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Two experimental tasks in psychology, the two-stage gambling game and the Prisoner’s Dilemma game,

show that people violate the sure thing principle of decision theory. These paradoxical findings have

resisted explanation by classical decision theory for over a decade. A quantum probability model, based on a

Hilbert space representation and Schrödinger’s equation, provides a simple and elegant explanation for

this behaviour. The quantum model is compared with an equivalent Markov model and it is shown that the

latter is unable to account for violations of the sure thing principle. Accordingly, it is argued that quantum

probability provides a better framework for modelling human decision-making.
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1. INTRODUCTION
Cognitive science is concerned with providing formal,

computational descriptions for various aspects of cognition.

Over the last few decades, several frameworks have been

thoroughly examined, such as formal logic (e.g. St Evans

et al. 1991), information theory (e.g. Chater 1999), classical

(Bayesian) probability (e.g. Tenenbaum & Griffiths 2001),

neural networks (Rumelhart & McClelland 1986) and a

range of formal, symbolic systems (e.g. Anderson et al.

1997). Being able to establish an advantage of one

computational approach over another is clearly a funda-

mental issue for cognitive scientists. Two criteria are needed

to achieve this goal: one is to establish a striking empirical

finding that provides a strong theoretical challenge and the

other is to provide a rigorous mathematical argument that a

theoretical class fails to meet this challenge. This paper

reviews findings that challenge the classical (Bayesian)

probability approach to cognition, and proposes to

exchange this with a more generalized (quantum) prob-

ability approach.

The empirical challenge is provided by two experi-

mental tasks in decision-making, the Prisoner’s Dilemma

and the two-stage gambling task, which have had an

enormous influence on cognitive psychology (and econ-

omics—there are over 31 000 citations to Tversky’s work,

one of the researchers who first studied these tasks,

e.g. Tversky & Kahneman 1983; Shafir & Tversky 1992;

Tversky & Shafir 1992). These experimental tasks are

important because they show a violation of a fundamental

law of classical (Bayesian) probability theory that, when

applied to human decision-making, is called the ‘sure

thing’ principle (Savage 1954).

The sure thing principle (Savage 1954) is fundamental

to classical decision theory: if you prefer action A over B

under state of the world X, and you also prefer A over B
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under the complementary state wX, then you should

prefer A over B when the state is unknown. This principle

was tested by Tversky & Shafir (1992) in a simple two-

stage gambling experiment: participants were told that they

had just played a gamble (even chance to win $200 or lose

$100), and then they were asked to choose whether to play

the same gamble a second time. In one condition,

they knew they won the first play; in a second

condition, they knew they lost the first play; and in a

third condition, they did not know the outcome. Surpris-

ingly, the results violated the sure thing principle: following

a win/loss, the participants chose to play again on 69%/

59%, respectively, of the trials; but when the outcome was

unknown, they chose only to play again on 36 per cent of

the trials. This preference reversal was observed at the

individual level of analysis with real money at stake.

Similar results were obtained using a two-person

Prisoner’s Dilemma game with pay-offs defined for each

player as in table 1. The Nash equilibrium in standard game

theory is for both parties to defect. Three conditions are

used to test the sure thing principle: in an ‘unknown’

condition, you act without knowing your opponent’s action;

in the ‘known defect’ condition, you know your opponent

will defect before you act; and in the ‘known cooperate’

condition, you know your opponent will cooperate before

you act. According to the sure thing principle, if you prefer

to defect, regardless of whether you know your opponent

will defect or cooperate, then you should prefer to defect

even when your opponent’s action is unknown.

Once again, people frequently violate the sure thing

principle (Shafir & Tversky 1992)—many players defected

knowing the opponent defected and knowing the

opponent cooperated, but they switched and decided to

cooperate when they did not know the opponent’s action.

This preference reversal by many players caused the

proportion of defections for the unknown condition to fall

below the proportions observed under the known

conditions. This key finding of Shafir & Tversky (1992)

has been replicated in several subsequent studies (Croson

1999; Li & Taplin 2002; Busemeyer et al. 2006a; table 2).
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Table 1. Example pay-off matrix for a Prisoner’s Dilemma
game.

you defect you cooperate

other defects
other: 10 other: 25
you: 10 you: 5

other cooperates
other: 5 other: 20
you: 25 you: 20

Table 2. Empirically observed proportion of defections in
different conditions in the Prisoner’s Dilemma game.

study
known to
defect

known to
cooperate unknown

Shafir & Tversky (1992) 97 84 63
Croson (1999; avg. of first

two experiments)
67 32 30

Li & Taplan (2002) 83 66 60
Busemeyer et al. (2006a) 91 84 66
average 84 66 55
Q model 81 65 57
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Note that Prisoner’s Dilemma is a task that has

attracted widespread attention not just from decision-

making scientists. For example, it has been intensely

studied in the context of how altruistic and cooperative

behaviour can arise in both humans and animals

(e.g. Axelrod & Hamilton 1981; Stephens et al. 2002;

Kefi et al. 2007). Violations of the sure thing principle

specifically have not been demonstrated in animal

cognition. However, both Shafir (1994) and Waite

(2001) showed that transitivity, another fundamental

aspect of classical probability theory, can be violated in

animal preference choice (with grey jays and bees,

respectively). Also, it turns out that a core element of

our model for human decision-making in the Prisoner’s

Dilemma has an analogue in animal cognition, raising the

possibility that such a model may be applicable to animal

cognition as well.

We present an alternative probabilistic framework for

modelling decision-making, based on quantum prob-

ability. Why consider a quantum probability model for

decision-making? The original motivation for the develop-

ment of quantum mechanics in physics was to explain

findings that seemed paradoxical from a classical point of

view. Similarly, paradoxical findings in psychology have

made a growing number of researchers seek explanations

that make use of the quantum formalism in cognitive

situations. For example, Aerts & Aerts (1994; see also

Khrennikov 2004; La Mura in press; Mogiliansky et al.

in press) modelled incompatibility and interference effects

that arise in human preference judgements. Gabora &

Aerts (2002; see also Aerts & Gabora 2005a,b; Aerts et al.

in press) modelled puzzling findings found in human

reasoning with conceptual combinations. Bordley (1998;

see also Franco in press) modelled paradoxical

results obtained with human probability judgements.

Van Rijsbergen (2004; see also Widdows 2006; Bruza

et al. 2008) showed that classical logic does not appear the

right type of logic when dealing with classes of objects and

a more appropriate representation for classes is possible
Proc. R. Soc. B (2009)
with mathematical tools from quantum theory. Such

approaches can be labelled ‘geometric’ (cf. Aerts &

Aerts 1994) in that they use the geometric properties of

Hilbert space representations and the measurement

principles of quantum theory, but not the dynamical

aspects of quantum theory (time evolution with Schrö-

dinger’s equation).

A much smaller number of applications have attempted

to apply quantum dynamics to cognition. For example,

Atmanspacher et al. (2002) modelled oscillations in

human perception of impossible figures. Aerts et al.

(2004) modelled how a human observer alternates

between perceiving the statements in a liar’s paradox

situation as false and true. Busemeyer et al. (2006b)

presented a quantum model for signal detection type of

human decision processes. Our proposal builds on this

latter work (and particularly that of Busemeyer et al.

2006a). We were interested in a model that would have

implications for the time course of a decision, as well as

accurately predicting choice probabilities in the Prisoner’s

Dilemma and two-stage gambling task. A novel aspect of

our proposal is that we attempt to derive a relevant

Hamiltonian a priori, on the basis of the psychological

parameters of the decision-making situation.

Finally, note that the goal of models such as the above

is to formulate a mathematical framework for under-

standing the behavioural findings from cognition and

decision-making. This objective must be distinguished

from related ones, such as constructing new game

strategies using quantum game theory (Eisert et al.

1999), modelling the biology of the brain using quantum

mechanics (Pribram 1993; Hameroff & Penrose 1996) or

developing new algorithms for quantum computation

(Nielsen & Chuang 2000).

The violation of the sure thing principle readily

suggests that a classical probability model for Tversky

and Shafir’s results will fail. We go beyond intuition and

develop a standard Markov model for the two-stage

gambling task and the Prisoner’s Dilemma, to prove that

this model can never account for the empirical findings. In

this way we motivate a more general model, based on

quantum probability. Researchers have recently successfully

explored applications of the quantum mechanics formal-

ism outside physics (for example, notably computer

science, e.g. Grover 1997). Explorations of how the

quantum principles could apply in psychology have been

slow, partly because of a confusion of whether such

attempts implicate a statement that the operation of the

brain is quantum mechanical (e.g. Hameroff & Penrose

1996). This could be the case or not (cf. Marr 1982), but

it is not the issue at stake: rather, we are asking whether

quantum probability could provide an appropriate math-

ematical framework for understanding/modelling certain

behavioural aspects of cognition. Key problems in such an

endeavour are (i) what is an appropriate Hilbert space

representation of the task, (ii) what is the psychological

motivation for the corresponding Hamiltonian, and

(iii) what is the meaning of time evolution in this context?

We address all these problems in our quantum probability

model of decision-making in the Prisoner’s Dilemma task

and the two-stage gambling task. The model is described

with respect to the Prisoner’s Dilemma task, but extension

to the two-stage gambling task is straightforward.
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2. DESCRIPTION OF THE MODEL
(a) Step 1: representation of beliefs and actions

The Prisoner’s Dilemma game involves a set of four

mutually exclusive and exhaustive outcomes UZ{BDAD,

BDAC, BCAD, BCAC}, where BiAj represents your belief

that your opponent will take the ith action, but you intend

to take the jth action (D, defect; C, cooperate). For both

the Markov and quantum models, we assume that the

probabilities of the four outcomes can be computed from a

4!1 state vector

jZ

jDD

jDC

jCD

jCC

2
66664

3
77775:

For the Markov model, jijZPr[observe belief i and

action j ], with
P

i

P
jjijZ1. For the quantum model, jij

is an amplitude, so that jjijj
2ZPr[observe belief i and

action j ], with
P

i

P
j jjij j

2Z1. For both models, we

assume that the individual begins the decision process in

an uninformed state:

j0 Z
1

4

1

1

1

1

2
66664

3
77775;

for the Markov model and

j0 Z
1

2

1

1

1

1

2
66664

3
77775;

for the quantum model.
(b) Step 2: inferences based on prior information

Information about the opponent’s action changes the

initial state j0 into a new state j1.

If the opponent is known to defect, the state changes to

j1 Z
1

2

1

1

0

0

2
66664

3
77775;

for the Markov model, and

j1 Z
1ffiffiffi
2

p

1

1

0

0

2
66664

3
77775;

for the quantum model; similarly, if the opponent is

known to cooperate, the state changes to

j1 Z
1

2

0

0

1

1

2
66664

3
77775;
Proc. R. Soc. B (2009)
for the Markov model and

j1 Z
1ffiffiffi
2

p

0

0

1

1

2
66664

3
77775;

for the quantum model. If no information is provided,

then the state remains unchanged so that j1Zj0.
(c) Step 3: strategies based on pay-offs

The decision-maker must evaluate the pay-offs in order to

select an action, which changes the previous state j1 into a

final state j2. We assume that the time evolution of the

initial state to the final state corresponds to the thought

process leading to a decision.

For the Markov model, we can model this change using

a Kolmogorov forward equation (dj/dt)ZKA$j, which

has a solution j2ðtÞZet$KA$j1. The matrix T ðtÞZet$KA is a

transition matrix, with Tij(t)ZPr[transiting to state i from

state j during time period t]. The transition matrix satisfiesP
iTijZ1 to guarantee that j2 sums to unity. Initially,

we assume

KA Z
KAd 0

0 KAc

" #
; where KAi Z

K1 mi

1 Kmi

" #
:

ð2:1aÞ

The intensity matrix KA transforms the state probabilities

to favour either defection or cooperation, depending on

the parameters md or mc, which correspond to your gain if

you defect, depending on whether you believe the

opponent will defect or cooperate, respectively; these

parameters depend on the pay-offs associated with

different actions, and will be considered shortly. The

intensity matrix requires Kij O0 for isj and
P

iKijZ0 to

guarantee that et$KA is a transition matrix.

For the quantum model, the timeevolution isdetermined

by Schrödinger’s equation i$ðdj=dtÞZHA$j with solution

j2ðtÞZeKi$t$HA$j1. The matrix UðtÞZeKi$t$HA is unitary

with jUij(t)j
2ZPr[transiting to state i from state j during

time period t]. This matrix must satisfy U †UZI (identity

matrix) to guarantee that j2 retains unit length (U† is the

adjoint of U). Initially, we assume that

HA Z
HAd 0

0 HAc

" #
; where HAi Z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Cm2

i

p mi 1

1 Kmi

" #
:

ð2:1bÞ

The Hamiltonian HA rotates the state to favour either

defection or cooperation, depending on the parametersmd or

mc, which (as before) correspond to your gain if you defect,

depending on whether you believe the opponent will defect

or cooperate, respectively. The Hamiltonian must be

Hermitian ðH
†
AZHAÞ to guarantee that U is unitary.

For both models, the parameter mi is assumed to be a

monotonically increasing utility function of the

differences in the pay-offs for each of your actions,

depending on the opponent’s action: mdZu(xDDKxDC)

and mcZu(xCDKxCC), where xij is the pay-off you receive

if your opponent takes action i and you take action j. For

example, given the pay-offs in table 1, uDDZx(10, 10),

uDCZx(25, 5), uCDZx(5, 25) and uCCZx(20, 20).

Assuming that utility is determined solely by your own pay-

offs, then mdZu(xDDKxDC)Zu(5)ZmZu(xCDKxCC)Zmc.
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In other words, typically, mi can be set equal to the difference

in the pay-offs (possibly multiplied by a constant, scaling

factor), although more complex utility functions can

be assumed.

For both models, a decision corresponds to a measure-

ment of the state j2(t). For the Markov model, Pr[you

defect]ZPr[D]Z(jDDCjCD); similarly, for the quantum

model, Pr[you defect]ZPr[D]Z(jjDDj
2CjjCDj

2).

Inserting equation (2.1a) into the Kolmogorov

equation and solving for j2(t) yields the following

probability when the opponent’s action is known:

Pr½D�Z
m

1Cm

� �
$ð1KeKðmC1Þ$t ÞC

eKðmC1Þ$t

2
:

This probability gradually grows monotonically from (1/2)

at tZ0 to (m/(1Cm)) as t/N. The behaviour of the

quantum model is more complex. Inserting equation

(2.1b) into the Schrödinger equation and solving for

j2(t) yields:

Pr½D�Z
1

2
C

m

1Cm2
$sin

p

2
$t

� �2
� �

:

ForK1!m!C1, thisprobability increases across time from

(1/2) at tZ0 to ((1/2)C(m/(1Cm2))) at tZ1, and sub-

sequently it oscillates between the minimum and maximum

values. Empirically, choice probabilities in laboratory-

based, decision-making tasks monotonically increase across

time (for short decision times, see Diederich & Busemeyer

2006), and so a reasonable approach for fitting the model

is to assume that a decision is reached within the interval

(0!t!1) for the quantum model (tZ1 would correspond to

approx. 2 s for such tasks).

Equations (2.1a) and (2.1b) produce reasonable choice

models when the action of the opponent is known.

However, when the opponent’s action is unknown, both

models predict that the probability of defection is the

average of the two known cases, which fails to explain

the violations of the sure thing principle. The KA and HA

components of each model can be understood as

the ‘rational’ components of each model, whereby the

decision-maker is simply assumed to try to maximize

utility. In §2d we introduce a component in each model for

describing an additional influence on the decision-making

process, which can lead to decisions that do not maximize

expected utility (and so could lead to violations of the sure

thing principle). These two components in each model

have to be separate since in many cases the behaviour of

decision-makers can be explained (just) by an urge to

maximize expected utility. The difference between the

Markov model and the quantum one relates to how

the two components are combined with each other.

Importantly, we prove that the Markov model still cannot

produce the violations of the sure thing principle even

when this second, non-rational component is added. Only

the quantum model explains the result.

(d) Step 4: strategies based on evaluations of both

beliefs and pay-offs

To explain violations of the sure thing principle,

we introduce the idea of cognitive dissonance (Festinger

1957). People tend to change their beliefs to be consistent

with their actions. In the case of the Prisoner’s Dilemma

game, this motivates a change of beliefs about what the

opponent will do in a direction that is consistent with
Proc. R. Soc. B (2009)
the person’s intended action. In other words, if a player

chooses to cooperate he/she would tend to think that the

other player will cooperate as well. The reduction in

cognitive dissonance is an intriguing, and extensively

supported, cognitive process. It has been shown with

monkeys (Egan et al. 2007), suggesting that the applica-

bility of our model might extend to such animals. Shafir &

Tversky (1992) explained it in terms of a personal bias for

‘wishful thinking’ and Chater et al. (2008) by considering

a statistical approach based on Simpson’s paradox

(specifically, Chater et al. showed that, in a Prisoner’s

Dilemma game, the propensity to cooperate or defect would

depend on assumptions about what the opponent would do,

given whether the parameters of the game would encourage

cooperation or defection). Such approaches may not be

incompatible (for example, wishful thinking may have an

underlying statistical explanation).

Although cognitive dissonance tendencies can be

implemented in both the Markov and quantum models,

we shall see that it does not help the Markov model,

and only the quantum model explains the sure thing

principle violations.

For the Markov model, an intensity matrix that

produces a change of wishful thinking is

KB Z

K1 0 Cg 0

0 0 0 0

C1 0 Kg 0

0 0 0 0

2
66664

3
77775C

0 0 0 0

0 Kg 0 C1

0 0 0 0

0 Cg 0 K1

2
66664

3
77775

0
BBBB@

1
CCCCA:

ð2:2aÞ

The first/second matrix changes beliefs about the

opponent towards defection/cooperation when you plan

to defect/cooperate, respectively.

Note that

d

dt
$

jDD

jDC

jCD

jCC

2
66664

3
77775Z

K1 0 Cg 0

0 Kg 0 C1

C1 0 Kg 0

0 Cg 0 K1

2
66664

3
77775$

jDD

jDC

jCD

jCC

2
66664

3
77775Z

g$jCD CjDD

jCCKg$jDC

jDDKg$jCD

g$jDCK$jCC

2
66664

3
77775:

If gO1, then the rate of increase for the first and last rows

is greater than that for the middle rows, leading to an

increase in the probabilities that beliefs and actions agree.

For example, setting gZ10 at tZ1 produces

et$KB$j0 Z

0:45

0:05

0:05

0:45

2
66664

3
77775;

where it can be seen that beliefs tend to match actions,

achieving a reduction in cognitive dissonance. For the

quantum model, a Hamiltonian that produces this change is

HB Z
Kgffiffiffi

2
p $

C1 0 C1 0

0 0 0 0

C1 0 K1 0

0 0 0 0

2
66664

3
77775C

0 0 0 0

0 K1 0 C1

0 0 0 0

0 C1 0 C1

2
66664

3
77775

0
BBBB@

1
CCCCA:

ð2:2bÞ

The first/second matrix rotates beliefs about the opponent

towards defection/cooperation when you plan to defect/

cooperate, respectively. Note that
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d

dt
$

jDD

jDC

jCD

jCC

2
666664

3
777775ZKi$

Kgffiffiffi
2

p $

C1 0 C1 0

0 K1 0 C1

C1 0 K1 0

0 C1 0 C1

2
666664

3
777775$

jDD

jDC

jCD

jCC

2
666664

3
777775

Z i$
gffiffiffi
2

p $

jDD CjCD

jCCKjDC

jDDKjCD

jDC CjCC

2
666664

3
777775:

If gO0, then the rate of increase for the first and last rows

is greater than that for the middle rows, so that, as before,

there is an increase in the amplitudes for the states in which

beliefs and actions agree. For example, setting gZ1 at

tZp/2 produces eKi$t$HB$j0 which results in a vector of

squared magnitudes

Z

0:50

0:00

0:00

0:50

2
66664

3
77775:

In both the Markov and quantum models, we can see that

the above intensity matrix/Hamiltonian, respectively, makes

beliefs and actions correlated.

By itself, equation (2.2a) and (2.2b) is an inadequate

description of behaviour in the Prisoner’s Dilemma,

because it cannot explain how preferences vary with pay-

offs. We need to combine equations (2.1a), (2.1b) and

(2.2a), (2.2b) to produce an intensity matrix KCZKACKB

or a Hamiltonian HCZHACHB , so that the time

evolution of the initial state to the final state reflects the

influences of both the pay-offs and the process of wishful

thinking. Note that in this combined model, both beliefs

and actions are evolving simultaneously and in parallel.

Accordingly, we suggest that the final state is

determined by j2Zet$KC$j1 for the Markov model and

j2ZeKi$t$HC$j1 for the quantum model. Each model has

two free parameters: one changes the actions using

equation (2.1a) and (2.1b) and depends on pay-offs

(i.e. m), and the other that corresponds to a psychological

bias to assume the opponent will act as we do with

equation (2.2a) and (2.2b) (i.e. g).
3. MODEL PREDICTIONS
For the Markov model, probabilities for the unknown

state can be related to probabilities for the known states by

expressing the initial unknown state as a probability

mixture of the two initial known states:

j2 Z et$KC$
1

4

1

1

1

1

2
666664

3
777775Z et$KC$

1

2

1

2

1

1

0

0

2
666664

3
777775C

1

2

0

0

1

1

2
666664

3
777775

0
BBBBB@

1
CCCCCA

Z
1

2
et$KC$

1

2

1

1

0

0

2
666664

3
777775Cet$KC$

1

2

0

0

1

1

2
666664

3
777775

0
BBBBB@

1
CCCCCA:
Proc. R. Soc. B (2009)
We see that the state probabilities in the unknown case

must equal the average of the state probabilities for the two

known cases. Therefore, the Markov model fails to

reproduce the violations of the sure thing principle,

regardless of what parameters, time point, initial state or

intensity matrix we use. This conclusion reflects the

fundamental fact that the Markov model obeys the law of

total probability, which mathematically restricts the

unknown state to remain a weighted average of the two

known states. Note that this failure of the Markov model

occurs even when we include the cognitive dissonance

tendencies in the model.

For the quantum model, the amplitudes for the

unknown state can also be related to the amplitudes for

the two known states:

j2ZeKi$t$HC$
1

2

1

1

1

1

2
66664

3
77775ZeKi$t$HC$

1ffiffiffi
2

p
1ffiffiffi
2

p

1

1

0

0

2
66664

3
77775C

1ffiffiffi
2

p

0

0

1

1

2
66664

3
77775

0
BBBB@

1
CCCCA

Z
1ffiffiffi
2

p eKi$t$HC$
1ffiffiffi
2

p

1

1

0

0

2
66664

3
77775CeKi$t$HC$

1ffiffiffi
2

p

0

0

1

1

2
66664

3
77775

0
BBBB@

1
CCCCA:

We see that the amplitudes in the unknown case equal the

superposition of the amplitudes for the two known cases.

However, here is precisely where the quantum model

departs from the Markov model: probabilities are

obtained from the squared magnitudes of the amplitudes.

This last computation produces interference effects that

can cause the unknown probabilities to deviate from the

average of the known probabilities.

We initially fit the parameters of the quantum model at

tZ1$(p/2), which is the time when the choice probabilities

produced by equation (2.1b) first reach their maximum.

Note that the quantum model predicts that choice

probabilities will oscillate with time. However, in model-

ling results from the Prisoner’s Dilemma task, one needs

to consider, first, that such tasks are very simple and,

second, that respondents in such experiments are typically

paid for their participation so that they are motivated (and

indeed sometimes requested) to respond quickly. Both

these considerations suggest that a decision will be made

(the state vector collapses) as early as one course of action

emerges as advantageous (Diederich & Busemeyer 2006).

Regarding the two-stage gambling task, setting mZ0.59

and gZ1.74 produces probabilities for choosing to

gamble equal to (0.68, 0.58, 0.37) for the (known win,

known loss, unknown) conditions, respectively. These

predictions closely match the observed results (0.69, 0.59,

0.36, from Tversky & Shafir 1992). For the Prisoner’s

Dilemma game, setting mZ0.51 and gZ2.09 produces

probabilities for defection equal to (0.81, 0.65, 0.57) for

the (known defect, known cooperate, unknown) con-

ditions, respectively. Again, model predictions closely

reproduce the average pattern (0.84, 0.66, 0.55) in

table 2. Figure 1 shows that model predictions are fairly

robust as parameter values vary. An interference effect

appears after tZ0.75$(p/2) and is evident across a large

section of the parameter space. Finally, note that we can
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relax the assumption that participants will make a decision

at the same time point (we thank a reviewer for this

observation). To allow for this possibility, we assumed a

gamma distribution of decision times with a range from

tZ0.50$(p/2) to 2$(p/2) and a mode at tZ1$(p/2). We

refitted the model using the mean choice probability

averaged over this distribution, and this produced

very similar predicted results: (0.77, 0.64, 0.58) for

the known defect, known cooperate and unknown

conditions, respectively, in a Prisoner’s Dilemma (with

mZ0.47 and gZ2.10).

Classical probability theory has been widely applied in

understanding human choice behaviour. Accordingly, one

can naturally wonder whether it is possible to salvage the

Markov model. First, recall that the classical Markov

model fails even when we allow for cognitive dissonance

effects in this model. Second, the analyses above hold for

any initial state, j0, and any intensity matrix, K (not just

the ones used above to motivate the model), but they are

based on two main assumptions: the same initial state and

the same intensity matrix are used across both known

and unknown conditions. However, we can relax even

these assumptions. Even if the initial state is not the same

across conditions, the Markov model must predict that

the marginal probability of defecting in the unknown

condition (whatever mixture is used) is a convex

combination of the two probabilities conditioned on
Proc. R. Soc. B (2009)
the known action of the opponent. This prediction is

violated in the data of table 2. Furthermore, even if we

change intensity matrices across conditions (using the

KA intensity matrix for known conditions and using

the KC matrix for the unknown condition), the Markov

model continues to satisfy the law of total probability

because this change has absolutely no effect on the

predicted probability of defection (the KB matrix does not

change the defection rate). Thus our tests of the Markov

model are very robust.
4. CONCLUDING COMMENTS
In this work, we considered empirical results that have

been a focal point in the controversy over whether classical

probability theory is an appropriate framework for

modelling cognition or not. Tversky, Shafir, Kahneman

and colleagues have argued that the cognitive system is

generally sensitive to environmental statistics, but is also

routinely influenced by heuristics and biases that can

violate the prescription from probability theory (Tversky &

Kahneman 1983; Tversky & Shafir 1992; cf. Gigerenzer

1996). This position has had a massive influence not

only on psychology, but also on management sciences

and economics, culminating in a Nobel Prize award to

Kahneman. Moreover, findings such as the violation of

the sure thing principle in the Prisoner’s Dilemma have led
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researchers to raise fundamental questions about the nature

of human cognition (for example, what does it mean to be

rational? Oaksford & Chater 1994).

In this work, we adopted a different approach from

the heuristics and biases advocated by Tversky, Kahneman

and Shafir. We propose that human cognition can and

should be modelled within a probabilistic framework, but

classical probability theory is too restrictive to fully describe

human cognition. Accordingly, we explored a model based

on quantum probability, which can subsume classical

probability, as a special case. The main problems in

developing a convincing cognitive quantum probability

model are to determine an appropriate Hilbert space and

Hamiltonian. We attempted to present a satisfactory

prescriptive approach to deal with these problems and so

encourage the development of other quantum probability

models in cognitive science. Forexample, theHamiltonian is

derived directly from the parameters of the problem (e.g. the

pay-offs associated with different actions) and known

general principles of cognition (e.g. reducing cognitive

dissonance). Importantly, our model works: it is able to

account for violations of the sure thing principle in the

Prisoner’s Dilemma and the two-stage gambling task and

leads to close fits to empirical data.

Quantum probability provides a promising framework

for modelling human decision-making. First, we can think

of the set of basis states as a set of preference orders over

actions. According to a Markov process, an individual is

committed to exactly one preference order at any moment

in time, although it can change from time to time.

According to a quantum process, an individual experiences

a superposition of all these orders, and at any moment

the person remains uncommitted to any specific order.

This is an intriguing perspective on human cognition,

which may shed light on the functional role of different

modes of memory and learning (cf. Atallah et al. 2004).

Second, Schrödinger’s equation predicts a periodic oscil-

lation of the propensity toperform one action (assuming that

the decision-maker can be persuaded to extend the decision

time beyond the first cycle of the process), which is broadly

analogous to the electroencephalography signals recorded

from participants engaged in choice tasks (cf. Haggard &

Eimer 1999). Only after preferences are revealed does the

process collapse onto exactly one preference order. This

contrasts with time development in the Markov model,

whereby the system monotonically converges to its final

state. Third, quantum probability models allow interference

effects that can make the probability of the disjunction of two

events to be lower than the probability of either event

individually (see also Khrennikov 2004). Such interference

effects are ubiquitous in psychology, but incompatible with

Markov models, which are constrained by classical prob-

ability laws. Fourth, ‘back-to-back’ measurements on the

same decision will produce the same result in a quantum

system (because of state reduction), which agrees

with what people do (Atmanspacher et al. 2004). However,

back-to-back choices remain probabilistic in classical

random utility models, which is not what people do. Finally,

recent results in computer science have shown quantum

computation to be fundamentally faster compared with

classical computation, for certain problems (Nielsen &

Chuang 2000). Perhaps the success of human cognition can

be partly explained by its use of quantum principles.
Proc. R. Soc. B (2009)
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