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The conditional average frequency of rare alleles has been shown in simulations to provide a simple and robust
estimator of the number of individuals exchanged between local populations in an island model (Nm). This statistic is
defined as the average frequency of an allele in those samples in which the allele is present. Here, we show that the
conditional average frequency can be calculated from the distribution of allele frequencies. It is a measure of the
spread of this distribution, and so is analogous to the standardised variance, FST. Analytic predictions for the island
model of migration agree well with the corresponding simulation results. These predictions are based on the
assumption that the rare alleles found in samples have reached a "quasi-equilibrium" distribution. As well as relating
the conditional average frequency to the underlying allele frequency distribution, our results provide a more accurate
method of estimating Nm from the conditional average frequency of private alleles in samples of different sizes.

INTRODUCTION

There is a variety of ways of analysing allele
frequencies taken from natural populations. One
goal of such analysis is to reveal the underlying
population structure: that is, to estimate such par-
ameters as population density, dispersal rate, and
degree of subdivision. Wright (1935) introduced
the standardised variance of allele frequency, FST,
as a measure of interpopulation differentiation;
this statistic has been widely used. Wright (1938;
1943; 1978) argues that FST is inversely related to
the product of density and dispersal, and so can
be used to estimate this product, which he termed
"neighbourhood size" (e.g., Dobzhansky and
Wright, 1941). Slatkin (1981; 1985a) introduced
another method, concentrating on the distributions
of alleles which are so rare that they are found in
only a small proportion of samples. He used com-
puter simulations to show that the average
frequency of such alleles, taken over the samples
in which they are present, is inversely related to
Nm, where N is the local population size and m
is the proportion of migrants. In this paper we
introduce a simple analytic model which predicts
many features of Slatkin's simulation studies. This
brings out the relation between FST and Slatkin's
measures. We also present additional simulation

results that extend the range of applicability of
Slatkin's method.

A QUASI-EQUILIBRIUM MODEL

Our analysis is based on Wright's (1931) island
model. The novel feature of our method is the use
of Wright's model when the underlying assump-
tions are clearly not satisfied. Our approximation
is similar to that of Maruyama (1972).

Consider a collection of d identical demes,
which make up a diploid, monoecious species. We
concentrate on one particular allele and suppose
that its frequency in some deme is a random vari-
able x. For the models we consider, the frequencies
of all other alleles can be considered equivalent,
with total frequency (1—x). Under any given
model, we can regard x as being sampled from
some distribution, 4(x). If 4(x) is known, it is
easy to find the distribution of the number of copies
of the allele in samples of a given size from a
specified number of demes. We will first show how
the statistics used to describe Slatkin's simulation
results can be derived from fr(x), and then discuss
the assumptions needed to derive 4(x) from
Wright's island model.
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Slatkin's (1981; 1985a) simulations were of an
infinite number of alleles at a single locus. He
defined the "conditional average frequency" of an

allele, j, to be its average frequency over those
samples in which it is present. This is a function
of the number of samples (i) in which the allele
is present; i is between 1 and the number of demes
from which samples are taken, dsam. Thus, each
allele is characterised by two statistics, j5 and i.
Similarly, in the analytic model, we can calculate
the expected values of ji and i for any particular
allele, provided that we know the distribution,
4(x). As we take larger and larger samples of
demes (dsam -* infinity)the actual statistics will con-
verge to these expected values. Although we will
only analyse cases in which 4(x) is the same for
each deme, and in which the allele frequencies in
different demes are independent of each other,
these assumptions are not essential: the expected
values of ji and i depend only on the marginal
distributions of allele frequencies in each deme.

To begin with, assume that we sample every
gene in each deme examined. We define the proba-
bility that an allele is absent from a sample as a0.
Then, the expected number of demes in which it
will be found is:

(i)d(1—ao).

The value of a0 can be computed from 4(x) using
the approximate formula ao=J/2N 4(x) dx.
Ewens (1979) discusses the limitations of this
approximation. In the application here, its validity
was checked by computing the exact results for
the Markov chain which describes the Wright-
Fisher model. The expected frequency of the allele
in a deme, given that it is present, is:

x4(x) dx
— Jo

(p)=
(1—ao)

To derive (x), we use Wright's island model
and assume that each deme, which is of effective
size 2N, receives immigrants at a rate m from a
source in which the frequency of the allele is y.
(In the simulations, this source is the rest of the
population). Initially, we will only consider neutral
alleles, for which the equilibrium distribution in
each deme is, to a good approximation, a beta
distribution:

I'(4Nm)

I'(4Nmy)['(4Nm(1 —y))

(where ['(.) is the gamma function; Abramowitz
and Stegun, 1965). In equation 3, the subscript y
is added to emphasise that depends on y. If
there are mutations away from the allele at a rate
jh, then the parameters of the beta distribution are

changed from 4Nmy and 4Nm(1 —y) to 4Nmy and
4N[m(1—y)+j](assuming t<< 1). We will dis-
cuss selection later.

To relate this analytic model to Slatkin's simula-
tions, we consider a set of alleles which differ in
y, their frequency in the population. Since all these
alleles experience the same population structure,
their conditional average frequency and the pro-
portion of demes in which each is found, will
depend primarily on y. By calculating both statis-
tics as functions of y, we can derive the relation
ji(i) which was used to describe the simulation
results.

We are assuming, in effect, that each deme in
the simulated population has reached an equili-
brium between genetic drift (and possibly mutation
and selection) and immigration. This assumption
will be approximately correct if the timescale of
change in each deme is much shorter than the
timescale of change in the population as a whole.
We call this a "quasi-equilibrium" approximation
because a true equilibrium cannot be attained

(1) under the assumptions of the simulation model:
because each mutation gives a unique allele, every
new allele which enters the population must event-
ually be lost.

In fig. 1, we compare some simulation results from
Slatkin's (1981; 1985a) model with predictions of
our quasi-equilibrium theory for comparable par-
ameter values; here, every deme is sampled (dsam =
d). We can see that there is very good agreement
between the analytic and simulation results for
larger values of i, but some difference for small
values. This is reasonable, since the assumptions
of the analytic model are most likely to be met for
alleles that have spread to several demes. That
suggests that there might be better agreement for
small values of i if only a few demes from a large
population are sampled; alleles found in only a
few demes of the sample are then likely to be
present in many demes in the whole population,
and their overall frequency is therefore likely to
evolve slowly relative to the rapid fluctuations
within a deme.

Slatkin (1985a) showed that (1), the average
(3) frequency of "private" alleles found in only a

SAMPLES OF DEMES

(2)

x x4Nm)(l _X)4Nm(1_Y)_1
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Figure 1 A comparison of the conditional average frequency,
(i), computed from the simulations, with the predictions
of the analytic theory for the island model. The solid curve

is a graph of () against i/d) as the parameter y varies
between 0 and 1 (equations 1—3). Values from the simula-
tions are indicated by crosses. For each curve, N = 32, and

=0.001. The three curves are (reading from bottom to
top) for Nm = 32, 032, and 0032; the conditional average
frequency decreases as Nm increases. In the simulations,
an island model with d = 10 demes was used; all the
individuals in each deme were sampled (n = 32). In these

and other simulations described in this paper, the popula-
tion was initially fixed for a single allele. The simulations
were then run for at least 1000 generations, with samples
being taken every 200 generations after that time until at
least 10,000 generations were run. When Nm is low, very
few alleles reach high occupancy numbers; there are there-
fore some random deviations between the analytic theory
and simulations for large i, and we have not been able to
plot reliable values for Nm = 0032 and 1>4.

single deme, is of particular interest; it is therefore
especially important to understand the apparent
discrepancy between theory and simulation for
small values of i. Although we could compute
((1)) from the analytic theory, it is easier to calcu-
late ((0)), the limit of j3 for extremely rare alleles.
Since the theoretical graph of ji against i is almost
flat for small values of i (fig. 1), and since we will

usually be considering relatively large samples of
demes (1/dsam<< 1), this will cause little error.

Fig. 1 shows that the difference between (1),
from the simulations, and (ji(0)), from the theory,
can be substantial if all demes are sampled. Fig.
2 shows that as the total number of demes
increases, relative to a fixed sample, the simula-
tions converge towards the theory. There is very
little dependence on d for larger neighbourhood
sizes (Nm=3.2), but stronger dependence for

Figure 2 The dependence of the average frequency of private
alleles, (1), in a fixed number of sampled demes (dm),
on the number of demes in the population (d). The dashed
lines are the values predicted by the analytic theory and
do not depend on d. The simulation results are indicated
by crosses. The lower series of crosses gives the values for
m = 01 (Nm = 3.2), whilst the upper series gives values for
m = 001 (Nm = 032). In both cases, N = 32, j. = 0001,

and dam = 10.

smaller neighbourhood sizes (Nm =0.32). Even

then, however, there is good agreement once the
sample consists of less than 10 per cent of the
species. In practice, of course, a smaller fraction
of the total population is usually taken.

AVERAGE FREQUENCIES OF PRIVATE ALLELES

Slatkin (1985a) found a relatively simple relation-
ship between the frequencies of alleles found in
only one population, and Nm. As shown by the
solid curve in fig. 3, log10 [ft(1)] is an approxi-
mately linear function of log10 (Nm) for intermedi-
ate values of Nm. (In fig. 3, d was chosen to be
large enough to make j( 1) essentially independent
of d.) The simple form of this relationship makes
the average frequency of private alleles, ft(1), use-
ful for estimating Nm. Fig. 3 also shows values of

as computed from the analytic theory, over
a range of values of Nm. The curves are in good
agreement, being roughly linear on a log-log scale,
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Figure 3 The dependence of the average frequency of private
alleles, (l), on Nm. The values from the simulations are
indicated by crosses. The predictions of the analytic theory
are given by the solid curve. N = 32, j. = 0001, d = 100,

d=,, = 10. An island model of the population was assumed.

and levelling off for small and large values of Nm.
The slope of the regression line fitted to the simula-
tion results is —114, and to the analytic results is
—109.

The graph of the analytic values was generated

by numerical computations of 4.(x) (equation 3).
These values were checked against the exact equili-
brium distribution for the island model, calculated
by inverting the transition matrix of the associated

Wright—Fisher Markov process (Ewens, 1979); the
results were indistinguishable. If the deme size is
large (2N>> 1), the frequency of private alleles is
approximated by

((O)) = 1/4Nm[log (2N) — qi(4Nm)] (4)

(where 4'J(x) = d(ln I'(x))/dx is the digamma func-
tion (Abramowitz and Stegun, 1965); i/i(n) =
I(1/k)—O5772...). This formula becomes
exact only in the limit of very large deme size; in
the figures, the analytic results were calculated
from the exact island model (equations 1-3), rather
than from this approximation. (The same comment
applies to the similar approximation derived in
equation (6) below.)

SAMPLES OF INDIVIDUALS

The results described so far are based on the
assumption that every individual in a deme is
sampled. In studies of natural populations, the
actual sizes of local populations are unknown. It
is important, then, to know how these results
depend on the proportion of individuals sampled.

Slatkin (1985a) presented some results indicating
that (1) depends primarily on Nm and sample
size, but not on N separately; here, we will show
that this independence of the unknown deme size
is expected under the theory.

It is simplest to assume that n individuals are
sampled with replacement. The probability that an
allele which is at frequency x will be found in such
a sample is then 1(lx)21, and equation 1 is
replaced by:

(i)=dJ (1-(1-x)2(x)dx (5)

(Slatkin (1981; 1985a) used the notation Nsam for
the number of individuals sampled; we use n here
to make the formulae easier to read). We have also
made calculations assuming sampling without
replacement; the results are nearly the same when
n<< N, as we would expect for natural populations.

Fig. 4 shows the analytic and simulation results
for the dependence on sample size. The results
agree qualitatively, though the simulations give
rather smaller values of(1) than would be expec-
ted theoretically. Again, we can derive an explicit
formula for the frequency of private alleles, by
taking the limit y - 0:

(ft(0)) = 1/4Nm[(4Nm+2n) — i(4Nm)]
= 1/4Nm ln (1 +2n/4Nm)

= l/{1 +4Nm[In (2n)+0.5772]}

0.1

1

(6a)

Nm>05 (6b)

Nm<01. (6c)

Figure 4 The dependence of the average frequency of private
alleles, (1), on the number of individuals sampled (n).
In the simulations, N = 128, p. = 000025, d = 100, and
dsam= 10. An island model was assumed. The solid line
indicates the analytic results. The lower series gives values
for m=0025 (Nm=3.2), whilst the upper series gives
values for m=00025 (Nm=032).
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ESTIMATING Nm

Slatkin (1985 a) presented a method for estimating
Nm from the value of (1) if the number of
individuals sampled per deme is the same as was
used in the simulations, n=25. He suggested a
rough way to adjust the estimate of Nm if the
numbers of individuals sampled differed from 25.
The method is to find (1) from the allele frequen-
cies and then estimate Nm either directly from a

graph of p(1) against Nm or approximately from
the line fitted to the simulated values for n =25.

Then the estimate of Nm is corrected by multiply-
ing the estimate by the ratio of the average number
of individuals sampled per deme to 25. For
example, if the average sample size is 50 and the
uncorrected estimate of Nm is 0.5, then the correc-
ted estimate is 0.25.

This method for correcting for differences in
sample size would be accurate if the graphs of
log [(1)] against log (Nm) for different values of
n were parallel. Fig. 5 shows the actual results for
three different samples sizes. The simulation results
for different values of n are approximately linear
but have slightly different slopes, a =—0489,

O576, and —0612 for n = 10, 25 and 50. The
values of the intercepts are b= —0951, —111, and
—l 21

Although the simulation results show that Slat-
kin's method of correcting for differences in sample
size does not work exactly, the slopes of the lines
are similar enough that his method provides a
reasonable approximation. For example, assume

Figure 5 The dependence of the average frequency of private
alleles in samples on Nm and n, the number of individuals
sampled from each deme. In all cases, N = 128, .s - 0001,
d = 100, and d=m = 10. An island model of population
structure was assumed. The dots are values for n = 10, the

crosses are values for n = 25, and the open circles are values

for n=50.

that in a sample of n = 10 individuals from every
deme, ft(1) is found to be 01. Using n=25, the
estimated value of Nm is 064, which is found by
solving the regression equation for Nm with a =
—0576 and b = —111. Using Slatkin's method, the
estimate of Nm corrected for sample size is I 6,
which is obtained by multiplying the uncorrected
estimate by 25/10. The more accurate estimate of
Nm is 13, which is obtained by using a=—0.489
and b=—0951. The approximate estimate is too
high by about 25 per cent. If instead, (1) =0.1

and n = 50, Slatkin's method gives an estimate of
032 and the more accurate estimate is 045. These
examples show that there is some error in using
Slatkin's method for correcting for sample size but
that the estimates obtained are of the correct order
of magnitude.

SELECTION

The quasi-equilibrium model is remarkably suc-
cessful in predicting the distribution of rare and
neutral alleles. We can use the same approach to
incorporate the effects of selection. In this paper,
we will restrict our analyses to symmetric over-
and under-dominance, but other types of selection
could be studied in the same way.

The assumptions of the analytic model are the
same as used previously, except that all heterozy-
gotes have fitnesses (1 — s) relative to homozygotes;

s may be positive or negative. Using Wright's
(1931) general formula for the distribution of allele
frequencies under immigration, drift, and selec-
tion, we obtain:

= CX4NmY_l(l _X)4Nm(t Y) I e4NI_

(7)

(where C is a normalisation constant). This
replaces the beta distribution used in the previous
calculations.

We could not find a simple analytic approxima-
tion for ((0)) using (7). However, if we assume
that x is small for the alleles of interest and replace
4Nsx(1—x) by 4Nsx in (7) (which is equivalent
to assuming gametic selection of strength s), then
using the same methods as led to equation (6), we
find

((0))

0
0

P

0•1

0•01 —
&01 01

•

•

0
50

Nm

10

1

4N(m+ s){i(4N(m+ s)+2n) — /i(4N(m+ s))]
(8)
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We therefore expect the relation between the
frequency of private alleles and Nm to be shifted
horizontally by Ns; rare underdominant alleles will
have lower conditional average frequency. This
behaviour is seen in fig. 6; the values for the
analytic theory were obtained using (7) and they

I
P

01

001
001

Figure 6 The dependence of the conditional average
frequency, (1), on Nm for overdominant and under-
dominant alleles. The continuous lines indicate the analytic
results, whilst the simulations are represented by crosses
or circles. The crosses, and the solid line, are for cases with
uniform underdominance, in which every heterozygote has
a fitness of 095 relative to every homozygote (s = +0.05).
The circles, and the dashed line, are for uniform over-
dominance in which every heterozygote has a fitness of
105 relative to every homozygote (s = —005). In all cases,
N = 32, n = 32, =0001, d = 100, and dm = 10. An island
model was assumed.

agree fairly well with the simulations for under-
dominant alleles, even when Nm is small.
However, there is a large discrepancy for over-
dominant alleles. This may be because a new over-
dominant allele will initially increase its overall
frequency over a time scale 1/s. of the same order
as the time scale of changes within a deme when
m s. In contrast, the overall frequency of a neutral
allele changes over a time scale4Nd, and so
changes very slowly when the species is made up
of many demes (d>> 1).

ACCURACY OF THE

QUASI-EQUILIBRIUM ASSUMPTION

By using the assumption that the allele frequencies
in each deme have the distribution expected under
Wright's island model, we can predict remarkably
well several features of the simulation results. We
can also use the simulation program to test the
accuracy of the quasi-equilibrium assumption.

For neutral alleles, the frequency distri-
bution of the allele under consideration, should
be given by a beta distribution (equation 4). If the

quasi-equilibrium assumption is valid, then, in the
simulations, an allele that has a frequency y in the
population should have the frequency distribution
across different demes given by equation 4, with
the parameters of the beta distribution being 4Nmy
and 4N[m(1—y)+js], where s is the mutation
rate of A to a, N is the population size, and y is
the frequency of A in the population. In comparing
the simulation results with the analytic theory, a
represents all other alleles. In the simulations,
every mutation is new, so there are no back muta-
tions.

We used two tests of the agreement of the actual
distribution of alleles with a beta distribution. One
was a comparison of the numbers of demes missing
the allele with the number expected under the beta
distribution, and the other was a comparison of
the actual and expected variances in allele
frequency. The two tests depend on different
features of the frequency distribution.

In the simulations, the population was sampled
at a time large enough that the stationarity state
had been achieved. For each allele in the popula-
tion, its frequency, y, was computed. Then a, the
expected fraction of demes missing the allele, was
computed from (x) using the method recom-
mended by Ewens (1979, pp. 157-158), and the
variance in frequency among the demes, V, was
computed using the standard formula for the vari-
ance of a beta distribution.

For each allele, the actual number of demes
missing the allele was compared with a binomial
distribution with parameters d (the total number
of demes) and a0 (the probability that each deme
is missing the allele). The binomial distribution
had to be modified to take account of the fact that
each allele had to be found in at least one deme.
The result of this test applied to each allele was a
probability that the observed number or fewer of
demes missing the allele would be obtained if the
quasi-equilibrium assumption were satisfied. To
test whether there were significant deviations in
the variance, we used the methods described by
Kendall and Stuart (1977, Ch. 10) for finding the
standard error of the variance in a sample to the
fourth moment of the distribution. From (x),
we computed the variance and the standard error
of the variance, and then compared them to the
actual variance for the allele.

We applied these tests to simulations, over the
range of parameter values used in the figures. For
neutral alleles in an island model with 100 demes,

N

Nm
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the distribution of allele frequencies did appear to
be drawn from a beta distribution with the correct
parameters; the distribution of alleles among the
demes is not distinguishable by our tests from the
beta distribution expected under the assumptions
of the quasi-equilibrium model. These results sug-
gest that the ability of the quasi-equilibrium model
to predict the conditional average frequencies is
not fortuitous.

-DISCUSSION

generally consistent (Slatkin, 1985b). We are cur-
rently investigating how these statistics may best
be used.
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