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This paper is the second in a series of papers considering symmetry properties of bosonic quantum systems over 2D graphs, with
continuous spins, in the spirit of the Mermin-Wagner theorem. In the model considered here the phase space of a single spin
is #, = L,(M), where M is a d-dimensional unit torus M = R?/Z? with a flat metric. The phase space of k spins is ) =
L™ (M"), the subspace of L,(M*) formed by functions symmetric under the permutations of the arguments. The Fock space 5
= @, H yields the phase space of a system of a varying (but finite) number of particles. We associate a space # = # (i) with
each vertex i € T of a graph (T, &) satisfying a special bidimensionality property. (Physically, vertex i represents a heavy “atom”
or “ion” that does not move but attracts a number of “light” particles.) The kinetic energy part of the Hamiltonian includes (i)
—A/2, the minus a half of the Laplace operator on M, responsible for the motion of a particle while “trapped” by a given atom,
and (ii) an integral term describing possible “jumps” where a particle may join another atom. The potential part is an operator of
multiplication by a function (the potential energy of a classical configuration) which is a sum of (a) one-body potentials U (x),
x € M, describing a field generated by a heavy atom, (b) two-body potentials U (x, y), x, y € M, showing the interaction between
pairs of particles belonging to the same atom, and (c) two-body potentials V(x, y), x, y € M, scaled along the graph distance d(i, j)
between verticesi, j € I, which gives the interaction between particles belonging to different atoms. The system under consideration
can be considered as a generalized (bosonic) Hubbard model. We assume that a connected Lie group G acts on M, represented by
a Euclidean space or torus of dimension d’ < d, preserving the metric and the volume in M. Furthermore, we suppose that the
potentials UY, U®, and V are G-invariant. The result of the paper is that any (appropriately defined) Gibbs states generated by the
above Hamiltonian is G-invariant, provided that the thermodynamic variables (the fugacity z and the inverse temperature f3) satisfy
a certain restriction. The definition of a Gibbs state (and its analysis) is based on the Feynman-Kac representation for the density
matrices.

1. Introduction

LI Basic Facts on Bi-Dimensional Graphs. As in [1], we
suppose that the graph (I', &) has been given, with the set of
vertices I' and the set of edges &. The graph has the property
that whenever edge (j', /') € &, the reversed edge (", j')
belongs to & as well. Furthermore, graph (I, &) is without

multiple edges and has a bounded degree; that is, the number
of edges (j,j') with a fixed initial or terminal vertex is
uniformly bounded:

sup [max (§{j' € T: (j,j') € &},
)
ﬂ{j’éf:(j',j)eg}):jer]<oo.



The bi-dimensionality property is expressed in the bound

0<sup[lﬁ2(j,n):j€1“,n=l,2,...]<oo, (2)
n

where X(j,n) stands for the set of vertices in IT' at the graph
distance n from j € I’ (a sphere of radius n around j):

(jn)=1{j'er:a(jj')=n}. (3)

(The graph distance d(j, j') = dp«(j, j') between j, j' € T'is
determined as the minimal length of a path on (T, &) joining j
and j'.) This implies that for any o € T the cardinality §A(o, r)
of the ball

A(o,n):{j’efzd(o,j')Sn} (4)

grows at most quadratically with n.

A justification for putting a quantum system on a graph
can be that graph-like structures become increasingly popu-
lar in rigorous Statistical Mechanics, for example, in quantum
gravity. Namely, see [2-4]. On the other hand, a number of
properties of Gibbs ensembles do not depend upon “regular-
ity” of an underlying spatial geometry.

1.2. A Bosonic Model in the Fock Space. With each vertexi € T
we associate a copy of a compact manifold M which we take
in this paper to be a unit d-dimensional torus R?/Z? with

a flat metric p and the volume v. We also associate with
i € T a bosonic Fock- Hilbert space H(G) = H. Here /"f =

PYss

formed by functions symmetrlc under a permutation of the

variables. Given a finite set A C I', we set Z(A) = ®;c ) # (i).
An element ¢ € Z°(A) is a complex function:
e M™ — ¢(x}). (5)

Here x is a collection {x"(j), j € A} of finite point sets
x*(j) ¢ M associated with sites j € A. Following [1], we call
x"(j) a particle configuration at site j (which can be empty)
and xl*\ a particle configuration in, or over, A. The space

M** of particle configurations in A can be represented as the
Cartesian product (M* YA where M* is the disjoint union
Ukzo1,.. M ® and M® is the collection of (unordered) k-
point subsets of M. (One can consider M*) as the factor of the

“off-diagonal” set M’; in the Cartesian power M* under the
equivalence relation induced by the permutation group of
order k.) The norm and the scalar product in #, are given

by
ol = (] loexPax)

G = [ 0 (609, (),
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where measure dx, is the product x;c,dx"(j) and dx"(j) is
the Poissonian sum measure on M"*:

dx* (j) = Z l(ﬁx*(j):k H dv (x) e ™.
k=0,1,... xEx ()
(7)
Here v(M) is the volume of torus M.
As in [1], we assume that an action
(8,x) eGXM+r—gxeM (8)

is given, of a group G that is a Euclidean space or a torus of
dimension d’ < d. The action is written as

gx = x + 6A mod 1. 9)

Here vector 8 = (0,,...,0,) with components 6, € [0,1)
and 0A is the d-dimensional vector 6 = ((0A);,...,(0A),)
representing the element g, where A is a (d' x d) matrix of
column rank d’ with rational entries. The action of G is lifted
to unitary operators U, (g) in #,:

U@ ¢(x}) =9¢(e7x1), (10)
where gflxj\ ={g'x*(j), je Aland g 'x*(j) = {g"'x, x €
x* ()}

The generally accepted view is that the Hubbard model
is a highly oversimplified model for strongly interacting
electrons in a solid. The Hubbard model is a kind of minimum
model which takes into account quantum mechanical motion
of electrons in a solid, and nonlinear repulsive interaction
between electrons. There is little doubt that the model is too
simple to describe actual solids faithfully [5]. In our context
the Hubbard Hamiltonian H, of the system in A acts as
follows:

(Hao) (x3) = ——Z Z A ey Z U“><x)

]EA xex* JjEA xex*

Yy

JEA x,x"ex* (j)

D RUETIVICIEND)

ji'en

1 (x + x’) U@ (x, x')

X Z V(x,x'):l ¢ (xy)

xex* (j),x'ex* (]’)

+ Z/\ fl(ﬂx () = L gx" ( )<K)

]]EA
X Z J v(d
x€x*(§) M

% [¢ (XI*\(J')X) G ;V)) (/)(X )]
(11)



Advances in Mathematical Physics

Here A(]?‘) means the Laplacian in variable x € x* (). Next, fx*
stands for the cardinality of the particle configuration x* (i.e.,
fx* = k when x* € M™®), and the parameter « is introduced
in (17). (Symbol § will be used for denoting the cardinality
of a general (finite) set; for example, § A means the number

S
of vertices in A.) Further, x;*' 7" denotes the particle

configuration with the point x € x*(j) removed and point y
added to x*(j).

As in [1], we also consider a Hamiltonian H AR, in an
external field generated by a configuration X%, . = {X*(j),

< T\A
j' e T\ A} ¢ M*™ where T ¢ T is a (finite or inﬁnite)

collection of vertices. More precisely, we only consider X xr\ A

with {x (] ) < k (see (17) below) and set
(HAle\A‘p) (Xj\)
=) 2 a7y 2 Uhe
]EAxex JEA xex*(j

(x * x') U(Z) (x, x')

D)

]EAxx ex*(j)

EDRUETIVCIEND)

j.j' €A

X Z V(x,x') ¢ (xy)
xex* (j),x'ex* (')

) I1(a(i)

jeA,j'eT\A

D)

xex*(j)x ex(j')

+ ) /\j,jll(ﬁx* () =1 x" (') <x)

jien

. Z

xex* )

V(xx)é(x})

v(dy [ ( Z(Jlx)ﬂ(j";l’)) _ ¢(XZ)] _
(12)

The novel elements in (11) and (12) compared with [1]
are the presence of on-site potentials U'" and U® and the
summand involving transition rates A; » > 0 for jumps of a
particle from site j to j'.

We will suppose that A ; » vanishes if the graph distance
d(j, j') > 1. We will also assume uniform boundedness:

sup[A;; (&, M), jj €T, xe M| <o0;  (13)

in view of (1) it implies that the total exit rate
2 itagjy=1 A (6 M) from site j is uniformly bounded.
These conditions are not sharp and can be liberalized.

The model under consideration can be considered as a
generalization of the Hubbard model [6] (in its bosonic ver-
sion). Its mathematical justification includes the following.
(a) An opportunity to introduce a Fock space formalism
incorporates a number of new features. For instance, a
fermonic version of the model (not considered here) emerges
naturally when the bosonic Fock space (i) is replaced by
a fermonic one. Another opening provided by this model
is a possibility to consider random potentials U", U® and
V which would yield a sound generalization of the Mott-
Anderson model. (b) Introducing jumps makes a step towards
a treatment of a model of a quantum (Bose-) gas where
particles “live” in a single Fock space. For example, a system
of interacting quantum particles is originally confined to a
“box” in a Euclidean space, with or without “internal” degrees
of freedom. In the thermodynamical limit the box expands
to the whole Euclidean space. In a two-dimensional model
of a quantum gas one expects a phenomenon of invariance
under space-translations; one hopes to be able to address this
issue in future publications. (¢) A model with jumps can be
analysed by means of the theory of Markov processes which
provides a developed methodology.

Physically speaking, the model with jumps covers a situ-
ation where “light” quantum particles are subject to a “ran-
dom” force and change their “location.” This class of models
is interesting from the point of view of transport phenomena
that they may display. (An analogy with the famous Anderson
model, in its multiparticle version, inevitably comes to
mind; cf,, e.g., [7].) Methodologically, such systems occupy
an “intermediate” place between models where quantum
particles are “fixed” forever to their designated locations (as
in [1]) and models where quantum particles move in the same
space (a Bose-gas, considered in [8, 9]). In particular, this
work provides a bridge between [1, 8, 9]; reading this paper
ahead of [8, 9] might help an interested reader to get through
[8, 9] at a much quicker pace.

We would like to note an interesting problem of analysis
of the small-mass limit (cf. [10]) from the point of Mermin-
Wagner phenomena.

1.3. Assumptions on the Potentials. The between-sites poten-
tial V is assumed to be of class C*. Consequently, V and its
first and second derivatives satisfy uniform bounds. Namely,
vx',x" e M

(X’, xll)

Here x and x' run through the pairs of variables x, x'. A simi-
lar property is assumed for the on-site potential U (here we
need only a C' smoothness):

>

v (xl, xu) i

<V (x', x”)| <V. (14)

<", xeM. (15)

Note that for V and U" the bounds are imposed on their neg-
ative parts only.

As to U, we suppose that (a)

u® (x, x') =400 when |x - x'l <p, (16)



and (b) 3 a C'-function (x, x") — UP(x, x') € R such that
UP(x,x") = U?(x, x') whenever p(x,x') > p. Here p(x, x')
stands for the (flat) Riemannian distance between points
x,x' € M. As a result of (16), there exists a “hard core” of
diameter p, and a given atom cannot “hold” more than

[

particles where v(B(p)) is the volume of a d-dimensional ball
of diameter p. We will also use the bound

17)

-g®@ (x,x"), |Vxﬁ(z) (x, x’)| <0?, xx'eM (8

Formally, (16) means that the operators in (11) and (12) are
considered for functions ¢(x,, ) vanishing when in the particle
configuration x; = {x"(j), j € A}, the cardinality §x"(j) >
for some j € A.

The function J : r € (0,00) — J(r) > 0 is assumed
monotonically nonincreasing with r and obeying the relation
J() - 0asl — oo, where

T () = sup { Y (a(ihi")(a(s ") z1):j € r}
j"er

< 00.
(19)

Additionally, let J(r) be such that
J* = sup [ S7(a(ii))ai,j') :je r] <oco. (20)
j'er

Next, we assume that the functions UY, U®, and V are g-
invariant: Vx, x' € M and g €@,

U(l) (x) — U(l) (gx) ,
u® (x, x’) =y® (gx, gx’) , (21)
\%4 (x, x’) =V (gx, gx') .

In the following we will need to bound the fugacity (or
activity, cf. (25)) z in terms of the other parameters of the
model

ze% <1, where ® = xp (ﬁ(l) + KU(Z) + KT(I)V). (22)

1.4. The Gibbs State in a Finite Volume. Define the particle
number operator N, with the action

Nuo(x) = tx P (xy), x) € M, (23)

Here, for a given x), = {x"(j), j € A}, §x}, stands for the total
number of particles in configuration x}:

fx, = Zitx* () (24)

jeA
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The standard canonical variable associated with N, is activity
z € (0, 00).

The Hamiltonians (11) and (12) are self-adjoint (on the
natural domains) in F#(A). Moreover, they are positive
definite and have a discrete spectrum, cf. [14]. Furthermore,
Vz,3>0,H, and H AR, give rise to positive-definite trace-

= GZJ;)A&%\A:

class operators G, = G, g, and G AR,
Gy = 2" exp [-BH, ],
(25)
— N — .
GAIi%\A =z texp [ ﬁHAle\A] ’

We would like to stress that the full range of variables z, 8 > 0
is allowed here because of the hard-core condition (16): it does
not allow more than x§A particles in A where §A stands for
the number of vertices in A. However, while passing to the
thermodynamic limit, we will need to control z and .

Definition 1. We will call G, and G AR, the Gibbs operators

in volume A, for given values of z and 8 (and—in the case of
G AR, —with the boundary condition i%\ 2

T\A

The Gibbs operators in turn give rise to the Gibbs states

-1

@) = Pp.pand @ ARy = Ppadlsy,, At temperature B~ and
activity z in volume A. These are linear positive normalized
functionals on the C*-algebra B, of bounded operators in
space & ,:

9, (A) = trg, (RyA),

(26)
Pl (A) =tz (RAlimA)’ AeBy,
where
G
R, = — UA\), with B (A) = B, 5 (A) = trge Gy, (27)
Ry GAlim

e IR
g (A | i;\A)

28
with 2 (A | 3_(%\1\) = E‘z,ﬁ (A | i%\A) e

=trg, (zNA exp [—ﬁHA&;\A]) .

The hard-core assumption (16) yields that the quantities

E(A) and B p(A | i%\ ,) are finite; formally, these facts will

be verified by virtue of the Feynman-Kac representation.

Definition 2. Whenever A’ ¢ A, the C*-algebra 8,0 is iden-
tified with the C* subalgebra in B, formed by the operators

of the form A, ® I, 0. Consequently, the restriction (pﬁo of
state ¢, to C*-algebra 2B, is given by

0 0
oy (Ag) = LEN (Rﬁ Ao) s Ay €B, (29)
where

0
R, = trar, o Ra- (30)
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Operators Rﬁo (we again call them RDMs) are positive defi-
nite and have trg, | Rﬁo = 1. They also satisty the compatibil-
ity property: VA° ¢ A' c A,

0 1

Ry =trgy  RY. 31

Al\A0

0
In a similar fashion one defines functionals ‘P?\&i and oper-
T\A

0
ators R} . , with the same properties.
Ale\ A

1.5. Limiting Gibbs States. The concept of a limiting Gibbs
state is related to notion of a quasilocal C*-algebra; see [14].
For the class of systems under consideration, the construction
of the quasilocal C*-algebra By is done along the same lines
as in [1]: By is the norm completion of the C* algebra (B}) =
lim ind, , %, . Any family of positive-definite operators

R in spaces 4o of trace one, where A runs through finite
subsets of I, with the compatibility property

RM =t , RY, A'c A, (32)

determines a state of B, see [12, 13].
Finally, we introduce unitary operators U,o(g), g € G, in
%Aol

Upg (x30) = ¢ (&30 (33)
where
g_IXZo = {g_lx* (]) ,j € AO} s
1 1 (34)
g 'x () ={g"x:xex’ (i)}
Theorem 3. Assumingthe conditions listed above, for all z, 8 €

(0, +00) satisfying (22) and a finite A° c T, operators R

form a compact sequence in the trace-norm topology in % A0
as A/ I. Furthermore, given anyfamily of (finite or infinite)
setsT =T(A) €T and conﬁgumtzons XF\A (X*(G), i e T\ A}

with X" (i) < x, operators R A&m also form a compact sequence
in the trace-norm topology. Any limit point, RAO,for {Rﬁo} or
{R Yas A~ T, is a positive-definite operator in I (A°)
of trace one. Moreover, if A' ¢ A and R and R
limits for Rﬁo and Rﬁl or for Rﬁ(‘;; K and Rﬁlli; K along the same

subsequence A ; /' T, then the property (32) holds true.
Consequently, the Gibbs states @, and ¢ 5= form compact
T\A

Alx

are the

sequencesas A /' T.

Remark 4. In fact, the assertion of Theorem 3 holds without
assuming the bidimensionality condition on graph (I, &),
only under an assumption that the degree of the vertices in
I is uniformy bounded.

Definition 5. Any limit point ¢ for states ¢, and ¢ ARz, 1S
called a limiting Gibbs state (for given z, 8 € (0, +00)).

Theorem 6. Under the condition (22), any limiting point, RY,
for {Ry } or { AIx }, as A /T, is a positive-definite operator

of trace one commutzng with operators U,o(g): Vg € G,

U,o(g) 'RM Uy (g) = RY. (35)

Accordingly, any limiting Gibbs state ¢ of B determined by a
family of limiting operators R obeying (35) satisfies the cor-
responding invariance property: v finite A° C T, any A € B 50,
and g € G,

9 (A) =9 (Upu(g) 'AUL (g)). (36)

Remarks. (1) Condition (22) does not imply the uniqueness of
an infinite-volume Gibbs state (i.e., absence of phase transi-
tions).

2) Properties (35) and (36) are trivially fulfilled for the
limiting points R A" and ¢ of families {R } and {¢,}. How-
ever, they require a proof for the limit points of the families

{RAIx }and {‘PAli;\A}'
The set of limiting Gibbs states (which is nonempty due
to Theorem 3) is denoted by ®°. In Section 3 we describe a

class ® > ®° of states of C*-algebra B satisfying the FK-DLR
equation, similar to that in [1].

2. Feynman-Kac Representations for
the RDM Kernels in a Finite Volume

2.1. The Representation for the Kernels of the Gibbs Operators.
A starting point for the forthcoming analysis is the Feynman-
Kac (FK) representation for the kernels K,(x},y,) =

K, A (x5, yy) and Fy(xy,y4) = Fg, A(x,y,) of operators
G, andR,.

Definition 7. Given (x,1),(y,j) € M x T, fo i(y,j) denotes
the space of path, or trajectories, @ = w(, ;) ;) in M x I, of
time-length S, with the end-points (x, ) and ( ¥, j). Formally,

w € fo,i)’( .J) is defined as follows:
w:1€0,f]— ()= (u(w1),l(w071) € MxT,

@(B-) =)

@ has finitely many jumps on [0, 8];

w is cadlag;s @ (0) = (x,1),

if a jump occurs at time 7, then d [l (w,7-),!(w,7)]=1.
(37)

The notation w(t) and its alternative, (u(w, 1), l(w, 7)), for
the position and the index of trajectory w at time 7 will be
employed as equal in rights. We use the term the temporal
section (or simply the section) of path w at time 7.

Definition 8. Let x; = {x*(i), i € A} € M*™, andy; =
{y"(j), jeAleM *A be particle configurations over A, with
fx, = fy,. A matching (or pairing) y between x, and y} is



defined as a collection of pairs [(x, 1), (y, j)]y, with i, j € A,
x € x"(i), and y € y"(j), with the properties that (i) Vi € A
and x € x*(i) : there exist unique j € Aand y € y*(j)
such that (x,7) and (y, j) form a pair, and (ii) Vj € A and
y € y"(j) : there exist unique i € A and x € x"(i) such
that (x,7) and (y, j) form a pair. (Owing to the condition
fx, = fy,, these properties are equivalent.) It is convenient
to write [(x, 1), (y, j)]y = [(x, 1), y(x,1)].
Next, consider the Cartesian product

B P

iy T 5 ek VY ey (38)

and the disjoint union

—p | |=F
Wiy = LYJWXZ’YZ’Y' (39)

Accordingly, an element w, € Wﬁ* ye,y in (38) represents a

Y
collection of paths w, ;, x € x”(i), ie A, of time-length S,

starting at (x, i) and ending up at y(x, i). We say that w, is a
path configuration in (or over) A.

The presence of matchings in the above construction is a
feature of the bosonic nature of the systems under consider-
ation.

We will work with standard sigma algebras (generated by

Wﬂ* . andWﬁ* ..

XoYpY’ XA

cylinder sets) in fo)i),( )
Definition 9. In what follows, &(7), T > 0, stands for the
Markov process on M x I', with cadlag trajectories, deter-
mined by the generator & acting on a function (x,i) € M x
A — y(x,i) by

1
g‘/’ (x,0) = _EAV/ (x,1)

£ Y Ay | @)y ) v ).
J:d(i,j)=1
(40)

In the probabilistic literature, such processes are referred to
as Lévy processes; see, for example, [14].

Pictorially, a trajectory of process & moves along M
according to the Brownian motion with the generator —A/2
and changes the index i € T from time to time in accor-
dance with jumps occurring in a Poisson process of rate
2 judti,j=1 Aij- In other words, while following a Brownian
motion rule on M, having index i € T and being at point
x € M, the moving particle experiences an urge to jump from
i to a neighboring vertex j and to a point y at rate A; ;v(dy).
After a jump, the particle continues the Brownian motion on
M from y and keeps its new index j until the next jump, and
S0 on.

For a given pairs (x,1),(y,j) € M x I, we denote by

B . —p .
[P’(XI 1)) the nonnormalised measure on Wi ) induced

by &. That is, under measure P?

G () the trajectory at time

Advances in Mathematical Physics

T = 0 starts from the point x and has the initial index i while
attime 7 = fitis at the point y and has the index j. The value

- B —PB ..
Plxinn) = P(x)i)’(y)j)(w(x)i))(y’ j)) is given by

f(x,i),(y,j) =1(i=j) p]lf/I (x,y)exp | B Z /\i,j
ja(i.j)=1

i Z Z H 1 (d (ls)ls+1) = 1)

k21 1y=i,l 5ol = 0<s<k

B
x /\ls,lsﬂ JO de eXp | — (Ts+1 - Ts) Als,f
- 521

X1(0=1y<7 < < < Ty = ),

(41)

where pf/[(x, y) denotes the transition probability density for
the Brownian motion to pass from x to y on M in time f:

By v)e L
pM( ’y) (Zﬂﬁ)d/2

In view of (13), the quantity p(, ;) (,
uniformly bounded:

(42)

) and its derivatives are

Pesintriy | VP> [V Peainin| < Pans
(43)
x,yeM, ijel,

where Py, = pup(B) € (0, +00) is a constant.

We suggest a term “non-normalised Brownian bridge
with jumps” for the measure but expect that a better term will
be proposed in future.

Definition 10. Suppose that x; = {x"(i), i € A} € M*» and

= {y*(j), j € A} € M™" are particle configurations over

A, with §x3 = fy,. Let y be a pairing between x, and yj.

Then P. o -
Y

, denotes the product measure on Wx v

=5 —p
ij\,yz,y - P(x,i),y(x,i)‘ (44)

X X
ieA xex*(i)
=B B
Furthermore, P_. _. stands for the sum measure on W, _.:
Xpo¥a Xpo¥a

5 onp
Py = 4 Py (45)

According to Definition 10, under the measure IP’f Yoy

the trajectories w, ; € Wﬁ)C (i constituting w, are inde-

pendent components. (Here the term independence is used
in the measure-theoretical sense.)
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As in [1], we will work with functionals on Wf vy
NN
senting integrals along trajectories. The first such functional,

h*(@,), is given by

repre-

h' (w,) = Z Z h*! (@)

i€ xex* (i)
D)

(i,i' ) eAXA xex*(i),x"ex* (i')

n INCORCED) (46)

0| =

X (Ex,i, Ex,’i, ) .

Here, introducing the notation u,;(r) = wu(w,;7) and
up (1) = u(wy ;,7) for the positions in M of paths w, ; €
B — 7B
Wiy and @, € W

o iy, At time 7, we define

. B
W (@) = L drU" (. (1)) (47)

Next, with [ ;() and L ;(7) standing for the indices of @, ;
and w,/ ; at time 7,

h(x’i)’(x,’i,) (_x,i’ wx',i’)

B
=Jd‘r
0

Z u® (i (1) 50y 0 (1))

j'er

x1(l,; (1) =j =1y (1)

> T(a(ii"))

(j',j")erxT

XV (u;, (1), uy 0 (1))

+

| =

x1(l, () =j#j" =1lsy (D) } )

(48)

. . A— —x* . —x
Next, consider the functional h™(w, | Xp, A). for XA

{X*(j), j € T\ A}. As before, we assume that X" (j) < .
Define

b (@, 1%5,) =h" (@,) +h" (@, 11%5,).  (49)
Here hA(EA) is as in (46) and
h? (EA b= )

T\A

= ) 2

(i) eAX(T\A) xex* (i),x €x* (i)

— —I .
x (@, (x,1")),

(3,0),(x i)
h (50)

7
where, in turn,
h(x,i),(z’,i’) (wx’i, (E', i'))
- Jﬁ dr [U® (uy, (1), %) 1 (1, (1) = ")
0
v J(a(i))
jeT:j#i'

xV (u,-,x (1) ,f') 1(l; (1) = ])] .
(51)

The functionals h™ (@ ) and b (w Al i;\ A) are interpreted as

energies of path configurations. Compare (2.1.4) and (2.3.8)
in [1].
Finally, we introduce the indicator functional «, (@, ):

1, ifindex I ; (1) € A,
VT e [0,B], i€ A xex”(i), (52)
0, otherwise.

ay (@,) =

It can be derived from known results [11, 15-17] (for a direct
argument, see [18]) that the following assertion holds true.

Lemma 11. Forall z, 3 > 0 and a finite A, the Gibbs operators
G, and GAIX%\A act as integral operators in ' (A):

@9 &)= TT T v@)K iy ¢ )

JeA yey* (j)
(Gaez, #) (x1)
= [T TT @K (xhovi 156, 9.0

jeA yey* (j)
(53)

Moreover, the integral kernels K, (x},y,) and K,(x},y, |
i%\A) vanish if §x, # fy,. On the other hand, when fx; =
ty, the kernels K, (x,,yy) and K, (x},y, | X5, ) admit the

T\A
following representations:

* * x* —ﬁ p— g—
K, (xp,¥4) = zH . Py (dwy) oy (@)
Wee o A7A
*a¥a (54)

X exp [—hA (EA)] ]
Ky (x5 72 1 %5,
_ A L* P - (d@,) oy (@)
X exp [—hA (EA | i%\A)] :
(55)

The ingredients of these representations are determined in (46)-
(51).



Remark 12. As before, we stress that, owing to (16) and (17),
anonzero contribution to the integral in the RHS of (54) can
only come from a path configuration w, = {w,;} such that
V7 € [0,] and Vj € T, the number of paths w, ; with index
L.;(t) = jis less than or equal to k. Likewise, the integral in
the RHS of (55) receives a non-zero contribution only from
configurations w, = {w, ;} such that, V site j € T, the number
of paths w, ; with index [ ;(7) = j plus the cardinality X" (j)
does not exceed «.

2.2. The Representation for the Partition Function. The FK
representations of the partition functions E(A) = Eg.(A)
in (27) and E(A | Xr\ o) in (1.4.6) reflect a specific character
of the traces tr G, and tr GAIX%\A in Z'(A). The source of a
complication here is the jump terms in the Hamiltonians H
and H, AR, in (11) and (12), respectively. In particular, we will
have to pass from trajectories of fixed time-length /3 to loops
of a variable time length. To this end, a given matching y
is decomposed into a product of cycles, and the trajectories
associated with a given cycle are merged into closed paths
(loops) of a time-length multiple of 3. (A similar construction
has been performed in [18].)

To simplify the notation, we omit, wherever possible, the
index f3.

Definition 13. For given (x,i),(y,j) € M x I, the symbol
W(*x’i))( 5,j) denotes the disjoint union:

_kl;
U () (3:)) (56)

) is the space of paths Q=0

(x D) =

J—
In other words, W einty (0).(7.1)

in M x T, of a variable tlme—length kB, where k = k(Q") takes
values 1,2, ... and called the length multiplicity, with the end-
points (x,7) and (y, j). The formal definition follows the same
line as in (37), and we again use the notation o (1) and the
notation (u(Q",7),1(Q", 7)) for the pair of the position and
the index of path Q' at time 7. Next, we call the particle
configuration {5*(1 +pm), 0 < m < k(ﬁ*)} the temporal
section (or simply the section) of Q attimer € [0, B]. We
also call Q:x’l.))(y’j) € W:x,i))(y’j) a path (from (x,7) to (y, j)).

A particular role will be played by closed paths (loops),
with coinciding endpoints (where (x i) = (y,J)). Accord-
ingly, we denote by W, the set W(x (i) An element of
W, is denoted by Q ; or, in short, by Q" and called a loop
at vertex i. (The upper index * indicates that the length
multiplicity is unrestricted.) The length multiplicity of a loop
Qy; € W, is denoted by k(Q} ;) or k, ;. It is instructive to
note that, as topological object, a given loop Q* admits a
multiple choice of the initial pair (x,7): it can be represented
by any pair (u(Q*,7),1(Q", 7)) at a time T = If3 where ] =

., k(Q"). As above, we use the term the temporal section
at time 7 € [0, 8] for the particle configuration {Q;’i(‘r +
pm), 0 < m < k,;} and employ the alternative notation
(u(t + Bm; Q°), I(t + Pfm; Q")) addressing the position and
the index of Q" at time 7 + ffm € [0, Bk(QY7)].
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Definition 14. Suppose x; = {x"(i), i € A} € M*» and Vi =
y*(j), j € A} € M*® are particle configurations over A,
with §x; = fy}. Let y be a matching between x, and y}. We
consider the Cartesian product:

—% —k

X3,¥0Y = X . W(x,i),y(x,i)’ (57)

X
i€EA xex* (i)

and the disjoint union:

— —

Waiws = _ Wi (58)

Accordingly, an element 5: € W: yi,y in (58) represents a
NTA

collection of paths 51 »x € xX"(i),i € A, of time-length kf3,
startmg at (x,1) and ending up at (y, j) = y(x, i). We say that
A € W XLyl is a path configuration in (or over) A.
Agam, loops play a special role and deserve a particular
notation. Namely, W;Z denotes the Cartesian product:

Wx;‘\ = XA X( le’ (59)
and Wy stands for the disjoint union (or equivalently, the
Cartesian power):

U W = le},
ieA
x;eM*A !
(60)
where W{f} = U ( X W*>

x*eM* xex*

Denote by Q" = {Q"(i), i € A} € W} a collection of
loop configurations at vertices i € A starting and ending up
at particle configurations x*(i) € M* (note that some of the
Q" (i)’s may be empty). The temporal section (or, in short,
the section), Q*(7), of Q" at time 7 is defined as the particle
configuration formed by the points Q7 (7 + ffm) where i € A,
x €x (i),and 0 < m < k.

Asbefore, c0n51der the standard 51gma algebras of subsets

(b))’ Wi WXA,YA)y W sy Wees and Wy

introduced in Definitions 13 and 14. In partlcular, "the sigma
algebra of subsets in W, will be denoted by 28,; we comment
on some of its specific properties in Section 3.1. (An infinite-
volume version Wy of W/ is treated in Section 3.2 and after.)

in the spaces W

Deﬁmtzon 15. Given points (x, i), (y, i) € M x I, we denote

by P, the sum measure on W

(26,0),(37) i) ()’
— —kp
Plininp = ) > Pl (61)
=0,1,...

Further, P} ; denotes the similar measure on W ;:

> P (62)

k=0,1,...
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Definition 16. Let x;, = {x"(i), i € A} € M*" and Vi =
y*(j), jeAteM *Abe particle configurations over A, with
fx, = fy,. Let y be a matching between x} and y}, and we

define the product measure P .

XYY

—x —x%

XLYay P(x,i),y(x,i) (63)

X X
i€A xex* (i)
and the sum measure

—x —

Prsys = ‘ P vi (64)

Next, symbol P stands for the product measure on W

P** = X X P* . (65)

N e xext())
Finally, dQ} yields the measure on W
dQ} = dx} x [P’;:Z (dQ}). (66)

Here, for x5 = ({x"(i),i € A}, we set: dx) =
[Tieal Leexyv(dx). For sites i with x"(i) = 0, the corre-
sponding factors are trivial measures sitting on the empty
configurations.

We again need to introduce energy-type functionals
represented by integrals along loops. More precisely, we

define the functionals h™(Q 1) and hAQ: N Xr\ N, which are
modifications of the above functionals h* (@ 4) and hA(EA |
i%\ 1); confer (46) and (50). Say, for aloop configuration Q) =
{Q;’i} over A with an initial and final particle configuration
x) = {x"(i), i € A},

b (@)
=2 2 ()

i€\ xex* (i)

+

Y-

(i,i") e Ax A xex* (i),x' ex* (i')

1((xi) # (x,i))R*ED (a7 ar ).
(67)

To determine the functionals h’”(Q ) and h G, (' )(Q

QL ), we set, for given m = 0,1,....k,; -
kg =1

x,1°
1and m' =

U (T+pm)=u (T + pm; Q;,) ,
e (T4 pm) =1 (7 + prs 0,).

! !
Ujt (T+ﬁm ) = u(‘r+/3m ;Q:,i,),

oo (7+ ﬁm') = l(T + pm'; Q;,J,) :
(68)

A (slightly) shortened notation [; ,(t + Bm) is used for the
index I, ;(t + pm; Q) and w; (7 + Bm) for the position
u(t + pm; Q) for QO (7) € M x T, of the section Q ;(7)
of the loop QL (T + pm)
and uy (7 + ﬂm ). (Note that the pairs (x, i) and (x',i") may
coincide.) Then

h(Xl)( Xl)

-['a lmz U a4 o)

at time 7, and similarly with [,

+ Z Zl (L (t+ Bm)

0<m<m'<k,; j€T

=j=1, (T + ﬁm'))
XU(Z) (ux,i (T + ‘Bm) s Uy (T + ﬁm,))

x,1°

& ’”)(Q QL)
B

Y zjdf

0sm<k,; 0Sm'<kx/ i 0

X [ZU(Z) (ux,i (7+pm),uy (T + /Sm'))

x1 (lx)i (t+Bm)=j=1Lasy (T + ﬁm'))
£ J@Gi))v

(j»j")erxr

x (st (7 + ) g o (+ o))

x1 (lx’,- (t+pBm) = j#:j' =lgy (T + ,Bm'))
(69)

Next, the functional B(Q},) takes into account the bosonic
character of the model:

ki
B(e) =[] [] = (70)

i€A xex* (i) i

The factor k ; in (70) reflects the fact that the starting point
of a loop Q +; may be selected among points u(fm, QF ;)
arbitrarily.
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Next, we define the functional hA(QZ | )_(;\ A): for i%\ A=
x"(j), je T\ A}, again assuming that §x* (j) < k. Set
W (@) 1%5,) =h" (@) +h" (@) 11%5,). (7))

Here hA(Q;‘\) isasin (67) and
A * —%
h (QA I Xf\A)

= 2 2

(i,i") e Ax(T\A) xex*(i),x' ex” (i")

WD (r (7,1)),
(72)
where, in turn,

h(x,i),(;’,i’) (Q* (EI, i'))

x,1°

= Z ﬁdr

0sm<k,; 0

X [U(z) (uy; (1 + pm), x")
x1(I; (r+pm) =i")
+ Z] (d (j, i'))V(ui,x (t+ Bm) ,x')

jer

X1 (L; (v + pm) = j) ]
(73)

As before, the functionals hA(QZ) and hA(QZ I )_(%\ A

natural interpretation as energies of loop configurations.
Finally, as before, the functional e, (Q}) is the indicator
that the collection of loops Q} = {Q ;} does not quit A:

) have a

1, if Q1) e MxA,
VieAxex (i),0<1< Bk, (74)
0, otherwise.

X\ (ij) =

Like above, we invoke known results [11, 15-17] to estab-
lish the following statement (again a direct argument can be
found in [18]).

Lemma 17. For all finite A C T and z, 3 > 0 satisfying (22),

the partition functions E(A) in (27) and E(A | i%\A) in (27)

and (28) admit the representations as converging integrals:

2= | diB@)w (@) e [ (@), @3)

A

2(A1%,)

- | a0iB(@))w (@) exp [0 (24 11,
* (76)

with the ingredients introduced in (60)-(74).
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Again, we emphasis that the non-zero contribution to
the integral in (75) can only come from loop configurations
Q) = {Q;i, x € x"(i), i € A} such that V vertex j € A and
7 € [0, B, the total number of pairs (u, ;(z+mp), 1, ;(t+mf))
with 0 <m < k,;, and I(7 + mf3) = j does not exceed «.

Remark 18. The integrals in (75) and (76) represent examples
of partition functions which will be encountered in the forth-
coming sections. See (96), (97), (101), (103), (105), (107), (111),
and (113) below. A general form of such a partition function
treated as an integral over a set of loop configurations rather
than a trace in a Hilbert space is given in (96) and (97).

2.3. The Representation for the RDM Kernels. Let A°, A be
finite sets, A° ¢ A c T. The construction developed in
Section 2.2 also allows us to write a convenient representation

for the integral kernels of the RDMs Rﬁo (see (31)) and Rfl;j .
T\A

Inaccordance with Lemma 11 and the definition of Rﬁo in (31),

the operator Rﬁﬂ acts as an integral operator in #/(A°):
(rV'e) (x")
[ LTI T v@nr () o).

jen yey™ (j)

(77)

= JM*A\AO H H v (dz)

FEA\A zez" (j)
0 0 78)
* * * *
xFA(x VZy\p0 Y VzA\Ao)

g (x*o,y*O;A\AO)
E)

We employ here and below the notation x*° and y*° for
particle configurations x5, = {x*(i), i € A’ andy}, =
{y*(j), j € A% over A°. Next, X*OVZZ\AO; y*OVzZ\AU denotes
the concatenated configurations over A.

0
Similarly, the RDM Rﬁli%\,\ is determined by its integral

0
kernel F‘Xlij (x*o, y*o), again admitting the representation
T\A

~A°
) . g (X*O,Y*O;A\AO z* )
B, (7)==

T\A

(79)

As in [1], we call Fﬁo and Fﬁll}if the RDM kernels (in
\A

short, RDMK3s). The focus of our interest is the numerators
’*AO * * ’*AO * * —% .
E, %y A\ A% and E, (x*°,y*%G A\ A" | Xf,) in
(78) and (79). To introduce the appropriate representation for
these quantities, we need some additional definitions.
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Definition 19. Repeating (57)-(58), symbol W:*O’y*o denotes

C .. . 0
the disjoint union |[J onoy 2

between x*” and y*’. Accordingly, element a”’

over matchings y

= Qx*o ¥00° €

W**o 700 yields a collection of paths Q € W(x,l-),y (1)
lying in M x I. Each path Qxl)y (6.0)

Bk (i) begins at (x, i), and ends up at (y, j) =

(,1),y° (1)
has time lengths
Y (x, 1),
where x € x"(i), y € y*(j). Like above, we will use for [
the term a path configuration over A°. Repeatmg (63)-(64),

we obtain the measures [F" “0,4%0 40 O1 W 0,440, 10 and [FD oy

on W;o’y*o
The assertion of Lemma 20 below again follows directly

from known results, in conjunction with calculations of the
partial trace o, 0 10 Z ,. The meaning of new ingredients

in (79)-(82) is explained below.
- 0

Lemma 20. The quantity Eﬁ x*%y* %5 A\ A°) emerging in
(78) is set to be 0 when §x*° # $y**. On the other hand, for
ﬁx*o — ﬂy*O’

R 0

Eﬁ (x*o,y*o;A\AO)

— —x0\ —= /—=*0
= JW Py (407 )B(07)
x*o,y*o
X 0y (ﬁ*o) 1 (5*0 € 971\0)

X exp [—hAO (5*0)] éf (A \ A% 5*0) ,

(80)
where

Yao (81)

Similarly, the quantity & g, (X*O,y*0 A\AY | X2 ) from (79)

Xtz
vanishes when §x*° # ty*°. For §x*° = y*°,

SHCSSINVIEN

J— — — [—*0
f Bl (”)3(a")

X oy (5*0) 1 (ﬁ*o € EZAO) (82)

1

where
g} (A\A 1o er\A)

= J ) dQ;\AoB (QZ\AO) LN (QZ\AO)
WA\AO (83)

x1 (QZ\AU € 9/‘0)
X exp [—hA\AO ( o | o VXF\A)]

These representations hold Vz, B > 0 and finite A° ¢ A c T.

Let us define the functionals E(ﬁ*o) ocA(ﬁ*O), 1(5*0
G‘A) I(QA\AO € o‘AO)hAO(ﬁ*O) hA\A (QA\AU | 6*0),
"’ @"'x: =) and W), | @7 VE W) in (79)-(83).
(The functlonals B(Q7 A A0)and a, (Q A A°) are deﬁned as (70)
and (74), respectively, replacmg Awith A\ A%

To this end, let " = QX yo0 € W*o g0 bea
path conﬁguratlon represented by a collectlon of paths

[y € W(x Dy (x )(Q .in short), with end points (x, 7)

(i) (i)
and (y, j) = y°(x, i), of time-length Bk x),(y,j)- The functional
B@"") is given by

B(@") =[] [] oo (84)

i€ xex* (i)
—=x0
The functional &y (Q ) is again an indicator:

1, if Q(xz )y (x,0) (1) € MxA,
(XA (5*0) —] vz ¢ A,x o (l) ’ (85)
0 <7 < Bk iy,

0, otherwise.

Now let us define the indicator function 1(- € 97’\0) in
—x0

(80)—(83). The factor 1(Q
from ", of time- length ﬁk(Xl Oj)

€ gAO) equals one if and only

if every path Q(Xl o))

startmg at (x,i) € M x A’ and ending up at (y, j) = y°(x,1) €
M x A° remains in M x (A \ A°) at the intermediate times Bl

fOrl = 1, ey k(x,i),(y,j) —1:
s 0
Q(x,i),(y,j) (lﬁ) ¢ M X A 5 Vl = 1, e ’k(x,i),(y,j) - 1, (86)
(when k(, ;) (,, ;) = 1, this is not a restriction).
Furthermore, suppose that Q},,0 = Q. is a loop

Xan0
configuration over A \ A°, with the initial/end configuration
Xy = X7@), i€ A\ A’} represented by a collection of
loops Q7 , i € A\ A% x € x*(i). Then 1(Q 0 € F*) = 1

A\A?
if and only if each loop QF ; of time-length pk, ;, beginning
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and finishing at (x,i) € M x (A '\ A®), does not enter the set
M x A” at times Bl forl = 1,...,k,; - 1:

QL(IB) ¢ MxA’, Vi=1,...k ;-1  (87)

(again, if k, ; = 1, this is not a restriction).

The functional h*’ (5*0) in (80) gives the energy of the
path configuration O and is introduced similarly to (67),
mutatis mutandis. Next, the functional A\ (Ql*\\ a0l 5*0) in
(81) represents the energy of the loop configuration Qj, 0 in

the potential field generated by the path configuration [
A\A° * —*0 A\A° —=x0 .
W (050 107) =™ (05 0) +h (27 1195 0).

(88)

Here, the summand hA\AU(QZ\ A0) yields the energy of the

loop configuration 2}, ,,; again confer (67). Further, the term

h@" |0

and Q/ Ao for a path/loop configurations Q

WX 0,370,490 andaQA\Ao ={Q,

(2 1195,

) Y aeE(Qlan,).

x,1°
(i) €A (A\A) xex* (i),x" ex* (i)

* . . . —x0
aa0) yields the energy of 1nteract10n between Q
= {Q i€
1€ Wi\ po We set

A\A

(89)

Here, for a path 5;)1. = ﬁzxﬂ (x> of time-length Bk

and a loop Q7 s, of time—length Bk

(3,1),y° (x,0)>

X,

h(x’i)’(x l (Q Q ! /)

x,1°
B

= Zjdr

T 0
0<m<k, iy 0 0sm' <k s 1

ZU(Z) (u (‘r + Bm; ﬁzx)i)’yo(x,i)) N7 (‘r + ﬁm’; Q;,’i,))

jer

x1 (l(x,,-))yo(x,,-) (t+pm)=j=1Lasy (T + ﬁm'))

+ Z J (d (j, ]')) A% (ui)x (7+ Bm),uy (T + ﬁm'))
j,j'€rxr

x1 (l(x,i),y[’(x,i) (T + ﬁm) =j# ]J = lxl,,-/ (T + ﬁm’))
(90)

Here, in turn, we employ the shortened notation for the
pos1t10ns and indices of the sections Q (o)) (T + frm) and
(T pm') of Q(Xl) P and Q7 at times 7 + Bm and

T+ ﬁm , respectively:

ui,x (T + ﬁm) (T + ﬁm’ Q(xz xz))
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1x(T+ﬁm) = l(T+ﬁm th)y (xz))
up o (T4 pm' ) =u(r+pm'sQ5 ),

Ly (T + ﬁm’) = l(T + pm'; Q;,,i,) :
o1

Further, the functional hAo(ﬁ*0 |
determined as in (71)- (73) with Q
Next, for k™A’ Q0 | o’vx

r\A) in (82) IS
(6,0),y°(0:0) instead of Qx’i,

F\A) in (83), we set

hA\A0 ( A\A? | Q V XF\A)

=W (0 0) + h( o 10 er\A)

(92)

Here again, the summand h M Q A AO) is determined as in

(67). Next, the term AW Q7 e o’vx ) is defined
similarly to (72)-(73):

T\A

A\A°
WY (0 107 v, )

= 2 2

(1" (A\A?)x A xex” (i),x' ex* (i")

DD M L CNCRD)

i€eA\A® xex* (i),X ex* (i)
(93)

h(XI) (x i ) (Q 5*/ '/)

x,0% % x i

with
h(xt)xl)(Q Q,,)

X,i°

0sm<k,; 0<m’ <k(x; N0l

B
xj dr
0

ZU(Z) (ux’,- (t+ Bm),u,

jer

i (T + /:”m'))

x 1 (lx,i (t+pm)=j=1loy (T + ﬁm'))

+ 2 @GV

(joj")erxr

X (”i,x (7 +Bm),uyy (T + ‘Bm,))

x1 (lx)i (t+pm)=j+j = Loy (T + ﬂm')) ,
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i),(x i —1 .
h) ’)(Q;i, (x i ))

= Z Iﬁ dr [U(Z) (ux),- (7 + pm) ,E')

0<m<k

x1 (lx),- (t+pBm) = i')
+ Y 7(@(i))V (e (z + pm), %)

jer
X1 (L; (v + pm) = j) |
(94)

As before, the functionals h*(Q}) and h*(Q} | i%\ 2

have a natural interpretation as energies of loop configura-
tions.

Repeating the above observation, non-zero contributions

—x0
to the integral in (80) come only from pairs (Q* ,Q A A0)
such that Vj € I'and 7 € [0, 3], the total number of pairs
—% —% .
(W(T + B Qi) 10 (i) LT + B Qi) o)) with 0 < m <
k i € A”and x € x*(i) incident to the paths
—x0

of the configuration Q" and pairs (u(r + ﬁm'; Q;,,i,), I(t +
Bm'; Q% ) with 0 < m' < ke iy i' e A\A%and x" € x*(i")
incident to the loops of the configuration ﬁj\\ a0 does not
exceed «. Similarly, non-zero contributions to the integral in

x,i),y° (%)

(82) come only from pairs (5*0, QZ\ A0) such that the above
inequality holds when we additionally count points x € X*(j).

The integral 22 (A\A° | 5*0) defined in (81) can be
considered as a particular (although important) example of
a partition function in the volume A \ A° with a boundary

—x0
condition Q . Note the presence of the subscript A indicat-

ing that the loops contributing to éﬁ (A\A° | 5*0) can jump
within volume A only (owing to the indicator functional « ).
On the other hand, the presence of the indicator functional

I(QZ\ p €F A0) in the integral (reflected in the upperscript

=A° —x0
A° and the roof sign in the notation E, (A \ A o )
indicates a particular restriction on the jumps of the loops,
forbidding them to visit set A” at intermediate times 3. This

is true also for the integral :::20 (M A Vi;\ L) in (83): it
is a particular example of a partition function in the volume
A\ A” with a boundary condition a’v i%\ K
Other useful types of partition functions are Epo(A |
a’v Q) and Epo (A | o’V Q. V X[») where the sets of

vertices A, A°, T°, T'!, and I? satisfy
Acr’cr, ' I cT\A,

(95)
r'nri=g,

A’ cT\(AuT'uT?)

and §A, §A° < +o0o. Accordingly, 0" isa (finite) configu-
ration over A’, Q7 a (possibly infinite) loop configuration
over I', and X}, a (possibly infinite) particle configuration

13

—  —x0
over 2. The partition functions Epo(A | Qv Q) and

Epo(A | a’v Q[ VXp,) are given by

Epo (K 10y Q;l)

- |, d0zan (25) B(2) (96)

X exp [—hK (Q% | o’y Q;)] )

—~  —=*0
g0 (R 107 v oy v

= |, d0zan (25) B(2) (97)

A

xexp[-h" (05 10" v oL vz

with the indicator apo as in (74). These partition functions,
feature loop configurations Q5 formed by loops Q ;, i € A,
which start and finish in A, are confined to I and move
in a potential field generated by a’v Qpi, where o’ =
{ﬁz‘x,i),yo(x’i)} and Qi = {Q, x €x"(i), i € '} or Q4 VED,
where X[, = {X"(i), i € I%}. (The latter can be understood
as the concatenation of the loop configuration Q; over I'
and the loop configuration over I formed by the constant
trajectories sitting at points X € X"(i), i € %) In (96) we
assume that, V7 € [0, 8] and j € T, the number

ﬁ{(x,i,m) ti €A, l(T+mﬁ;Q;i) =j,0<m <kx,i}

+i{eni) i€ A% 1(r+mpBsQy )

%,i),y° (%)

= j, 0<m«< k(x,i),yo(x,i)}

+4{(xiym)ieT!,
l(r +mps Q;l) =j,0<m< kx,i}
(98)

does not exceed k. Analogously, in (97) it is assumed that the
same is true for the above number plus the cardinality $X* ().

Such “modified” partition functions will be used in forth-
coming sections.

2.4. The FK-DLR Measure u, in a Finite Volume. The Gibbs
states ¢, and @, - give rise to probability measures p, and
T\A
g on the sigma algebra 28, of subsets of W, . The sigma
T\A

algebra 28, is constructed by following the structure of the

space Wy (a disjoint union of Cartesian products); confer

Definition 16. The measures p, and 5+ are determined
T\A
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by their Radon-Nykodym derivative p, and p A, relative to

the measure dQ}:

By (dQZ)
day

PA(Q;)::
-, (0)B(0})

.—(A) A A

Aoy,

Bax: (dQ/*\) 1

T\A

doj E(AI r\A)
= a, (Q}) B(Q})

xexp [-h" (@} 157, )]

X exp [—h Q) € Wy,

P, (@}) =

Q) eW,.
(99)

Given A” ¢ A, the sigma algebra 28 0 is naturally identified
with a sigma subalgebra of 28,. The restrictions of u,

to 2,0 and 4 AR, e denoted by ,uﬁo and yﬁ?ij ; these
T\A T\A

measures are determined by their Radon-Nikodym deriva-
0 * 0 * * 0 *

tives pi () = py (dQy)/dQ}, and p/’:li;\A(QAo) =

Mg, (070)/dQ.
The first key property of the measures p, and p 5+ s
T\A

expressed in the so-called FK-DLR equation. We state it as
Lemma 21 belows; its proof repeats a standard argument used
in the classical case for establishing the DLR equation in a
finite volume A c I.

Lemma 21. Forall z, B > 0 satisfying (22), and A° ¢ A" c A,
the probability density pfto admits the form:

P (@)

S, e (on 00,0 (ai,). (100)
where -
i (@ 10500) = e [0 (0501 0,0)]
B, (AN 9L v )
Er (A 105 ,)
(101)

and the conditional partition functions E,(A' \ A° | Q* v
Q) and B (A Q) are determined as in (96).

0
Similarly, for pﬁlij one has:
T\A

AO
): JW* qA\A’( A0 |QA\A’VX[‘\A)
aw (102)

pAle (

T\A
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where

AO
qA\A’( o | Qi VXF\A)

= exp [—hAO (@ 125 V"r\A)] (103)

Ex(A\AY O vy, VE

Ea (A 10, vE,)

and the conditional partition functions E (A A | QL V
QA\A, er\A) (md._.A(A | QA\A, V X=
(96).

T\A )

X

F\A) are determined as in

As in [1], (100) and (102) mean that the conditional den-

0 0
sities pj (Qp0 | Q) and pﬁli%m(ﬂj*\o | Q},) relative

AN . . A° %0

to o-algebra 28 coincide, respectively, with g, ,/(Q™ |
0

Q) and gy (@ A\

| QA\A, \Y; XF\A) for p,** —and

A\A' * *
Hape, 2% Q) \n € Wi andaa. Qo € Wg.
0
As in [1], we call the expressions qﬁ\ A ( Qo | QI*\\ A1) and
0
qﬁ\ AQ0 | Q) V% Xr\ A) as well as the expressions
—x0

—*0 * —x%
qA\A,(Q | A\A,) and qA\A,(Q | QA\A, \Y; xf\A)

appearing below, the (conditional) RDM functionals (in
brief, the RDMFs). The same name will be used for the

quantity qﬁ A(Q% | Qf\\ ) from (110)-(111) and the quantity
@7 Q) from (112)-(113),

The second property is that the RDMKs Fﬁo x*%,y*%) and
Ffl;j (x*,y"°) are related to the measures g, and py - K

T\A

Again, the proof of this fact is done by inspection.

Lemma 22. The RDMK Fﬁo (x*%,y*°) is expressed as follows:
VA c A" c A,
0 s *
Fﬁ (x 0,y 0)

- [, Pow (@) (a7)

X7

S@NPE )
y JW* ”A\A’ (dﬂj\\A’) 1 (Qj\\ G 3(71\0)
AV
xdaw (271 Q)
where
qf{A, (ﬁ*o | QZ\A’)
=exp[-0" (@710}, )] (105)
2 (A\A 10 vy,
B, (A' | QA\A )
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Similarly,

FA“ (x*o *0)
Ale\/\ ¥

- JW:U’YO Py (d2)a, (27

xB(a”)1(a” e #) (106)
< 1, 09001 (i <)
< (@ 1950 v, )
where
I (27 1940%,)
—exp [0 (@7 1) v, )] w0

N (A\A°|Q VQA\A,er\A)

g, (A' | Q0 v xr\A)

Here the partztzon functions E, (A \AY | ‘v Q) and

(HA)(A \A° 1@ vQA\A,vX
83

F\A) are determined in (81) and

Remark 23. Summarizing the above observations, the mea-
sures py and g, ;- are concentrated on the subset in Wy
T\A

formed by loop configurations Q} such that Vz € [0, ], the
section Q} (1) has < « particles at each vertex i € A.

3. The Class of Gibbs States & for
the Fock Space Model

3.1 Definition of Class @. In this section we apply the idea
from [1] to define the class of states ® = &, 4 for the model
introduced in Section 2 and state a number of results. These
results will hold under condition (34) which is assumed from
now on. As in [1], the definition of a state ¢ € & is based on
the notion of an FK-DLR probability measure g on the space
W{'; the class of these measures will be also denoted by ®

Definition 24. Space Wy is the (infinite) Cartesian product
xiErVV{?} (cf. (60)); its elements are loop configurations Qf =
{Q*(i), i € T} over I. A component Q*(i) is a finite loop
configuration (possibly, empty), with an initial/final particle
configuration x* (i) ¢ M. Formally, Q" (i) is a finite collection
of loops Q;, of time-length pk,; where k,; = 1,2,...,
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starting and finishing at a point (x,7) € M x I'. For reader’s
convenience, we repeat (37) for the case under consideration:

Q37 e [0, Bk,

X1

— (9? (Q:;i,'r) ,17(0;1.,'[)) e M xT,
Q;(0) = QF; (Bky-) = (1),

Qy; has finitely many jumps on [0, Bk, ,];

* . ’ ’
Qx’i is cadlag;

if a jump occurs at time 7, then

ali(Qg,7 ). i(Q,7)] =1
(108)

By B = 2B, we denote the g-algebra in W' generated
by cylindrical events. Given a subset T ¢ T (finite or infinite),
we denote by " = 2| the o- -subalgebra of 2B generated by
cylindrical events localized in T. G1ven a probab111ty measure
p = pron (W,
pon W',

%), we denote by g" = p. the restriction of

Definition 25. The class @ under consideration is formed by
measures g which satisfy the following equation: V finite A €
I'and A’ € A, the probability density:

(a0

pAO (Q*O) _ p[[:ﬂ (Q*o) = v(dQ*O) , Q*O € W;\ko,

(109)

is of the form

o (@) = Jw* q?\OA (@105, 6™ (d05,), 10)

B
where
gt (27 107,)
= exp[-h" (27 1 0y, )]
Er(A\A° Qv ay,)

X 5
g (A | Q;\A)

(111)

and the conditional partition functions Ep(A \ A Qv
Q’r“\ A)and Ep(A | Q;\ ) are determined as in (96).

As in [1], (110) means that the conditional density
pAOlr\A(Q*0 | Ql’i\ A)» relative to o-algebra QBF\A, coincides

with qr\A(Q*0 | Qr\A) for Fr A_aa. Qr\A € W and Vyo—

aa. Q0 ew’ 0.

Remark 26. The measure pp inherits the property from
Remark 23 and is concentrated on the subset in W} formed
by (infinite) loop configurations Q; such that, for all 7 €
[0, B], the section Q} (7) has < « particles at each vertexi € A.
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Given a measure g € &, we associate with it a normalized
lipear functional ¢ = ¢, on the quasilocal C"-algebra B.
First, we set

(112)
T
<al, (@ 107,),
where
(@0 105,)
= exp[-0" (@7 [ 0f,,)] a13)

This defines a kernel FAO(X*O,y*O), x5y e M,
where A” ¢ T is a finite set of sites. It is worth reminding
the reader of the presence of the indicator functionals 1(- €

0
9/\0) in (112) and (113) (in the integral for Eﬁ (A\A° |
a’v Qr\,)). These indicators guarantee the compatibility
property: V finite A® ¢ A,

FAO (X*O, y*())

:JM*MA@ [T I @2

FEANAL zez" (j)

1 * * * *
XFA (X OVZAl\Ao,y OVZAI\AO).
(114)

Next, we identify the operator RAO (a candidate for the
RDM in volume A°) as an integral operator acting in & ,0 by

A° *0) _ A° %0 _ %0 *0 %0
(R9)(x*) = | ¥ () o(y)ay. s

Equation (114) implies that

trgy RY =R, (116)

A\A?

Definition 27. The functional ¢ € © is identified with the

0

(compatible) family of operators R If the operators R*
are positive definite (a property that is not claimed to be
automatically fulfilled), we again call it an FK-DLR state in
the infinite volume (for given values of activity z and inverse
temperature f3). To stress the dependence on z and f3, we
sometimes employ the notation ®(z, f3).
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3.2. Theorems on Existence and Properties of FK-DLR States.
We are now in position to state results about class &. We
assume the conditions on the potentials U" and U® from
the previous section, including the hard-core condition for
u®.

Theorem 28. For all z, 3 € (0,+00) satisfying (22), any lim-
iting Gibbs state ¢ € &° (see Theorem 3) lies in ©&. Therefore,
the class of state & s is nonempty.

Theorem 29. Under condition (22), any FK-DLR state ¢ € ©
is G-invariant, in the sense that, ¥ finite A° C T and Vg € G,

the RDM RY satisfies (35). Consequently, (36) holds true.

4. Proof of Theorems 3, 6, 28, and 29

4.1. Proof of Theorems 3 and 28. The proof is based on the
same approach as that used in [1]. First, given A° ¢ T,
we establish compactness of the sequence of the RDMKs

Fﬁo x*%,y*%) and Ffl]ij (x*%,y*°) (see (78)—(83)) as functions
T\A

of variables x** = {x*°(i)},y*" = {y*°(i)} € M*N | with

1" (@), 4y"™ () < x,

when A ~ T. Then we use Lemma 1.1 from [1] to derive that

1x:0 =y’ iedA, (117)

the sequence of the RDMs Rﬁo and Rﬁ(l;j is compact in the
T\A
trace-norm operator topology in # yo.
0
To verify compactness of the RDMKs F} (x*°,y*°) and

0

Fﬁlif (x*%,y*°) we, again as in [1], use the Ascoli-Arzela the-
T\A

orem, which requires the properties of uniform boundedness

and equicontinuity. These properties follow from the follow-

ing.

Lemma 30. (i) Under condition (22) the RDMKs Fﬁo (x*0,

v*) and Fﬁfij (x*°,y*°) admit the bounds
T\A

FAU *0 _ x0 FA0 *0 _ x0
A \X Y ) AR, XYy

0 (118)
< [(e30%)] (Ba)™" @,

where

O = sz exp (k®),
k2l (119)
with © = k3 (ﬁ(l) w107 4 xf(l)V) .
(Note that @ < oo under the assumption (22)) Let pg\l,}) yields
the supremum of the transition function over time kf3 for Brow-
nian motion on the torus M:

Py = sup p'* (x,y) = p* (0,0),

e (120)

and Py, = supkzlpx}). Finally, the upper-bound values 6(1),

ﬁ(z), J(1), and V have been determined in (14), (15), and (18).
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(ii) The gradients of the RDMKs Fﬁo(x*o,y*o) and

Fﬁle (x**,y**) satisfy Vi € A and x € x*°(i), y € y*°(i),
2o (X*O,y*o)‘ i VxFATx—\A (xo,y )|
|V},F2O (x*o,y*0)| IV Fﬁ?"m (xo,yo)l (121)
< (1A°) ©0' By [(1e8A°)1] (Brr) ™ @,
where

@' = Y k" exp (kO).

k>1

(122)

(Again, @' < oo under the condition (22).) The ingredients p,,

and U(l) U , J(), and V as in statement (i).

Proof of Lemma 30. First, observe that p,,; < co onacompact

manifold. Bound (119) is established in a direct fashion. First,
we majorize the energy

b (071 05u) =0" (0
contributing to the RHS in (80) and (81) and the energy

n (e

) +h(Q0 107) (23)

I QA\AO VXF\A)
A° * —*0
=" (07 1%, ) +h(Q4 0 110"7)
contributing to the RHS in (82) and (83). This yields the factor

[T exp[k(@)e].
wea”’

(124)

(125)

Next, we majorize the integral = IW**O " ﬁ:*o’y*o(dﬁ*o) in
x*Vy

(80) and (82); this gives the factor

(£0%) g [(x2A°)!] (B 0"

The aftermath are the ratios (78) and (79) with x*° = y** = ¢;
they do not exceed 1.

Passing to (121), let us discuss the gradients V. only. (The
gradients in the entries of V, are included by symmetry.)
The gradient in (121), of course, affects only the numerators
E, (X*O,y*0 A\ A% and E B, (x*o,y”=0 AVAY | x r\A) in (78)
and (79). The bounds (121) are done essentially as in [1]. For

0
definiteness, we discuss the case of the RDMK Fﬁ x*%,y*);
the RDMK F4 A|* (x%,y°) is treated similarly. There are two

contributions 1nto the gradient: one comes from varying

(126)

the measure ﬁ;»«o)y*o(dﬁ*o), and the other from varying the

functional exp[-h™' (@) ~h™\' (@ 0 [ Q7).

The first contribution can again be uniformly bounded in
terms of the constant p,,. The detailed argument, as in [1],
includes a deformation of a trajectory and is done similarly
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to [1] (the presence of jumps does not change the argument
because p,, yields a uniform bound in (43)).

The second contribution yields, again as in [1], an expres-
sion of the form:

xi (Q(x,i),y"(x,i)’ QA\A") (127)

o[ (87) 1 (0 107)]

where the functional h (Q(xw xt)’Qj\\Ao) is uniformly

bounded. Combining this an upper bound similar to (119)
yields the desired estimate for the gradients in (121). O

Hence, we can guarantee that the RDMs R " and RY AIx

converge to a limiting RDM RY along a subsequence in A
I'. The diagonal process yields convergence for every finite
A° ¢ T. A parallel argument leads to compactness of the

measures yf\\o for any given A” as A~ T. We only give here
a sketch of the corresponding argument, stressing differences
with its counterpart in [1].

In the probabilistic terminology, measures y, represent
random marked point fields on M x F with marks from the

space W* = W, where W' = [ Jo, W, 0 P and W is the space
ofloops of t1me -length kﬁ starting and ﬁmshmg at0 € M and
exhibiting jumps, that is, changes of the index. (The space W_;
introduced in Definitions 7 and 13 can be considered as a copy
of W* placed at site i € ' and point x € M.) The measure

yﬁo describes the restriction of p, to volume A’ (i.e., to the
sigma algebra 2B},) and is given by its Radon-Nikodym
derivative pﬁo relative to the reference measure dQ}, on
Wy, (cf. (66), (100)). The reference measure is sigma-finite.

Moreover, under the condition (22), the value pﬁo(ﬂf\o) is
uniformly bounded (in both A~ T and Q}, € Wy).
This enables us to verify tightness of the family of measures

{yf\\o,A / T} and apply the Prokhorov theorem. Next, we
use the compatibility property of the limit-point measures
‘uf\o and apply the Kolmogorov theorem. This establishes the
existence of the limit-point measure .

By construction, and owing to Lemmas 21 and 22, the

limiting family {RAO} yields a state belonging to the class ©.
This completes the proof of Theorems 3 and 28.

4.2. Proof of Theorems 6 and 29. The assertion of Theorem 6 is
included in Theorem 29. Therefore, we will focus on the proof
of the latter. The proof based on the analysis of the conditional
RDMFs q?\A( | QF\A) and qr\A( 0 | QF\A) introduced
in (111) and (112). For definiteness, we assume that vertex o €
AY so that A° lies in the ball A, for n large enough. As in
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[1], the problem is reduced to checking that Vz, 3 € (0, c0)
satisfying (22), g € G and finite A® T,

~A° —x*0 *
ar\a(n) (gQ | QF\A(n))
m
n— 00 AAO

—x0 «
qr\a(m) (Q | QF\A(n))

here we need to establish this convergence (128) uniformly in
the argument QF\A(n) ={Q" (i), i € T\ A(n)} with Q" (i) <«

=1 (128)

—x0 —%
and in Q@  outside a set of the [P’Xotf y measure tending to 0

—x0
asn — 00. The latter is formed by path configurations Q
that contain trajectories visiting sites i € I'\ A(7(n)) where
7(n) grows with n; see Lemma 31 below. The action of g upon

—x0 —% % .
a path configuration Q@ = = {Q, ;) o(c i € A% x € x*%is
defined by

gﬁ*o = {gﬁzﬁx,a,y"(x,i)} ’

where (gﬁzx,,-))yo(x,,)) (M=g (ﬁzx,i),yo(x,i) (1).

We want to establish that Va € (1, 00), for any » large
enough, the conditional RDMFs satisty

_A° —+0 * ~A° -15*0 *
Aqr\A(n) (gQ | QF\A(n)) * aqr\A(n) (g Q| Qr\A(n))

(129)

_A° —x(0 %
2 247\ p(n) (Q | QF\A(n)) .
(130)

As in [1], we deduce (130) with the help of a special con-
struction of “tuned” actions g, o on loop configurations
wpm\a0 (over which there is integration performed in the
numerators

;AO —x0 %
B (Am\A° g0 vy,
, (131)

=A 0, ~-15*0 *

B (A\A g0 VoL,
. . ~A° —*0 *
1n0 the exprt(a)ssmn for qr\a(m) (82 | Qnaw) and
Q?\A(n)(g_lﬂ | Q;\A(n))). The tuning in g, a0 is chosen
so that it approaches e (or the d-dimensional zero vector in
the additive form of writing), the neutral element of G, while

we move from A towards T'\ A(n).
Formally, (130) follows from the estimate (132) below: V

finite A° ¢ T, 5*0 € WA(n), g € Ganda € (1,00), for
any # large enough, Vﬂl*\(n)\Ag = {Q*(@), i € A(n)\ A°} and
Qv = (Q7(0), i € T\ A(n)} with §Q" (i) < %,

% exp [0 ((80°) V (Buime @inac) | Qi)
+ ; exp [ —h*®

X ((g_lﬁ*()) 4 (gl_\tn)\AU Ql*\(n)\AO) | QF\A(n))]

> exp [—hA(") (5*0 v Qj\(n)\Ao | Q;\Am))] )
(132)
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A\A 1S deter-
mined by specifying its temporal section {g, 0y, (7 +
pm), i € A(n) VA%, x e x"(d), 0 < m < k,;}. That is, we
need to specify the sections:

(” (T + B gm0 Q;z) 1 (T + pm; gA(n)\A"Q;,i)) (133)

for loops Q0 ; constituting g, 10 Qa0+ TO this end we set

In (132), the loop configuration g, ,0

u (T + Pm; gA(n)\AoQ;)i) = gy')u (T + pm; Q;,)
(134)

if 1(7+ B gp a0 Qi) = .

In other words, we apply the action g;") to the temporal sec-
tions of all loops Q; located at vertex j at a given time,
regardless of position of their initial points (x, i) in A(n) \ A°.
Observe that (130) is deduced from (132) by integrating
in de\(n)\Ao and normalizing by &, a0 (Q;\A(n)); see (80)
. ! . %
with A *: A(n). (The Jacobian of the map QA(H)\ O
EAM)\A® Q A\ A? equals 1.)
Thus, our aim becomes proving (132). The tuned family
Eama 18 composed of individual actions gi.”) €G:

BAm\A® = {gﬁ-n)s]' € A(n)\ AO}-

Elements gi.") are powers (multiples, in the additive parlance)

of element g € G figuring in (128)-(132) (resp., of the corre-
sponding vector 6 € M; cf. (9)) and defined as follows. Let

QE.") denote the vector from M corresponding to gﬁ."), and we
select positive integer values 7(n) = [log (1 + )] and set

(135)

(n) _ :
0" =6v (n, ), (136)
where
Nt d (o, j) <7 (),
v(n,j) = ) _ _ N =
(n.1) {S(d(],o) -7(n),n-r(n)), d(o,j)>7(n).
(137)
In turn, the function 9 is chosen to satisfy
1(0<a<b)
9(@b)=1@<0)+ ——
(a,b) = 1(a<0) 0
, (138)
X J zWw)du, a,beR,
with
b
Q) = J ¢ (1) du ~ log log b,
0 (139)

where((u):1(u§2)+1(u>2);, b>o0.
ulnu

Lemma 31. Given z,3 € (0,00) satisfying (22) and a finite
set A°, there exists a constant C € (0, 00) such that on,yo €

M, the set of path configurations o e W;*o)y*o with
h (5*0) < +00 which include trajectories visiting points in
I'\A(¥(n)) has the ﬁ:o)yo measure that does not exceed C/([(1+
r(m) DL
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Proof of Lemma 31. The condition that hAO(ﬁ*O) < +00
implies that the total number of sub trajectories of length

B in 0" does not exceed « x #A° which is a fixed value
in the context of the lemma. Each such trajectory has a
Poisson number of jumps; this produces the factor 1/([(1 +

r(n) . O

Back to the proof of Theorem 29: let g;\tn)\ Ao be the col-
lection of the inverse elements:

- m~l .
Erto = {8) 5 JEAM\AL. (140)

The vectors corresponding to g;")_l are —Q;") € M. We will
use this specification for ggn) and gﬁ.")_l for j € A(n), or even
for j € T, as it agrees with the requirement that g;") = g when
jeA’and g?‘) = e for j € I'\ A(n). Accordingly, we will use
the notation g, ;) = {g;"), j € An)}.

Observe that the tuned family g, ,o does not change

RAGINAC

the contribution into the energy functional " com-

ing from potentials U and U®): it affects only contributions
from potential V.
The Taylor formula for function V, together with the

above identification of vectors QE”), gives
|V (gg”)x, g§.7)x'> +V (gi.”)_lx, g§.7)_1x’) -2V (x, x')|
< C|Q|2|v (n,j) - v(n, j')|2\_/, x,x €M.
(141)

Here C € (0, 00) is a constant, |6| stands for the norm of the

vector 0 representing the element g, and the value V is taken
from (14).
Next, the square |v(n, j) — v(n, j')I2 can be specified as

o, j) - v(n, j')|2
o,
if d(j,0),d(j',0) <7 (n),
0,
if d(j,0),d(j,0) 2n
[S(d(j,o) —-7(n),n-7(n))
=4 -9(a(0) - Fm),n-7(n))]
if 7 (n) < d(j,0),d(j,0) <n,

9(d(j, 0) — 7(n),n — 7(n))’,

if 7 (n) <d(j,0) < ma(j,0) € IF (),
9(a(j',0) - F(m),n—(m)’,

if 7 (n) < d(j',o) <n,d(j,0) €]r(n),n[.
(142)

2
>
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By using convexity of the function exp and (141), Va > 1,
a A(n) —*0 * *
5 &Xp [—h (gA(n) (Q v QA(n)\AO) | QF\A(H))]

+ %l exp [—hA(n) (g,}tn) (5*0 v Qj\(n)\Al)) | QF\A(m)]

1
> aexp [—Eh“(”)'r\“")

—*0 * *
X (gA(n) (Q v QA(n)\AO) s Qr\A(n)>

1 A(n) —1 —x0 % *
-0 (g0 (0 V“A(n)\A°)'“f\A<">)]
AW (60, o . e
> aexp [—h 8 (Q V Qo | QF\A(n))] € ’
(143)
where

Y=Y(ng) = ﬁxz
X Z J (d (j, ]')) 'v(n, 7) —v(n, j')|2. (144)

(j»j")eam)xT
The next observation is that
Y < 3p’ o

x )

(jj")eAm)xT
X [S(d(j,o) —-7(n),n-7(n))
—9(d(j',o) —F(n),n—?(n))]

1(d(j.0) <d(j0))7(a(j "))

(145)
2
where, owing to the triangle inequality, for all j, j’ : d(j, 0) <
da(j', o)
0<9(d(j,0)-7(n),n—7(n)

-9(a(j'0) -F(m),n-7(n)) (146)

J C(d(j’o)_F)
<a07) Q-
This yields
310"
Y 2 z
<P ey

7(a(i. 1)) a(i i) ¢(aG, 0 -7 m)’

<)

(") eAm)xT

2
210 [sppz,j,j,d(,-,;)z}

S0
Qn—-71(n)) jer j'er

x Y L(a(j,0) -7 m),

jeA

n+rg

(147)

where function  is determined in (139).
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Therefore, it remains to estimate the sum
ZjeA {(da(j,0) - 7(n)). To this end, observe that ul (1) < 1
n+rg

when u € (3, 00). The next remark is that the number of sites
in the sphere X, grows linearly with n. Consequently,

Y G0 -Fm) = Y (k-7 (m)

JEM iy 1<k<n+tr,

x Y {(k=7(n)

J€Zk
_ (148)
<Cy Y ((k—F(n)
1<k<n+tr,
<C,Q(n+ry—-71(n),
C
Y<——m—
Q(n-7(n)
Therefore, given a > 1 for n large enough, the term
ae"©Y/? in the RHS of (145) becomes >1. Hence,

— 00, as 1 — O0O.

LZ—I exp [—hA(n) (gA(n) (5*0 v Qz*\(n)\AO) | QF\A(n))]
+ g exXp [—hA(n) (g/_\tn) (5*0 N QZ(n)\AO) | Q;\AM))]

> exp [—hA(”) (5*0 V Qj\(n)\Ao | QF\A(n))] .

(149)
Equation (149) implies that the quantity
A’ T\A() (5*0
gt " (Q | Qr\A(n))
= J dﬂj\(ﬂ)\AO
WA<n)\A0 (150)

exp [—hAo (6*0 V Qe | Q;\AO)]

X
e (Phac)

>

obeys

i[5 (60 10,

n— 00

0 n -15*0 ®
"ﬂ;;\ Ae) (g Q| QF\A(n)>] (151)

B
uniformly in boundary condition wr\,,. Integrating (151)
dpr M (wp p ) yields (132).

. A°IN\A(n) (*0 *
> ZWIeréoq (Q | QF\A(n))
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