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is paper is the second in a series of papers considering symmetry properties of bosonic quantum systems over 2D graphs, with
continuous spins, in the spirit of the Mermin-Wagner theorem. In the model considered here the phase space of a single spin

is H1 = L2(�), where � is a �-dimensional unit torus � = R
�/Z� with a �at metric. 
e phase space of � spins is H� =

L
sym
2 (��), the subspace of L2(��) formed by functions symmetric under the permutations of the arguments. 
e Fock space H= ⊕�=0,1,...H� yields the phase space of a system of a varying (but �nite) number of particles. We associate a spaceH ≃ H(�) with

each vertex � ∈ Γ of a graph (Γ,E) satisfying a special bidimensionality property. (Physically, vertex � represents a heavy “atom”
or “ion” that does not move but attracts a number of “light” particles.) 
e kinetic energy part of the Hamiltonian includes (i)−Δ/2, the minus a half of the Laplace operator on �, responsible for the motion of a particle while “trapped” by a given atom,
and (ii) an integral term describing possible “jumps” where a particle may join another atom. 
e potential part is an operator of

multiplication by a function (the potential energy of a classical con�guration) which is a sum of (a) one-body potentials �(1)(�),� ∈ �, describing a �eld generated by a heavy atom, (b) two-body potentials�(2)(�, 
), �, 
 ∈ �, showing the interaction between
pairs of particles belonging to the same atom, and (c) two-body potentials�(�, 
), �, 
 ∈ �, scaled along the graph distance d(�, �)
between vertices �, � ∈ Γ, which gives the interaction between particles belonging to di
erent atoms.
e systemunder consideration
can be considered as a generalized (bosonic) Hubbard model. We assume that a connected Lie group G acts on�, represented by
a Euclidean space or torus of dimension �� ≤ �, preserving the metric and the volume in �. Furthermore, we suppose that the

potentials�(1),�(2), and � are G-invariant. 
e result of the paper is that any (appropriately de�ned) Gibbs states generated by the
above Hamiltonian is G-invariant, provided that the thermodynamic variables (the fugacity � and the inverse temperature �) satisfy
a certain restriction. 
e de�nition of a Gibbs state (and its analysis) is based on the Feynman-Kac representation for the density
matrices.

1. Introduction

1.1. Basic Facts on Bi-Dimensional Graphs. As in [1], we
suppose that the graph (Γ,E) has been given, with the set of
vertices Γ and the set of edges E. 
e graph has the property
that whenever edge (��, ���) ∈ E, the reversed edge (���, ��)
belongs to E as well. Furthermore, graph (Γ,E) is without

multiple edges and has a bounded degree; that is, the number
of edges (�, ��) with a �xed initial or terminal vertex is
uniformly bounded:

sup [max (♯ {�� ∈ Γ : (�, ��) ∈ E} ,
♯ {�� ∈ Γ : (��, �) ∈ E}) : � ∈ Γ] < ∞. (1)
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e bi-dimensionality property is expressed in the bound

0 < sup [1�♯Σ (�, �) : � ∈ Γ, � = 1, 2, . . .] < ∞, (2)

where Σ(�, �) stands for the set of vertices in Γ at the graph
distance � from � ∈ Γ (a sphere of radius � around �):

Σ (�, �) = {�� ∈ Γ : d (�, ��) = �} . (3)

(
e graph distance d(�, ��) = dΓ,E(�, ��) between �, �� ∈ Γ is
determined as theminimal length of a path on (Γ,E) joining �
and ��.)
is implies that for any ! ∈ Γ the cardinality ♯Λ(!, �)
of the ball

Λ (!, �) = {�� ∈ Γ : d (!, ��) ≤ �} (4)

grows at most quadratically with �.
A justi�cation for putting a quantum system on a graph

can be that graph-like structures become increasingly popu-
lar in rigorous StatisticalMechanics, for example, in quantum
gravity. Namely, see [2–4]. On the other hand, a number of
properties of Gibbs ensembles do not depend upon “regular-
ity” of an underlying spatial geometry.

1.2. A BosonicModel in the Fock Space. With each vertex � ∈ Γ
we associate a copy of a compact manifold� which we take

in this paper to be a unit �-dimensional torus R�/Z� with
a �at metric # and the volume V. We also associate with� ∈ Γ a bosonic Fock-Hilbert space H(�) ≃ H. Here H =⊕�=0,1,...H� whereH� = L

sym
2 (��) is the subspace in L2(��)

formed by functions symmetric under a permutation of the
variables. Given a �nite set Λ ⊂ Γ, we setH(Λ) = ⊗�∈ΛH(�).
An element � ∈ H(Λ) is a complex function:

x
∗
Λ ∈ �∗Λ &'→ � (x∗Λ) . (5)

Here x∗Λ is a collection {x∗(�), � ∈ Λ} of �nite point sets
x∗(�) ⊂ � associated with sites � ∈ Λ. Following [1], we call
x∗(�) a particle con�guration at site � (which can be empty)
and x∗Λ a particle con�guration in, or over, Λ. 
e space�∗Λ of particle con�gurations inΛ can be represented as the

Cartesian product (�∗)×Λ where �∗ is the disjoint union⋃�=0,1,... �(�) and �(�) is the collection of (unordered) �-
point subsets of�. (One can consider�(�) as the factor of the
“o
-diagonal” set ��

̸= in the Cartesian power �� under the
equivalence relation induced by the permutation group of
order �.) 
e norm and the scalar product in HΛ are given
by

----�---- = (∫
�∗Λ

5555�(x∗Λ)55552dx∗Λ)1/2,
⟨�1,�2⟩ = ∫

�∗Λ
�1 (x∗Λ)�2 (x∗Λ)dx∗Λ,

(6)

where measure dx∗Λ is the product ×�∈Λdx
∗(�) and dx∗(�) is

the Poissonian sum measure on�∗:

dx∗ (�) = ∑
�=0,1,...

1 (♯x∗ (�) = �) 1�! ∏

∈x∗(�)

dV (�) ?−V(�).
(7)

Here V(�) is the volume of torus�.
As in [1], we assume that an action

(g, �) ∈ G ×� &'→ g� ∈ � (8)

is given, of a group G that is a Euclidean space or a torus of
dimension �� ≤ �. 
e action is written as

g� = � + AB mod 1. (9)

Here vector A = (A1, . . . , A��) with components A� ∈ [0, 1)
and AB is the �-dimensional vector A = ((AB)1, . . . , (AB)�)
representing the element g, where B is a (�� × �) matrix of
column rank �� with rational entries. 
e action of G is li�ed
to unitary operators UΛ(g) inHΛ:

UΛ (g)� (x∗Λ) = � (g−1x∗Λ) , (10)

where g−1x∗Λ = {g−1x∗(�), � ∈ Λ} and g
−1x∗(�) = {g−1�, � ∈

x∗(�)}.

e generally accepted view is that the Hubbard model

is a highly oversimpli�ed model for strongly interacting
electrons in a solid.
eHubbardmodel is a kind ofminimum
model which takes into account quantummechanicalmotion
of electrons in a solid, and nonlinear repulsive interaction
between electrons. 
ere is little doubt that the model is too
simple to describe actual solids faithfully [5]. In our context
the Hubbard Hamiltonian HΛ of the system in Λ acts as
follows:

(HΛ�) (x∗Λ) = [
[
−12∑�∈Λ ∑


∈x∗(�)
Δ(
)

� + ∑
�∈Λ

∑

∈x∗(�)

�(1) (�)

+ 12∑�∈Λ ∑

,
�∈x∗(�)

1 (� ̸= ��)�(2) (�, ��)

+ 12 ∑
�,��∈Λ

1 (� ̸= ��) F (d (�, ��))

× ∑

∈x∗(�),
�∈x∗(��)� (�, ��)]

]
� (x∗Λ)

+ ∑
�,��∈Λ

I�,��1 (♯x∗ (�) ≥ 1, ♯x∗ (��) < K)

× ∑

∈x∗(�)

∫
�
V (d
)
× [� (x∗(�,
)→ (�� ,�)

Λ ) − � (x∗Λ)] .
(11)
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HereΔ(
)
� means the Laplacian in variable� ∈ x∗(�). Next, ♯x∗

stands for the cardinality of the particle con�guration x∗ (i.e.,♯x∗ = � when x∗ ∈ �(�)), and the parameter K is introduced
in (17). (Symbol ♯ will be used for denoting the cardinality
of a general (�nite) set; for example, ♯Λ means the number

of vertices in Λ.) Further, x∗(�,
)→ (�� ,�)
Λ denotes the particle

con�guration with the point � ∈ x∗(�) removed and point 

added to x∗(��).

As in [1], we also consider a Hamiltonian HΛ|x∗Γ\Λ
in an

external �eld generated by a con�guration x∗Γ\Λ = {x∗(��),
�� ∈ Γ \ Λ} ∈ �∗Γ\Λ where Γ ⊆ Γ is a (�nite or in�nite)
collection of vertices. More precisely, we only consider x∗Γ\Λ
with ♯x∗(��) ≤ K (see (17) below) and set

(HΛ|x∗Γ\Λ
�) (x∗Λ)

= [
[
−12∑�∈Λ ∑


∈x∗(�)
Δ(
)

� + ∑
�∈Λ

∑

∈x∗(�)

�(1) (�)

+ 12∑�∈Λ ∑

,
�∈x∗(�)

1 (� ̸= ��)�(2) (�, ��)

+ 12 ∑
�,��∈Λ

1 (� ̸= ��) F (d (�, ��))

× ∑

∈x∗(�),
�∈x∗(��)� (�, ��)]

]
� (x∗Λ)

+ ∑
�∈Λ,��∈Γ\Λ

F (d (�, ��))

× ∑

∈x∗(�),
�∈x∗(��)� (�, ��)� (x∗Λ)

+ ∑
�,��∈Λ

I�,��1 (♯x∗ (�) ≥ 1, ♯x∗ (��) < K)

× ∑

∈x∗(�) ∫� V (d
) [� (x∗(�,
)→ (�� ,�)

Λ ) − � (x∗Λ)] .
(12)


e novel elements in (11) and (12) compared with [1]

are the presence of on-site potentials �(1) and �(2) and the
summand involving transition rates I�,�� ≥ 0 for jumps of a

particle from site � to ��.
We will suppose that I�,�� vanishes if the graph distance

d(�, ��) > 1. We will also assume uniform boundedness:

sup [I�,�� (�,�) , �, �� ∈ Γ, � ∈ �] < ∞; (13)

in view of (1) it implies that the total exit rate∑�� :d(�,��)=1 I�,��(�,�) from site � is uniformly bounded.


ese conditions are not sharp and can be liberalized.


e model under consideration can be considered as a
generalization of the Hubbard model [6] (in its bosonic ver-
sion). Its mathematical justi�cation includes the following.
(a) An opportunity to introduce a Fock space formalism
incorporates a number of new features. For instance, a
fermonic version of the model (not considered here) emerges
naturally when the bosonic Fock space H(�) is replaced by
a fermonic one. Another opening provided by this model

is a possibility to consider random potentials �(1), �(2) and� which would yield a sound generalization of the Mott-
Andersonmodel. (b) Introducing jumpsmakes a step towards
a treatment of a model of a quantum (Bose-) gas where
particles “live” in a single Fock space. For example, a system
of interacting quantum particles is originally con�ned to a
“box” in a Euclidean space, with or without “internal” degrees
of freedom. In the thermodynamical limit the box expands
to the whole Euclidean space. In a two-dimensional model
of a quantum gas one expects a phenomenon of invariance
under space-translations; one hopes to be able to address this
issue in future publications. (c) A model with jumps can be
analysed by means of the theory of Markov processes which
provides a developed methodology.

Physically speaking, the model with jumps covers a situ-
ation where “light” quantum particles are subject to a “ran-
dom” force and change their “location.” 
is class of models
is interesting from the point of view of transport phenomena
that theymay display. (An analogywith the famousAnderson
model, in its multiparticle version, inevitably comes to
mind; cf., e.g., [7].) Methodologically, such systems occupy
an “intermediate” place between models where quantum
particles are “�xed” forever to their designated locations (as
in [1]) andmodels where quantumparticlesmove in the same
space (a Bose-gas, considered in [8, 9]). In particular, this
work provides a bridge between [1, 8, 9]; reading this paper
ahead of [8, 9] might help an interested reader to get through
[8, 9] at a much quicker pace.

We would like to note an interesting problem of analysis
of the small-mass limit (cf. [10]) from the point of Mermin-
Wagner phenomena.

1.3. Assumptions on the Potentials. 
e between-sites poten-
tial � is assumed to be of class T2. Consequently, � and its
�rst and second derivatives satisfy uniform bounds. Namely,∀��, ��� ∈ �

−�(��, ���) , 55555∇x�(��, ���)55555 , 55555∇x,x��(��, ���)55555 ≤ �. (14)

Here � and �� run through the pairs of variables �, ��. A simi-

lar property is assumed for the on-site potential�(1) (here we
need only a T1 smoothness):

−�(1) (�) , 55555∇x�(1) (�)55555 ≤ �(1), � ∈ �. (15)

Note that for� and�(1) the bounds are imposed on their neg-
ative parts only.

As to �(2), we suppose that (a)

�(2) (�, ��) = +∞ when
55555� − ��55555 ≤ #, (16)
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and (b) ∃ a T1-function (�, ��) &→ �̃(2)(�, ��) ∈ R such that�(2)(�, ��) = �̃(2)(�, ��) whenever #(�, ��) > #. Here #(�, ��)
stands for the (�at) Riemannian distance between points�, �� ∈ �. As a result of (16), there exists a “hard core” of
diameter #, and a given atom cannot “hold” more than

K = ⌈ V (�)
V (Z (#))⌉ (17)

particles where V(Z(#)) is the volume of a �-dimensional ball
of diameter #. We will also use the bound

−�̃(2) (�, ��) , 55555∇x�̃(2) (�, ��)55555 ≤ �(2), �, �� ∈ �. (18)

Formally, (16) means that the operators in (11) and (12) are
considered for functions�(x∗Λ) vanishingwhen in the particle
con�guration x∗Λ = {x∗(�), � ∈ Λ}, the cardinality ♯x∗(�) > K
for some � ∈ Λ.


e function F : ^ ∈ (0,∞) &→ F(^) ≥ 0 is assumed
monotonically nonincreasing with ^ and obeying the relationF(_) → 0 as _ → ∞, where

F (_) = sup[
[
∑
���∈Γ

F (d (��, ���)) 1 (d (��, ���) ≥ _) : �� ∈ Γ]
]

< ∞.
(19)

Additionally, let F(^) be such that

F∗ = sup[
[
∑
��∈Γ

F (d (�, ��)) d(�, ��)2 : � ∈ Γ]
]
< ∞. (20)

Next, we assume that the functions �(1), �(2), and � are g-
invariant: ∀�, �� ∈ � and g ∈ G,

�(1) (�) = �(1) (g�) ,
�(2) (�, ��) = �(2) (g�, g��) ,
� (�, ��) = � (g�, g��) .

(21)

In the following we will need to bound the fugacity (or
activity, cf. (25)) � in terms of the other parameters of the
model

�?Θ < 1, where Θ = K� (�(1) + K�(2) + KF (1) �) . (22)

1.4. �e Gibbs State in a Finite Volume. De�ne the particle
number operator NΛ, with the action

NΛ� (x∗Λ) = ♯x∗Λ� (x∗Λ) , x
∗
Λ ∈ �∗Λ. (23)

Here, for a given x∗Λ = {x∗(�), � ∈ Λ}, ♯x∗Λ stands for the total
number of particles in con�guration x∗Λ:

♯x∗Λ = ∑
�∈Λ

♯x∗ (�) . (24)


e standard canonical variable associated withNΛ is activity� ∈ (0,∞).

e Hamiltonians (11) and (12) are self-adjoint (on the

natural domains) in H(Λ). Moreover, they are positive
de�nite and have a discrete spectrum, cf. [14]. Furthermore,∀�, � > 0, HΛ and HΛ|x∗Γ\Λ

give rise to positive-de�nite trace-

class operators GΛ = G�,�,Λ and GΛ|x∗Γ\Λ
= G�,�,Λ|x∗Γ\Λ

:

GΛ = �NΛ exp [−�HΛ] ,
GΛ|x∗Γ\Λ

= �NΛ exp [−�HΛ|x∗Γ\Λ
] . (25)

We would like to stress that the full range of variables �, � > 0
is allowedhere because of the hard-core condition (16): it does
not allow more than K♯Λ particles in Λ where ♯Λ stands for
the number of vertices in Λ. However, while passing to the
thermodynamic limit, we will need to control � and �.
De�nition 1. We will call GΛ and GΛ|x∗Γ\Λ

the Gibbs operators

in volume Λ, for given values of � and � (and—in the case of
GΛ|x∗Γ\Λ

—with the boundary condition x∗Γ\Λ).


e Gibbs operators in turn give rise to the Gibbs states

�Λ = ��,�,Λ and �Λ|xΓ\Λ = ��,�,Λ|xΓ\Λ , at temperature �−1 and

activity � in volume Λ. 
ese are linear positive normalized
functionals on the T∗-algebra BΛ of bounded operators in
spaceHΛ:

�Λ (A) = trHΛ (RΛA) ,
�Λ|xΓ\Λ (A) = trHΛ (RΛ|xΓ\ΛA) , A ∈ BΛ, (26)

where

RΛ = GΛ
Ξ (Λ) , with Ξ (Λ) = Ξ�,� (Λ) = trHΛGΛ, (27)

RΛ|x∗Γ\Λ
= GΛ|xΓ\Λ

Ξ (Λ | x∗Γ\Λ) ,
with Ξ (Λ | x∗Γ\Λ) = Ξ�,� (Λ | x∗Γ\Λ)
= trHΛ (�NΛ exp [−�HΛ|x∗Γ\Λ

]) .
(28)


e hard-core assumption (16) yields that the quantities
Ξ(Λ) and Ξ�,�(Λ | x∗Γ\Λ) are �nite; formally, these facts will

be veri�ed by virtue of the Feynman-Kac representation.

De�nition 2. Whenever Λ0 ⊂ Λ, the T∗-algebraBΛ0 is iden-
ti�ed with the T∗ subalgebra inBΛ formed by the operators

of the form A0 ⊗ IΛ\Λ0 . Consequently, the restriction �Λ
0

Λ of
state �Λ to T∗-algebraBΛ0 is given by

�Λ
0

Λ (A0) = trHΛ0
(RΛ0

Λ A0) , A0 ∈ BΛ0 , (29)

where

R
Λ0
Λ = trHΛ\Λ0

RΛ. (30)
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Operators RΛ0
Λ (we again call them RDMs) are positive de�-

nite and have trHΛ0
RΛ0
Λ = 1. 
ey also satisfy the compatibil-

ity property: ∀Λ0 ⊂ Λ1 ⊂ Λ,
R
Λ0
Λ = trHΛ1\Λ0

R
Λ1
Λ . (31)

In a similar fashion one de�nes functionals �Λ
0

Λ|x∗Γ\Λ
and oper-

ators RΛ0
Λ|x∗Γ\Λ

, with the same properties.

1.5. Limiting Gibbs States. 
e concept of a limiting Gibbs
state is related to notion of a quasilocal T∗-algebra; see [14].
For the class of systems under consideration, the construction
of the quasilocal T∗-algebraBΓ is done along the same lines

as in [1]:BΓ is the norm completion of the T∗ algebra (B0
Γ) =

lim ind�→∞BΛ � . Any family of positive-de�nite operators

RΛ0 in spacesHΛ0 of trace one, whereΛ0 runs through �nite
subsets of Γ, with the compatibility property

R
Λ1 = trHΛ0\Λ1

R
Λ0 , Λ1 ⊂ Λ0, (32)

determines a state ofBΓ, see [12, 13].
Finally, we introduce unitary operators UΛ0(g), g ∈ G, in

HΛ0 :

UΛ� (x∗Λ0) = � (g−1x∗Λ0) , (33)

where

g
−1
x
∗
Λ0 = {g−1x∗ (�) , � ∈ Λ0} ,

g
−1
x
∗ (�) = {g−1� : � ∈ x

∗ (�)} . (34)

�eorem3. Assuming the conditions listed above, for all �, � ∈(0, +∞) satisfying (22) and a �nite Λ0 ⊂ Γ, operators RΛ0
Λ

form a compact sequence in the trace-norm topology in HΛ0
as Λ ↗ Γ. Furthermore, given any family of (�nite or in�nite)

sets Γ = Γ(Λ) ⊆ Γ and con�gurations x∗Γ\Λ = {x∗(�), � ∈ Γ \ Λ}
with ♯x∗(�) < K, operatorsRΛ0

Λ|xΓ\Λ also forma compact sequence

in the trace-norm topology. Any limit point, RΛ0 , for {RΛ0
Λ } or

{RΛ0
Λ|x∗Γ\Λ

} as Λ ↗ Γ, is a positive-de�nite operator in H(Λ0)
of trace one. Moreover, if Λ1 ⊂ Λ0 and RΛ0 and RΛ1 are the

limits forRΛ0
Λ andRΛ1

Λ or forRΛ0
Λ|x∗Γ\Λ

andRΛ1
Λ|x∗Γ\Λ

along the same

subsequence Λ � ↗ Γ, then the property (32) holds true.
Consequently, theGibbs states�Λ and�Λ|x∗Γ\Λ form compact

sequences as Λ ↗ Γ.
Remark 4. In fact, the assertion of 
eorem 3 holds without
assuming the bidimensionality condition on graph (Γ,E),
only under an assumption that the degree of the vertices inΓ is uniformy bounded.

De�nition 5. Any limit point � for states �Λ and �Λ|x∗Γ\Λ is
called a limiting Gibbs state (for given �, � ∈ (0, +∞)).

�eorem 6. Under the condition (22), any limiting point,RΛ0 ,

for {RΛ0
Λ } or {RΛ0

Λ|x∗Γ\Λ
}, as Λ ↗ Γ, is a positive-de�nite operator

of trace one commuting with operators UΛ0(g): ∀g ∈ G,

UΛ0(g)−1RΛ0
UΛ0 (g) = R

Λ0 . (35)

Accordingly, any limiting Gibbs state � of B determined by a

family of limiting operators RΛ0 obeying (35) satis�es the cor-
responding invariance property: ∀ �nite Λ0 ⊂ Γ, any A ∈ BΛ0 ,
and g ∈ G,

� (A) = � (UΛ0(g)−1AUΛ0 (g)) . (36)

Remarks. (1) Condition (22) does not imply the uniqueness of
an in�nite-volume Gibbs state (i.e., absence of phase transi-
tions).

(2) Properties (35) and (36) are trivially ful�lled for the

limiting points RΛ0 and � of families {RΛ0
Λ } and {�Λ}. How-

ever, they require a proof for the limit points of the families{RΛ0
Λ|x∗Γ\Λ

} and {�Λ|x∗Γ\Λ}.

e set of limiting Gibbs states (which is nonempty due

to 
eorem 3) is denoted by G
0. In Section 3 we describe a

classG ⊃ G
0 of states ofT∗-algebraB satisfying the FK-DLR

equation, similar to that in [1].

2. Feynman-Kac Representations for
the RDM Kernels in a Finite Volume

2.1. �e Representation for the Kernels of the Gibbs Operators.
A starting point for the forthcoming analysis is the Feynman-
Kac (FK) representation for the kernels KΛ(x∗Λ, y∗Λ) =
K�,�,Λ(x∗Λ, y∗Λ) and FΛ(x∗Λ, y∗Λ) = F�,�,Λ(x∗Λ, y∗Λ) of operators
GΛ and RΛ.

De�nition 7. Given (�, �), (
, �) ∈ � × Γ, e�
(
,�),(�,�) denotes

the space of path, or trajectories, f = f(
,�),(�,�) in � × Γ, of
time-length �, with the end-points (�, �) and (
, �). Formally,

f ∈ e�
(
,�),(�,�) is de�ned as follows:

f : g ∈ [0, �] &'→ f (g) = (h (f, g) , _ (f, g)) ∈ � × Γ,
f is cádlág; f (0) = (�, �) , f (�−) = (
, �) ,

f has �nitely many jumps on [0, �] ;
if a jump occurs at time g, then d [_ (f, g−) , _ (f, g)]=1.

(37)


e notation f(g) and its alternative, (h(f, g), _(f, g)), for
the position and the index of trajectory f at time g will be
employed as equal in rights. We use the term the temporal
section (or simply the section) of path f at time g.
De�nition 8. Let x∗Λ = {x∗(�), � ∈ Λ} ∈ �∗Λ, and y∗Λ ={y∗(�), � ∈ Λ} ∈ �∗Λ be particle con�gurations overΛ, with♯x∗Λ = ♯y∗Λ. A matching (or pairing) k between x∗Λ and y∗Λ is
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de�ned as a collection of pairs [(�, �), (
, �)]�, with �, � ∈ Λ,� ∈ x∗(�), and 
 ∈ y∗(�), with the properties that (i) ∀� ∈ Λ
and � ∈ x∗(�) : there exist unique � ∈ Λ and 
 ∈ y∗(�)
such that (�, �) and (
, �) form a pair, and (ii) ∀� ∈ Λ and
 ∈ y∗(�) : there exist unique � ∈ Λ and � ∈ x∗(�) such
that (�, �) and (
, �) form a pair. (Owing to the condition♯x∗Λ = ♯y∗Λ, these properties are equivalent.) It is convenient
to write [(�, �), (
, �)]� = [(�, �), k(�, �)].

Next, consider the Cartesian product

e�
x∗Λ,y∗Λ,�

= ×
�∈Λ

×

∈x∗(�)

e�
(
,�),�(
,�), (38)

and the disjoint union

e�
x∗Λ,y∗Λ

= ⋃
�
e�

x∗Λ ,y∗Λ,�
. (39)

Accordingly, an element �Λ ∈ e�
x∗Λ ,y∗Λ,�

in (38) represents a

collection of paths f
,�, � ∈ x∗(�), � ∈ Λ, of time-length �,
starting at (�, �) and ending up at k(�, �). We say that �Λ is a
path con�guration in (or over) Λ.


e presence of matchings in the above construction is a
feature of the bosonic nature of the systems under consider-
ation.

We will work with standard sigma algebras (generated by

cylinder sets) ine�
(
,�),(�,�),e�

x∗Λ,y∗Λ,�
, ande�

x∗Λ ,y∗Λ
.

De�nition 9. In what follows, m(g), g ≥ 0, stands for the
Markov process on � × Γ, with cádlág trajectories, deter-
mined by the generator L acting on a function (�, �) ∈ � ×Λ &→ n(�, �) by

Ln (�, �) = −12Δn (�, �)
+ ∑

�:d(�,�)=1
I�,� ∫

�
V (d
) [n (
, �) − n (�, �)] .

(40)

In the probabilistic literature, such processes are referred to
as Lévy processes; see, for example, [14].

Pictorially, a trajectory of process m moves along �
according to the Brownian motion with the generator −Δ/2
and changes the index � ∈ Γ from time to time in accor-
dance with jumps occurring in a Poisson process of rate∑�:d(�,�)=1 I�.�. In other words, while following a Brownian

motion rule on �, having index � ∈ Γ and being at point� ∈ �, themoving particle experiences an urge to jump from� to a neighboring vertex � and to a point 
 at rate I�,�V(d
).
A�er a jump, the particle continues the Brownian motion on� from 
 and keeps its new index � until the next jump, and
so on.

For a given pairs (�, �), (
, �) ∈ � × Γ, we denote by

P
�
(
,�),(�,�) the nonnormalised measure on e�

(
,�),(�,�) induced

by m. 
at is, under measure P
�
(
,�),(�,�) the trajectory at time

g = 0 starts from the point � and has the initial index � while
at time g = � it is at the point 
 and has the index �.
e value

p̂(
,�),(�,�) = P
�
(
,�),(�,�)(e�

(
,�),(�,�)) is given by

p̂(
,�),(�,�) = 1 (� = �) p�
� (�, 
) exp[

[
−� ∑

�̃:d(�,�̃)=1I�,�̃]]
+ ∑

�≥1
∑

�0=�,�1 ,...,��,��+1=�
∏
0≤�≤�

1 (d (_�, _�+1) = 1)

× I��,��+1 ∫
�

0
dg� exp[[

− (g�+1 − g�) ∑
�̃:d(�� ,�̃)=1

I��,�̃
]
]

× 1 (0 = g0 < g1 < ⋅ ⋅ ⋅ < g� < g�+1 = �) ,
(41)

where p�
�(�, 
) denotes the transition probability density for

the Brownian motion to pass from � to 
 on� in time �:
p�
� (�, 
) = 1

(2r�)�/2
× ∑

�=(�1,...,�	)∈Z	 exp(
−5555� − 
 + �555522� ) .

(42)

In view of (13), the quantity p̂(
,�),(�,�) and its derivatives are
uniformly bounded:

p̂(
,�),(�,�), 55555∇
p̂(
,�),(�,�)55555 , 55555∇�p̂(
,�),(�,�)55555 ≤ p̂�,
�, 
 ∈ �, �, � ∈ Γ, (43)

where p̂� = p̂�(�) ∈ (0, +∞) is a constant.
We suggest a term “non-normalised Brownian bridge

with jumps” for themeasure but expect that a better termwill
be proposed in future.

De�nition 10. Suppose that x∗Λ = {x∗(�), � ∈ Λ} ∈ �∗Λ and

y∗Λ = {y∗(�), � ∈ Λ} ∈ �∗Λ are particle con�gurations overΛ, with ♯x∗Λ = ♯y∗Λ. Let k be a pairing between x∗Λ and y∗Λ.


en P
∗
x∗Λ,y∗Λ,�

denotes the product measure one�
x∗Λ ,y∗Λ,�

:

P
�
x∗Λ ,y∗Λ,�

= ×
�∈Λ

×

∈x∗(�)

P
�
(
,�),�(
,�). (44)

Furthermore, P
�
x∗Λ ,y∗Λ

stands for the sum measure one�
x∗Λ ,y∗Λ

:

P
�
x∗Λ ,y∗Λ

= ∑
�
P
�
x∗Λ ,y∗Λ,�

. (45)

According to De�nition 10, under the measure P
�
x∗Λ,y∗Λ,�

,

the trajectories f
,� ∈ e�
(
,�),�(
,�) constituting �Λ are inde-

pendent components. (Here the term independence is used
in the measure-theoretical sense.)
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As in [1], we will work with functionals one�
x∗Λ ,y∗Λ,�

repre-

senting integrals along trajectories. 
e �rst such functional,

hΛ(�Λ), is given by

h
Λ (�Λ) = ∑

�∈Λ
∑


∈x∗(�)
h

,� (f
,�)

+ 12 ∑
(�,��)∈Λ×Λ

∑

∈x∗(�),
�∈x∗(��)

h
(
,�),(
� ,��)

× (f
,�, f
� ,��) .
(46)

Here, introducing the notation h
,�(g) = h(f
,�, g) andh
� ,��(g) = h(f
� ,�� , g) for the positions in � of paths f
,� ∈e�
(
,�),�(
,�) and f
� ,�� ∈ e�

(
� ,��),�(
� ,��) at time g, we de�ne
h

,� (f
,�) = ∫�

0
dg�(1) (h�,
 (g)) . (47)

Next, with _
,�(g) and _
� ,��(g) standing for the indices of f
,�
and f
� ,�� at time g,
h
(
,�),(
� ,��) (f
,�, f
� ,��)

= ∫�

0
dg[

[
∑
��∈Γ

�(2) (h�,
 (g) , h�� ,
� (g))
× 1 (_
,� (g) = �� = _
� ,�� (g))
+ 12 ∑

(�� ,���)∈Γ×Γ
F (d (��, ���))

× � (h�,
 (g) , h�� ,
� (g))
× 1 (_
,� (g) = �� ̸= ��� = _
� ,�� (g)) ]]

.
(48)

Next, consider the functional hΛ(�Λ | x∗Γ\Λ): for x∗Γ\Λ =
{x∗(�), � ∈ Γ \ Λ}. As before, we assume that ♯x∗(�) ≤ K.
De�ne

h
Λ (�Λ | x∗Γ\Λ) = h

Λ (�Λ) + h
Λ (�Λ || x∗Γ\Λ) . (49)

Here hΛ(�Λ) is as in (46) and

h
Λ (�Λ || x∗Γ\Λ)

= ∑
(�,��)∈Λ×(Γ\Λ)

∑

∈x∗(�),
�∈x∗(��)

h
(
,�),(
� ,��)

× (f
,�, (��, ��)) ,
(50)

where, in turn,

h
(
,�),(
� ,��) (f
,�, (��, ��))

= ∫�

0
dg [�(2) (h�,
 (g) , ��) 1 (_
,� (g) = ��)

+ ∑
�∈Γ:� ̸= ��

F (d (�, ��))
×� (h�,
 (g) , ��) 1 (_
,� (g) = �)] .

(51)


e functionals hΛ(�Λ) and hΛ(�Λ || x∗Γ\Λ) are interpreted as
energies of path con�gurations. Compare (2.1.4) and (2.3.8)
in [1].

Finally, we introduce the indicator functional xΛ(�Λ):
xΛ (�Λ) = {{{{{

1, if index _
,� (g) ∈ Λ,∀g ∈ [0, �] , � ∈ Λ, � ∈ x∗ (�) ,0, otherwise. (52)

It can be derived from known results [11, 15–17] (for a direct
argument, see [18]) that the following assertion holds true.

Lemma 11. For all �, � > 0 and a �nite Λ, the Gibbs operators
GΛ and GΛ|x∗Γ\Λ

act as integral operators inH(Λ):
(GΛ�) (x∗Λ) = ∫

�∗Λ
∏
�∈Λ

∏
�∈y∗(�)V (d
)KΛ (x∗Λ, y∗Λ)� (y∗Λ) ,

(GΛ|x∗Γ\Λ
�) (x∗Λ)

= ∫
�∗Λ

∏
�∈Λ

∏
�∈y∗(�)

V (d
)KΛ (x∗Λ, y∗Λ | x∗Γ\Λ)� (y∗Λ) .
(53)

Moreover, the integral kernels KΛ(x∗Λ, y∗Λ) and KΛ(x∗Λ, y∗Λ |
x∗Γ\Λ) vanish if ♯x∗Λ ̸= ♯y∗Λ. On the other hand, when ♯x∗Λ =♯y∗Λ, the kernels KΛ(x∗Λ, y∗Λ) and KΛ(x∗Λ, y∗Λ | x∗Γ\Λ) admit the

following representations:

KΛ (x∗Λ, y∗Λ) = �♯x∗Λ ∫
�∗x∗Λ,y∗Λ

P
�
x∗Λ ,y∗Λ

(d�Λ) xΛ (�Λ)
× exp [−hΛ (�Λ)] ,

(54)

KΛ (x∗Λ, y∗Λ | x∗Γ\Λ)
= �♯ x∗Λ ∫

�∗x∗Λ,y∗Λ
P
�
x∗Λ,y∗Λ

(d�Λ) xΛ (�Λ)
× exp [−hΛ (�Λ | x∗Γ\Λ)] .

(55)

�e ingredients of these representations are determined in (46)–
(51).
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Remark 12. As before, we stress that, owing to (16) and (17),
a nonzero contribution to the integral in the RHS of (54) can
only come from a path con�guration �Λ = {f
,�} such that∀g ∈ [0, �] and ∀� ∈ Γ, the number of paths f
,� with index_
,�(g) = � is less than or equal to K. Likewise, the integral in
the RHS of (55) receives a non-zero contribution only from
con�gurations�Λ = {f∗


,�} such that, ∀ site � ∈ Γ, the number

of paths f
,� with index _
,�(g) = � plus the cardinality ♯x∗(�)
does not exceed K.
2.2. �e Representation for the Partition Function. 
e FK
representations of the partition functions Ξ(Λ) = Ξ�,�(Λ)
in (27) and Ξ(Λ | x∗Γ\Λ) in (1.4.6) re�ect a speci�c character

of the traces trGΛ and trGΛ|x∗Γ\Λ
in H(Λ). 
e source of a

complication here is the jump terms in the Hamiltonians�Λ
and�Λ|x∗Γ\Λ

in (11) and (12), respectively. In particular, we will

have to pass from trajectories of �xed time-length � to loops
of a variable time length. To this end, a given matching k
is decomposed into a product of cycles, and the trajectories
associated with a given cycle are merged into closed paths
(loops) of a time-lengthmultiple of�. (A similar construction
has been performed in [18].)

To simplify the notation, we omit, wherever possible, the
index �.
De�nition 13. For given (�, �), (
, �) ∈ � × Γ, the symbole∗

(
,�),(�,�) denotes the disjoint union:

e∗
(
,�),(�,�) = ⋃

�=0,1,...
e��

(
,�),(�,�). (56)

In other words,e∗
(
,�),(�,�) is the space of pathsΩ∗ = Ω∗

(
,�),(�,�)
in�×Γ, of a variable time-length ��, where � = �(Ω∗) takes
values 1, 2, . . . and called the lengthmultiplicity, with the end-
points (�, �) and (
, �).
e formal de�nition follows the same

line as in (37), and we again use the notation Ω∗(g) and the

notation (h(Ω∗, g), _(Ω∗, g)) for the pair of the position and

the index of path Ω∗
at time g. Next, we call the particle

con�guration {Ω∗(g + ��), 0 ≤ � < �(Ω∗)} the temporal

section (or simply the section) of Ω∗
at time g ∈ [0, �]. We

also callΩ∗
(
,�),(�,�) ∈ e∗

(
,�),(�,�) a path (from (�, �) to (
, �)).
A particular role will be played by closed paths (loops),

with coinciding endpoints (where (�, �) = (
, �)). Accord-
ingly, we denote by e∗


,� the set e∗
(
,�),(
,�). An element ofe∗


,� is denoted by Ω∗

,� or, in short, by Ω∗ and called a loop

at vertex �. (
e upper index ∗ indicates that the length
multiplicity is unrestricted.) 
e length multiplicity of a loopΩ∗


,� ∈ e∗

,� is denoted by �(Ω∗
,�) or �
,�. It is instructive to

note that, as topological object, a given loop Ω∗ admits a
multiple choice of the initial pair (�, �): it can be represented
by any pair (h(Ω∗, g), _(Ω∗, g)) at a time g = _� where _ =1, . . . , �(Ω∗). As above, we use the term the temporal section
at time g ∈ [0, �] for the particle con�guration {Ω∗


,�(g +��), 0 ≤ � < �
,�} and employ the alternative notation(h(g + ��;Ω∗), _(g + ��;Ω∗)) addressing the position and
the index ofΩ∗ at time g + �� ∈ [0, ��(Ω∗)].

De�nition 14. Suppose x∗Λ = {x∗(�), � ∈ Λ} ∈ �∗Λ and y∗Λ ={y∗(�), � ∈ Λ} ∈ �∗Λ are particle con�gurations over Λ,
with ♯x∗Λ = ♯y∗Λ. Let k be a matching between x∗Λ and y∗Λ. We
consider the Cartesian product:

e∗
x∗Λ ,y∗Λ,�

= ×
�∈Λ

×

∈x∗(�)

e∗
(
,�),�(
,�), (57)

and the disjoint union:

e∗
x∗Λ ,y∗Λ

= ⋃
�
e∗

x∗Λ ,y∗Λ,�
. (58)

Accordingly, an element Ω∗Λ ∈ e∗
x∗Λ ,y∗Λ,�

in (58) represents a

collection of paths Ω∗
,�, � ∈ x∗(�), � ∈ Λ, of time-length ��,
starting at (�, �) and ending up at (
, �) = k(�, �). We say that

Ω∗Λ ∈ e∗
x∗Λ ,y∗Λ

is a path con�guration in (or over) Λ.
Again, loops play a special role and deserve a particular

notation. Namely,e∗
x∗Λ

denotes the Cartesian product:

e∗
x∗Λ

= ×
�∈Λ

×

∈x∗(�)

e∗

,�, (59)

and e∗
Λ stands for the disjoint union (or equivalently, the

Cartesian power):

e∗
Λ = ⋃

x∗Λ∈�∗Λ
e∗

x∗Λ
= ×

�∈Λ
e∗

{�},

where e∗
{�} = ⋃

x∗∈�∗
( ×

∈x∗

e∗

,�) .

(60)

Denote by Ω∗ = {Ω∗(�), � ∈ Λ} ∈ e∗
Λ a collection of

loop con�gurations at vertices � ∈ Λ starting and ending up
at particle con�gurations x∗(�) ∈ �∗ (note that some of the
Ω∗(�)’s may be empty). 
e temporal section (or, in short,
the section), Ω∗(g), of Ω∗ at time g is de�ned as the particle
con�guration formed by the pointsΩ∗


,�(g+��)where � ∈ Λ,� ∈ x∗(�), and 0 ≤ � < �
,�.
As before, consider the standard sigma algebras of subsets

in the spaces e∗
(
,�),(�,�), e
,�, e∗

x∗Λ ,y∗Λ,�
, e∗

x∗Λ ,y∗Λ
, e∗

x∗Λ
, and e∗

Λ
introduced in De�nitions 13 and 14. In particular, the sigma
algebra of subsets ine∗

Λ will be denoted by WΛ; we comment
on some of its speci�c properties in Section 3.1. (An in�nite-
volume versione∗

Γ ofe∗
Λ is treated in Section 3.2 and a�er.)

De�nition 15. Given points (�, �), (
, �) ∈ � × Γ, we denote
by P

∗
(
,�),(�,�) the sum measure one∗

(
,�),(�,�):

P
∗
(
,�),(�,�) = ∑

�=0,1,...
P
��
(
,�),(�,�). (61)

Further, P∗

,� denotes the similar measure one∗


,�:

P
∗

,� = ∑

�=0,1,...
P
��

,�. (62)
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De�nition 16. Let x∗Λ = {x∗(�), � ∈ Λ} ∈ �∗Λ and y∗Λ ={y∗(�), � ∈ Λ} ∈ �∗Λ be particle con�gurations overΛ, with♯x∗Λ = ♯y∗Λ. Let k be a matching between x∗Λ and y∗Λ, and we

de�ne the product measure P
∗
x∗Λ ,y∗Λ,�

:

P
∗
x∗Λ ,y∗Λ,�

= ×
�∈Λ

×

∈x∗(�)

P
∗
(
,�),�(
,�) (63)

and the sum measure

P
∗
x∗Λ ,y∗Λ

= ∑
�
P
∗
x∗Λ ,y∗Λ,�

. (64)

Next, symbolP∗
x∗Λ
stands for the product measure one∗

x∗Λ
:

P
∗
x∗Λ

= ×
�∈Λ

×

∈x∗(�)

P
∗

,�. (65)

Finally, dΩ∗Λ yields the measure one∗
Λ :

dΩ∗Λ = dx∗Λ × P
∗
x∗Λ
(dΩ∗Λ) . (66)

Here, for x∗Λ = {x∗(�), � ∈ Λ}, we set: dx∗Λ =∏�∈Λ∏
∈x∗(�)V(d�). For sites � with x∗(�) = 0, the corre-
sponding factors are trivial measures sitting on the empty
con�gurations.

We again need to introduce energy-type functionals
represented by integrals along loops. More precisely, we

de�ne the functionals hΛ(Ω∗Λ) and hΛ(Ω∗Λ | x∗Γ\Λ) which are

modi�cations of the above functionals hΛ(�Λ) and hΛ(�Λ |
x∗Γ\Λ); confer (46) and (50). Say, for a loop con�gurationΩ∗Λ ={Ω∗


,�} over Λ with an initial and �nal particle con�guration

x∗Λ = {x∗(�), � ∈ Λ},
h
Λ (Ω∗Λ)

= ∑
�∈Λ

∑

∈x∗(�)

h

,� (Ω∗


,�)
+ 12 ∑

(�,��)∈Λ×Λ
∑


∈x∗(�),
�∈x∗(��)

× 1 ((�, �) ̸= (��, ��)) h(
,�),(
� ,��) (Ω∗
x,�, Ω∗


�,��) .
(67)

To determine the functionals h
,�(Ω∗

,�) and h(
,�),(


�,��)(Ω∗

,�,Ω∗


� ,��), we set, for given � = 0, 1, . . . , �
,� − 1 and �� =0, 1, . . . , �
� ,�� − 1:
h�,
 (g + ��) = h (g + ��;Ω∗


,�) ,
_�,
 (g + ��) = _ (g + ��;Ω∗


,�) ,

h��,
� (g + ���) = h (g + ���; Ω∗

� ,��) ,

_��,
� (g + ���) = _ (g + ���; Ω∗

� ,��) .

(68)

A (slightly) shortened notation _�,
(g + ��) is used for the
index _
,�(g + ��;Ω∗


,�) and h�,
(g + ��) for the positionh(g + ��;Ω∗

,�) for Ω∗


,�(g) ∈ � × Γ, of the section Ω∗

,�(g)

of the loop Ω∗

,� at time g, and similarly with _��,
�(g + ���)

and h�� ,
�(g + ���). (Note that the pairs (�, �) and (��, ��)may
coincide.) 
en

h
(
,�) (Ω∗


,�)
= ∫�

0
dg[

[
∑

0≤�<�
,�
�(1) (h
,� (g + ��))

+ ∑
0≤�<��<�
,�

∑
�∈Γ

1 (_
,� (g + ��)
= � = _
,� (g + ���))

×�(2) (h
,� (g + ��) , h
,� (g + ���))]
]
,

h
(
,�),(
� ,��) (Ω∗


,�, Ω∗

�,�� )

= ∑
0≤�<�
,�

∑
0≤��<�
�,��

∫�

0
dg

× [
[
∑
�∈Γ

�(2) (h
,� (g + ��) , h
� ,�� (g + ���))
× 1 (_
,� (g + ��) = � = _
�,�� (g + ���))
+ ∑(�,��)∈Γ×ΓF (d (�, �

�))�
× (h�,
 (g + ��) , h�� ,
� (g + ���))
×1 (_
,� (g + ��) = � ̸= �� = _
�,�� (g + ���))]

]
.
(69)

Next, the functionalZ(Ω∗Λ) takes into account the bosonic
character of the model:

Z (Ω∗Λ) = ∏
�∈Λ

∏

∈x∗(�)

��
,��
,� . (70)


e factor �−1
,� in (70) re�ects the fact that the starting point

of a loop Ω∗

,� may be selected among points h(��,Ω∗


,�)
arbitrarily.
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Next, we de�ne the functional hΛ(Ω∗Λ | x∗Γ\Λ): for x∗Γ\Λ =
{x∗(�), � ∈ Γ \ Λ}, again assuming that ♯x∗(�) ≤ K. Set

h
Λ (Ω∗Λ | x∗Γ\Λ) = h

Λ (Ω∗Λ) + h
Λ (Ω∗Λ || x∗Γ\Λ) . (71)

Here hΛ(Ω∗Λ) is as in (67) and

h
Λ (Ω∗Λ || x∗Γ\Λ)

= ∑
(�,��)∈Λ×(Γ\Λ)

∑

∈x∗(�),
�∈x∗(��)h

(
,�),(
� ,��) (Ω∗

,�, (��, ��)) ,

(72)

where, in turn,

h
(
,�),(
� ,��) (Ω∗


,�, (��, ��))
= ∑

0≤�<�
,�
∫�

0
dg

× [�(2) (h
,� (g + ��) , ��)
× 1 (_
,� (g + ��) = ��)
+ ∑

�∈Γ
F (d (�, ��))� (h�,
 (g + ��) , ��)

×1 (_
,� (g + ��) = �) ] .
(73)

As before, the functionals hΛ(Ω∗Λ) and hΛ(Ω∗Λ || x∗Γ\Λ) have a
natural interpretation as energies of loop con�gurations.

Finally, as before, the functional xΛ(Ω∗Λ) is the indicator
that the collection of loopsΩ∗Λ = {Ω∗


,�} does not quit Λ:

xΛ (Ω∗Λ) = {{{{{
1, if Ω∗


,� (g) ∈ � × Λ,∀� ∈ Λ, � ∈ x∗ (�) , 0 ≤ g ≤ ��
,�,0, otherwise. (74)

Like above, we invoke known results [11, 15–17] to estab-
lish the following statement (again a direct argument can be
found in [18]).

Lemma 17. For all �nite Λ ⊂ Γ and �, � > 0 satisfying (22),
the partition functions Ξ(Λ) in (27) and Ξ(Λ | x∗Γ\Λ) in (27)

and (28) admit the representations as converging integrals:

Ξ (Λ) = ∫
�∗Λ

dΩ∗ΛZ (Ω∗Λ) xΛ (Ω∗Λ) exp [−hΛ (Ω∗Λ)] , (75)

Ξ (Λ | x∗Γ\Λ)
= ∫

�∗Λ
dΩ∗ΛZ (Ω∗Λ) xΛ (Ω∗Λ) exp [−hΛ (Ω∗Λ || x∗Γ\Λ)]

(76)

with the ingredients introduced in (60)–(74).

Again, we emphasis that the non-zero contribution to
the integral in (75) can only come from loop con�gurations
Ω∗Λ = {Ω∗


,�, � ∈ x∗(�), � ∈ Λ} such that ∀ vertex � ∈ Λ andg ∈ [0, �], the total number of pairs (h
,�(g+��), _
,�(g+��))
with 0 ≤ � < �
,�, and _(g + ��) = � does not exceed K.
Remark 18. 
e integrals in (75) and (76) represent examples
of partition functions which will be encountered in the forth-
coming sections. See (96), (97), (101), (103), (105), (107), (111),
and (113) below. A general form of such a partition function
treated as an integral over a set of loop con�gurations rather
than a trace in a Hilbert space is given in (96) and (97).

2.3. �e Representation for the RDM Kernels. Let Λ0, Λ be

�nite sets, Λ0 ⊂ Λ ⊂ Γ. 
e construction developed in
Section 2.2 also allows us towrite a convenient representation

for the integral kernels of the RDMsRΛ0
Λ (see (31)) andRΛ0

Λ|x∗Γ\Λ
.

In accordancewith Lemma 11 and the de�nition ofRΛ0
Λ in (31),

the operator RΛ0
Λ acts as an integral operator inH(Λ0):

(RΛ0
Λ �) (x∗0)
= ∫

�∗Λ0
∏
�∈Λ0

∏
�∈y∗(�)

V (d
) FΛ0Λ (x∗0, y∗0)� (y∗0) , (77)

where

F
Λ0
Λ (x∗0, y∗0)

:= ∫
�∗Λ\Λ0

∏
�∈Λ\Λ0

∏
�∈z∗(�)

V (d�)
× FΛ (x∗0 ∨ z

∗
Λ\Λ0 , y∗0 ∨ z

∗
Λ\Λ0)

:= Ξ̂
Λ0
Λ (x∗0, y∗0; Λ \ Λ0)
Ξ (Λ) .

(78)

We employ here and below the notation x∗0 and y∗0 for
particle con�gurations x∗Λ0 = {x∗(�), � ∈ Λ0} and y∗Λ0 ={y∗(�), � ∈ Λ0} overΛ0. Next, x∗0∨z∗Λ\Λ0 ; y∗0∨z∗Λ\Λ0 denotes
the concatenated con�gurations over Λ.

Similarly, the RDM RΛ0
Λ|x∗Γ\Λ

is determined by its integral

kernel FΛ
0

Λ|x∗Γ\Λ
(x∗0, y∗0), again admitting the representation

F
Λ0
Λ|x∗Γ\Λ

(x∗0, y∗0) := Ξ̂
Λ0
Λ (x∗0, y∗0; Λ \ Λ0 | x∗Γ\Λ)

Ξ (Λ) . (79)

As in [1], we call FΛ
0

Λ and FΛ
0

Λ|x∗Γ\Λ
the RDM kernels (in

short, RDMKs). 
e focus of our interest is the numerators

Ξ̂Λ
0

Λ (x∗0, y∗0, Λ \ Λ0) and Ξ̂Λ
0

Λ (x∗0, y∗0; Λ \ Λ0 | x∗Γ\Λ) in

(78) and (79). To introduce the appropriate representation for
these quantities, we need some additional de�nitions.
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De�nition 19. Repeating (57)-(58), symbol e∗
x∗0 ,y∗0 denotes

the disjoint union ⋃�0e∗
x∗0 ,y∗0,�0 over matchings k0

between x∗0 and y∗0. Accordingly, elementΩ∗0 = Ω∗x∗0 ,y∗0,�0 ∈e∗
x∗0 ,y∗0,�0 yields a collection of pathsΩ∗

(
,�),�0(
,�) ∈ e∗
(
,�),�0(
,�)

lying in � × Γ. Each path Ω∗
(
,�),�0(
,�) has time lengths

��(
,�),(�,�), begins at (�, �), and ends up at (
, �) = k0(�, �),
where � ∈ x∗(�), 
 ∈ y∗(�). Like above, we will use for Ω∗0
the term a path con�guration over Λ0. Repeating (63)-(64),

we obtain the measures P∗
x∗0 ,y∗0,�0 on e∗

x∗0 ,y∗0,�0 and P
∗
x∗0,y∗0

one∗
x∗0 ,y∗0 .


e assertion of Lemma 20 below again follows directly
from known results, in conjunction with calculations of the
partial trace trHΛ\Λ0

in HΛ. 
e meaning of new ingredients

in (79)–(82) is explained below.

Lemma 20. �e quantity Ξ̂Λ
0

Λ (x∗0, y∗0; Λ \ Λ0) emerging in

(78) is set to be 0 when ♯x∗0 ̸= ♯y∗0. On the other hand, for♯x∗0 = ♯y∗0,
Ξ̂Λ
0

Λ (x∗0, y∗0; Λ \ Λ0)
= ∫

�∗x∗0,y∗0
P
∗
x∗0 ,y∗0 (dΩ∗0) Z (Ω∗0)

× xΛ (Ω∗0) 1 (Ω∗0 ∈ F
Λ0)

× exp [−hΛ0 (Ω∗0)] Ξ̂Λ0Λ (Λ \ Λ0 | Ω∗0) ,

(80)

where

Ξ̂Λ
0

Λ (Λ \ Λ0 | Ω∗0)
= ∫

�∗
Λ\Λ0

dΩ∗Λ\Λ0Z (Ω∗Λ\Λ0)
× xΛ (Ω∗Λ\Λ0) 1 (Ω∗Λ\Λ0 ∈ F

Λ0)
× exp [−hΛ\Λ0 (Ω∗Λ\Λ0 | Ω∗0)] .

(81)

Similarly, the quantity Ξ̂Λ
0

Λ (x∗0, y∗0; Λ \ Λ0 | x∗Γ\Λ) from (79)

vanishes when ♯x∗0 ̸= ♯y∗0. For ♯x∗0 = ♯y∗0,
Ξ̂Λ
0

Λ (x∗0, y∗0; Λ \ Λ0 | x∗Γ\Λ)
= ∫

�∗x∗0,y∗0
P
∗
x∗0 ,y∗0 (dΩ∗0) Z (Ω∗0)

× xΛ (Ω∗0) 1 (Ω∗0 ∈ F
Λ0)

× exp [−hΛ0 (Ω∗0 | x∗Γ\Λ)]
× Ξ̂Λ0Λ (Λ \ Λ0 | Ω∗0 ∨ x

∗
Γ\Λ) ,

(82)

where

Ξ̂Λ
0

Λ (Λ \ Λ0 | Ω∗0 ∨ x
∗
Γ\Λ)

= ∫
�∗
Λ\Λ0

dΩ∗Λ\Λ0Z (Ω∗Λ\Λ0) xΛ (Ω∗Λ\Λ0)
× 1 (Ω∗Λ\Λ0 ∈ F

Λ0)
× exp [−hΛ\Λ0 (Ω∗Λ\Λ0 | Ω∗0 ∨ x

∗
Γ\Λ)] .

(83)

�ese representations hold ∀�, � > 0 and �nite Λ0 ⊂ Λ ⊂ Γ.
Let us de�ne the functionals Z(Ω∗0), xΛ(Ω∗0), 1(Ω∗0 ∈

F
Λ0), 1(Ω∗Λ\Λ0 ∈ F

Λ0)hΛ0(Ω∗0), hΛ\Λ0(Ω∗Λ\Λ0 | Ω∗0),
hΛ
0(Ω∗0x∗Γ\Λ), and hΛ\Λ

0(Ω∗Λ\Λ0 | Ω∗0 ∨ x∗Γ\Λ) in (79)–(83).

(
e functionals Z(Ω∗Λ\Λ0) and xΛ(Ω∗Λ\Λ0) are de�ned as (70)
and (74), respectively, replacing Λ with Λ \ Λ0.)

To this end, let Ω∗0 = Ω∗x∗0,y∗0,�0 ∈ e∗
x∗0 ,y∗0,�0 be a

path con�guration represented by a collection of pathsΩ∗
(
,�),�0(
,�) ∈ e∗

(
,�),�∗0(
,�) (Ω∗

,� in short), with end points (�, �)

and (
, �) = k0(�, �), of time-length��(
,�),(�,�).
e functional

Z(Ω∗0) is given by

Z (Ω∗0) = ∏
�∈Λ

∏

∈x∗(�)

��(
,�),(�,
) . (84)


e functional xΛ(Ω∗0) is again an indicator:

xΛ (Ω∗0) =
{{{{{{{{{

1, if Ω∗
(
,�),�0(
,�) (g) ∈ � × Λ,

∀� ∈ Λ, � ∈ x∗ (�) ,0 ≤ g ≤ ��(
,�),(�,�),0, otherwise.
(85)

Now let us de�ne the indicator function 1(⋅ ∈ F
Λ0) in

(80)–(83). 
e factor 1(Ω∗0 ∈ F
Λ0) equals one if and only

if every path Ω∗
(
,�),(�,�) from Ω

∗0
, of time-length ��(
,�),(�,�),

starting at (�, �) ∈ �×Λ0 and ending up at (
, �) = k0(�, �) ∈�×Λ0 remains in�× (Λ \ Λ0) at the intermediate times �_
for _ = 1, . . . , �(
,�),(�,�) − 1:
Ω∗

(
,�),(�,�) (_�) ∉ � × Λ0, ∀_ = 1, . . . , �(
,�),(�,�) − 1, (86)

(when �(
,�),(�,�) = 1, this is not a restriction).
Furthermore, suppose that Ω∗Λ\Λ0 = Ω∗x∗

Λ\Λ0
is a loop

con�guration over Λ \ Λ0, with the initial/end con�guration

x∗Λ\Λ0 = {x∗(�), � ∈ Λ \ Λ0}, represented by a collection of

loops Ω∗

,�, � ∈ Λ \ Λ0, � ∈ x∗(�). 
en 1(Ω∗Λ\Λ0 ∈ F

Λ0) = 1
if and only if each loop Ω∗


,� of time-length ��
,�, beginning
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and �nishing at (�, �) ∈ � × (Λ \ Λ0), does not enter the set�× Λ0 at times �_ for _ = 1, . . . , �
,� − 1:
Ω∗


,� (_�) ∉ � × Λ0, ∀_ = 1, . . . , �
,� − 1 (87)

(again, if �
,� = 1, this is not a restriction).

e functional hΛ

0(Ω∗0) in (80) gives the energy of the

path con�guration Ω∗0 and is introduced similarly to (67),

mutatis mutandis. Next, the functional hΛ\Λ
0(Ω∗Λ\Λ0 | Ω∗0) in

(81) represents the energy of the loop con�gurationΩ∗Λ\Λ0 in
the potential �eld generated by the path con�gurationΩ∗0:

h
Λ\Λ0 (Ω∗Λ\Λ0 | Ω∗0) = h

Λ\Λ0 (Ω∗Λ\Λ0) + h (Ω∗0 || Ω∗Λ\Λ0) .
(88)

Here, the summand hΛ\Λ
0(Ω∗Λ\Λ0) yields the energy of the

loop con�gurationΩ∗Λ\Λ0 ; again confer (67). Further, the term
h(Ω∗0 || Ω∗Λ\Λ0) yields the energy of interaction betweenΩ∗0
and Ω∗Λ\Λ0 : for a path/loop con�gurations Ω∗0 = {Ω∗


,�} ∈
e∗

x∗0 ,y∗0,�0 and aΩ∗Λ\Λ0 = {Ω∗

� ,��} ∈ e∗

Λ\Λ0 we set

h (Ω∗0 || Ω∗Λ\Λ0)
= ∑(�,��)∈Λ0×(Λ\Λ0) ∑


∈x∗(�),
�∈x∗(��)
h
(
,�),(
� ,��) (Ω∗


,�, Ω∗

�,��) .
(89)

Here, for a pathΩ∗

,� = Ω∗

(
,�),�0(
,�), of time-length ��(
,�),�0(
,�),
and a loopΩ∗


� ,�� , of time-length ��
,�,
h
(
,�),(
� ,��) (Ω∗


,�, Ω∗

� ,��)

= ∑
0≤�<�(
,�),�0(
,�)

∑
0≤��<�
�,��

∫�

0
dg

× [
[
∑
�∈Γ

�(2) (h (g + ��;Ω∗
(
,�),�0(
,�)) , h (g + ���; Ω∗


� ,��))
× 1 (_(
,�),�0(
,�) (g + ��) = � = _
� ,�� (g + ���))
+ ∑

�,��∈Γ×Γ
F (d (�, ��))� (h�,
 (g + ��) , h�� ,
� (g + ���))

×1 (_(
,�),�0(
,�) (g + ��) = � ̸= �� = _
� ,�� (g + ���))]
]
.

(90)

Here, in turn, we employ the shortened notation for the

positions and indices of the sections Ω∗
(
,�),�0(
,�)(g + ��) and

Ω∗

� ,��(g + ���) of Ω∗

(
,�),�0(
,�) and Ω∗

� ,�� at times g + �� and

g + ���, respectively:

h�,
 (g + ��) = h (g + ��;Ω∗
(
,�),�0(
,�)) ,

_�,
 (g + ��) = _ (g + ��;Ω∗
(
,�),�0(
,�)) ,

h�� ,
� (g + ���) = h (g + ���; Ω∗

�,��) ,

_��,
� (g + ���) = _ (g + ���; Ω∗

� ,��) .

(91)

Further, the functional hΛ
0(Ω∗0 | x∗Γ\Λ) in (82) is

determined as in (71)–(73), with Ω∗
(
,�),�0(
,�) instead of Ω∗


,�.

Next, for hΛ\Λ
0(Ω∗Λ\Λ0 | Ω∗0 ∨ x∗Γ\Λ) in (83), we set

h
Λ\Λ0 (Ω∗Λ\Λ0 | Ω∗0 ∨ x

∗
Γ\Λ)

= h
Λ\Λ0 (Ω∗Λ\Λ0) + h (Ω∗Λ\Λ0 || Ω∗0 ∨ x

∗
Γ\Λ) .

(92)

Here again, the summand hΛ\Λ
0(Ω∗Λ\Λ0) is determined as in

(67). Next, the term hΛ\Λ
0(Ω∗Λ\Λ0 || Ω∗0 ∨ x∗Γ\Λ) is de�ned

similarly to (72)-(73):

h
Λ\Λ0 (Ω∗Λ\Λ0 || Ω∗0 ∨ x

∗
Γ\Λ)

= ∑
(�,��)∈(Λ\Λ0)×Λ0 ∑


∈x∗(�),
�∈x∗(��)
h
(
,�),(
� ,��) (Ω∗


,�, Ω∗

� ,��)

+ ∑
�∈Λ\Λ0

∑

∈x∗(�),
�∈x∗(��)

h
(
,�),(
� ,��) (Ω∗


,�, (��, ��))
(93)

with

h
(
,�),(
� ,��) (Ω∗


,�, Ω∗

� ,��)

= ∑
0≤�<�
,�

∑
0≤��<�(
� ,��),�0(
�,��)

× ∫�

0
dg

× [
[
∑
�∈Γ

�(2) (h
,� (g + ��) , h
� ,�� (g + ���))
× 1 (_
,� (g + ��) = � = _
� ,�� (g + ���))
+ ∑(�,��)∈Γ×ΓF (d (�, �

�))�
× (h�,
 (g + ��) , h
� ,�� (g + ���))

×1 (_
,� (g + ��) = � ̸= �� = _
� ,�� (g + ���))]
]
,
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h
(
,�),(
� ,��) (Ω∗


,�, (��, ��))
= ∑

0≤�<�
,�
∫�

0
dg [�(2) (h
,� (g + ��) , ��)

× 1 (_
,� (g + ��) = ��)
+ ∑

�∈Γ
F (d (�, ��))� (h�,
 (g + ��) , ��)

×1 (_
,� (g + ��) = �) ] .
(94)

As before, the functionals hΛ(Ω∗Λ) and hΛ(Ω∗Λ || x∗Γ\Λ)
have a natural interpretation as energies of loop con�gura-
tions.

Repeating the above observation, non-zero contributions

to the integral in (80) come only from pairs (Ω∗0,Ω∗Λ\Λ0)
such that ∀� ∈ Γ and g ∈ [0, �], the total number of pairs(h(g + ��;Ω∗

(
,�),�0(
,�)), _(g + ��;Ω∗
(
,�),�0(
,�))) with 0 ≤ � <

�(
,�),�0(
,�), � ∈ Λ0 and � ∈ x∗(�) incident to the paths

of the con�guration Ω∗0 and pairs (h(g + ���; Ω∗

�,��), _(g +���; Ω∗


� ,��)) with 0 ≤ �� < �(
� ,��), �� ∈ Λ \ Λ0 and �� ∈ x∗(��)
incident to the loops of the con�guration Ω∗Λ\Λ0 does not
exceed K. Similarly, non-zero contributions to the integral in

(82) come only from pairs (Ω∗0,Ω∗Λ\Λ0) such that the above

inequality holdswhenwe additionally count points� ∈ x∗(�).

e integral Ξ̂Λ

0

Λ (Λ \ Λ0 | Ω∗0) de�ned in (81) can be
considered as a particular (although important) example of

a partition function in the volume Λ \ Λ0 with a boundary

condition Ω∗0. Note the presence of the subscript Λ indicat-

ing that the loops contributing to Ξ̂Λ
0

Λ (Λ\Λ0 | Ω∗0) can jump
within volumeΛ only (owing to the indicator functional xΛ).
On the other hand, the presence of the indicator functional

1(Ω∗Λ\Λ0 ∈ F
Λ0) in the integral (re�ected in the upperscript

Λ0 and the roof sign in the notation Ξ̂Λ
0

Λ (Λ \ Λ0 | Ω∗0))
indicates a particular restriction on the jumps of the loops,

forbidding them to visit setΛ0 at intermediate times ��.
is

is true also for the integral Ξ̂Λ
0

Λ (Λ \Λ0 | Ω∗0 ∨ x∗Γ\Λ) in (83): it

is a particular example of a partition function in the volume

Λ \ Λ0 with a boundary conditionΩ∗0 ∨ x∗Γ\Λ.

Other useful types of partition functions are ΞΓ0(Λ̃ |
Ω∗0 ∨ Ω∗Γ1) and ΞΓ0(Λ̃ | Ω∗0 ∨ Ω∗Γ1 ∨ x∗Γ2) where the sets of
vertices Λ̃, Λ0, Γ0, Γ1, and Γ2 satisfy

Λ̃ ⊂ Γ0 ⊆ Γ, Γ1, Γ2 ⊂ Γ \ Λ̃,
Γ1 ∩ Γ2 = 0, Λ0 ⊂ Γ \ (Λ̃ ∪ Γ1 ∪ Γ2) (95)

and ♯Λ̃, ♯Λ0 < +∞. Accordingly, Ω∗0 is a (�nite) con�gu-

ration over Λ0, Ω∗Γ1 a (possibly in�nite) loop con�guration

over Γ1, and x∗Γ2 a (possibly in�nite) particle con�guration

over Γ2. 
e partition functions ΞΓ0(Λ̃ | Ω∗0 ∨ Ω∗Γ1) and
ΞΓ0(Λ̃ | Ω∗0 ∨Ω∗Γ1 ∨ x∗Γ2) are given by

ΞΓ0 (Λ̃ | Ω∗0 ∨Ω∗Γ1)
= ∫

�∗Λ̃
dΩ∗Λ̃xΓ0 (Ω∗Λ̃) Z (Ω∗Λ̃)

× exp [−hΛ̃ (Ω∗Λ̃ | Ω∗0 ∨Ω∗Γ1)] ,
(96)

ΞΓ0 (Λ̃ | Ω∗0 ∨Ω∗Γ1 ∨ x
∗
Γ2)

= ∫
�∗Λ̃

dΩ∗Λ̃xΓ0 (Ω∗Λ̃) Z (Ω∗Λ̃)
× exp [−hΛ̃ (Ω∗Λ̃ | Ω∗0 ∨Ω∗Γ1 ∨ x

∗
Γ2)]

(97)

with the indicator xΓ0 as in (74). 
ese partition functions,

feature loop con�gurations Ω∗�̃ formed by loops Ω∗

,�, � ∈ Λ̃,

which start and �nish in Λ̃, are con�ned to Γ0 and move

in a potential �eld generated by Ω∗0 ∨ Ω∗Γ1 , where Ω∗0 ={Ω∗
(
,�),�0(
,�)} andΩΓ1 = {Ω∗


,�, � ∈ x∗(�), � ∈ Γ1} orΩ∗Γ1 ∨ x∗Γ2 ,

where x∗Γ2 = {x∗(�), � ∈ Γ2}. (
e latter can be understood

as the concatenation of the loop con�guration Ω∗Γ1 over Γ1
and the loop con�guration over Γ2 formed by the constant

trajectories sitting at points � ∈ x∗(�), � ∈ Γ2.) In (96) we
assume that, ∀g ∈ [0, �] and � ∈ Γ, the number

♯ {(�, �, �) : � ∈ Λ̃, _ (g + ��;Ω∗

,�) = �, 0 ≤ � < �
,�}

+ ♯ {(�, �) : � ∈ Λ0, _ (g + ��;Ω∗
(
,�),�0(
,�))

= �, 0 ≤ � < �(
,�),�0(
,�)}
+ ♯ {(�, �, �) : � ∈ Γ1,

_ (g + ��;Ω∗

,�) = �, 0 ≤ � < �
,�}

(98)

does not exceed K. Analogously, in (97) it is assumed that the
same is true for the above number plus the cardinality ♯x∗(�).

Such “modi�ed” partition functions will be used in forth-
coming sections.

2.4. �e FK-DLR Measure �Λ in a Finite Volume. 
e Gibbs
states �Λ and �Λ|x∗Γ\Λ give rise to probability measures �Λ and

�Λ|x∗Γ\Λ on the sigma algebraWΛ of subsets ofe∗
Λ . 
e sigma

algebra WΛ is constructed by following the structure of the
space e∗

Λ (a disjoint union of Cartesian products); confer
De�nition 16. 
e measures �Λ and �Λ|x∗Γ\Λ are determined
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by their Radon-Nykodym derivative pΛ and pΛ|x∗Γ\Λ relative to
the measure dΩ∗Λ:

pΛ (Ω∗Λ) := �Λ (dΩ∗Λ)
dΩ∗Λ

= 1
Ξ (Λ)xΛ (Ω∗Λ) Z (Ω∗Λ)

× exp [−hΛ (Ω∗Λ)] , Ω∗Λ ∈ e∗
Λ ,

pΛ|x∗Γ\Λ (Ω∗Λ) :=
�Λ|x∗Γ\Λ (dΩ∗Λ)

dΩ∗Λ
1

Ξ (Λ | x∗Γ\Λ)
= xΛ (Ω∗Λ) Z (Ω∗Λ)

× exp [−hΛ (Ω∗Λ | x∗Γ\Λ)] , Ω∗Λ ∈ e∗
Λ .
(99)

Given Λ0 ⊂ Λ, the sigma algebra WΛ0 is naturally identi�ed
with a sigma subalgebra of WΛ. 
e restrictions of �Λ
to WΛ0 and �Λ|x∗Γ\Λ are denoted by �Λ

0

Λ and �Λ
0

Λ|x∗Γ\Λ
; these

measures are determined by their Radon-Nikodym deriva-

tives pΛ0
Λ (Ω∗Λ0) := �Λ0Λ (dΩ∗Λ0)/dΩ∗Λ0 and pΛ0

Λ|x∗Γ\Λ
(Ω∗Λ0) :=

�Λ
0

Λ|x∗Γ\Λ
(dΩ∗Λ0)/dΩ∗Λ0 .


e �rst key property of the measures �Λ and �Λ|x∗Γ\Λ is
expressed in the so-called FK-DLR equation. We state it as
Lemma 21 below; its proof repeats a standard argument used
in the classical case for establishing the DLR equation in a
�nite volume Λ ⊂ Γ.
Lemma 21. For all �, � > 0 satisfying (22), and Λ0 ⊂ Λ� ⊂ Λ,
the probability density pΛ0

Λ admits the form:

pΛ0
Λ (Ω∗Λ0)

= ∫
�∗
Λ\Λ�

�Λ0Λ\Λ� (Ω∗Λ0 | Ω∗Λ\Λ�)�Λ\Λ�Λ (dΩ∗Λ\Λ�) , (100)

where

�Λ0Λ\Λ� (Ω∗Λ0 | Ω∗Λ\Λ�) = exp [−hΛ0 (Ω∗Λ0 | Ω∗Λ\Λ�)]
× ΞΛ (Λ� \ Λ0 | Ω∗Λ0 ∨Ω∗Λ\Λ�)

ΞΛ (Λ� | Ω∗Λ\Λ�) ,
(101)

and the conditional partition functions ΞΛ(Λ� \ Λ0 | Ω∗ ∨
Ω∗Λ\Λ�) and ΞΛ(Λ� | Ω∗Λ\Λ�) are determined as in (96).

Similarly, for pΛ0
Λ|x∗Γ\Λ

one has:

pΛ0
Λ|x∗Γ\Λ

(Ω∗Λ0) = ∫
�∗
Λ\Λ�

�Λ0Λ\Λ� (Ω∗Λ0 | Ω∗Λ\Λ� ∨ x
∗
Γ\Λ)

× �Λ\Λ�Λ|x∗Γ\Λ
(dΩ∗Λ\Λ�) ,

(102)

where

�Λ0Λ\Λ� (Ω∗Λ0 | Ω∗Λ\Λ� ∨ x
∗
Γ\Λ)

= exp [−hΛ0 (Ω∗Λ0 | Ω∗Λ\Λ� ∨ x
∗
Γ\Λ)]

× ΞΛ (Λ� \ Λ0 | Ω∗Λ0 ∨Ω∗Λ\Λ� ∨ x∗Γ\Λ)
ΞΛ (Λ� | Ω∗Λ\Λ� ∨ x∗Γ\Λ)

(103)

and the conditional partition functions ΞΛ(Λ� \ Λ0 | Ω∗Λ0 ∨
Ω∗Λ\Λ� ∨ x∗Γ\Λ) and ΞΛ(Λ� | Ω∗Λ\Λ� ∨ x∗Γ\Λ) are determined as in

(96).

As in [1], (100) and (102) mean that the conditional den-

sities pΛ0
Λ (Ω∗Λ0 | Ω∗Λ\Λ�) and pΛ0

Λ|x∗Γ\Λ
(Ω∗Λ0 | Ω∗Λ\Λ�) relative

to �-algebra W
Λ\Λ� coincide, respectively, with �Λ0Λ\Λ�(Ω∗0 |

Ω∗Λ\Λ�), and �Λ0Λ\Λ�(Ω∗0 | Ω∗Λ\Λ� ∨ x∗Γ\Λ), for �Λ\Λ�Λ —and

�Λ\Λ
�

Λ|x∗Γ\Λ
—a.a.Ω∗Λ\Λ� ∈ e∗

Λ\Λ� and a.a.Ω∗Λ0 ∈ e∗
Λ0 .

As in [1], we call the expressions �Λ0Λ\Λ�(Ω∗Λ0 | Ω∗Λ\Λ�) and�Λ0Λ\Λ�(Ω∗Λ0 | Ω∗Λ\Λ� ∨ x∗Γ\Λ), as well as the expressions

�̂Λ0Λ\Λ�(Ω∗0 | Ω∗Λ\Λ�) and �̂Λ0Λ\Λ�(Ω∗0 | Ω∗Λ\Λ� ∨ x∗Γ\Λ)
appearing below, the (conditional) RDM functionals (in
brief, the RDMFs). 
e same name will be used for the

quantity �Λ0Λ\Λ�(Ω∗Λ0 | Ω∗Λ\Λ�) from (110)-(111) and the quantity

�̂Λ0Γ\Λ(Ω∗0 | Ω∗Γ\Λ) from (112)-(113).


e second property is that the RDMKs FΛ
0

Λ (x∗0, y∗0) and
FΛ
0

Λ|x∗Γ\Λ
(x∗0, y∗0) are related to the measures �Λ and �Λ|x∗Γ\Λ� .

Again, the proof of this fact is done by inspection.

Lemma 22. �e RDMK FΛ
0

Λ (x∗0, y∗0) is expressed as follows:∀Λ0 ⊂ Λ� ⊂ Λ,
F
Λ0
Λ (x∗0, y∗0)

= ∫
�∗x0,y0

P
∗
x0 ,y0 (dΩ∗0) xΛ (Ω∗0)

× Z (Ω∗0) 1 (Ω∗0 ∈ F
Λ0)

× ∫
�∗
Λ\Λ�

�Λ\Λ
� (dΩ∗Λ\Λ�) 1 (Ω∗Λ\Λ� ∈ F

Λ0)
× �̂Λ0Λ\Λ� (Ω∗0 | Ω∗Λ\Λ�) ,

(104)

where

�̂Λ0Λ\Λ� (Ω∗0 | Ω∗Λ\Λ�)
= exp [−hΛ0 (Ω∗0 | Ω∗Λ\Λ�)]

× Ξ̂
Λ0
Λ (Λ� \ Λ0 | Ω∗0 ∨Ω∗Λ\Λ�)
ΞΛ (Λ� | Ω∗Λ\Λ�) .

(105)
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Similarly,

F
Λ0
Λ|x∗Γ\Λ

(x∗0, y∗0)
= ∫

�∗x0,y0
P
∗
x0 ,y0 (dΩ∗0) xΛ (Ω∗0)

× Z (Ω∗0) 1 (Ω∗0 ∈ F
Λ0)

× ∫
�∗
Λ\Λ�

�Λ\Λ
�

Λ|x∗Γ\Λ
(dΩ∗Λ\Λ�) 1 (Ω∗Λ\Λ� ∈ F

Λ0)
× �̂Λ0Λ\Λ� (Ω∗0 | Ω∗Λ\Λ� ∨ x

∗
Γ\Λ) ,

(106)

where

�̂Λ0Λ\Λ� (Ω∗0 | Ω∗Λ\Λ�x∗Γ\Λ)
= exp [−hΛ0 (Ω∗0 | Ω∗Λ\Λ� ∨ x

∗
Γ\Λ)]

× Ξ̂
Λ0
Λ (Λ� \ Λ0 | Ω∗0 ∨Ω∗Λ\Λ� ∨ x∗Γ\Λ)
ΞΛ (Λ� | Ω∗Λ\Λ� ∨ x∗Γ\Λ) .

(107)

Here the partition functions Ξ̂Λ
0

Λ (Λ� \ Λ0 | Ω∗0 ∨ Ω∗Λ\Λ�) and
Ξ̂Λ
0

Λ (Λ� \ Λ0 | Ω∗0 ∨Ω∗Λ\Λ� ∨ x∗Γ\Λ) are determined in (81) and

(83).

Remark 23. Summarizing the above observations, the mea-
sures �Λ and �Λ|x∗Γ\Λ are concentrated on the subset in e∗

Λ
formed by loop con�gurations Ω∗Λ such that ∀g ∈ [0, �], the
sectionΩ∗Λ(g) has ≤ K particles at each vertex � ∈ Λ.
3. The Class of Gibbs States G for

the Fock Space Model

3.1. De�nition of Class G. In this section we apply the idea
from [1] to de�ne the class of states G = G�,� for the model
introduced in Section 2 and state a number of results. 
ese
results will hold under condition (34) which is assumed from
now on. As in [1], the de�nition of a state � ∈ G is based on
the notion of an FK-DLR probability measure � on the spacee∗

Γ ; the class of these measures will be also denoted byG.

De�nition 24. Space e∗
Γ is the (in�nite) Cartesian product×�∈Γe∗

{�} (cf. (60)); its elements are loop con�gurations Ω∗Γ ={Ω∗(�), � ∈ Γ} over Γ. A component Ω∗(�) is a �nite loop
con�guration (possibly, empty), with an initial/�nal particle
con�guration x∗(�) ⊂ �. Formally,Ω∗(�) is a �nite collection
of loops Ω∗


,�, of time-length ��
,� where �
,� = 1, 2, . . .,

starting and �nishing at a point (�, �) ∈ � × Γ. For reader’s
convenience, we repeat (37) for the case under consideration:

Ω∗

,� : g ∈ [0, ��
,�] &'→ (�̃ (Ω∗


,�, g) , �̃ (Ω∗

,�, g)) ∈ � × Γ,

Ω∗

,� is cádlág; Ω∗


,� (0) = Ω∗

,� (��
,�−) = (�, �) ,

Ω∗

,� has �nitely many jumps on [0, ��
,�] ;

if a jump occurs at time g, then
d [�̃ (Ω∗


,�, g− ) , �̃ (Ω∗

,�, g)] = 1.

(108)

By W = WΓ we denote the �-algebra in e∗
Γ generated

by cylindrical events. Given a subset Γ ⊂ Γ (�nite or in�nite),
we denote byWΓ = W

Γ
Γ the �-subalgebra ofW generated by

cylindrical events localized in Γ. Given a probability measure

� = �Γ on (e∗
Γ ,WΓ), we denote by �Γ = �ΓΓ the restriction of

� onW
Γ.

De�nition 25. 
e class G under consideration is formed by
measures � which satisfy the following equation: ∀ �nite Λ ⊂Γ and Λ0 ⊆ Λ, the probability density:

pΛ0 (Ω∗0) = pΛ0
� (Ω∗0) := �Λ

0

Γ (dΩ∗0)
^ (dΩ∗0) , Ω∗0 ∈ e∗

Λ0 ,
(109)

is of the form

pΛ0 (Ω∗Λ0) = ∫
�∗Γ\Λ

�Λ0Γ\Λ (Ω∗0 | Ω∗Γ\Λ)�Γ\Λ (dΩ∗Γ\Λ) , (110)

where

�Λ0Γ\Λ (Ω∗0 | Ω∗Γ\Λ)
= exp [−hΛ0 (Ω∗0 | Ω∗Γ\Λ)]
× ΞΓ (Λ \ Λ0 | Ω∗0 ∨Ω∗Γ\Λ)

ΞΓ (Λ | Ω∗Γ\Λ) ,
(111)

and the conditional partition functions ΞΓ(Λ \ Λ0 | Ω∗0 ∨
Ω∗Γ\Λ) and ΞΓ(Λ | Ω∗Γ\Λ) are determined as in (96).

As in [1], (110) means that the conditional densitypΛ0|Γ\Λ(Ω∗0 | Ω∗Γ\Λ), relative to �-algebra W
Γ\Λ, coincides

with �Λ0Γ\Λ(Ω∗0 | Ω∗Γ\Λ), for �Γ\ΛΓ —a.a. Ω∗Γ\Λ ∈ e∗�
Γ\Λ and ^Λ0—

a.a.Ω∗0 ∈ e∗
Λ0 .

Remark 26. 
e measure �Γ inherits the property from
Remark 23 and is concentrated on the subset in e∗

Γ formed
by (in�nite) loop con�gurations Ω∗Γ such that, for all g ∈[0, �], the sectionΩ∗Λ(g) has≤ K particles at each vertex � ∈ Λ.
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Given ameasure � ∈ G, we associate with it a normalized
linear functional � = �� on the quasilocal T∗-algebra B.
First, we set

F
Λ0 (x∗0, y∗0)

= ∫
�∗x0,y0

P
∗
x0 ,y0 (dΩ∗0) Z (Ω∗0) 1 (Ω∗0 ∈ F

Λ0)
× ∫

�∗Γ\Λ
�Γ\Λ (dΩ∗Γ\Λ) 1 (Ω∗Γ\Λ ∈ F

Λ0)
× �̂Λ0Γ\Λ (Ω∗0 | Ω∗Γ\Λ) ,

(112)

where

�̂Λ0Γ\Λ (Ω∗0 | Ω∗Γ\Λ)
= exp [−hΛ0 (Ω∗0 | Ω∗Γ\Λ)]

× Ξ̂
Λ0
Λ (Λ \ Λ0 | Ω∗0 ∨Ω∗Γ\Λ)
ΞΓ (Λ | Ω∗Γ\Λ) .

(113)


is de�nes a kernel FΛ
0(x∗0, y∗0), x∗0, y∗0 ∈ �∗Λ0 ,

where Λ0 ⊂ Γ is a �nite set of sites. It is worth reminding
the reader of the presence of the indicator functionals 1(⋅ ∈
F

Λ0) in (112) and (113) (in the integral for Ξ̂Λ
0

Λ (Λ \ Λ0 |
Ω∗0 ∨ Ω∗Γ\Λ)). 
ese indicators guarantee the compatibility

property: ∀ �nite Λ0 ⊂ Λ1,

F
Λ0 (x∗0, y∗0)

= ∫
�∗Λ1\Λ0

∏
�∈Λ1\Λ0

∏
�∈z∗(�)

V (d�)
× F

Λ1 (x∗0 ∨ z
∗
Λ1\Λ0 , y∗0 ∨ z

∗
Λ1\Λ0) .

(114)

Next, we identify the operator RΛ0 (a candidate for the

RDM in volumeΛ0) as an integral operator acting inHΛ0 by

(RΛ0�) (x∗0) = ∫
�∗Λ0

F
Λ0 (x∗0, y∗0)� (y∗0) dy∗0. (115)

Equation (114) implies that

trHΛ1\Λ0
R
Λ1 = R

Λ0 . (116)

De�nition 27. 
e functional � ∈ G is identi�ed with the

(compatible) family of operators RΛ0 . If the operators RΛ0

are positive de�nite (a property that is not claimed to be
automatically ful�lled), we again call it an FK-DLR state in
the in�nite volume (for given values of activity � and inverse
temperature �). To stress the dependence on � and �, we
sometimes employ the notationG(�, �).

3.2. �eorems on Existence and Properties of FK-DLR States.
We are now in position to state results about class G. We

assume the conditions on the potentials �(1) and �(2) from
the previous section, including the hard-core condition for�(1).

�eorem 28. For all �, � ∈ (0, +∞) satisfying (22), any lim-

iting Gibbs state � ∈ G
0 (see �eorem 3) lies in G. �erefore,

the class of stateG s is nonempty.

�eorem 29. Under condition (22), any FK-DLR state � ∈ G

is G-invariant, in the sense that, ∀ �nite Λ0 ⊂ Γ and ∀g ∈ G,

the RDM RΛ0 satis�es (35). Consequently, (36) holds true.

4. Proof of Theorems 3, 6, 28, and 29

4.1. Proof of �eorems 3 and 28. 
e proof is based on the

same approach as that used in [1]. First, given Λ0 ⊂ Γ,
we establish compactness of the sequence of the RDMKs

FΛ
0

Λ (x∗0, y∗0) and FΛ0Λ|x∗Γ\Λ(x∗0, y∗0) (see (78)–(83)) as functions
of variables x∗0 = {x∗0(�)}, y∗0 = {y∗0(�)} ∈ �∗Λ0 , with

♯x∗0Λ = ♯y∗0Λ , ♯x∗0 (�) , ♯y∗0 (�) < K, � ∈ Λ, (117)

when Λ ↗ Γ. 
en we use Lemma 1.1 from [1] to derive that

the sequence of the RDMs RΛ0
Λ and RΛ0

Λ|x∗Γ\Λ
is compact in the

trace-norm operator topology inHΛ0 .

To verify compactness of the RDMKs FΛ
0

Λ (x∗0, y∗0) and
FΛ
0

Λ|x∗Γ\Λ
(x∗0, y∗0) we, again as in [1], use the Ascoli-Arzela the-

orem, which requires the properties of uniform boundedness
and equicontinuity. 
ese properties follow from the follow-
ing.

Lemma 30. (i) Under condition (22) the RDMKs FΛ
0

Λ (x∗0,
y∗0) and FΛ0Λ|x∗Γ\Λ(x∗0, y∗0) admit the bounds

F
Λ0
Λ (x∗0, y∗0) , FΛ0Λ|x∗Γ\Λ (x∗0, y∗0)

≤ [(K♯Λ0)!] (p̂�) ♯Λ0Φ♯Λ0 ,
(118)

where

Φ = ∑
�≥1

�� exp (�Θ) ,
with Θ = K� (�(1) + K�(2) + KF (1) �) .

(119)

(Note that Φ < ∞ under the assumption (22)) Let p(�)
� yields

the supremum of the transition function over time �� for Brow-
nian motion on the torus�:

p(�)
� = sup


,�∈�
p�� (�, 
) = p�� (0, 0) , (120)

and p̂� = sup�≥1p(�)
� . Finally, the upper-bound values �(1)

,

�(2)
, F(1), and � have been determined in (14), (15), and (18).
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(ii) �e gradients of the RDMKs FΛ
0

Λ (x∗0, y∗0) and

FΛ
0

Λ|x∗Γ\Λ
(x∗0, y∗0) satisfy ∀� ∈ Λ and � ∈ x∗0(�), 
 ∈ y∗0(�),

555555∇
FΛ0Λ (x∗0, y∗0)555555 , 555555∇
FΛ0Λ|x∗Γ\Λ (x0, y0)555555555555∇�FΛ0Λ (x∗0, y∗0)555555 , 555555∇�FΛ0Λ|x∗Γ\Λ (x0, y0)555555
≤ (♯Λ0)ΘΦ�p̂� [(K♯Λ0)!] (p̂�) ♯Λ0Φ♯Λ0 ,

(121)

where

Φ� = ∑
�≥1

��� exp (�Θ) . (122)

(Again,Φ� < ∞ under the condition (22).) �e ingredients p̂�
and �(1)

, �(2)
, F(1), and � as in statement (i).

Proof of Lemma 30. First, observe that p̂� < ∞on a compact
manifold. Bound (119) is established in a direct fashion. First,
we majorize the energy

h
Λ0 (Ω∗0 | Ω∗Λ\Λ0) = h

Λ0 (Ω∗0) + h (Ω∗Λ\Λ0 || Ω∗0) (123)

contributing to the RHS in (80) and (81) and the energy

h
Λ0 (Ω∗0 | Ω∗Λ\Λ0 ∨ x

∗
Γ\Λ)

= h
Λ0 (Ω∗0 | x∗Γ\Λ) + h (Ω∗Λ\Λ0 || Ω∗0)

(124)

contributing to the RHS in (82) and (83).
is yields the factor

∏
!∈Ω∗0

��(!∗) exp [� (f∗)Θ] .
(125)

Next, we majorize the integral = ∫�∗x∗0,y∗0 P∗
x∗0 ,y∗0(dΩ∗0) in

(80) and (82); this gives the factor

(♯Λ0) p̂� [(K♯Λ0)!] (p̂�) ♯Λ0Φ♯Λ0 . (126)


e a�ermath are the ratios (78) and (79) with x∗0 = y∗0 = 0;
they do not exceed 1.

Passing to (121), let us discuss the gradients ∇
 only. (
e
gradients in the entries of ∇� are included by symmetry.)

e gradient in (121), of course, a
ects only the numerators

Ξ̂Λ
0

Λ (x∗0, y∗0; Λ \ Λ0) and Ξ̂Λ0Λ (x∗0, y∗0; Λ \ Λ0 | x∗Γ\Λ) in (78)

and (79). 
e bounds (121) are done essentially as in [1]. For

de�niteness, we discuss the case of the RDMK FΛ
0

Λ (x∗0, y∗0);
the RDMK FΛ

0

Λ|x∗Γ\Λ
(x0, y0) is treated similarly. 
ere are two

contributions into the gradient: one comes from varying

the measure P
∗
x∗0,y∗0(dΩ∗0), and the other from varying the

functional exp[−hΛ0(Ω∗0) − hΛ\Λ
0(Ω∗Λ\Λ0 | Ω∗0)].


e �rst contribution can again be uniformly bounded in
terms of the constant p̂�. 
e detailed argument, as in [1],
includes a deformation of a trajectory and is done similarly

to [1] (the presence of jumps does not change the argument
because p̂� yields a uniform bound in (43)).


e second contribution yields, again as in [1], an expres-
sion of the form:

∫
�∗x∗0,y∗0

P
∗
x∗0 ,y∗0 (dΩ∗0)

× ∑
�∈Λ0

∑

∈x∗0(�)

h̃
,� (Ω∗
(
,�),�0(
,�),Ω∗Λ\Λ0)

× exp [−hΛ0 (Ω∗0) − h
Λ\Λ0 (Ω∗Λ\Λ0 | Ω∗0)] ,

(127)

where the functional h̃
,�(Ω∗
(
,�),�0(
,�),Ω∗Λ\Λ0) is uniformly

bounded. Combining this an upper bound similar to (119)
yields the desired estimate for the gradients in (121).

Hence, we can guarantee that the RDMs RΛ0
Λ and RΛ0

Λ|x∗Γ\Λ
converge to a limiting RDM RΛ0 along a subsequence in Λ ↗Γ. 
e diagonal process yields convergence for every �niteΛ0 ⊂ Γ. A parallel argument leads to compactness of the

measures �Λ0Λ for any given Λ0 as Λ ↗ Γ. We only give here
a sketch of the corresponding argument, stressing di
erences
with its counterpart in [1].

In the probabilistic terminology, measures �Λ represent
random marked point �elds on � × Γ with marks from the

spacee∗ = e∗
0 wheree∗

0 = ⋃�≥1 e��
0 ande��

0 is the space
of loops of time-length �� starting and �nishing at 0 ∈ � and
exhibiting jumps, that is, changes of the index. (
e spacee∗


,�
introduced inDe�nitions 7 and 13 can be considered as a copy
of e∗ placed at site � ∈ Γ and point � ∈ �.) 
e measure�Λ0Λ describes the restriction of �Λ to volume Λ0 (i.e., to the
sigma algebra W

∗
Λ0) and is given by its Radon-Nikodym

derivative pΛ0
Λ relative to the reference measure dΩ∗Λ0 one∗

Λ0 (cf. (66), (100)). 
e reference measure is sigma-�nite.

Moreover, under the condition (22), the value pΛ0
Λ (Ω∗Λ0) is

uniformly bounded (in both Λ ↗ Γ and Ω∗Λ0 ∈ e∗
Λ0).


is enables us to verify tightness of the family of measures{�Λ0Λ , Λ ↗ Γ} and apply the Prokhorov theorem. Next, we
use the compatibility property of the limit-point measures�Λ0Γ and apply the Kolmogorov theorem. 
is establishes the
existence of the limit-point measure �Γ.

By construction, and owing to Lemmas 21 and 22, the

limiting family {RΛ0} yields a state belonging to the class G.

is completes the proof of 
eorems 3 and 28.

4.2. Proof of�eorems 6 and 29. 
eassertion of
eorem 6 is
included in
eorem 29.
erefore, wewill focus on the proof
of the latter.
e proof based on the analysis of the conditional

RDMFs �Λ0Γ\Λ(Ω∗0 | Ω∗Γ\Λ) and �̂Λ0Γ\Λ(Ω∗0 | Ω∗Γ\Λ) introduced
in (111) and (112). For de�niteness, we assume that vertex ! ∈Λ0, so that Λ0 lies in the ball Λ � for � large enough. As in



18 Advances in Mathematical Physics

[1], the problem is reduced to checking that ∀�, � ∈ (0,∞)
satisfying (22), g ∈ G and �nite Λ0 ⊂ Γ,

lim�→∞

�̂Λ0Γ\Λ(�) (gΩ∗0 | Ω∗Γ\Λ(�))
�̂Λ0Γ\Λ(�) (Ω∗0 | Ω∗Γ\Λ(�)) = 1; (128)

here we need to establish this convergence (128) uniformly in
the argumentΩ∗Γ\Λ(�) = {Ω∗(�), � ∈ Γ \Λ(�)}with ♯Ω∗(�) ≤ K
and in Ω∗0 outside a set of the P

∗�
x0 ,y0 measure tending to 0

as � → ∞. 
e latter is formed by path con�gurations Ω∗0
that contain trajectories visiting sites � ∈ Γ \ Λ(^(�)) where^(�) grows with �; see Lemma 31 below.
e action of g upon

a path con�guration Ω∗0 = {Ω∗
(
,�),�0(
,�), � ∈ Λ0, � ∈ x∗0} is

de�ned by

gΩ∗0 = {gΩ∗
(
,�),�0(
,�)} ,

where (gΩ∗
(
,�),�0(
,�)) (g) = g (Ω∗

(
,�),�0(
,�) (g)) .
(129)

We want to establish that ∀� ∈ (1,∞), for any � large
enough, the conditional RDMFs satisfy

��̂Λ0Γ\Λ(�) (gΩ∗0 | Ω∗Γ\Λ(�)) + ��̂Λ0Γ\Λ(�) (g−1Ω∗0 | Ω∗Γ\Λ(�))
≥ 2�̂Λ0Γ\Λ(�) (Ω∗0 | Ω∗Γ\Λ(�)) .

(130)

As in [1], we deduce (130) with the help of a special con-
struction of “tuned” actions gΛ(�)\Λ0 on loop con�gurations
�Λ(�)\Λ0 (over which there is integration performed in the
numerators

Ξ̂Λ
0

Γ (Λ (�) \ Λ0 | gΩ∗0 ∨Ω∗Γ\Λ(�)) ,
Ξ̂Λ
0

Γ (Λ (�) \ Λ0 | g−1Ω∗0 ∨Ω∗Γ\Λ(�))
(131)

in the expression for �̂Λ0Γ\Λ(�)(gΩ∗0 | Ω∗Γ\Λ(�)) and

�̂Λ0Γ\Λ(�)(g−1Ω∗0 | Ω∗Γ\Λ(�))). 
e tuning in gΛ(�)\Λ0 is chosen
so that it approaches e (or the �-dimensional zero vector in
the additive form of writing), the neutral element of G, while

we move from Λ0 towards Γ \ Λ(�).
Formally, (130) follows from the estimate (132) below: ∀

�nite Λ0 ⊂ Γ, Ω∗0 ∈ eΛ(�), g ∈ G and � ∈ (1,∞), for
any � large enough, ∀Ω∗Λ(�)\Λ0 = {Ω∗(�), � ∈ Λ(�) \ Λ0} and
Ω∗Γ\Λ(�) = {Ω∗(�), � ∈ Γ \ Λ(�)} with ♯Ω∗(�) ≤ K,
�2 exp [−hΛ(�) ((gΩ∗0) ∨ (gΛ(�)\Λ0Ω∗Λ(�)\Λ0) | Ω∗Γ\Λ(�))]

+ �2 exp [ − h
Λ(�)

× ((g−1Ω∗0) ∨ (g−1Λ(�)\Λ0Ω∗Λ(�)\Λ0) | Ω∗Γ\Λ(�))]
≥ exp [−hΛ(�) (Ω∗0 ∨Ω∗Λ(�)\Λ0 | Ω∗Γ\Λ(�))] .

(132)

In (132), the loop con�guration gΛ(�)\Λ0Ω∗Λ(�)\Λ0 is deter-
mined by specifying its temporal section {gΛ(�)\Λ0Ω∗


,�(g +��), � ∈ Λ(�) \ Λ0, � ∈ x∗(�), 0 ≤ � < �
,�}. 
at is, we
need to specify the sections:

(h (g + ��; gΛ(�)\Λ0Ω∗

,�) , _ (g + ��; gΛ(�)\Λ0Ω∗


,�)) (133)

for loopsΩ∗

,� constituting gΛ(�)\Λ0Ω∗Λ(�)\Λ0 . To this end we set

h (g + ��; gΛ(�)\Λ0Ω∗

,�) = g

(�)
� h (g + ��;Ω∗


,�)
if _ (g + ��; gΛ(�)\Λ0Ω∗


,�) = �. (134)

In other words, we apply the action g
(�)
� to the temporal sec-

tions of all loops Ω∗

,� located at vertex � at a given time,

regardless of position of their initial points (�, �) inΛ(�) \Λ0.
Observe that (130) is deduced from (132) by integrating

in dΩ∗Λ(�)\Λ0 and normalizing by ΞΛ(�)\Λ0(Ω∗Γ\Λ(�)); see (80)

with Λ� = Λ(�). (
e Jacobian of the map Ω∗Λ(�)\Λ0 &→
gΛ(�)\Λ0Ω∗Λ(�)\Λ0 equals 1.)


us, our aim becomes proving (132). 
e tuned family

gΛ(�)\Λ0 is composed of individual actions g(�)� ∈ G:

gΛ(�)\Λ0 = {g(�)� , � ∈ Λ (�) \ Λ0} . (135)

Elements g(�)� are powers (multiples, in the additive parlance)

of element g ∈ G �guring in (128)–(132) (resp., of the corre-
sponding vector A ∈ �; cf. (9)) and de�ned as follows. LetA(�)� denote the vector from� corresponding to g(�)� , and we

select positive integer values ^(�) = ⌈log (1 + �)⌉ and set

A(�)� = A� (�, �) , (136)

where

� (�, �) = {1, d (!, �) ≤ ^ (�) ,� (d (�, !) − ^ (�) , � − ^ (�)) , d (!, �) > ^ (�) .
(137)

In turn, the function � is chosen to satisfy

� (�, �) = 1 (� ≤ 0) + 1 (0 < � < �)� (�)
× ∫"

#
� (h) dh, �, � ∈ R,

(138)

with

� (�) = ∫"

0
� (h) dh ∼ log log �,

where � (h) = 1 (h ≤ 2) + 1 (h > 2) 1h ln h , � > 0.
(139)

Lemma 31. Given �, � ∈ (0,∞) satisfying (22) and a �nite

set Λ0, there exists a constant T ∈ (0,∞) such that ∀x0, y0 ∈
�∗Λ0 , the set of path con�gurations Ω∗0 ∈ e∗

x∗0 ,y∗0 with

hΛ
0(Ω∗0) < +∞ which include trajectories visiting points inΓ\Λ(^(�)) has theP∗

x0 ,y0 measure that does not exceedT/(⌈(1+^(�))⌉)!.
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Proof of Lemma 31. 
e condition that hΛ
0(Ω∗0) < +∞

implies that the total number of sub trajectories of length

� in Ω∗0 does not exceed K × ♯Λ0 which is a �xed value
in the context of the lemma. Each such trajectory has a
Poisson number of jumps; this produces the factor 1/(⌈(1 +^(�))⌉)!.

Back to the proof of 
eorem 29: let g−1Λ(�)\Λ0 be the col-
lection of the inverse elements:

g
−1
Λ(�)\Λ0 = {g(�)�

−1, � ∈ Λ (�) \ Λ0} . (140)


e vectors corresponding to g
(�)
�

−1
are −A(�)� ∈ �. We will

use this speci�cation for g(�)� and g
(�)
�

−1
for � ∈ Λ(�), or even

for � ∈ Γ, as it agrees with the requirement that g(�)� ≡ gwhen

� ∈ Λ0 and g
(�)
� ≡ e for � ∈ Γ \ Λ(�). Accordingly, we will use

the notation gΛ(�) = {g(�)� , � ∈ Λ(�)}.
Observe that the tuned family gΛ(�)\Λ0 does not change

the contribution into the energy functional hΛ(�)|Γ\Λ(�) com-

ing from potentials�(1) and�(2): it a
ects only contributions
from potential �.


e Taylor formula for function �, together with the

above identi�cation of vectors A(�)� , gives

555555� (g(�)� �, g(�)�� ��) + �(g(�)�
−1�, g(�)��

−1��) − 2� (�, ��)555555
≤ T5555A5555255555� (�, �) − � (�, ��)555552�, �, �� ∈ �.

(141)

Here T ∈ (0,∞) is a constant, |A| stands for the norm of the

vector A representing the element g, and the value � is taken
from (14).

Next, the square |�(�, �) − �(�, ��)|2 can be speci�ed as

55555�(�, �) − �(�, ��)555552

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0,
if d (�, !) , d (��, !) ≤ ^ (�) ,
0,
if d (�, !) , d (��, !) ≥ �
[� (d (�, !) − ^ (�) , � − ^ (�))

−� (d(��, !) − ^(�), � − ^(�))]2,
if ^ (�) < d (�, !) , d (��, !) ≤ �,

�(d(�, !) − ^(�), � − ^(�))2,
if ^ (�) < d (�, !) ≤ �, d (��, !) ∈ ]^ (�) , �[ ,

�(d(��, !) − ^(�), � − ^(�))2,
if ^ (�) < d (��, !) ≤ �, d (�, !) ∈ ]^ (�) , �[ .

(142)

By using convexity of the function exp and (141), ∀� > 1,
�2 exp [−hΛ(�) (gΛ(�) (Ω∗0 ∨Ω∗Λ(�)\Λ0) | Ω∗Γ\Λ(�))]

+ �2 exp [−hΛ(�) (g−1Λ(�) (Ω∗0 ∨Ω∗Λ(�)\Λ0) | Ω∗Γ\Λ(�))]
≥ � exp [−12hΛ(�)|Γ\Λ(�)

× (gΛ(�) (Ω∗0 ∨Ω∗Λ(�)\Λ0) ,Ω∗Γ\Λ(�))
−12hΛ(�) (g−1Λ(�) (Ω∗0 ∨Ω∗Λ(�)\Λ0) | Ω∗Γ\Λ(�))]

≥ � exp [−hΛ(�) (Ω∗0 ∨Ω∗Λ(�)\Λ0 | Ω∗Γ\Λ(�))] ?−$Υ/2,
(143)

where

Υ = Υ (�, g) = �K2
× ∑(�,��)∈Λ(�)×ΓF (d (�, �

�)) 55555�(�, �) − �(�, ��)555552. (144)


e next observation is that

Υ ≤ 3�K25555A55552
× ∑(�,��)∈Λ(�)×Γ1 (d (�, !) ≤ d (��, 0)) F (d (�, ��))

× [� (d (�, !) − ^ (�) , � − ^ (�))
−� (d (��, !) − ^ (�) , � − ^ (�))]2,

(145)

where, owing to the triangle inequality, for all �, �� : d(�, !) ≤
d(��, !)

0 ≤ � (d (�, !) − ^ (�) , � − ^ (�))
− � (d (��, !) − ^ (�) , � − ^ (�))

≤ d (�, ��) � (d (�, !) − ^)
� (� − ^ (�)) .

(146)


is yields

Υ ≤ �K2 3 5555A55552�(� − ^(�))2
× ∑(�,��)∈Λ(�)×ΓF (d (�, �

�)) d(�, ��)2�(d(�, 0) − ^ (�))2

≤ 3 5555A55552�(� − ^(�))2 [[
sup
�∈Γ

∑
��∈Γ

F�,��d(�, ��)2]]
× ∑

�∈Λ �+�0

�(d (�, 0) − ^ (�))2,
(147)

where function � is determined in (139).
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erefore, it remains to estimate the sum∑�∈Λ �+�0
�(d(�, 0) − ^(�))2. To this end, observe that h�(h) < 1

when h ∈ (3,∞). 
e next remark is that the number of sites
in the sphere Σ� grows linearly with �. Consequently,

∑
�∈Λ �+�0

�(d(�, !) − ^(�))2 = ∑
1≤�≤�+&0

� (� − ^ (�))

× ∑
�∈Σ�

� (� − ^ (�))
≤ T0 ∑

1≤�≤�+&0
� (� − ^ (�))

≤ T1� (� + ^0 − ^ (�)) ,
Υ ≤ T� (� − ^ (�)) '→ ∞, as � '→ ∞.

(148)


erefore, given � > 1 for � large enough, the term�?−$Υ/2 in the RHS of (145) becomes >1. Hence,
�2 exp [−hΛ(�) (gΛ(�) (Ω∗0 ∨Ω∗Λ(�)\Λ0) | Ω∗Γ\Λ(�))]

+ �2 exp [−hΛ(�) (g−1Λ(�) (Ω∗0 ∨Ω∗Λ(�)\Λ0) | Ω∗Γ\Λ(�))]
≥ exp [−hΛ(�) (Ω∗0 ∨Ω∗Λ(�)\Λ0 | Ω∗Γ\Λ(�))] .

(149)

Equation (149) implies that the quantity

�Λ0|Γ\Λ(�) (Ω∗0 | ΩΓ\Λ(�))
= ∫

�Λ(�)\Λ0
dΩ∗Λ(�)\Λ0

× exp [−hΛ0 (Ω∗0 ∨Ω∗Λ(�)\Λ0 | Ω∗Γ\Λ0)]
ΞΛ(�) (Ω∗Γ\Λ(�)) ,

(150)

obeys

lim�→∞ [�Λ0|Γ\Λ(�)� (gΩ∗0 | Ω∗Γ\Λ(�))
+�Λ0|Γ\Λ(�)� (g−1Ω∗0 | Ω∗Γ\Λ(�))]

≥ 2 lim�→∞�Λ0|Γ\Λ(�)� (Ω∗0 | Ω∗Γ\Λ(�))
(151)

uniformly in boundary condition �Γ\Λ(�). Integrating (151)

d�Γ\Λ(�)Γ (�Γ\Λ(�)) yields (132).
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