant as N increases, the number of MPS parame-
ters scales logarithmically with the total number of grid
points, resulting in an exponential reduction of the NVPS
compared to DNS. However, we emphasise that this re-
duction does not truncate the range of length scales cov-
ered by the MPS ansatz, it only limits the amount of
interscale correlations.

In order to fully utilise this dimensionality reduction
for numerical simulations on large grids, we devise an
algorithm for solving the INSE without leaving the com-
pressed MPS manifold M (see the Matrix product state
algorithm section in Methods). We use a second-order
Runge-Kutta time-stepping scheme and discretise spa-
tial derivatives in the same way as the DNS solver, which
utilises an 8th-order finite difference stencil.

Validation of the tensor network algorithm. We
now investigate how well the dynamics of turbulent flow
are captured inside the MPS manifold M by comparing
our algorithm against DNS for different compressions.
Reducing the bond dimension χ reduces the NVPS. The
analogue of reducing the bond dimension in traditional
DNS is to perform underresolved DNS (URDNS) where
the simulation is carried out on a coarse grid not cover-
ing all relevant length scales. URDNS can be considered
as the most basic form of large eddy simulations [29–

31], where no explicit models are employed to account
for the disregarded subgrid scales (see the Direct numer-
ical simulation algorithm section in Methods). For a fair
comparison between MPS and URDNS, we choose for ev-
ery bond dimension χ a corresponding URDNS grid such
that the NVPS is approximately equal for both methods.

The results for the TDJ and for the different solvers are
shown in Fig. 2. The top row in Fig. 2a corresponds to
DNS and illustrates how the background perturbations in
the shear-layer are amplified (t/T0 = 0.25) until the layer
rolls up into vortices which in turn pair-up and merge
into progressively larger vortices (t/T0 = 0.75, 1.25) un-
til t/T0 = 1.75, when pairing is terminated. The stress
exerted upon the mean flow by turbulent fluctuations is
given by the Reynolds stress tensor, one of whose com-
ponents is plotted in Fig. 2b. These results are in accord
with the Boussinesq approximation which indicates the
Reynolds stresses are of the opposite sign of the mean
streamwise velocity gradients along the cross-stream di-
rection. The exception is when the vortex pairing is ter-
minated, and the growth of the shear-layer is temporar-
ily paused. Correctly resolving τ12 is important for the
physical validity of the simulation.

We now evaluate the accuracy of the MPS and URDNS
simulations. Rows 2-4 in Fig. 2 show MPS results for
χ = 33, 74 and 118, corresponding to compression ratios
of approximately 1 : 64, 1 : 16 and 1 : 8 compared to
DNS, respectively. These results show that the large-
scale dynamics of the jet are correctly captured by all
the MPS simulations, with χ = 74 and 118 practically
indistinguishable from DNS. The bottom three rows in
Fig. 2 show the URDNS results for different grid sizes.
We find that the 3622 grid (corresponding to χ = 118) is
only accurate until t/T0 ≈ 1.2 while the lower-resolution
URDNS already fails at t/T0 ≈ 0.75. This is observed
in both the instantaneous vorticity dynamics results and
the Reynolds-stresses. The MPS algorithm achieves a
much higher accuracy than URDNS for the same NVPS
(see Table 1 for quantitative results). This result can
also be understood in terms of the interscale correlations
shown in Fig. 1b, where the domain corresponding to
URDNS on the 2562 grid is shown by the grey-shaded
area W. A significant amount of correlations present in
the DNS solutions are outside of W, which is consistent
with our finding that URDNS cannot accurately repre-
sent the DNS solutions.

Next we discuss the corresponding results for the dy-
namics of the TGV. The top row in Fig. 3a corre-
sponds to DNS and illustrates how the original vortex
collapses (t/T0 = 0.2) into turbulent worm-like struc-
tures (t/T0 = 0.8) which become progressively more tur-
bulent (t/T0 = 1.4) until viscosity eventually dissipates
these vortical structures (t/T0 = 2). Rows 2-4 and 5-7 in
Fig. 3a correspond to the results of our MPS algorithm
and to URDNS, respectively. The bond dimension and
grid sizes have been chosen such that the compression
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FIG. 2: 2-D Temporally developing jet. Dynamical simulation of the INSE in 2-D for a planar jet streaming
along x with Re = 1000, as defined in the Set-up of numerical experiments section in Methods. (a) shows snapshots
of the vorticity and velocity fields taken at t/T0 = 0.25, 0.75, 1.25, 1.75 (left to right). Red corresponds to positive

vorticity (counter-clockwise flow) and blue to negative (clockwise). Top row corresponds to DNS results on a
quadratic 210 × 210 grid (cf. Fig. 1a). Rows 2-4 are MPS results with different maximal bond dimensions χ. Bottom

three rows are for URDNS on quadratic grids as indicated. (b) Reynolds stress τ12 [see Eq. (14)] between the
streamwise and cross-stream directions as a function of time and y coordinate. Red (blue) corresponds to positive

(negative) stress.

ratios compared to DNS are approximately 1 : 25 (rows
2 and 5), 1 : 49 (rows 3 and 6) and 1 : 78 (rows 4 and 7).
While MPS produces a solution comparable to DNS for a
compression ratio of 1 : 49 (χ = 128), the corresponding
URDNS results clearly deviate from DNS. Discrepancies
between URDNS and DNS are even visible for the largest
URDNS grid (compression 1 : 25).

A more quantitative analysis of the performance of
MPS vs. URDNS is shown in Fig. 3b. In the non-DNS
simulations, a portion of the energy is erroneously lost
to numerical diffusion. The amount of numerical diffu-
sion can be measured by comparing the physical global
dissipation (enstrophy) to the global kinetic energy dissi-
pation [see Eqs. (17) and (18)]. The MPS predictions at
χ ≥ 128 are consistent with both the DNS results here

and in previous work [24]. We find that the MPS simu-
lations with χ = 128 and 192 dissipate the energy more
accurately than any of the URDNS results, especially for
t/T0 ≥ 1.4, see Table 1. As in the 2-D case, this outcome
is in line with the interscale correlations shown in Fig. 1c,
where the domain corresponding to URDNS on the 643

grid is shown by the grey-shaded area W. The bipar-
titions at n = 5, 6, 7 are associated with comparatively
large Schmidt numbers for t/T0 ≥ 0.8, and hence these
interscale correlations cannot be captured by URDNS.
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FIG. 3: 3-D Taylor-Green vortex. Dynamical
simulation of the INSE in 3-D for the Taylor-Green

vortex and Re = 800, as defined in the Set-up of
numerical experiments section in Methods. (a) Vortical
structures rendered using the standard λ2 method [51]
are shown at times t/T0 = 0.2, 0.8, 1.4, 2 (left to right).

Top row is for DNS on a 28 × 28 × 28 grid. Rows 2-4 are
for MPS simulations with different χ, and bottom three

rows are for URDNS on cubic grids as indicated. (b)
shows the enstrophy ζ(t) (asterisks/crosses/circles) and
the energy dissipation ε(t) (lines) as a function of time,

with E0 being the total energy at t = 0.

DISCUSSION

The structure-resolving properties of MPSs can lead to
a reduced computational cost. The computational com-
plexity of our MPS algorithm is ∼ χ4 logM , as explained
in Supplementary Sec. 4. Resolving down to the Kol-
mogorov microscale η requires M ∼ (`/η)

K ∼ Re3K/4

grid points. Assuming χ ∼ Reγ , the overall scaling of
the MPS algorithm becomes ∼ Re4γ log Re. Compar-
ing this to the scaling of DNS, which is ∼ M logM ∼
Re3K/4 log Re (see the Direct numerical simulation algo-
rithm section in Methods), we see that the MPS algo-
rithm outperforms DNS when γ < 3K/16. For our 2-D
example, Fig. 1d suggests γ ≈ 0 which leads to an ex-
ponential speedup of the MPS algorithm over DNS for
sufficiently large Re. It would be interesting to investi-
gate whether this saturation of the Schmidt number with
Re is a unique case for just the TDJ flow, or if it is a more
general property of 2-D turbulence. If this is indeed gen-
eral, it would have significant practical consequences for
e.g. the simulation of atmospheric flows. For the TGV
flow γ ≈ 0.71, which is larger than 3K/16. However,
we note that numerical methods for manipulating high-
dimensional tensors are an active field of research [Sup-
plementary Sec. 4D], potentially enabling an improved
scaling of MPS algorithms with χ in the future. We also
remark that MPS can be exponentially faster than DNS
at simulating shock waves, as illustrated in Supplemen-
tary Sec. 3 through analytical studies of the 1-D Burgers’
equation.

Our initial choice of MPS networks was motivated
by the scale-locality of turbulent flows. However, MPS
might be numerically inefficient when correlations be-
tween distant scales are relevant. One then needs a
very large bond dimension χ to maintain an accurate
description of the flow. Other tensor network geome-
tries like Tree Tensor Networks (TTNs) or multi-scale
entanglement renormalisation ansatz (MERA) and its
derivatives [33, 34] might then be worthwhile considering.
These network geometries (see Supplementary Sec. 6)
have direct bonds between further distant length scales
and might require smaller bond dimensions. However,
TTNs maintain numerical efficiency by abandoning di-
rect bonds between neighbouring length scales which are
important for exploiting scale-locality. MERA is numer-
ically challenging because of loops in the network.

The utility of tensor networks in fluid dynamics goes
beyond the INSE. Future avenues of investigation for
MPS include compressible flows, in which the Mach
number is an important parameter, and transport of
scalar quantities under both passive and chemically reac-
tive conditions where the effects of Prandtl, Peclet and
Damkohler numbers [35] must be taken into account. It
would be interesting to examine how these parameters
affect the fidelity of low χ MPS simulations. Further-
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more, as tensor network methods are naturally suited
to tackle high-dimensional problems, their applicability
to the transported probability density function (PDF)
of turbulent reactive flows [36] should be considered. In
these flows, in addition to temporal and spatial varia-
tions, the PDF is a function of the three-dimensional
velocity field and all of the pertinent scalar variables
(energy, pressure and species mass fractions) [37]. With
just 10 species (a very simple chemical kinetics model),
the unsteady PDF must be resolved in a 17- dimensional
space. High-fidelity modelling and simulation of such
complex flows can potentially be enabled through a well-
chosen tensor network ansatz.

The close connection of our tensor network-based ap-
proach to quantum physics points towards the prospect of
solving the Navier-Stokes equations on a quantum com-
puter. Recently, several algorithms for solving nonlinear
partial differential equations on quantum computers have
been proposed [38–40]. In particular, the work in [38]
introduces tensor networks as a programming paradigm
for quantum computers, which makes our approach es-
pecially well-suited for quantum hardware implementa-
tions (see Supplementary Sec. 5 for details). Replacing
classical floating point operations by quantum gates re-
duces the scaling with bond dimension to ∼ χ2 (see Sup-
plementary Sec. 5). In addition, potentially exponential
speedups are possible by choosing an optimised quantum
network that goes beyond the MPS ansatz for encoding
the solution [38, 41, 42]. In this way, our work holds
the promise of enabling large-scale computational fluid
dynamics calculations that are well beyond the scope of
current approaches.

METHODS

Schmidt decomposition. We consider a 1-D sys-
tem and scale all lengths with its spatial dimension Lbox.
We discretise the spatial domain [0, 1] of the velocity
u with N bits into 2N grid points rq = q/2N with
q = 0, 1, . . . , 2N−1. Next, we introduce n = 1, . . . , N−1
bipartitions of this grid into coarse and fine sub-grids.
For a given n, the coarse sub-grid comprises the points
Xk = k/2n with k = 0, . . . , 2n−1. The spacing be-
tween neighbouring points is thus 2−n and this defines
the coarse length scale. To each coarse grid point Xk

is attached a fine sub-grid with points xl = l/2N with
l = 0, 1, . . . , 2(N−n)−1, and adjacent points are separated
by the fine length scale 2−N . In this way, any point rq
of the 1-D grid can be written as rq = Xk + xl. Finally,
we arrange the function values u(rq) = u(Xk + xl) into
a 2n × 2N−n matrix where the rows and columns cor-
respond to increments along the coarse and fine grids,
respectively. Performing a singular value decomposition
(SVD) on this matrix [12, 13] gives the desired Schmidt

decomposition of u(rq) at bipartition n,

u(rq) =

d(n)∑

α=1

λαRα(Xk)fα(xl) . (6)

This is the 1-D result corresponding to Eq. (2). For a full
SVD the Schmidt number takes its maximal value d(n) =
Γ1-D(n), where Γ1-D(n) = min(2n, 2N−n). If instead a
truncated SVD is performed by keeping only the d(n) =
χ largest singular values, the error in the L2 norm due

to this approximation is
√∑Γ1-D(n)

α=χ+1 λ
2
α.

This procedure can be straightforwardly generalised by
replacing bits with quarternaries (2-D) or octals (3-D),
i.e., by replacing 1-D line segments with squares (2-D)
or cubes (3-D). The maximal Schmidt numbers are then
given by Eq. (4) in 2-D and Eq. (5) in 3-D.

Matrix product state algorithm. The INSE are a
coupled set of partial differential equations for the veloc-
ity field V and the pressure p,

∇ · V = 0

∂V

∂t
+
(
V · ∇

)
V = −∇p+ ν∇2V ,

(7)

where ν is the kinematic viscosity and ∇ is the nabla
operator. After discretising the computational domain
as described in the Introduction, we solve Eq. (7) in time
via a second-order Runge-Kutta method by a variational
scheme. Furthermore, we use the penalty method [43, 44]
to satisfy the incompressibility condition ∇ · V = 0.

We illustrate the principle of our method by consider-
ing a simple Euler time step. To advance V from time
ts to ts + ∆t, we minimise the cost function

Θ(V ∗) = µ
∥∥∇ · V ∗

∥∥2

2
+

∥∥∥∥
V ∗ − V

∆t
+
(
V · ∇

)
V − ν∇2

V

∥∥∥∥
2

2

,
(8)

where ‖ · ‖2 is the L2 norm, ∇ is the nabla operator in
finite difference form, V ∗ is the trial solution at time
ts + ∆t and V denotes the solution at the previous time

step ts. The term µ
∥∥∇·V ∗

∥∥2

2
in Eq. (8) enforces∇·V = 0

for sufficiently large values of the penalty coefficient µ.
Note that the penalty method for enforcing the incom-
pressibility condition removes the pressure p from Eq. (8).
It can be calculated from the velocity fields via its Pois-
son equation [45].

We represent the flow field V in terms of the MPS
ansatz at all time steps ts, and all operations on V like
differentiation are realised via standard matrix product
operators acting on the MPS [27, p. 591] and [28, p. 22].
In this way, the entire computation is carried out in the
MPS manifoldM∈ D. A derivation of our minimisation
scheme is provided in Supplementary Sec. 4.
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Direct numerical simulation algorithm Our DNS
scheme is based upon a second-order Runge Kutta tem-
poral discretisation combined with an eighth-order cen-
tral finite difference discretisation of the spatial deriva-
tives [46] on a Cartesian grid. The incompressibility
condition is enforced through the projection method of
Chorin [47] at every substep of each full Runge-Kutta
time-step.

The computational complexity of the DNS scheme is
∼ M logM . This is because it is dominated by the pro-
jection step, which is performed through repeated fast
Fourier transform and inverse fast Fourier transforms
that scale as ∼M logM .

If there are just enough gridpoints to resolve all scales
from l to η, the scheme is DNS and solves the Navier-
Stokes equations exactly within the sufficiently large D of
Figs. 1b and 1c. If the finest scales are removed however
(without invoking any subgrid scale model) such that the
smallest remaining resolved scale is significantly larger
than η, then the scheme becomes an URDNS operating
within the scale-restricted W ⊂ D. The Navier-Stokes
equations cannot be solved exactly within W due to the
finest scales being subject to unphysical numerical dis-
sipation. In comparison, the MPS algorithm operates
within the MPS manifold ofM where the interscale cor-
relations are limited while all the scales between l and η
are still present.

Set-up of numerical experiments. For the TDJ
simulations, we consider a square with edge length Lbox

with periodic boundary conditions and the initial condi-
tions

V (x, y, t = 0) = J(y) + D(x, y) , (9)

where J(y) is the initial jet profile

J(y) = ê1
u0

2

[
tanh

(
y − ymin

h

)
− tanh

(
y − ymax

h

)
− 1

]

(10)
with the streamwise direction along ê1. u0 is the mag-
nitude of the velocity differential between the jet and its
surroundings, ymin and ymax describe the extent of the jet
and h is the initial thickness of the vortex sheet. These
parameters define the Reynolds number Re = u0h/ν and
the time scale T0 = Lbox/u0. The function

D = δ(ê1d1 + ê2d2) (11)

in Eq. (9) is a small disturbance of miscellaneous wave
modes needed to initiate the roll-up of the jet, statisti-

cally homogeneous along ê1 and divergence free, with

d1(x, y) =2
Lbox

h2

[
(y − ymax)e−(y−ymax)2/h2

+

(y − ymin)e−(y−ymin)2/h2
]

[sin(8πx/Lbox)+

sin(24πx/Lbox) + sin(6πx/Lbox)] ,
(12)

d2(x, y) =π
[
e−(y−ymax)2/h2

+ e−(y−ymin)2/h2
]
×

[8 cos(8πx/Lbox) + 24 cos(24πx/Lbox)

+6 cos(6πx/Lbox)] , (13)

δ = u0/(40A) and A = max
x,y

√
d2

1 + d2
2. The components

of the Reynolds stress-tensor shown in Fig. 2b are defined
as

τij(y, t) = u′iu
′
j , (14)

where u′i = ui − ui is the fluctuating part of the ve-
locity component. The overbar denotes the ensemble-
average across the statistically homogeneous streamwise
direction,

ui =
1

Lbox

Lbox∫

0

ui(x, y, t)dx . (15)

Scaling all lengths with Lbox, velocities with u0 and time
with T0, we set ymin = 0.4, ymax = 0.6, h = 1/200,
and the penalty coefficient is µ = 2.5 × 105 in all MPS
simulations.

The TGV simulations in 3-D are conducted on a cube
with edge length Lbox with periodic boundary conditions.
We consider the initial flow field

u1(r, 0) = −u0 sin(k0x) cos(k0y) cos(k0z) ,

u2(r, 0) = u0 cos(k0x) sin(k0y) cos(k0z) ,

u3(r, 0) = 0 ,

(16)

where u0 is the velocity amplitude of the initial vortex
and its wavenumber is k0 = 2π/Lbox. The corresponding
energy at t = 0 is E0 = u2

0/2, and the Reynolds number
is defined using the integral scale as Re = u0/(k0ν).

In Fig. 3b we show the total kinetic energy dissipation

ε(t) = −1

2

d

dt

∫

V

∣∣V (r, t)
∣∣2dr (17)

and enstrophy

ζ(t) = ν

∫

V

∣∣∇× V (r, t)
∣∣2dr, (18)

where we integrate over the whole space V. ζ is related to
the viscous dissipation of kinetic energy [48]. For incom-
pressible flows with periodic boundary conditions, the
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INSE imply ε(t) = ζ(t). However, restricting the NVPS
results in numerical diffusion violating this equality. In
all TGV simulations, we set T0 = Lbox/u0 and scale
lengths and velocities with Lbox and u0, respectively. In
these units, the dimensionless penalty coefficient for MPS
simulations is µ = 6.25× 104.

Quantitative comparison between simulations
The accuracy of the MPS and URDNS simulations are
gauged by comparing the ensemble-aggregated quantities
of Figs 2b and 3b against DNS. Statistical quantities such
as those must always be used when comparing different
simulations due to the chaotic nature of turbulence. To
aid the reader, we here provide a quantitative measure
of the accuracies of MPS and URDNS by integrating the
discrepancy DNS has to MPS and URDNS in Figs 2b
and 3b.

We numerically calculate the visual difference between
the Fig. 2b Reynolds stress of DNS (row 1) and that of
MPS (rows 2-4) and URDNS (rows 5-7) as

σ(s, c) =

√√√√√√

∫ 4Lbox/5

Lbox/5

∫ 2T0

0

[
τDNS
12 (y, t)− τs,c12 (y, t)

]2
dydt

6
5LboxT0

[
max
y,t

(
τDNS
12 (y, t)

)
−min

y,t

(
τDNS
12 (y, t)

)]2 ,

(19)
with s being the scheme in question and c the compres-
sion ratio of said scheme compared to DNS (as defined in
Results). σ(s, c) quantifies the root-mean-square of the
visual difference between the subplots in Fig. 2b, and
the closer σ(s, c) is to 0, the nearer the Reynolds stress
in question is to that of DNS. σ(s, c) is tabulated in Ta-
ble 1.

We also quantify the accuracy of URDNS and MPS
against DNS for the TGV flow by integrating the numer-
ical diffusion |ζ(t) − ε(t)| of Fig. 3b. This is equivalent
to

e(s, c) =
1

E0

∫ 2T0

0

|ζs,c(t)− εs,c(t)|dt, (20)

when normalised by the initial total kinetic energy E0.
The lower e(s, c) is, the better is the accuracy of the
relevant simulation. e(s, c) is tabulated in Table 1. For
comparison, we note that the corresponding (miniscule)
error of DNS is e(DNS) = 0.002.

DATA AVAILABILITY

Our Code Ocean capsule [49] contains the
raw output data from our MPS simulations.
This data was generated using the C-functions
tntMpsBoxTurbulence2DTimeEvolutionRK2(...)

and tntMpsBoxTurbulence3DTimeEvolutionRK2(...),
using the initial conditions and parameters defined in
the Set-up of numerical experiments section in Methods.
Source Data for Figures 1, 2 and 3 is available with this
manuscript.

Case Compression Scheme Inaccuracy
TDJ 1:1 DNS 0

TDJ 1:8 MPS 0.0119

TDJ 1:8 URDNS 0.2612

TDJ 1:16 MPS 0.0485

TDJ 1:16 URDNS 0.3333

TDJ 1:64 MPS 0.2404

TDJ 1:64 URDNS 0.3201

TGV 1:1 DNS 0.002

TGV 1:25 MPS 0.0385

TGV 1:25 URDNS 0.1599

TGV 1:49 MPS 0.0844

TGV 1:49 URDNS 0.2133

TGV 1:78 MPS 0.2618

TGV 1:78 URDNS 0.4563

TABLE 1: Quantitative comparison between
MPS and URDNS simulations for the TDJ and
TGV flow cases. The rows corresponding to the TDJ

flow tabulate σ(s, c), as defined in Eq. (19). σ(s, c)
measures the discrepancy of the URDNS and MPS

Reynolds stresses to that of DNS in Fig. 2b. The TGV
flow case rows tabulate e(s, c), which is defined in

Eq. (20) and represents the total numerical diffusion in
Fig. 3b. The nearer σ(s, c) or e(s, c) is to 0, the more

accurate the simulation in question is.

CODE AVAILABILITY

The MATLAB code required to reproduce Figs. 1, 2
and 3 is available via Code Ocean [49]. The MPS simu-
lations were done using the Tensor Network Theory Li-
brary [50].
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1. ADDITIONAL RESULTS

This section expands upon the results of the main text. In particular, we provide further details on
interscale correlations obtained from Schmidt decompositions of the DNS results of the TDJ (Re=1000)
and TGV (Re=800) flows studied in the main text. In Sec. 1A we examine the Schmidt spectra λα and
in Sec. 1B we calculate the von Neumann entanglement entropy H(n, t) following from these spectra.

A. Schmidt spectra

Supp. Figs. 1 and 2 show the Schmidt spectra of the 2-D TDJ and 3-D TGV flows for different times
and bipartitions n. We have also included in both figures contours corresponding to d99(n, t) used as
a single figure of merit for the overall accuracy of the velocity field in the main text. This shows that
truncating the Schmidt spectra at these values does not discard any relevant interscale correlations of the
flow.

Supplementary Figure 1: Schmidt spectrum of the TDJ. The normalised Schmidt coefficients
obtained from the DNS of each velocity component of the TDJ flow at Re=1000 are shown at times

t/T0 = 0.25, 0.75, 1.25, 1.75 (left to right), for each of the 9 bipartitions available on the 1024× 1024 DNS
grid. The Schmidt coefficients are sorted in descending order and are normalised such that the sum of

their squares equals 1. The black, dashed lines denote the d99(n, t) as used in the main text.
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Supplementary Figure 2: Schmidt spectrum of the TGV. The normalised Schmidt coefficients
obtained from the DNS of each velocity component of the TGV flow for Re=800 are shown at times
t/T0 = 0.2, 0.8, 1.4, 2 (left to right) for each of the 7 bipartitions available on the 256× 256× 256 DNS
grid. The Schmidt coefficients are sorted in descending order and are normalised such that the sum of

their squares equals 1. The black, dashed lines denote the d99(n, t) as used in the main text.
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B. Entanglement entropy

We adopt the standard definition of the von Neumann entanglement entropy H(n, t) from quantum
information theory. For a given spectrum λα = λα(n, t) this is defined as

H(n, t) =
−1

E(t)

d(n)∑

α=1

λα(n, t)2 log
[
λα(n, t)2/E(t)

]
, (S1)

with the normalisation factor E(t) =
∑d(n)
α=1 λα(n, t)2. The entanglement entropy for the 2-D TDJ flow

shown in Supp. Fig. 3a shifts towards bipartitions between coarser length scales (i.e. lower n) with
increasing time. This behaviour is consistent with a 2-D inverse energy cascade [1] where energy is carried
from fine to coarse length scales as time progresses, e.g. through vortex merging. These dynamics are
particularly pronounced for the cross-stream u2 velocity component, for which a large number of fine scale
disturbances become energised by the shear and grow in size (t/T0 ≈ 0.25, 0.75) until the eventual collapse
of the jet and the saturation of the shear layer (t/T0 ≈ 1.25, 1.75). At later times no further growth of the
disturbances occur. Remarkably, these physics are visible in the dynamics of the entanglement entropy.
At t/T0 = 0.25 the entanglement entropy is large for all bipartitions between n = 1 and n = 7, indicating
significant correlations between all length scales. At later times (t/T0 = 1.25, 1.75), when the energy
increasingly flows towards coarser length scales, also the entanglement entropy shifts towards lower n
bipartitions as shown in Supp. Fig. 3a.

Supplementary Figure 3: Von Neumann entanglement entropy between length scales in the
TDJ and TGV flows. The entanglement entropy at each of the bipartitions of TDJ (a) and TGV (b)
calculated from the DNS solutions (i.e. d(n) is maximal for all n) are illustrated at various times. The

1024× 1024 grid of the DNS of the TDJ are bipartitioned along 9 length scales, while 7 bipartitions are
used for the 256× 256× 256 grid DNS of the TGV. A symmetry exists between the u1 and u2

components of the TGV velocity field, which makes them overlap within (b).
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For the 3-D TGV flow shown in Supp. Fig. 3b the opposite happens. There, fine length scales become
energised with increasing time. Correspondingly, the entanglement entropy increases at larger values of n
with increasing time. This increase is consistent with the hypothesis of a direct energy cascade in 3-D
turbulent flows [2], where energy is transported to progressively finer and finer length scales until the
Kolmogorov microscale is reached and the energy starts being dissipated by viscosity. However, unlike in
the 2-D TDJ case, the outflow of energy is not accompanied by a corresponding reduction of interscale
correlations. Instead, the entanglement entropy increases with time for all bipartitions. This is a result
of the disorder due to the collapse of the TGV into the various worm-like vortical structures discussed
in the main text. We finally note that both of these behaviours for the 2-D TDJ and the 3-D TGV are
consistent with the dynamics of d99 studied in the main text.
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2. MATRIX PRODUCT STATE REPRESENTATION

Here we describe how the matrix product state (MPS) formalism can be used to encode scalar functions,
vector fields as well as quantum wavefunctions. The encoding of scalar functions is outlined in Sec. 2A. A
general equation is provided for the number of parameters available in MPSs in Sec. 2B, and Sec. 2C
derives Eq. (2) of the main text by performing a Schmidt decomposition in the MPS format. We describe
in Sec. 2D our strategy for encoding vector fields into MPS. Finally, Secs. 2E and 2F demonstrate the
MPS ansatz and Schmidt decomposition in the context of quantum mechanics for comparison.

A. Encoding a flow component as a matrix product state

Consider a flow in a K-dimensional cube with edge length Lbox where each spatial dimension is
discretised by 2N grid points. The whole K-dimensional grid thus comprises M = 2KN equally spaced
points rq. First, we introduce a one-to-one mapping between the grid point vectors rq and a tuple of
positive integers,

rq ↔ (q1, q2, . . . , qK) , (S2)

where qi ∈ {0, . . . , 2N − 1} is the index of the grid point in the direction êi. The binary representation
(. . .)2 of these indices qi requires N bits,

qi =
(
σi1, σ

i
2, . . . , σ

i
N

)
2
, (S3)

where σin ∈ {0, 1}, n = 1, . . . , N, and σi1 and σiN are the most and least significant bits, respectively.
Now consider a single Cartesian velocity component u and ignore its time dependence. The discretisation

renders the velocity components into functions of the grid points rq. Due to the one-to-one mapping
in Eq. (S2), they can also be regarded as functions of the indices qi, u(rq) ≡ u(q1, . . . , qK), and hence
ultimately of σin. However, there is a freedom in the order of mapping σin into rq. We group all indices
associated with the same bit, i.e. length scale:

ωn =
(
σ1
n, σ

2
n, . . . , σ

K
n

)
2
, (S4)

such that ωn ∈ {0, . . . , 2K − 1}. We approximate the discrete function values u(rq) by an MPS v(rq, χ)
defined as follows:

u(rq) ≈ v(rq, χ) = Aω1Aω2 · · ·AωN , (S5)

where the matrices Aωn have dimensions d(n− 1)× d(n) with n = 1, . . . , N ,

d(n) = min
(
ΓK-D(n), χ

)
(S6)

and ΓK-D(n) = min
(
2Kn, 2K(N−n)

)
, cf. Γ3-D(n) in the main text. Note that d(0) = d(N) = 1, and thus

the MPS evaluates to a number. Each matrix Aωn in this MPS represents a particular length scale, and
the maximum amount of interscale correlations that can be captured by the MPS is controlled via the
bond dimension χ. If χ is set to χ = 2KbN/2c, the approximation in Eq. (S5) becomes exact.

B. Number of physical variables

The number of physical parameters of v(rq, χ) is given by

Q = 2K
N∑

n=1

d(n−1)d(n)−
N−1∑

n=1

d(n)2. (S7)

The first sum is the total number of parameters in Eq. (S5) while the second sum represents the intrinsic
gauge degrees of freedom of the MPS format [3]. When χ is maximal, i.e. χ = 2KbN/2c, we get
Q = 2KN = M and that any function on the grid can be perfectly captured in MPS form.
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C. Schmidt decomposition

Next we show that the MPS representation of u in Eq. (S5) is consistent with the representation in
Eq. (2) of the main text. To this end, we note that the gauge degrees of freedom allow one to bring v of
Eq. (S5) to mixed canonical form [4],

v(rq, χ) =

d(n)∑

α=1

λα

[
Âω1 · · · Âωn

]
α

[
B̂ωn+1 · · · B̂ωN

]
α
, (S8)

where λ1 ≥ λ2... ≥ λd(n) are the Schmidt coefficients. The matrices Âωn and B̂ωn have the same
dimensions as Aωn , and satisfy the relations

2K−1∑

ωn=0

(
Âωn

)t
Âωn = 1 ,

2K−1∑

ωn=0

B̂ωn
(
B̂ωn

)t
= 1,

(S9)

where (·)t denotes the matrix transpose and 1 is the identity matrix. Defining

Rα(Xk) =
[
Âω1 · . . . · Âωn

]
α
,

fα(xl) =
[
B̂ωn+1 · . . . · B̂ωN

]
α
,

(S10)

allows us to cast Eq. (S8) into the form

u(rq) = v(rq, χ) =

d(n)∑

α=1

λαRα(Xk)fα(xl) , (S11)

when χ is maximal, i.e. χ = ΓK-D(n). The grid points Xk (coarse grid) and xl (fine grid) are defined
through the mapping in Eq. (S2) and the integer values

Xk : qi =
(
σi1, . . . σ

i
n, 0, . . . , 0

)
2
, (S12)

and

xl : qi =
(
0, . . . , 0, σin+1, . . . , σ

i
N

)
2
, (S13)

respectively. By definition we have rq = Xk + xl, and Eq. (S9) implies the orthonormality conditions
∑

k

Rα(Xk)Rβ(Xk) =
∑

l

fα(xl)fβ(xl) = δαβ , (S14)

where δαβ is the Kronecker delta. Writing Eq. (S11) for all three Cartesian velocity components and
explicitly re-introducing the time dependence of ui, λα, R(α) and f(α), we obtain Eq. (2) of the main
text.

D. Encoding vector fields

Let V (t, rq) be the K-D vector field of Eq. (1) of the main text. We now simply follow the recipe
outlined in the previous Sec. 2A for each velocity component ui of V , while again ignoring t. This will
result in each component individually being represented as a MPS of bond dimension χ, giving the MPS
vector field W (rq):

V (rq) ≈W (rq, χ) =
K∑

i=1

êiA
ω1
i A

ω2
i · · ·AωNi , (S15)

with the matrices Aωni being of identical dimension to the Aωn matrices of Eq. (S5).
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E. Encoding quantum states

In the above sections we describe how MPS can be used to encode scalar functions and vector fields.
For the sake of comparison, we here outline how MPS are traditionally used to encode 1-D quantum
many-body states.

Assume we have N spin-1/2 particles organised along a spin chain with open boundary conditions. The
pure-state wavefunction of this system is given by

|Ψ〉 =
∑

{in}=0,1

Ci1i2...iN |i1〉 |i2〉 · · · |iN 〉 , (S16)

and is an element of the N particle Hilbert space H = H⊗N0 , with |in〉 ∈ H0 and span (H0) = {|0〉 , |1〉}.
The amplitude of the basis states constituting |Ψ〉 is given by the order-N complex tensor C of dimension
2N , and the wavefunction is normalised such that 〈Ψ|Ψ〉 = 1. It is here possible to represent |0〉 and |1〉
as respectively the vectors (1, 0)† and (0, 1)†, with (·)† being the conjugate-transpose.

The indices i1, i2, . . . iN are analogous to ωn of Eq. (S4) for K = 1. This means C can be decomposed
into a MPS analogously to u(rq):

Ci1i2...iN ≈ C̃i1i2...iN (χ) = Ai1Ai2 · · ·AiN (S17)

where the matrices Ain have dimensions d(n− 1)× d(n) with n = 1, . . . , N ,

d(n) = min (Γ(n), χ) (S18)

and Γ(n) = min
(
2n, 2N−n

)
. Hence if χ is set to χ = 2bN/2c, the relationship in Eq. (S17) becomes exact.

Due to the open boundary conditions, d(0) = d(D) = 1 and thus the MPS evaluates to a number. For a
detailed step-by-step guide on how the MPS decomposition can be performed using SVDs, see [4]. Each
matrix Ain of the above MPS is associated with a particular spin-1/2 particle, and the maximum amount
of entanglement of the system that can be captured by the MPS is controlled by the bond dimension χ.
Compare these properties with those of the MPS of the scalar function in Sec. 2A for K = 1.

The above MPS representation of C allows us to rewrite the wavefunction as

|Ψ〉 ≈ |Ψ̃(χ)〉 =
∑

{in}=0,1

Ai1Ai2 · · ·AiN |i1〉 |i2〉 · · · |iN 〉 . (S19)

|Ψ̃(χ)〉 is still a vector within the exponentially large H, but the MPS decomposition has parameterised it
with only a polynomial number of variables (when χ is limited). For many quantum systems, in particular
area-law following ones, using the MPS decomposition does not cause a significant loss in accuracy [5].

F. Quantum Schmidt decomposition

The Schmidt decomposition can be employed on |Ψ̃(χ)〉 just as it was employed on u(rq, χ) in Sec. 2C.
Putting the MPS into mixed canonical form with the canonical centre at the n-th bond yields

|Ψ̃(χ)〉 =

d(n)∑

α=1

λα

[
Âi1 · · · Âin

]
α

[
B̂in+1 · · · B̂iN

]
α
|i1〉 |i2〉 · · · |iN 〉 . (S20)

This is nothing else than the Schmidt decomposition, as can straightforwardly be seen by inserting

|ψ1:n
α 〉 =

[
Âi1 · · · Âin

]
α
|i1〉 · · · |iN 〉 ,

|ψn+1:N
α 〉 =

[
B̂in+1 · · · B̂iN

]
α
|in+1〉 · · · |iN 〉

(S21)

into Eq. (S20), yielding the Schmidt decomposition between two quantum sub-systems in its traditional
form:

|Ψ̃(χ)〉 =

d(n)∑

α=1

λα |ψ1:n
α 〉 |ψn+1:N

α 〉 . (S22)
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The difference between this Schmidt decomposition and the one in Eq. (S8), is that the Schmidt decompo-
sition of Eq. (S8) exposes the interscale correlations between a set of coarse and fine length scales, whilst
the quantum Schmidt decomposition reveals the entanglement between two bipartitions of the spin chain

For a detailed description of how the entanglement of a quantum system might be studied in the context
of MPS, see [4]. The tools provided there can also be used to study the interscale correlations of turbulent
flows, like how we calculated the von Neumann entanglement entropy of the TDJ and TGV in Sec. 1B.
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3. MATRIX PRODUCT STATE REPRESENTATION OF SHOCK WAVES

In the following, we analyse how well MPS approximate hump-solutions of the one-dimensional Burgers’
equation. First we introduce Burgers’ equation and present its known mathematical solution in Sec. 3A.
Then in Sec. 3B we derive the solution of Burgers’ equation for an initial δ function. We show that this
so-called hump-solution has, in general, an exponentially accurate MPS representation in Sec. 3C. In
the special case of vanishing viscosity, this hump solution becomes a triangular wave, i.e. a prototypical
shock-wave. We provide the exact MPS description for this shock-wave in Sec. 3D.

A. Burgers’ equation and its analytical solution

Burgers’ equation [6, 7] is given by

∂u

∂t
= ν

∂2u

∂x2
− u∂u

∂x
(S23)

where u = u(x, t). This equation simplifies by defining a function w = w(x, t) via

u(x, t) = −2ν
1

w

∂w

∂x

= −2ν
∂ log(w)

∂x
,

(S24)

also known as the Hopf-Cole transformation [8, 9], which leads to the heat equation

∂w

∂t
= ν

∂2w

∂x2
. (S25)

The heat equation has the general mathematical solution

w(x, t) =
1

2
√
πνt

ˆ ∞

−∞
w0(α)e−

(x−α)2

4νt dα (S26)

where w0 denotes the initial function at time t = 0. We obtain w0 from the initial function to Burgers’
equation u0(x) = u(x, 0) by inverting Eq. (S24) for t = 0:

w0(x) = w(x, 0)

= e−
1
2ν

´ x
a
u0(y)dy

where a can be chosen freely. Using Eq. (S24) we obtain the following solution to Burgers’ equation

u(x, t) =
1

t

´∞
−∞ w0(α)(x− α)e−

(x−α)2

4νt dα
´∞
−∞ w0(α)e−

(x−α)2

4νt dα
(S28)

where w0(α) represents the initial function defined in Eq. (S27).

B. Mathematical solution for initial δ function

Following [10], we investigate the so-called hump solution to the Burgers’ equation. It is produced when
using the δ function initial condition of

u0(x) = Zδ(x− x0), (S29)

where Z is a normalising constant. Plugging this into Eq. (S27) gives

w0(x) = e−
Z
2ν

´ x
a
δ(y−x0)dy. (S30)
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We choose a = x0 + ε, where ε→ 0 denotes an infinitesimally small number, so that

w0(x) = e
Z
2ν x ≤ x0,

w0(x) = 1 x > x0.
(S31)

We split the integration into two parts
ˆ ∞

−∞
w0(α) . . . dα =

ˆ x0

−∞
e
Z
2ν . . . dα+

ˆ ∞

x0+ε

. . . dα. (S32)

To simplify our notation, we do not explicitly include ε from now on. The evaluation of the integral in the
numerator of Eq. (S28) is straightforward and to evaluate the integral in the the denominator we make
use of the substitution β = (x− α)/(2

√
νt). Ultimately these calculations lead to the result

u(x, t) =

√
ν

t

(e
Z
2ν − 1)e−

(x−x0)2

4νt

√
π +

√
π

2 (e
Z
2ν − 1)erfc(x−x0

2
√
νt

)
, (S33)

where erfc(x) = (2/
√
π)
´∞
x

exp(−α2)dα is the so-called complementary error function.
To analyse the solution (S33) in the limit of ν → 0, we first consider x ≤ x0 for which

lim
ν→0

erfc
(
x− x0

2
√
νt

)
= 2, x < x0

lim
ν→0

erfc
(
x− x0

2
√
νt

)
= 1, forx = x0

(S34)

and therefore Eq. (S33) becomes

lim
ν→0

u(x, t) = 0, x ≤ x0. (S35)

For x > x0 we use the x→∞ asymptotic expansion of the complementary error function

erfc(x) =
e−x

2

√
πx

+O(x−3e−x
2

) (S36)

so that for ν → 0

erfc
(
x− x0

2
√
νt

)
≈ 2
√
νt

e−
(x−x0)2

4νt√
π(x− x0)

, x > x0, (S37)

which transforms Eq. (S33) into

u(x, t) =

√
ν

t

(e
Z
2ν − 1)e−

(x−x0)2

4νt

√
π +
√
νt(e

Z
2ν − 1) e

− (x−x0)2

4νt

x−x0

. (S38)

We observe that

lim
ν→0

e−
(x−x0)2

4νt = 0, x > x0,

lim
ν→0

(
e
Z
2ν−

(x−x0)2

4νt

)
=∞, x0 < x < x0 +

√
2Zt,

lim
ν→0

(
e
Z
2ν−

(x−x0)2

4νt

)
= 1, forx = x0 +

√
2Zt,

lim
ν→0

(
e
Z
2ν−

(x−x0)2

4νt

)
= 0, x > x0 +

√
2Zt.

(S39)

Using these solutions along with Eq. (S38) gives in the limit ν → 0:

u(x, t) = 0, x ≤ x0 ∧ x > x0 +
√

2Zt,

u(x, t) =
x− x0

t
, x0 < x < x0 +

√
2Zt.

(S40)
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As ν grows large, it is straightforward to show that Eq. (S33) approaches the Gaussian

u(x, t) =
Z

2
√
πνt

e−
(x−x0)2

4νt . (S41)

And for ν →∞, this Gaussian will approach a uniform function with an amplitude tending towards zero.

C. Matrix product state representation of general solution

Here we show that MPS accurately represent the previously derived mathematical solution for the
propagation of an initial δ function with Burgers’ equation. For K = 1 the MPS digit of Eq. (S4) collapses
to the range ωn ≡ σ1

n ∈ {0, 1}. In turn, every grid point can be defined as rq = xq = q/2N , where
q = (ω1, . . . , ωN )2.
The discretised δ-function u0(xq) = Zδ(q − j) with a normalising constant Z and a peak position

j = (b1, . . . , bN )2, bn ∈ {0, 1}, can be represented as an exact MPS (see Eq. (S5)) of bond dimension χ = 1
and factors

Aω1 =

{
Z, ω1 = b1,
0, otherwise, and Aωn =

{
1, ωn = bn,
0, otherwise, (S42)

for n = 2, . . . , N .
Time evolution of an initial δ function with Burgers’ equation has the solution of Eq. (S33). The

solution for ν → 0 is a triangular wave which has an exact MPS representation of bond dimension χ = 3,
as shown in the following section. The solution for very large ν is a Gaussian (tending towards a uniform
function for ν →∞), which has an exponentially convergent MPS approximation [11]. For 0 < ν <∞ it
can be shown that the function of Eq. (S28) remains holomorphic in x, and hence regularity arguments
similar to those in [12] can be used to prove an exponential convergence of the polynomial approximation
of Eq. (S28). In turn, polynomials of degree p sampled on an equidistant grid admit an exact MPS
representation [13, Thm. 6] with χ ≤ p+ 1. Therefore, the 0 < ν <∞ MPS approximation of Eq. (S28)
is also exponentially converging.
Therefore we conclude that the MPS description of solutions of the initial values problem considered

here are exponentially convergent in the number of variables used. In other words, an MPS scheme
would require exponentially fewer variables than e.g. a standard finite differences scheme. For the sake of
concreteness, we illustrate this for the case of ν → 0 in the following section.

D. Triangular waves as matrix product states

Let us analytically derive the MPS representation for the ν → 0 triangular-wave solution of Eq. (S33).
This limit solution is a prototypical shock-wave and (as all shock-waves) it is discontinuous, which slows
down the convergence of both polynomial and Fourier approximations. In contrast, an MPS with a bond
dimension of just 3 can represent this function exactly, as we now demonstrate in this section.
Definition. A Heaviside vector of length J ∈ N with step position j ∈ Z is defined element-wise as

θjq :=

{
1, q ≤ j,
0, otherwise, (S43)

for q ∈ {0, . . . , J − 1}.
Definition. A unit vector of length J ∈ N at position j ∈ Z is defined element-wise as

ejq :=

{
1, q = j,
0, otherwise, (S44)

for q ∈ {0, . . . , J − 1}.
Lemma. Let j = (b1, . . . , bN )2 and q = (ω1, . . . , ωN )2, with bn, ωn ∈ {0, 1}. Then the j-th Heaviside
vector of length J = 2N can be written as the MPS

θb1...bNω1...ωN = Tω1 · · ·TωN (S45)
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with bond dimensions d(n) = 2, n = 1, . . . , N − 1, where

Tω1 =
[
eb1ω1

θb1−1
ω1

]
, (S46)

Tωn =

[
ebnωn θbn−1

ωn
0 1

]
, (S47)

for n = 2, . . . , N − 1, and

TωN =

[
θbNωN

1

]
. (S48)

Proof. Consider two indices first, and prove that θb1,b2ω1ω2
= θb1−1

ω1
+ θb2ω2

eb1ω1
.

• If ω1 > b1, we obtain 0, as expected from (S43).

• If ω1 = b1, we get θb2ω2
. This becomes 0 when ω2 > b2, and 1 when ω2 ≤ b2, which, together with

ω1 = b1, gives q = 2ω1 + ω2 ≤ 2b1 + b2 = j, as expected.

• If ω1 ≤ b1−1, we are left with θb1−1
ω1

= 1, but in this case we also have that q = 2ω1+ω2 < 2b1+b2 = j.

All cases are thus in agreement with (S43). Multiplying the last two factors of the Heaviside MPS gives

TωN−1TωN =

[
θ
bN−1−1
ωN−1 + θbNωN e

bN−1
ωN−1

1

]
=

[
θ
bN−1,bN
ωN−1,ωN

1

]
. (S49)

Similarly, assuming that

Tωn · · ·TωN =

[
θbn...bNωn...ωN

1

]
, (S50)

gives the induction step for Tωn−1 · · ·TωN , and eventually, since Tω1 is just one row,

Tω1 · · ·TωN = θb1...bNω1...ωN (S51)

as expected.
Definition. A vector whose elements are xq = q = (ω1, . . . , ωn)2 can be expressed by the MPS

Xq ≡ Xω1...ωN =
[
1 2N−1ω1

]
· · ·
[
1 2N−nωn
0 1

]
· · ·
[
ωN
1

]
(S52)

of bond dimension 2, per [13].
Theorem. A triangular wave vector with elements

wb1...bNω1...ωN := Xω1...ωN · θb1...bNω1...ωN (S53)

can be written as an MPS of bond dimension 3.
Proof. Multiplying the MPS Xq1...qN with θb1...bNq1...qN tensor by tensor will result in an MPS Ŵω1 · · · ŴωN

of bond dimension 4. However, this decomposition is redundant. For example, the first factor reads

Ŵω1 =
[
eb1ω1

eb1ω1
2N−1ω1 θb1−1

ω1
θb1−1
ω1

2N−1ω1

]
, (S54)

albeit eb1ω1
ω1 = b1e

b1
ω1

and this means that

Ŵω1 =
[
eb1ω1

θb1−1
ω1

θb1−1
ω1

2N−1ω1

]
︸ ︷︷ ︸

Wω1




1 b12N−1 0 0
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
R1

. (S55)
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Wω1 (with bond dimension d(1) = 3) can be considered the first non-redundant MPS tensor of wb1...bNω1...ωN .
Multiplying R1 with Ŵω2 will continue the reduction and produce Wω2 . Assuming that Wω1 , . . . ,Wωn−1

have already been obtained, the next step gives

Rn−1Ŵωn :=




1 cn−1 0 0
0 0 1 0
0 0 0 1







ebnωn 2N−nωnebnωn θbn−1
ωn 2N−nωnθbn−1

ωn
0 ebnωn 0 θbn−1

ωn

0 0 1 2N−nωn
0 0 0 1


 , (S56)

where cn−1 is a scalar, with c1 = b12N−1. This gives

Rn−1Ŵωn =



ebnωn (2N−nbn + cn−1)ebnωn θbn−1

ωn (2N−nωn + cn−1)θbn−1
ωn

0 0 1 2N−nωn
0 0 0 1


 . (S57)

Notice that the first two columns are linearly dependent, allowing us to rewrite the above expression into

Rn−1Ŵωn =


ebnωn θbn−1

ωn (2N−nωn + cn−1)θbn−1
ωn

0 1 2N−nωn
0 0 1




︸ ︷︷ ︸
Wωn




1 2N−nbn + cn−1 0 0
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
Rn

. (S58)

Since Rn is identical to Rn−1 except for the element cn = 2N−nbn + cn−1 at position (1, 2), the recursion
can continue all the way until ŴωN . This will result in the factors Wωn whose bond dimensions are all
d(n) = 3, and these factors together form the non-redundant representation of wb1...bNω1...ωN .
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4. MATRIX PRODUCT STATE ALGORITHM

In this section we present our MPS algorithm for minimising the cost function of Eq. (8) in the main
text in 2-D (i.e. K = 2). Generalising this scheme to other dimensions is straightforward. Sec. 4A
explains how Eq. (8) can be considered a variational problem to be solved within the MPS manifold. The
minimisation can be done by repeatedly minimising for each of the matrices of the MPS representing the
variational flow field. Our procedure for this local minimisation is outlined in Sec. 4B. Sec. 4C explains
how repeatedly performing many such local minimisations allows us to converge to the global minimum
of the cost function. The full computational complexity of our algorithm is derived in Sec. 4D. The
computational complexity is also demonstrated in practice in Sec. 4 E. Finally, in Sec. 4 F we discuss the
arithmetic intensity of the MPS algorithm.

A. The variational problem

Let us begin by expanding upon main text Eq. (8). In 2-D, the finite difference del operator is given as

∇ = ê1
∆

∆x1
+ ê2

∆

∆x2
, (S59)

with ∆
∆xk

being the derivative along unit vector êk, and the Laplace operator by

∇2
=

∆2

∆x2
1

+
∆2

∆x2
2

, (S60)

with ∆2

∆x2
k
the second derivative along the k-th direction. We represent both ∆

∆xk
and ∆2

∆x2
k
using eight-order

central finite difference stencils [14] in matrix product operator (MPO) form. For details on how the
method of finite differences can be implemented in MPO form, see e.g. [15, p. 591] or [16, p. 22]. Further,
note that the main text’s variational field, V ∗(rq) = ê1u

∗
1(rq) + ê2u

∗
2(rq), along with the previous field,

V (rq) = ê1u1(rq) + ê2u2(rq), both lie within the MPS manifoldM restricted at bond dimension χ (see
Eq. (S15)). For the sake of convenience, we employ linear algebra notation in the rest of this section. We
introduce the vector ui = vec (ui(rq)) populated by the values of ui at all grid points rq, and similarly
for u∗i = vec (u∗i (rq)), with ui,u∗i ∈ R2NK×1. Using this, we rewrite Eq. (8) into

Θ(V ∗) =

2∑

i,j=1

{
µ

(
∆u∗i
∆xi

)t ∆u∗j
∆xj

}
+

2∑

i=1

{
(u∗i )

tu∗i
∆t2

+
(u∗i )

t

∆t


−ui

∆t
+

2∑

j=1

{
uj

∆ui
∆xj

− ν∆2ui
∆x2

j

}


+


−ui

∆t
+

2∑

j=1

{
uj

∆ui
∆xj

− ν∆2ui
∆x2

j

}

t

u∗i
∆t

}
+

[
...

]
,

(S61)

with [...] representing the remaining part of Θ which is independent of u∗i (it will vanish after differentiation),
and (·)t being the transpose. For the sake of simplicity, the nonlinear term is here represented in convective
form, albeit it should be put into skew-symmetric form during actual numerical simulations [17].

Let us now write out V ∗. Assuming V ∗ is put into mixed canonical form with canonical centre at site
n, it can be written as

V ∗(rq) =

2∑

i=1

êiÂ∗
ω1

i Â
∗ω2

i · · · Â∗
ωn−1

i C∗ωni B̂∗
ωn+1

i B̂∗
ωn+2

i · · · B̂∗ωNi , (S62)

with the left unitary Â∗
ωn
i and right unitary B̂∗

ωn
i matrices satisfying orthonormality conditions like in

Eq. (S9). For ease of notation, we now define row and column vectors

Φ
∗ω1ω2...ωn−1

i = Â∗
ω1

i Â
∗ω2

i · · · Â∗
ωn−1

i ∈ R1×d(n−1),

Ψ
∗ωn+1ωn+2...ωN
i = B̂∗

ωn+1

i B̂∗
ωn+2

i · · · B̂∗ωNi ∈ Rd(n)×1,
(S63)
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as well as matrices Φ∗ni ∈ R2K(n−1)×d(n−1) and Ψ∗ni ∈ Rd(n)×2K(N−n)

, obtained by stacking the vectors
Φ
∗ω1ω2...ωn−1

i and Ψ
∗ωn+1ωn+2...ωN
i corresponding to all values of ω1, . . . , ωN . Note that the unitarity of

Â∗
ωn
i and B̂∗

ωn
i leads also to Φ∗ni and Ψ∗ni being unitary:

(Φ∗ni )
t
Φ∗ni = 1,

Ψ∗ni (Ψ∗ni )
t

= 1.
(S64)

Moreover, let us define a vector c∗ni = vec (C∗ωni ) of all values of C∗ωni . Following a straightforward
calculation, we can establish a linear map representation of the MPS:

u∗i = U∗ni c
∗n
i , where U∗ni = Φ∗ni ⊗ 1⊗ (Ψ∗ni )t, (S65)

which holds for all n. Lastly, note that ∆
∆xi

is a skew-symmetric operator,
(

∆
∆xi

)t
= − ∆

∆xi
.

The above definitions allow us to rewrite Eq. (S61) into

Θ(V ∗) =
2∑

i,j=1

{
−µ(c∗ni )t (U∗ni )

t ∆

∆xi

∆

∆xj
U∗nj c

∗n
j

}

+

2∑

i=1

{
(c∗ni )t (U∗ni )

t
U∗ni c

∗n
i

∆t
+

(c∗ni )t (U∗ni )
t

∆t


−ui

∆t
+

2∑

j=1

{
uj

∆ui
∆xj

− ν∆2ui
∆x2

j

}



−ui

∆t
+

2∑

j=1

{
uj

∆ui
∆xj

− ν∆2ui
∆x2

j

}

t

U∗ni c
∗n
i

∆t

}
+

[
...

]
,

(S66)

with the canonical centre of u∗i and its transpose set at site n. Now, the minimum of Θ(V ∗) is found at
the stationary point where the gradient of Θ with regards to its variational variables vanishes. Here the
variational variables in question are the matrices of V ∗(rq). In other words, we require that

∂Θ(V ∗)
∂C∗ωnk

= 0 (S67)

simultaneously for all n and k. The solution to Eq. (S67) is given by

(U∗nk )
t

(
2∑

j=1

{
−µ∆t

∆

∆xk

∆

∆xj
U∗nj c

∗n
j

}
+
U∗nk c

∗n
k

∆t
− uk

∆t
+

2∑

j=1

{
uj

∆uk
∆xj

− ν∆2uk
∆x2

j

})
, (S68)

which can be rearranged into

c∗nk − (U∗nk )
t

2∑

j=1

{
µ∆t2

∆

∆xk

∆

∆xj
U∗nj c

∗n
j

}
= (U∗nk )

t


uk −∆t

2∑

j=1

{
uj

∆uk
∆xj

− ν∆2uk
∆x2

j

}
 , (S69)

after using Eqs. (S64) and (S65) to set (U∗nk )
t
U∗nk c

∗n
k = 1c∗nk = c∗nk .

B. Local minimisation

Solving Eq. (S69) will locally minimise Θ(V ∗) with respect to the n-th tensor of the k-th flow component.
We define

Hkj = (U∗nk )
t ∆

∆xk

∆

∆xj
U∗nj ,

αk = c∗nk ,

βk = (U∗nk )
t


uk −∆t

2∑

j=1

{
uj

∆uk
∆xj

− ν∆2uk
∆x2

j

}
 ,

(S70)
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and collect these into vectors α = vec(αk),β = vec(βk) while constructing the matrix H from elements
Hkj . Inserting α, β and H into Eq. (S69) gives a set of linear equations for α

(
1− µ∆t2H

)
α = β, (S71)

with −H being a positive semi-definite matrix. This can be seen by considering

αtHα =
2∑

i,j=1

(u∗i )
t ∆

∆xi

∆

∆xj
u∗j = −

2∑

i,j=1

(
∆u∗i
∆xi

)t ∆u∗j
∆xj

. (S72)

Because
∑2
i,j=1

(
∆u∗

i

∆xi

)t ∆u∗
j

∆xj
=
∥∥∇ · V

∥∥2

2
≥ 0, H must be negative semi-definite, making

(
1− µ∆t2H

)

as a whole positive definite (recall that ∆t, µ > 0). Furthermore, it can be shown that constructing H
costs O

(
Nχ4

)
, while computing its action on α costs just O

(
Nχ3

)
. We therefore employed the iterative

method of conjugate gradient descent (CGD) [18] to solve the linear problem of Eq. (S71).

C. Global minimisation

The global minimum of Θ can be obtained by adapting well-established techniques for calculating the
ground state energy of quantum many-body systems. We start with V ∗ in right-canonical form and
minimise Θ with respect to matrix n = 1 using Eq. (S71). Similarly to the density matrix renormalisation
group (DMRG) algorithm [4], we subsequently perform a QR decomposition on site n = 1 and shift the
canonical centre to site n = 2, and optimise Θ with respect to n = 2. We iterate this procedure and sweep
through the sites of V ∗ until convergence is achieved.

D. Theoretical computational scaling

The computational complexity of our algorithm for each individual time-step is a product of the
computational cost of the global sweeps multiplied with that of the local minimisations. Let m1 be the
average number of sweeps required for the minimisation of Θ to converge, and q be the cost associated with
shifting the canonical centre as described in Sec. 4C, and c the computational cost of a local minimisation.
Then the scaling will be O [m1N(q + c)] because the cost of the sweeps scales with the number of matrices
swept, which is N .
Shifting the canonical centre rightwards from matrix n to n + 1 (or leftwards, to n − 1) is done in

two parts. First, a QR decomposition is performed, followed by a tensor contraction between the upper
triangular matrix and the next site. It is straightforward to show [4] that the cost of both goes as O(χ3),
which in turn implies q ∼ O(χ3).

The computational cost of the local minimisation equals the cost needed to first explicitly calculate
β in Eq. (S70) plus the subsequent cost associated with the CGD iterations needed to solve Eq. (S71).
Regarding the latter, let m2 be the mean number of iterations CGD requires to converge to the solution
of Eq. (S71) within the desired precision. The cost of these iterations is then on average a product of
m2 and the cost of computing the action of H on α. The last operation can be executed as a tensor
contraction where the matrix H is never explicitly formulated, but, instead, the tensor network of Hα is
contracted using standard tensor contraction techniques [5] at O(χ3) cost. Calculating β is however more
expensive due to each βi containing the nonlinear

∑2
j=1 uj

∆ui
∆xj

. We (variationally) construct it using
exact Hadamard products [15, p. 593], which involves tensor contractions scaling as O(χ4). This makes
the cost of each local minimisation step go as c ∼ χ4 +m2χ

3.
The above implies the computational complexity of each time-step to be

O [m1N(q + c)] = O
[
m1N

(
χ4 + χ3(Const +m2

)]
. (S73)

The numerical precision is controlled by m1 and m2. However, in our experience, the number of sweeps
or CGD iterations required to achieve a given precision does not change with increasing system size.
Dropping these prefactors along with the non-dominant terms leads to the total computational complexity
of

O
[
m1N

(
χ4 + χ3(Const +m2

)]
= O

(
Nχ4

)
(S74)
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Supplementary Figure 4: Demonstration of MPS computational scaling. 10 time-steps of the 2-D
Navier-Stokes equations were simulated with our MPS algorithm. The CPU time (in seconds) required to

perform these 10 time-steps is plotted for five values of χ against eight different grid-sizes.

per timestep. This scaling is equivalent to O(χ4 logM), as the number of grid points M is related with N
through M = 2KN .
We remark that this quartic scaling in χ is a central bottelneck of our algorithm. But, the bottleneck

might be possible to resolve. As already mentioned, we currently compute uj ∆ui
∆xj

using exact Hadamard
products that carry the cost of O(χ4). If instead the cross approximation algorithm of [19, Step 2, Sec. 4]
is used to compute uj ∆ui

∆xj
, the cost will be brought down to just O(χ3). If the resulting loss off accuracy is

not severe, taking this next step would result in a significant improvement in the computatinal complexity
of our algorithm.

E. Demonstration of computational scaling

Among the most interesting aspects of the MPS algorithm is how the computational complexity of the
above Sec. 4D scales linearly with N , i.e., logarithmically with M . To demonstrate, we have plotted in
Supp. Fig. 4 the actual CPU time our algorithm requires to perform 10 time-steps simulating the 2-D
Navier-Stokes equation at various values of M and χ. The simulations were all carried out on a MacBook
Pro (Retina, 15-inch, Mid 2015) running macOS v. 11.6 on a 2,5 GHz Quad-Core i7 CPU with
16 GB 1600 MHz DDR3 ram. Note how all the curves in the figure saturate for sufficiently many gridpoints;
this implies the computational performance scales sub-polynomially with M in a manner consistent with
the computational complexity derived in Eq. (S74).

F. Arithmetic intensity

For completeness we also briefly discuss how memory-efficient our algorithm is. This can be done by
studying a quantity known as the arithmetic intensity I. I is the ratio between the amount of arithmetic
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operations performed (in units of FLOPs) to the required memory traffic (in bytes) of an algorithm. Many
algorithms running on modern computing systems are memory bound in the sense that their performance
is limited by memory bandwidth rather than computing power. Thus, algorithms with a high value of I
can more optimally utilize modern hardware than those with a low arithmetic intensity.

As discussed in Sec. 4D, our algorithm is dominated by the need to calculate the nonlinear term. This
in practice boils down to repeatedly performing matrix-matrix multiplications between pairs of non-square
matrices of type (Const · χ2) × χ and χ × (Const · χ). Theoretically, the arithmetic intensity of such
operations goes as

I ∼ O(χ4)

O (χ2(χ+ Const))
= O(χ) (S75)

for large χ when memory is efficiently utilised. If, however, the memory is not efficiently utilised due
to shortcomings in either hardware (e.g. inadequate cache size) or software (e.g. failure to use cache
blocking), the scaling in Eq. (S75) will not hold.

Fortunately, the problem of matrix-matrix multiplication is among the most important and thoroughly
studied problems of numerical linear algebra. Highly optimised hardware (along with the associated
software) beyond CPUs exist for such operations, ranging from GPUs [20] to even TPUs [21]. Thus, the
dominant operation of our algorithm is characterised by a high I. This in turn makes our algorithm
capable of efficiently utilising the power of modern parallelised computing hardware.
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5. QUANTUM ALGORITHM

Here we explain how to port our algorithm to a quantum computer. Our approach is based on the
formalism of variational quantum algorithms (VQAs) [22] and summarized in Sec. 5A. We compare this
strategy to the alternative quantum algorithmic approaches [23, 24] in Sec. 5B.

A. Variational quantum algorithm

The main difference between the classical MPS algorithm presented in the main text and a corresponding
VQA is that the latter encodes the solution in 2KN probability amplitudes of a quantum state |u(φ)〉
of KN qubits. This state is created from a fixed initial state |0〉⊗KN = |0〉 by a network of quantum
gates Û(φ) that are parameterised by classical variational parameters φ, i.e. |u(φ)〉 = Û(φ)|0〉. Problem
dependent gate operations and measurements are then applied to evaluate a cost function [22, 25].

We sketch these problem dependent operations for the minimization of the cost function Eq. (S61) for
the special case of K = 1 and µ = 0, i.e. Burgers’ equation, as the more general Navier-Stokes case follows
straightforwardly. The quantum version of the cost function Eq. (S61) is written as

Θ(|u∗〉) =

∥∥∥∥
|u∗〉 − |u〉

∆t
+
(
|u〉 · ∇

)
|u〉 − ν∇2|u〉

∥∥∥∥
2

2

. (S76)

Here |u∗〉 = |u(φ∗)〉 is the trial solution for the current time step and |u〉 = |u(φ)〉 is the solution from
the previous time step. Efficient VQA methods for the minimization of Eq. (S76) use gradient-based
optimizers [22] which require evaluation of only those scalar products in Eq. (S76) that contain |u∗〉. The
gradient reads

∂Θ(|u∗〉)
∂φ∗k

=
∂

∂φ∗k

(
(φ∗0)2

∆t2
− 2φ0φ

∗
0

∆t
<
{

1

∆t
〈u|u∗〉+ 〈u|

(
|u〉 · ∇

)†|u∗〉 − ν〈u|∇2|u∗〉
})

(S77)

where <{·} is the real part, (·)† the adjoint and φ0 and φ∗0 keep track of the changing normalization [25].
The quantum circuit representations of all terms in Eq. (S77) are given in [25, Supplementary Sec. III]
together with a comprehensive derivation. Importantly, by making use of two copies of |u〉 we can
straightforwardly handle the nonlinear term. The core part of the quantum network for evaluating the
nonlinear term is shown in Supp. Fig. 5.

A distinguishing feature of the quantum version of our algorithm is that the variational states encoded
in |u(φ)〉 are not limited to MPS and can thus be more expressive. Therefore VQA optimization makes
use of a variational manifold that is more general than the MPS manifold with the potential to lead to a
quantum advantage [25]. Even when remaining within the MPS manifold the VQA approach immediately
improves the scaling with bond dimension from O(χ4) to O(χ2) [25].

B. Comparison to alternative proposals

The VQA approach in Sec. 5A and the alternative proposals [23, 24] have in common that they require
a number of qubits that scales logarithmically with the number of grid points. That is why all three
approaches have the potential to achieve an exponential quantum speedup over some standard classical
computational methods.

The main difference between the three strategies is that our approach concentrates on solving general
nonlinear problems whereas the approaches [23, 24] focus on being efficient in the number of time steps.
The proposal [23] is based on the derivation of the nonlinear Schrödinger equation from the linear
Schrödinger equation for quantum many-body systems, i.e. a mean-field approximation, which is accurate
only in the limit of weak interactions. The approach [24] uses the well-known technique of Carleman
linearization to map a specific set of weakly nonlinear ordinary differential equations with dissipation to a
higher-dimensional linear problem. Both methods [23, 24] solve their linear problems using the quantum
linear systems algorithm [26–28]. This allows them to be efficient in the number of time steps and leads to
mathematically rigorous convergence guarantees that, however, hold only under the strong restrictions of
their derivation. In contrast, our approach can be applied to a wide range of nonlinear partial differential
equations with arbitrary interaction strengths.
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Supplementary Figure 5: Central part of the quantum circuit for the nonlinear term in
Eq. (S77). Gate Û†(φ) is the adjoint of the quantum network creating the previous solution |u〉. The
variational state |u∗〉 is connected to the input port IP. The control port CP leads to the ancillary

quantum control logic and the output port OP connects to the evaluation quantum logic discussed in
detail in [25]. Here the quantum state is realized with N = 6 qubits.
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Supplementary Figure 6: Tensor contractions. Sub-figure (a) illustrates a tensor contraction between
an order-2 tensor (left) with an order-3 tensor (right). The contraction is performed along the closed

bond α1, while the open bonds ω1, ω2 and α2 are not summed over. A similar tensor contraction is shown
in (b), except now both the tensors are order-3 and the summed-over bond is α2.

6. GRAPHICAL NOTATION

In this section we introduce graphical tensor network notation and use it to sketch MPS, tree tensor
networks (TTNs) and the multiscale entanglement renormalisation ansatz (MERA).

Describing tensor networks algebraically, as we did in Sec. 2 and beyond, is unpractical for geometries
more complicated than MPS. Such tensor networks are more legibly described graphically. To illustrate
this graphical notation, consider the MPS in Eq. (S5). The matrix-matrix multiplications there can be
written out as

v(rq, χ) =

d(n)∑

{αn}=1

Aω1
α1
Aω2
α1α2

· · ·AωN−1
αN−2αN−1

AωNαN−1
. (S78)

This equation emphasises that the matrix-matrix multiplication between Aωn and Aωn+1 is equivalent to a
summation over the internal index αn, which is equivalent to a tensor contraction. The tensor contraction
can be graphically represented using the standard diagrammatic notation of tensor network theory (see
e.g. [4, 5]), as we do in Supp. Figs. 6a and 6b for n = 1 and n = 2, respectively. This notation allows us
to draw the MPS decomposition of Eq. S5, as shown for N = 8 in Supp. Fig. 7a.

Supp. Fig. 7a illustrates that the connectivity of MPS is solely between neighbouring sites. It is possible
to connect more distant sites by using alternative tensor network geometries. One such geometry is the
TTN [29–31] that is illustrated in Supp. Fig. 7b. While TTNs connect distant sites, they also have fewer
direct connections between neighbouring sites than MPS. The MERA network [32] is a generalisation of
TTNs that maintains connectivity between nearby sites, and is drawn in Supp. Fig 7c.
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Supplementary Figure 7: Three possible decompositions from one tensor. In (a), an order-8
tensor has been decomposed into an 8-site MPS where only the nearest neighbours are connected. In (b),

the same tensor has been decomposed into a TTN, which connects distant sites. The MERA
decomposition is shown in (c). Note both the increased connectivity compared to MPS and TTN, as well

as the presence of loops.
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