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Abstract---We present in this paper a novel nonlinear model 
predictive control scheme that guarantees asymptotic c1osed­
loop stability. The scheme can be applied to both stable and 
unstable systems with input constraints. The objective func­
tional to be minimized consists of an integral square error (ISE) 
part over a finite time horizon plus a quadratic terminal cost. 
The terminal state penalty matrix of the terminal cost term has 
to be chosen as the solution of an appropriate Lyapunov equa­
tion. Furthermore, the setup includes a terminal inequality con­
straint that forces the states at the end of the finite prediction 
horizon to lie within a prescribed terminal region. If the 
Jacobian linearization of the nonlinear system to be controlled is 
stabilizable, we prove that feasibility of the open-loop optimal 
control problem at time t = 0 implies asymptotic stability of the 
closed-loop system. The size of the region of attraction is only 
restricted by the requirement for feasibility of the optimization 
problem due to the input and terminal inequality constraints 
and is thus maximal in some sense. ~) 1998 Elsevier Science Ltd. 
All rights reserved. 

I. INTRODUCTION 

The history of model predictive control (MPC), 
also referred to as moving horizon control or reced­
ing horizon control, began with an attempt to use 
the powerful computer technology to improve the 
control of processes that are constrained, multivari­
able and uncertain (Cutler and Ramaker, 1980; 
Richalet et al., 1978). In the last decade, many 
formulations have been developed for linear or 
nonlinear systems (Garcia et al., 1989; Rawlings 
et ai., 1994; Mayne, 1995; van den Boom, 1996; Lee, 
1997), that found successful applications especially 
in the process industries (Richalet, 1993; Qin and 
Badgwell, 1996). 
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In general, the MPC problem is formulated as 
solving on-line a finite horizon open-loop optimal 
control problem subject to (linear or nonlinear) sys­
tem dynamics and constraints involving states and 
inputs. However, as shown in Bitmead et al. (1990), 
this general form of MPC does not guarantee 
closed-loop stability, because a finite horizon cri­
terion is not designed to deliver an asymptotic prop­
erty such as stability. Closed-loop stability can only 
be achieved by a suitable tuning of design param­
eters such as prediction horizon, control horizon 
and weighting matrices. Therefore, Bitmead et al. 
(1990) suggested an infinite horizon method (closely 
related to LQ control), which, however, results in an 
optimization problem that can generally be solved 
only for unconstrained linear systems. 

For linear systems with constraints, the work of 
Rawlings and Muske (1993) represents a significant 
leap forward in the MPC theory. They propose 
a receding horizon control scheme with infinite 
prediction horizon and finite control horizon. For 
both stable and unstable systems, nominal closed­
loop stability is guaranteed by the feasibility of the 
constraints, independent of the choice of perfor­
mance parameters_ For other MPC approaches 
and stability results see, for example, Genceli and 
Nikolaou (1993) and Polak and Yang (1993). 

Mayne and Michalska have contributed some 
very important issues on the stability of nonlinear 
receding horizon control. They have shown in 
Mayne and Michalska (1990) that under some 
rather strong assumptions, receding horizon con­
trol is able to stabilize a class of nonlinear systems 
with constraints (see also Chen and Shaw, 1982; 
Keerthi and Gilbert, 1988). The finite horizon con­
strained optimal control problem is posed as min­
imizing a standard quadratic objective functional 
subject to an additional terminal state equality con­
straint requiring the states to be zero at the end of 
the finite prediction horizon. The strong assump­
tions are needed to ensure that the optimal value 
function is continuously differentiable. Those as­
sumptions are relaxed in Michalska and Mayne 
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1206 H. Chen and F. Allgower 

(1991) to ensure merely local Lipschitz continuity 
of the optimal value function. However, from 
a computational point of view, an exact satisfaction 
of the terminal equality constraint requires an infi­
nite number of iterations in the nonlinear case. An 
approximate satisfaction means that the achieved 
stability is lost inside the region of approximation. 
In order to avoid this, they extend their work in 
Michalska and Mayne (1993) with a terminal in­
equality constraint such that the states are on the 
boundary of a terminal region at the end of a vari­
able prediction horizon. They suggest a dual-mode 
receding horizon control scheme with a local linear 
state feedback controller inside the terminal region 
and a receding horizon controller outside the ter­
minal region. Closed-loop control with this scheme 
is implemented by switching between the two con­
trollers, depending on the states being inside or 
outside the terminal region. 

Yang and Polak (1993) present a moving horizon 
control scheme that deviates from conventional 
MPC schemes in that the control horizon is also 
a minimizer and the whole input sequence is imple­
mented. In this scheme inequality contraction con­
straints are added so as to ensure the state vector to 
contract by a prespecified factor before a new op­
timization begins. Like in the linear case of this 
scheme (Polak and Yang, 1993), guaranteed stabil­
ity is achieved when the existence of a solution to 
the optimization problem at each time is assumed. 
However, this is a very strong assumption and 
cannot be guaranteed in general (Mayne, 1995). In 
analogy to the linear case (Genceli and Nikolaou, 
1993), Genceli and Nikolaou (1995) derive an end 
condition for nonlinear MPC with second-order 
Volterra models, when the system being controlled 
is square and stable. The end condition requires the 
input values at the end of the finite horizon to be 
equal to the steady-state values corresponding to 
the setpoint and the steady-state estimates of dis­
turbances. With the end condition, closed-loop 
stability is achieved under some restrictions not 
only on prediction and control horizons but also 
on control move suppressions in the objective func­
tional. This makes an independent specification of 
control performance difficult. Another method to 
achieve stability for nonlinear MPC is suggested by 
Nevistic and Morari (1995), combining state feed­
back linearization and stability issues of linear 
MPC with constraints, for feedback linearizable 
systems. However, because the exact state feedback 
linearization law is state-dependent and generally 
nonlinear, the originally linear input constraints 
are transformed into state-dependent and in gen­
eral nonlinear constraints. In addition, an origin­
ally quadratic cost functional will become an 
arbitrary nonlinear cost functional in the trans­
formed coordinates. 

For discrete nonlinear systems subject to con­
straints, Keerthi and Gilbert (1988) discuss the 
moving horizon control problem as an approxima­
tion of an infinite horizon optimal feedback control 
problem. They provide sufficient conditions for the 
existence of a solution to the general nonlinear 
program and for closed-loop stability, based on 
a controllability assumption that is however not 
easy to verify in the nonlinear case. With terminal 
equality constraints, Meadows et al. (1995) propose 
a comparatively easily implementable formulation 
and discuss the existence and stability conditions. 

In this paper, we introduce a quasi-infinite hori­
zon nonlinear MPC scheme that optimizes on-line 
an objective functional consisting of a finite hori­
zon cost and a terminal cost subject to system 
dynamics, input constraints and an additional ter­
minal state inequality constraint. The feasibility of 
the terminal inequality constraint implies that the 
states at the end of the finite horizon are in a pre­
scribed terminal region. The terminal states are 
penalized in such a way that the terminal cost 
bounds the infinite horizon cost of the nonlinear 
system controlled by a "fictitious" (i.e. not imple­
mented) local linear state feedback. Thus, the pro­
posed nonlinear model predictive controller has 
a quasi-infinite prediction horizon, but the input 
profile to be determined on-line is only of finite 
nature. If the Jacobian linearization of the nonlin­
ear system to be controlled is stabilizable, the 
unique positive-definite, symmetric solution of an 
appropriate Lyapunov equation can serve as ter­
minal penalty matrix of the terminal cost, and 
a neighborhood of the origin serving as terminal 
region can be determined off-line. Closed-loop 
asymptotic stability is then guaranteed by the feasi­
bility of the open-loop optimal control problem at 
time t = o. As is usual in MPC, the closed-loop 
control is calculated by solving the optimization 
problem on-line at each time, no matter whether 
the states are inside or outside the terminal region. 
Thus, no switching between controllers is needed. 
The local linear state feedback is only used to 
determine a terminal penalty matrix and a terminal 
region off-line. The contribution of this paper is 
thus a computationally attractive formulation of 
nonlinear MPC for which asymptotic stability can 
be guaranteed. Compared to other nonlinear MPC 
approaches that also guarantee stability (terminal 
equality constraint and dual-mode), this approach 
appears to be more general and computationally 
more attractive. 

The paper is structured as follows: Section 2 
describes the mathematical formulation of the pro­
posed quasi-infinite horizon nonlinear MPC prob­
lem. Section 3 gives some preliminary results about 
a region of attraction and a performance bound of 
the nonlinear system controlled by a local linear 
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A quasi-infinite horizon nonlinear model predictive control scheme 1207 

state feedback. Based on these results, a procedure 
for systematically determining a terminal region 
and a terminal penalty matrix off-line is sum­
marized. In Section 4, asymptotic stability of the 
proposed nonlinear MPC scheme is discussed and 
sufficient stability conditions are given. Simulation 
results for an unstable constrained system are given 
in Section 5. 

2. A QUASI-INFINITE HORIZON NONLINEAR MODEL 

PREDICTIVE CONTROL SCHEME 

The class of systems to be controlled is described 
by the following general nonlinear set of ordinary 
differential equations (ODEs): 

x(t) = f(x(t), u(t)), x(O) = Xo, (1) 

with state vector x(t) E IR n
, input vector u(t) E [R:m, 

and subject to input constraints 

u(t) E V, 'lit 2. O. (2) 

It is assumed in this paper that 

(A 1) f: IR" x [R: m ...... IR n is twice continuously differ­
entiable and f(O,O) = O. Thus, 0 E IR" is an 
equilibrium of the system with u = O. 

(A2) V c IR m is compact, convex and 0 E [R:m is 
contained in the interior of U. 

(A3) System (1) has a unique solution for any initial 
condition Xo E IR n and any piecewise continu­
ous and right-continuous u(·): [0, 00) ...... U. 

Assumption f(O, 0) = 0 is not very restrictive, since 
if f(xs, us) = 0, one can always shift the origin of the 
system to (X,., us). We consider in this paper the state 
feedback case and thus assume that all states are 
measurable. 

In the following, we describe the problem setup 
for the quasi-infinite horizon nonlinear MPC 
scheme introduced in this paper. For a description 
of the general idea and the principle of nonlinear 
MPC we refer for example to the excellent papers 
by Mayne and Michalska (Mayne and Michalska, 
1990; Michalska and Mayne, 1993). 

We shall first introduce some notations that wiII 
be used in this paper. For any vector x E IR", Ilxll 
denotes the 2-norm and the weighted norm Ilxllp is 
defined by Ilxll~:= xTpx, where P is an arbitrary 
Hermitian, positive-definite matrix. For any Her­
mitian matrix A, Amax(A) and )'min(A) denote the 
largest and the smallest real part of the eigenvalues 
of the matrix A, respectively, and IIA II stands for the 
induced 2-norm of A. In order to distinguish clearly 
between the system, that evolves in "real" time, and 
the system model, used to predict the future "with­
in" the controller and evolving in some fictitious 
time, we denote the internal variables in the con­
trolIer by a bar (x, u) to indicate that the predicted 

values need not and will not be the same as the 
actual values. 

For the particular setup considered in this 
paper, the open-loop optimal control problem at 
time t with initial state x(t) is formulated as 

min J (x(t), u( .)) (3) 
Il(') 

with 

r+~( ) J(x(t), u(·)) = J, Ilx(r)(x(t), t)11~ + Ilu(r)ll~ dr 

+ Ilx(t + Tp; x(t), t)11~ 
subject to 

x = f(x, u), x(t; x(t), t) = x(t) 

u(r) E V, r E [t, t + TpJ 

x(t + Tp; x(t), t) E n, 

(4) 

(5a) 

(5b) 

(5c) 

where Q E IR nxn and R E IR mxm denote positive-defi­
nite, symmetric weighting matrices; Tp is a finite 
prediction horizon; x(·; x(t), t) is the trajectory of 
equation (5a) driven by u(·): [t, t + TpJ ...... V (for 
simplicity of exposition, the control and prediction 
horizons are chosen to have identical values in this 
paper). Note the initial condition in equation (5a): 
The system model used to predict the future in the 
controller is initialized by the actual system states 
x(t) at "real" time t. 

The objective functional (4) consists of a finite 
horizon standard cost to specify the desired control 
performance and a terminal cost to penalize the 
states at the end of the finite horizon. The terminal 
inequality constraint (5c) will force the states at the 
end of the finite prediction horizon to be in some 
neighborhood n of the origin, called here terminal 
region. This terminal region n will be chosen such 
that it is invariant for the nonlinear system control­
led by a local linear state feedback. The quadratic 
terminal cost Ilx(t + Tp; x(t), t)ll~ bounds the infi­
nite horizon cost of the nonlinear system starting 
from n and controlled by the local linear state 
feedback, i.e. 

Ilx(t + Tp;x(t), tll~ 2. fa) (1Ix(r; x(t), t)ll~ 
J,+~ 

+ Ilu(r)II~)dr 

u = Kx, Vx(t + Tp; x(t), t) E n. (6) 

We will show that this allows us to guarantee 
closed-loop stability. The positive definite and sym­
metric terminal penalty matrix P E [R:nxn together 
with the terminal region n is determined off-line 
such that the invariance property of n holds and 
the input constraints are satisfied in n. If we 
substitute inequality (6) into equation (4), we can 
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1208 H. Chen and F. Allgower 

conclude that the cost functional to be minimized 
bounds the infinite horizon cost defined by 

;a"(x(t), il(' )):= r (1Ix(r; x(t), t)II~ + Ilil(r)II~) dr. 

where il(r)=Kx(r; x (t), Mor r 2 t + Tp. i.e. J' (x(t). 

0(')) ~ J(x(t), il(·)). In this sense, the prediction 
horizon of the proposed nonlinear predictive con­
troller expands quasi to infinity, hence the name 
quasi-infinite horizo/l nonlinear M PC scheme. 

An optimal solution to the optimization prob­
lem (3H5) (existence assumed), will be denoted 
by il*(' ;x(t), t, t + Tp): [t, t + Tp] -> U and the 
corresponding objective value is denoted by 
J*(x(t), t, t + Tp):= J(x(t), 0*). 

The idea behind this setup is to guarantee stabil­
ity of the closed-loop system with a quasi-infinite 
horizon objective functional, where the input pro­
file needs to be determined on-line only for a finite 
horizon. In the sense of MPC, the "open-loop" 
control can be thought of as having two steps: over 
a finite horizon, an optimal input profile found by 
solving the open-loop optimal control problem 
drives the nonlinear system model into the terminal 
region; after that, a local linear state feedback con­
trol is assumed to steer it to the origin. In the 
moving horizon implementation, the local linear 
state feedback controller will never be directly ap­
plied to the system. Indeed, the input profile found 
is applied to the system only until the next measure­
ment becomes available. We assume that this will 
be the case every 15 time-units. So () denotes the 
"sampling time" with 15 < Tp ' and the closed-loop 
control represented by u* ( . ) is defined by 

u*(r):= il*(r; x(tl, t, t + Tp), r E [I, t + 15]. (7) 

Updated with the new measurement, the above 
optimization problem will be solved again to find 
a new input profile. Thus, the closed-loop control is 
obtained by solving the open-loop optimal control 
problem on-line at each time, no matter whether 
the states are inside or outside the terminal region. 
The linear state feedback is only used to determine 
a terminal penalty matrix P and a terminal region 
n off-line, as described in the next section. 

3. PRELIMINARY RESULTS 

Bya slight modification of the associated content 
in Michalska and Mayne (1993), we present pre­
liminary results about a region of attraction and 
a performance bound of the nonlinear system con­
trolled by a local linear state feedback. These 
results allow us to outline a procedure to system­
atically determine a terminal region and a terminal 
penalty matrix, and will be used to prove closed-

loop asymptotic stability of the proposed control 
scheme. Since a terminal region and a terminal 
penalty matrix can be calculated off-line, variables 
without a bar will be used in this section. 

We consider the Jacobian linearization of the 
system (1) at the origin 

x = Ax + Bu, (8) 

where A:= (0 fjc'x)(O, 0) and B:= (D f/Du)(O. 0). If 
equation (8) is stabilizable, then a linear state 
feedback u = Kx can be determined such that 
AK := A + BK is asymptotically stable. Conse­
quently. we can state the following lemma. 

Lemma I. Suppose that the Jacobian linearization 
of the system (1) at the origin is stabilizable. Then, 

(a) the following Lyapunov equation 

(AK + KWP + P(AK + Kl) =, - Q* (9) 

admits a unique positive-definite and symmet­
ric solution P. where Q* = Q + KTRK E /Rnxn 

is positive definite and symmetric; I( E [0, X)) 

satisfies 

(10) 

(b) There exists a constant ry, E (0, x ) specifying 
a neighborhood n, of the origin in the form of 

n. : = : x E /R" I x T Px ~ (Y.} (1 I) 

such that 
(i) Kx E U, for all x En" i.e., the linear feed­

back controller respects the input con­
straints in n" 

(ii) n. is invariant for the nonlinear system (1) 
controlled by the local linear feedback 
u = Kx, 

(iii) for any Xl En" the infinite horizon cost 

J«x lo uJ = IX (1Ix(t)II~ + Ilu(t)II~) dt 
I, 

subject to nonlinear system (1), starting 
from x(t d = X 1 and controlled by the local 
linear state feedback u = Kx. is bounded 
from above as follows: 

Proof Since Q* > 0, by the general conditions for 
the solvability of Lyapunov equations. it is known 
that the Lyapunov equation (9) has a unique 
positive definite and symmetric solution. if the real 
parts of all eigenvalues of (Ak + KI) are negative. 
Because of the asymptotic stability of A K , any 
constant K E [0, - ;'max(A K )) ensures the negativity 
of the real parts of all eigenvalues of (Ak + Kl). 

Thus. (a) is true. 
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A quasi-infinite horizon nonlinear model predictive control scheme 1209 

Since the point 0 E IR m is in the interior of U, we 
can always-for any fixed P > O-find a constant 
XI E (0, CIJ), that specifies a region in the form of 
(11), such that Kx E U, for all x En,;, Thus, the 
linear feedback control values satisfy the input con­
straints in n,[. 

Let X E (0, OCI] specify a region in the form of 
equation (11). Since X::; oc l , the input constraints 
are satisfied in n, and thus (i) is true. In other 
words, the system can be thought of as being un­
constrained in n,. 

We differentiate x T Px along a trajectory of 

x = f(x, Kx) (l3) 
and obtain 

+ 2X(t)TP4>(X(t)), (14) 

where 4>(x):= f(x, Kx) - AKX. The term involving 
4>(x) in the above equation is bounded above as 
follows: 

xTP4>(x) ::; IlxTpll'II4>(x)11 ::; IIPII' L</) '11x11 2 

::; ".PII·L</) Ilxll~, (15) 
Amin(P) 

where L4>:=sup{II4>(x)ll/lIxlllxEn"xoioO}. Now 
we choose an x E (0, oc l ] such that in n, 

K' i.mm(P) 
L4> ::; lIP II (16) 

Then, inequality (15) leads to 

xTP4>(x) ::; K' X T Px. (17) 

Substituting inequality (17) into equation (14) 
yields 

:tX(t)TPX(t)::;X(t)T«AK + Kl)fp + P(AK + KI))X(t) 

that by equation (9) leads to 

:t XU)T Px(t) ::; - X(t)TQ*X(t). (18) 

Since P > ° and Q* > 0, inequality (18) implies that 
the region n, defined by equation (11) is invariant 
for the nonlinear system (1) controlled by the local 
linear state feedback u = Kx. Moreover, any tra­
jectory of equation (13) starting in n, stays in 
n, and converges to the origin. 

Then, for any XI En" integrating inequality (18) 
from tl to x with initial condition x(td = XI 
yields the desired result (12). 0 

It should be pointed out that if we use the nota­
tion introduced in Section 2 for internal variables in 

the controller and set XI = x(t + Tp; x(t), t), then 
inequality (12) is equivalent to inequality (6). The 
solution P of equation (9) and the region n, in the 
form of equation (11) are able to serve as a terminal 
penalty matrix and a terminal region. From the 
above proof, a procedure can be stated to deter­
mine a terminal penalty matrix P and a terminal 
region n, (preferably as large as possible) off-line 
such that inequality (14) holds true and the input 
constraints are satisfied: 

Step l. Solve a control problem based on the Jac­
obian linearization to get a locally stabiliz­
ing linear state feedback gain K. 

Step 2. Choose a constant K E [0, CIJ) satisfying 
inequality (10) and solve the Lyapunov 
equation (9) to get a positive-definite and 
symmetric P. 

Step 3. Find the largest possible OCI such that 
Kx E U, for all X E n,[. 

Step 4. Find the largest possible oc E (0, OCI] such 
that inequality (16) is satisfied in n,. 

Remark 3.1. In Step 4, inequality (16) is not easy to 
satisfy for an arbitrary large terminal region n,. 
Due to a typically small value of Amin(P)/IIPII, it is 
possible that for some systems this inequality can 
only be met for an extremely small terminal region 
n,. From the proof of Lemma 1, we know that if 
inequality (17) holds true for all X E n" then, in­
equality (18) is also valid. In addition, since 4>(x) 
satisfies 4>(x) ---> 0 and 114>(x)ll/lIxll ---> ° as Ilxll ---> 0, 
there exists a constant /; > 0 such that inequality 
(17) holds true for all X with II X II ::; c. Hence, in 
order to get a less conservative terminal region, we 
may take a different approach. First, we follow the 
above procedure until Step 3. Then, we may make 
iterations of the simple optimization problem 

max {xTP4>(x) - K'xTpxlxTpx::; oc} (19) 
x 

for the chosen K by reducing oc from OCI until the 
optimal value of (19) is non positive. A discussion on 
the optimization problem (19) and on finding the 
maximum XI in Step 3 can be found in Michalska 
and Mayne (1993). If a suitable oc is found in this 
way, it specifies a region n, in the form of (11), in 
which inequality (\ 7) holds true. In turn, inequality 
(18) is valid and the results in Lemma 1 hold conse­
quently. This region can then serve as a terminal 
regIOn. 

Remark 3.2. Following the above procedure does 
not yield a unique terminal region for a given 
nonlinear system. For the sake of reducing the 
on-line computational burden, we are interested in 
determining the largest possible region. This is, 
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1210 H. Chen and F. Allgower 

however, not an easy task. First, this requires a suit­
able selection of the stabilizing linear feedback gain 
K, where many linear control methods can in prin­
ciple be used. Because of the "optimality" of MPC, 
the linear optimal control technique (LQR) may be 
preferentially applied for determining a stabilizing 
K. Secondly, for a given gain K, an appropriate 
choice of K is needed. This will be discussed in 
Section 5. Moreover, the size of the terminal region 
depends generally on the nonlinearity of the system 
to be controlled. The stronger nonlinear the system 
is, the smaller the terminal region will be. For linear 
or some mildly nonlinear systems, the size of the 
terminal region will only be restricted by the input 
constraints. This will also be shown in the example 
in Section 5. 

Remark 3.3. If there exists no linear feedback con­
troller that can locally asymptotically stabilize the 
nonlinear system, Q. contracts to the origin. Thus, 
the terminal inequality constraint (5c) reduces to 
the terminal equality constraint x(t + Tp) = 0, 
which is well known to lead to stability (Mayne and 
Michalska, 1990; Rawlings and Muske, 1993). For 
a generalization of the proposed approach to sys­
tems with non-stabilizable Jacobian linearization 
see Chen and Allgower (1997a). 

Remark 3.4. If the system to be controlled is linear, 
i.e. ¢(x) = 0 and L</> = 0 for all x E /R", then, K = 0 
satisfies equation (16). In turn, equation (9) be­
comes the Lyapunov equation for linear systems, 
and equation (12) is satisfied with equality. That 
means that the following equality: 

(r+Tp 
Jt (1Ix(r)ll~ + Ilu(r)II~)dr + Ilx(t + Tp)ll~ 

= 1"" (1Ix(T)II~ + Ilu(T)II~)dT 
is valid for linear systems. Thus, the model predic­
tive controller has exactly an infinite prediction 
horizon with only a finite horizon input profile to 
be determined on-line. For "open-loop" control, 
the control law beyond the finite horizon would be 
given by the local linear state feedback u = Kx (cf. 
Rawlings and Muske (1993) and Muske (1995), 
where the control beyond the finite horizon is 
chosen to be zero). A similar result can be found in 
Scokaert and Rawlings (1996). 

4. ASYMPTOTIC STABILITY RESULTS 

According to the principle of MPC, the open­
loop optimal control problem given by equations 
(3H5) will be solved repeatedly, updated with new 
measurements. The closed-loop control u*(·) is de-

fined by equation (7), where ii*('; x (t), I, t + Tp): [t, 
t + T p] -> U is a solution to the optimization prob­
lem. In this section, we address the stability prop­
erty of the closed-loop system 

x(t) = f(x(t), u*(t)). (20) 

To do this, we use the following standard defini­
tions (e.g. Khalil, 1992) and assume for the moment 
(later it will be shown) that x = 0 is an equilibrium 
of equation (20). 

Definition 1. The equilibrium point x = 0 of equa­
tion (20) is stable if for each c > 0 there exists 
1J(r-) > 0, such that Ilx(O)11 < 1J(e) implies ,lx(t)11 < c 
for all t :::::: o. 

Definition 2. The equilibrium point x = 0 of 
equation (20) is asymptotically stable if it is stable 
and 1J can be chosen such that Ilx(O)11 < 1J implies 
xU) -> 0 as t -> 00. 

For the sake of a clear proof, we use in this 
section the notation for internal controller vari­
ables and distinguish between the predicted values 
in the controller and the actual ones in the "real" 
system. Thus, x(·; x(t), t) denotes the predicted tra­
jectory of the nonlinear system starting from the 
actual state x(t) and driven by an open-loop con­
trol fi('), when the prediction is made in the 
controller at "real" time t. 

4.1. Feasibility of the optimization problem 
Due to the repeated sol ution of the optimization 

problem given by equations (3H5), we need its 
feasibility at each time t:::::: O. Feasibility of the 
optimization problem means that there exists at 
least one (not necessarily optimal) input profile 
ii( . ): [t, t + TpJ -> U such that the generated tra­
jectory of equation (5a) satisfies the terminal in­
equality constraint (5c), and such that the value of 
the objective functional (4) is bounded. In the fol­
lowing, we give a lemma on the feasibility of the 
optimization problem at each time. This lemma 
follows a standard argument also used for example 
in Genceli and Nikolaou (1993), Michalska and 
Mayne (1993) and Rawlings and Muske (1993). 

Lemma 2. For the nominal system with perfect 
state measurement and no disturbances, and for 
a sufficiently small sampling time b > 0, the feasi­
bility of the open-loop optimal control problem (3) 
with equation (4) subject to equation (5) at time 
t = 0 implies its feasibility for all t > O. 

Proof It is assumed for the moment that, at time t, an 
optimal solution fi*(' ;x(t), t, t + Tp): [t, t + Tp] -> U 
to the optimization problem described by equa­
tions (3H5) exists and is found. When applied in 
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open loop, this finite horizon optimal input profile 
drives the system model (Sa) from initial state x(t) 
into the terminal region n along the corresponding 
open-loop optimal state trajectory x*(· ; x(t), t, t + Tp) 
on [t, t + Tp] with x*(t + Tp;x(t), t, t + Tp) E n. 

In terms of MPC, the closed-loop control u*(') 
from time t to t + b is defined by equation (7). 
Since, by assumption, there are no disturbances 
and we only consider the nominal system, the 
state measurement at time t + (5 is then x(t + b) = 
x*(t + (5; x(t), t, t + Tp). Therefore, for solving the 
open-loop optimal control problem at time t + (5 

with initial condition x(t + (5; x(t + b), t + b) = 
x(t + b), a candidate input profile u( . ) on 
[t + b, t + b + Tp] may be chosen with 

u(r) = 

{
u*(r; x(t), t, t + T p) for r E [t + b, t+ Tp], 
Kx(r; x(t + b), t + b) for r E [t + Tp, t + b + Tp], 

(21) 

where K is the local linear state feedback gain 
used in determining P and n off-line (compare 
Section 3). From Lemma 1, the terminal region 
n is invariant for the nonlinear system model 
controlled with the linear state feedback. Thus, 
x*(t + Tp; x(t), t, t + Tp) E n implies x(t + b + Tp; 
x(t + b), t + (5) E n, due to the choice (21) for the 
input profile. In addition, since the input con­
straints are satisfied in n, input profile (21) is a 
feasible but perhaps not optimal solution to the 
optimization problem at time t + (5. Obviously, this 
reasoning is also valid, if at time t we start out with 
a feasible solution only, that needs not be optimal. 

For a numerical implementation, the input pro­
file is in general parameterized in a step-shaped 
manner. Thus, choosing u(r) = Kx(r; x(t + (5), t + b) 
for r E [t + Tp, t + b + Tp] as in equation (21) is 
practically impossible. However, we do have 
x*(t + Tp; x(t), t, t + Tp) E n. Then, if we choose 
U{r) = Kx(t + Tp; x(t + b), t + (5) for r E [t + Tp, t + 
b + 7;,], from the continuity of the trajectory, we 
can assume w.l.o.g. that for a small enough (5 > 0, 
the trajectory x(·; x(t + b), t + 6) on [t + Tp, t + 
b + Tp] stays in n. Then, the result can be achieved 
by induction. 0 

Remark 4.1. Lemma 2 indicates that the prediction 
horizon Tp (tuning parameter) needs to be chosen 
such that the optimization problem (3) with equa­
tion (4) subject to equation (S) is feasible at time 
t = O. 

4.2. Asymptotic stability 
Before the asymptotic stability of the closed-loop 

system (20) is addressed, we show that the optimal 

value function is non-increasing. This result is cru­
cial for the stability proof. 

Lemma 3. Suppose that the optimization problem 
is feasible at time t = O. Then, for the unperturbed 
nominal system, for any t ~ 0 and r E (t, t + b] the 
optimal value function satisfies 

J*(x(r), r, r + Tp) ~ J*(x(t), t, t + Tp) -

f (1Ix(s)ll~ + Ilu*(s)II~)ds. (22) 

Proof From Lemma 2, feasibility of the optimiza­
tion problem at each time t > 0 is guaranteed by its 
feasibility at time t = O. 

If, at time t, a finite horizon open-loop optimal 
input profile u*('; x(t), t, t + Tp):[t, t + Tp] -+ U 
and the corresponding finite horizon open-loop 
optimal state trajectory x*(·; x(t), t, t + Tp) on 
[t, t + Tp] are given, the optimal value of the objec­
tive functional can be written as 

f
t+1" 

J*(x(t), t, t + Tp) = t P (1Ix*(s; x(t), t, t + Tp)ll~ 

+ Ilu*(s; x(t),t, t + Tp)II~)ds 

+ Ilx*(t + Tp;x(t), t, t + Tp)II~. 
(23) 

For any r E (t, t + b], the closed-loop control is 
taken in terms of equation (7). For the nominal 
system without disturbances, the closed-loop state 
trajectory of the system (1) is then given by 

xes) = x*(s; x(t), t, t + Tp), s E [t, r]. (24) 

We now calculate the value of the objective func­
tional for any r E (t, t + b], if a feasible (suboptimal) 
input profile 

O(S) = 

{
u*(S; x(t), t, t + Tp) 
Kx(s; x(t + b), t + b) 

for S E [r, t + Tp] 
for s E [t + Tp, r + Tp] 

(2S) 

is assumed to be applied to the system. We denote 
that by J(x(r), r, r + Tp):= J(x(r), uC-)) with uC-) 
according to equation (2S). The generated finite 
horizon open-loop state trajectory is the same as 
the open-loop state trajectory given by the 
optimization at time t, except for the last part on 
[t + Tp, r + Tp], i.e. 

xes; x(r), r) = x*(s; x(t), t, t + Tp), 

s E [r, t + Tp]. (26) 

In order to characterize the contribution of the 
state trajectory on [t + Tp, r + Tp] to the value 
function, we use the results in Lemma 1: Since 
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the feasibility of the optimization problem at time 
t implies that x*(t + Tp; x(t ),t, t + Tp) E n and on 
[t + Tp, r + Tp] the system model is controlled by 
the linear state feedback (see equation (25», that 
part of the state trajectory stays in n and obeys 
inequality (18). We want to remind that the "real" 
time is now r E (t, t + t5] and we discuss the pre­
dicted open-loop state trajectory in the controller. In 
this situation, x(t) and t in inequality (I 8) have to be 
replaced by xes; x(r), r) and s, respectively. Then, 
integrating (18) from t + 7~ to r + Tp with 
x(t + Tp; x(r), r) = x*(t + Tp; x(t), t, t + Tp) yields 
the following relationship: 

Ilx(r + Tp; x(r), r)ll; s Ilx*(t + Tp; x(t), t, t + Tp)ll; 

- Ilx(s; x(r), r)II~. ds. i<+TI' 

t+ Tp 

(27) 

Then, the value of the objective functional for any 
r E (t, t + t5] is 

J(x(r), r, r + Tp) 

= f+Tp 

(1Ix(s; x(r), r)ll~ + Ilii(s)II~)ds 

+ Ilx(r + Tp; x(r), r)ll; 

= f+Tp 

(1Ix*(s; x(t), t, t + Tp)ll~ 

+ Ilii*(s; x(t), t, t + Tp)II~)ds 

+ f<+Tp Ilx(s; x(r), rll~.ds 
Jt+Tp 

+ Ilx(r + Tp; x(r), r) I;, 

where equations (25) and (26) are used. Because of 
inequality (27), the above equality becomes 

J(x(r), r, r + Tp) S f+Tp 

(1Ix*(s; x(t), t, t+ Tp)ll~ 

+ Ilii*(s; x(t), t, t + Tp)II~)ds 

+ Ilx*(t + 1~; x(t), t, t + Tp)II;. 

Combining it with (23) yields 

J(x(r), x(r), r) S J*(x(t), t, t + Tp) 

-f (II x*(s; x(t), t, t + Tp)ll~ 
+ Ilo*(s; x(tl, t, t + Tp)II~)ds. 

It follows from substituting equations (7) and (24) 
into the above inequality that 

J(x(r), r, r + Tp) S J*(x(t), t, t + Tp) - f (1Ix(s)ll~ 
+ Ilu*(s)II~)ds. (28) 

It is clear, by the optimality of J*, that we have for 
any r E (t, t + t5], 

J*(x(r), r, r + Tp) S J(x(r), r, r + Tp) 

S J*(x(t), t, t + Tp) 

-f (1Ix(s)ll~ + Ilu*(slll~)ds 

as required. o 

Because Q > 0 and R > 0, Lemma 3 implies by 
induction that the optimal value function is non­
increasing. Now we are able to state the asymptotic 
stability result for the closed-loop system (20). 

Theorem 1. Suppose that 

(a) assumptions (AI)-(A3) are satisfied, 
(b) the Jacobian linearization of the nonlinear 

system (1) is stabilizable, 
(c) the open-loop optimal control problem (3) with 

equation (4) subject to equation (5) is feasible at 
time t = O. 

Then, for a sufficiently small sampling time t5 > 0 
and in the absence of disturbances, the closed-loop 
system with the model predictive control (7) is nom­
inally asymptotically stable. Let X s; IR n denote the 
set of all initial states for which assumption (c) is 
satisfied, then, X gives a region of attraction for the 
closed-loop system. 

Proof From Lemma 1, assumption (b) implies that 
a terminal penalty matrix P and a terminal region 
n in the form of equation (11) can be found by the 
procedure in Section 3. According to Lemma 2, for 
a sufficiently small t5 > 0, feasibility of the open­
loop optimal control problem at each time t > 0 is 
guaranteed by assumption (c). 

For x(t) = 0, the optimal solution to the optim­
ization problem is 0*(-; 0, t, t + Tp): [t, t + Tp] -> 0, 
i.e. u*(r) = 0 for all r E [t, t + b]. Due to flO, 0) = 0, 
then x = 0 is an equilibrium of the closed-loop 
system (20). 

Now we define a function Vex) for the c1osed­
loop system (20) as follows: 

V(x):= J*(x, t, t + Tp). (29) 

Then, Vex) has the following properties: 

• V(O) = 0 and Vex) > 0 for x # 0, 
• Vex) is continuous at x = 0, 
• along the trajectory of the 

system starting from any Xo E X 
Os t1 < t2 S 00 

closed-loop 
there is for 

V(x(t 2 )) - V(x(td) s - f' Ilx(t)ll~dt. (30) 
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The first two properties follow from Lemma A,1 in 
Chen (1997) and the third property is due to 
Lemma 3 and R > O. As a central consequence, we 
can take the standard argument used, for example, 
in Hahn (1967) and Khalil (1992) to prove that the 
equilibrium x = 0 is stable per Definition 1. That is, 
for each B > 0 there exists I}(B) > 0, such that 
Ilx(O)11 < I}(B) implies Ilx(t)11 < B for all t ~ O. More­
over, there exists a constant f3 E (0, 00) such that 
along the closed-loop trajectory one has 

V(x(t))~{J, V't~O. (31) 

In the following, we show that there exists I} > 0 
such that x(t) --+ 0 as t -+ 00 for all Ilx(O)11 < I}, 

without having to use a continuous differen­
tiability assumption on Vex). This implies that the 
equilibrium x = 0 is asymptotically stable from 
Definition 2. Finally, it is shown that X is a region 
of attraction for the closed-loop system. 

We start out with inequality (30) to prove the 
asymptotic stability. By induction, we have 

V(x( 00)) ~ V(x(O)) - t" Ilx(t)ll~dt. (32) 

Due to V(x( 00)) ~ 0 and V(x(O)) ~ {J, the integral 
J~llx(t)ll~dt exists and is bounded. Let e1 < e be 
such that IIx(t}11 ~ el> then, x(t) is on the com­
pact set {II x II ~ e I} for all t E [0, 00). Moreover, 
u*(t) E U for all t E [0, 00) with U being compact. 
Because (is continuous in x and u, then, (x(t), u*(t)) 
is bounded for all t E [0, 00). Thus, x(t) is uni­
formly continuous in t on [0, 00) (Desoer and 
Vidyasagar, 1975). Consequently, Ilx(t)ll~ is uni­
formly continuous in t on [0, 00), because Ilxll~ is 
uniformly continuous in x on the compact set 
{ilxll ~ ed· Due to Q > 0, it follows from Bar­
balat's Lemma (Khalil, 1992) that 

Ilx(t)11 -+ 0 as t -+ 00. (33) 

Then, the equilibrium point x = 0 of the system (20) 
is asymptotically stable. Clearly, 

Wp:= {x E X W(x) ~ f3} (34) 

is a region of attraction. 
Furthermore, for all x(O) E X, there exists a finite 

time T such that x(T) E W/i. This can be shown by 
contradiction: Assume that x(t)~ Wp for all t ~ T. It 
follows from inequality (30) that for all t ~ T 

V(x(t + (5)) - V(x(t)) ~ - fH Ilx(r)lla dr 

:s; - () inf{ Ilxll~ I x~Wp} 

~ - () . y, (35) 

where y > 0, because of the positive definiteness of 
Vex). By induction, V(x(t)) --+ - 00 as t -+ 00 that 

contradicts however the fact that V (x) ~ O. Thus, 
any trajectory of equation (20) starting from X en­
ters into WfJ in a finite time. Then, the asymptotic 
stability of equation (20) in X follows by the fact 
that Wfl is a region of attraction. 

Finally, X has also the property that any closed­
loop trajectory starting from X stays in X. This can 
be proven again by contradiction: We assume that 
the closed-loop trajectory starting from any 
x(O) E X has left X at some time t1 > 0, i.e. X(t1)~X. 
From Lemma 2, we know that the optimization 
problem at time t 1 with initial condition 
X(t1; x(td, td = x(td is feasible. This contradicts 
that X is the set of all initial states for which 
assumption (c) is satisfied. Together with the 
achieved asymptotic stability, X gives a region of 
attraction for the closed-loop system. 0 

Remark 4.2. The given stability conditions are only 
sufficient and not necessary. The fact that the lin­
earized system is not stabilizable does of course not 
imply that there exists no linear feedback controller 
being able to stabilize the nonlinear system locally. 

Remark 4.3. When applying this control scheme to 
practical systems, the numerical optimization em­
ployed may not find the globally optimal input 
profile at every time step, due to real time computa­
tion time restrictions or because the optimizer is for 
example caught in a local optimum. Even though 
optimal performance might be lost this way, stabil­
ity can be guaranteed nevertheless, as the stability 
guarantee does not depend on the optimality of the 
solution found but merely on its feasibility, as long 
as the problem is feasible and the optimizer finds 
any feasible solution at time t = 0 and as long as 
each optimization problem is initialized by the shif­
ted feasible solution from the previous step. 

Remark 4.4. If the nonlinear system is open-loop 
asymptotically stable, the nonlinear terminal in­
equality constraint x(t + Tp) E n can be removed, 
without loss of the achieved stability (Chen and 
Allgower, 1997b). 

5. EXAMPLE 

5.1. Control problem and simulation results 
As an example for demonstrating the proposed 

control scheme, we consider a system described by 
the following ODEs: 

Xl = X2 + u(J1 + (1 - J1)X1), 

X2 = Xl + u(J1 - 4(1 - J1)X2). 

(36a) 

(36b) 

This system is a modification of the system used in 
Mayne and Michalska (1990) in that it is unstable 
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and its linearized system is stabilizable (but not 
controllable) for any ,u E (0, 1). In addition, it is 
assumed that the input u has to satisfy the following 
constraint: 

(37) 

For this unstable constrained system, assumptions 
(AIHA3) are satisfied. The weighting matrices Q 
and R in the objective functional (4) are chosen as 

Q = (0.5 0.0) 
0.0 0.5 ' 

R = 1.0. (38) 

Assume f.1 = 0.5 for the moment. In order to find 
a terminal penalty matrix P and the largest possible 
terminal region n, we follow the procedure de­
scribed in Section 3. First, solving the linear opti­
mal control problem with the weighting matrices 
given in equation (38) for the locally linearized 
system, we get a linear locally stabilizing state feed­
back gain 

K = [2.118 2.118]. (39) 

The largest eigenvalue of the closed-loop linearized 
system has real part Amax(AK) = - 1.0. Then, we 
choose a constant K = 0.95 which implies that the 
unique solution of the Lyapunov equation (9), 

P = (16.5926 
11.5926 

11.5926) 
16.5926 

(40) 

is positive definite, symmetric and can be used as 
a terminal penalty matrix. After that, IX! = 12.5 is 
found to specify a region n., in the form of equa­
tion (11), in which the linear feedback control satis­
fies the constraint (37). Finally, we find a region 
n. defined by equation (11) with IX = 0.025 such 
that inequality (16) is satisfied. However, this region 
is very small, because of the small value (0.1774) of 
;"min(P)/11 PII. From the simple optimization (19) out­
lined in Remark 3.1, we can derive a less conserva­
tive terminal region n, with'l. = 0.7 as follows: 

The open-loop optimal control problem described 
by equations (3H5) is solved in discrete time with 
a sampling time of b = 0.1 time-units and a predic­
tion horizon of Tp = 1.5 time-units. A few trajecto­
ries corresponding to different initial conditions of 
the unstable constrained system (36) with ,u = 0.5 
controlled by the proposed quasi-infinite horizon 
nonlinear predictive controller with parameters 
(38), (40) and (41) are shown in Fig. 1. The solid 
lines represent closed-loop trajectories; the dashed 
line is the boundary of the terminal region given by 
equation (41); the dash-dotted lines denote the pre­
dicted open-loop trajectories that are found by 
solving the optimization problem at time t = ° and 

o.a 

0.6 

0,4 

0.2 

-0.2 

-0.4 

-0.6 

-o.aL_-=-o.':-a -_70.6:---'_0::":,4--::_0'::".2 --7-~0::':.2:---::0'7.4 --::0.6:---:0::':.a:--' 

Fig. 1. Trajectories of the unstable constrained sy~tem (11 = 0.5) 
controlled by the proposed nonlinear predictive controller for 

different initial conditions. 

are only of finite horizon. It is clearly seen that the 
finite horizon open-loop trajectories end in the ter­
minal region, as expected to be achieved by the 
terminal inequality constraint. 

It should be emphasized that the linear state 
feedback with gain K as in equation (39) is not 
explicitly used to calculate the closed-loop control. 
Like standard model predictive controllers, the 
closed-loop control is determined by solving on­
line the optimization problem given by equations 
(3H5) repeatedly. For the chosen prediction hori­
zon Tp and sampling time b, the optimization prob­
lem is feasible at each time. Thus, for the nominal 
system without disturbances, the stability condi­
tions given in Section 4.2 are all satisfied. The 
closed-loop trajectories in Fig. 1 are guaranteed to 
converge to the origin. Figure 2 shows time profiles 
for the closed-loop system for two selected initial 
conditions (solid lines and dashed lines, respective­
ly). It can be seen that the input constraint (37) is 
not violated. 

5.2. Discussion of computational burden 
The proposed nonlinear MPC scheme has signif­

icant computational advantages when compared to 
other existing MPC approaches. To show this, we 
compare the proposed controller (case A) to two 
other predictive controllers (cases B and C): 

A P given by equation (40), terminal inequality 
constraint x(t + Tp; x(t), t) E n. with n, given 
by equation (41), Tp = 1.5, 

B P = 0, no terminal constraint, Tp = 3.5, 
C P = 0, terminal equality constraint x(t + Tp; 

x(t), t) = 0, Tp = 3.5. 

Controller A is designed with the proposed method 
and has guaranteed stability. For controller B, 
there is no terminal constraint and the terminal 
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Fig. 2. Time profiles for the closed-loop system from two initial conditions. 

Table 1. Comparison of elapsed CPU time. 

Initial state 

x ,(0) X2(0) Controller A 

- 0.683 - 0.864 859 
- 0.523 0.744 818 

0.808 0.121 615 
0.774 - 0.222 570 
0.292 0.228 820 

- 0.08 -0.804 696 

states are not penalized. This controller corre­
sponds to the nonlinear MPC scheme usually used 
in applications. Closed-loop stability can only 
be achieved by tuning the prediction (control) ho­
rizon Tp. Here, Tp = 3.5 time-units is the shortest 
prediction horizon determined by trial and error 
such that the closed-loop system is stable (for 
Tp = 1.5 time-units, the closed-loop system is un­
stable). For controller C, the well-known terminal 
equality constraint x(t + Tp; x(t), t) = 0 is used. 
Hence, a terminal state penalty does not make 
sense. Closed-loop stability is also guaranteed for 
this controller, if the optimization problem at time 
t = 0 is feasible. 

For a total simulation time of 10 time-units, the 
elapsed CPU times are shown in Table 1 for some 
different initial conditions, where the controllers A, 
Band C use the same optimization routine NAG 
E04UCF [Numerical Algorithms Group, 1993J 
and the same integration algorithm [Mitchell 
& Gauthier Associates, 1991] with the same nu­
merical parameters (optimality tolerance, feasibility 

Elapsed CPU time (s) 

Controller B Controller C 

1521 • 
1492 • 
1638 * 
1522 5729 
1724 • 
1544 5093 

tolerance, integration step, etc.). The symbol "." 
indicates that the optimization problem is not feas­
ible at time t = 0 for the corresponding initial con­
dition. It is clearly seen that controller A needs 
significantly less CPU time than controllers Band 
C. Here, controller B might be treated somewhat 
unfairly. In practice, one can use techniques such as 
blocking or confounding to reduce on-line compu­
tation time. However, an important drawback of 
controller B is that stability can only be achieved 
by tuning parameters such as the prediction hori­
zon. The big difficulty for controller C is the infeasi­
bility of the optimization problem caused by the 
terminal equality constraint. Despite the fact that 
the terminal constraint x(t + Tp; x(t), t) = 0 needs 
only be satisfied with feasibility tolerance 10- 4

, the 
optimization problem is not feasible at time t = 0 
for most initial conditions in Table 1. Thus, no 
stability can be guaranteed. Figure 3 shows two 
trajectories of the constrained system controlled by 
controllers A, Band C. We see that there is no big 
difference in control performance. 
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Fig. 3. Comparison of nonlinear predictive controllers: A ( 
B (--), C ( ... ) for two selected initial conditions. 

5.3. Discussion on terminal reyion 

0.1 

The model parameter 11 E (0, 1) describes the 
nonlinearity of the system (36). It is immediately 
clear that the smaller p, the stronger nonlinear the 
system behaves. For p = 1, the system is linear. For 
some given Il'S, we follow the procedure in Section 
3 to determine the terminal regions. As we do so, 
the linear feedback gain K is determined by solving 
the linear optimal control problem based on the 
Jacobian linearization with weighting matrices 
Q, R as in equation (38), and K = 0.95 is chosen. 
The results are shown in Fig. 4. It can be seen that 
the stronger nonlinear the system is, the smaller the 
terminal region becomes. For the system (36) with 
11 = 0.9, the input constraint (37) determines the 
size of the terminal region directly. 

The stability conditions discussed in Section 4.2 
are only sufficient. In particular, it is very difficult, if 
not impossible, to find the largest terminal region 
for a given nonlinear system. From the Lyapunov 
equation (9), P increases with K, and very rapidly as 
K is near to - ;"max(AK). A large P implies strong 
penalty for the states at the end of the finite 
horizon, but does not automatically imply a large 
terminal region a,. For a given model parameter 
11 = 0.5, some terminal regions for different K are 
shown in Fig. 5. We see that the terminal region 
extends first with K, but it becomes smaller as 
K approaches - ;.max(AK) = 1.0. It seems that 
a constant K near to the absolute value of the 
largest eigenvalue of AK corresponds to the largest 
possible terminal region. However, with this K the 
matrix P will be also large. From the structure of 
the objective functional, we know that a very strong 
penalty of the terminal states may have a bad 
influence on the achievement of the control perfor­
mance that is specified by the finite horizon cost. 
Thus, we may have to trade off between a large 
terminal region and good achievement of the de­
sired control performance. 
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6. CONCLUSIONS 

In this paper we proposed a quasi-infinite hori­
zon nonlinear MPC scheme with guaranteed stabil­
ity. The setup differs from the standard setup with 
quadratic objective functionals only in that a ter­
minal state penalty term (x(t + Tpf Px(t + Tp)) is 
added to the finite horizon objective functional 
and an additional terminal inequality constraint 
(xU + Tp) E a) has to be satisfied. These two 
terms do not however constitute additional tuning 
parameters that can be chosen freely, but have to be 
determined off-line such that the terminal region 
a has an invariance property. We have proven that 
this choice will guarantee asymptotic stability of 
the closed loop independent of the choice of the 
performance parameters Q and R in the quadratic 
objective functional, if a feasible solution to the 
optimization problem at time t = 0 exists. Thus, 
a separation between performance and stability 
issues is achieved in some sense. A terminal state 
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penalty matrix P and a terminal region Q can be 
determined off-line in a straightforward manner, 
essentially involving the solution of a linear stabil­
ization problem and a Lyapunov equation. This is 
outlined in the procedure given in the paper. 

The main advantage of this scheme is its guar­
anteed asymptotic stability. In addition. the 
quasi-infinite horizon nonlinear MPC scheme is 
computationally more attractive than other known 
nonlinear MPC schemes that also guarantee 
asymptotic stability (terminal equality constraint, 
infinite horizon). This was also demonstrated with 
the control of the unstable and constrained system 
in the example. 

The results presented in this paper must however 
be viewed only as a further step towards a practical 
nonlinear MPC theory. As usual we have assumed 
that there is no model/plant mismatch, that no 
disturbances are acting on the system and that the 
whole state vector can be measured. We do how­
ever not need to assume that at every step the 
globally optimal input profile is found numerically. 
Stability does only require feasible solutions to 
the optimization problem. It should however be 
pointed out that the given conditions for nominal 
asymptotic stability are only sufficient. 

Current investigations focus on robustness prop­
erties of this control scheme, on a further reduction 
of the computational burden and on a generaliz­
ation of the setup to include more general objective 
functionals and additional state constraints. 
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