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Abstract

This paper considers quasi-maximum likelihood estimations of a dynamic ap-
proximate factor model when the panel of time series is large. Maximum likelihood
is analyzed under different sources of misspecification: omitted serial correlation of
the observations and cross-sectional correlation of the idiosyncratic components. It
is shown that the effects of misspecification on the estimation of the common factors
is negligible for large sample size (T) and the cross-sectional dimension (n). The
estimator is feasible when n is large and easily implementable using the Kalman
smoother and the EM algorithm as in traditional factor analysis. Simulation results
illustrate what are the empirical conditions in which we can expect improvement
with respect to simple principle components considered by Bai (2003), Bai and
Ng (2002), Forni, Hallin, Lippi, and Reichlin (2000, 2005b), Stock and Watson
(2002a,b).

JEL Classification: C51, C32, C33.

Keywords: Factor Model, large cross-sections, Quasi Maximum Likelihood.
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Non-technical summary 
 
This paper considers quasi-maximum likelihood estimations of a dynamic approximate 
factor model when the panel of time series is large.  
 
Maximum likelihood is analyzed under different sources of misspecification: omitted 
serial correlation of the observations and cross-sectional correlation of the idiosyncratic 
components.  
 
It is shown that the effects of misspecification on the estimation of the common factors is 
negligible for large sample size (T) and the cross-sectional dimension (n).  
 
The estimator is then a valid parametric alternative to principal components which can 
potentially produce efficiency improvements due to the exploitation of the factor 
dynamics and the non sphericity of the idiosyncratic components. 
 
The estimator is feasible when n is large and easily implementable using the Kalman 
smoother and the EM algorithm as in traditional factor analysis. Simulation results 
illustrate what are the empirical conditions in which we can expect improvement with 
respect to simple principle components. 
 
There are three desirable characteristics of the parametric approach. 
 
First, as mentioned, it may lead to efficiency improvements. 
 
Second, it provides a natural framework for structural analysis since it allows to impose 
restrictions on the loadings (as done, for example, in Bernanke, Boivin, and Eliasz 
(2005); Boivin and Giannoni (2005); Kose, Otrok, and Whiteman (2003); Forni and 
Reichlin (2001)) and to extract shocks. 
 
Finally, once we have a parametric model estimated by likelihood based methods, it is 
possible to handle missing data and enlarge the range of interesting empirical 
applications. Missing data at the end of the sample due to unsynchronized data releases, 
is a typical problem for real time estimation of macro variables (see Giannone, Reichlin, 
and Sala, 2004; Giannone, Reichlin, and Small, 2005  for applications based on 
parametric factor models). 
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1 Introduction

The idea that the dynamics of large panels of time series can be characterized as
being driven by few common factors and a variable specific-idiosyncratic component is
appealing for macroeconomic and finance applications where data are strongly collinear.
Applications in macroeconomics date back to the seventies (Geweke, 1977; Sargent and
Sims, 1977; Geweke and Singleton, 1980). In finance, the factor model has also a long
tradition since it relates closely to the CAPM model of asset prices.

In traditional factor analysis, for a given size of the cross-section n, the model can
be consistently estimated by maximum likelihood. The literature has proposed both
frequency domain (Geweke, 1977; Sargent and Sims, 1977; Geweke and Singleton, 1980)
and time domain (Engle and Watson, 1981; Stock and Watson, 1989; Quah and Sargent,
1992) methods.

Identification is achieved by assuming that, for each series, the component driven by
the common factors (common component) is orthogonal to the idiosyncratic component
and the common component has cross-sectionally orthogonal elements. A factor model
with orthogonal idiosyncratic elements is called an exact factor model.

Although the idea of factor analysis is appealing, the traditional approach presents
some limitations. First of all, the assumption of an exact factor structure is an ex-
cessive straightjacket on the data, leading to potentially harmful misspecification. In
particular, with large panels, containing sectoral variables for example, the assumption
of orthogonal idiosyncratic elements is likely to be less adequate than with panels with
a small number of aggregate variables. Second, although the coefficients of the factors
loadings can be consistently estimated for T large via maximum likelihood, the factors
are indeterminate and one can only obtain their expected value (on this point, see
Steiger, 1979). Third, many empirically interesting economic applications require the
study of large panels, situation in which the properties of the maximum likelihood esti-
mates are unknown and where maximum likelihood is generally considered not feasible
(Bai, 2003; Bai and Ng, 2002).

As a response to this limitations, recent literature has generalized the idea of factor
analysis to handle less strict assumptions on the covariance of the idiosyncratic elements
(approximate factor structure) and proposed non-parametric estimators of the common
factors based on principal components, which are feasible for n large (Forni, Hallin,
Lippi, and Reichlin, 2000; Stock and Watson, 2002a,b).

Key feature of this approach is that identification and consistency are analysed as
n, as well as T , go to infinity. It is shown that, under suitable assumptions, if the cross-
sectional dimension n tends to infinity, the principal components of the observations
become increasingly collinear with the common factors and identification is achieved
asymptotically for n (Chamberlain, 1983; Chamberlain and Rothschild, 1983; Forni,
Hallin, Lippi, and Reichlin, 2000; Forni and Lippi, 2001). Principal components are
also proved to be n, T consistent estimators of the factor space (Bai, 2003; Bai and
Ng, 2002; Forni, Hallin, Lippi, and Reichlin, 2000, 2005b; Stock and Watson, 2002a,b;
Forni, Giannone, Lippi, and Reichlin, 2005a).

The approximate factor model presents several advantages with respect to the ex-
act model. It is very flexible and suitable under general assumptions on measurement
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error, geographical clustering and, in general, local cross correlation. However, maxi-
mum likelihood estimator has never been analyzed for this model. The reason is that,
in order to estimate the model by maximum likelihood, it is necessary to impose a
parametrization while retaining parsimony. Parsimony is achieved in the exact factor
model by restricting the cross-correlation among idiosyncratic components to be zero.
Once this restriction is relaxed, there is no obvious way to model the cross-sectional
correlation among idiosyncratic terms since, in the cross-section, there is no natural
order.

This paper studies maximum likelihood estimation for the approximate factor model
in large panels. The central idea is to treat the exact factor model as a misspecified
approximating model and analyze the properties, for n and T going to infinity, of the
maximum likelihood estimator of the factors under misspecification, that is when the
true probabilistic model is approximated by a more restricted model. This is a quasi
maximum likelihood estimator (QML) in the sense of White (1982). We derive the
n, T rates of convergence for it and show its feasibility when n is large. We show
that traditional factor analysis in large cross-section is feasible and that consistency
is achieved even if the underlying data generating process is an approximate factor
model rather than an exact one. More precisely, our consistency result shows that the
expected value of the common factors converges to the true factors as n, T →∞ along
any path (we also provide the consistency rates).

This result tells us that the misspecification error due to the approximate structure
of the idiosyncratic component vanishes asymptotically for n and T large, provided
that the cross-correlation of the idiosyncratic processes is limited and that of the com-
mon components is pervasive throughout the cross section as n increases. These are
conditions that have been introduced by Chamberlain and Rothschild (1983) and used,
reinterpreted and extended by, respectively, (Connor and Korajczyk, 1986, 1988, 1993;
Forni et al., 2000; Forni and Lippi, 2001; Stock and Watson, 2002a,b).

Our result should be interpreted as a reconciliation of the classical factor analysis
approach with the new generation of dynamic factor models with n large in which
the common factors are estimated by principal components. We show that these two
approaches are related in the sense that principal components estimators can be rein-
terpreted as quasi-maximum likelihood estimators, i.e. maximum likelihood under a
misspecified model where data are supposed to be generated by a factor model with
spherical idiosyncratic components and non serially correlated observations.

From the practical point of view we show that, unlike what sometime claimed in
the literature, classical likelihood based methods are feasible in the large n case. Under
standard parameterizations, the factor model can in fact be cast in a state space form
and the likelihood can be maximized via the EM algorithm which requires at each it-
eration only one run of the Kalman smoother (Engle and Watson, 1981). Under the
exact factor structure restriction on the approximating model, the computational com-
plexity of the smoother depends essentially on the number of common factors r which
is typically small. The intuition of why this works was first provided in the literature
by Quah and Sargent (1992) who estimated a model with n = 60 already in early 90s.
Moreover, since principal components provide a good approximation of the common
factors in a large cross-section, they can be used to get a good initial estimate of the
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parameters for initializing the numerical algorithm for maximum likelihood estimation.
There are many reasons why our result is a useful contribution to the literature

of factor models in large panels. First, maximum likelihood estimation is particularly
attractive for economic applications since it provides a framework for incorporating re-
strictions deriving from economic theory in the statistical models. Indeed, an increasing
number of studies in macroeconomics have used likelihood based, Bayesian, methods
for extracting the common factors from a large panel of time series (Kose, Otrok, and
Whiteman, 2003; Boivin and Giannoni, 2005; Bernanke, Boivin, and Eliasz, 2005).
However, the model is estimated under the assumption that the data follow an exact
factor structure and it is not clear what is the price one pays for this kind of misspeci-
fication. Moreover, even assuming that data factor structure is exact, the asymptotic
properties of the estimates when both the sample size and the cross-sectional dimension
are large have not been studied. Second, if the true data generating process (DGP) and
the approximating model coincide, then maximum likelihood estimates are the most
efficient. Finally, once we have a parametric model estimated by likelihood based meth-
ods, it is possible to handle missing data and enlarge the range of interesting empirical
applications. In particular, missing data at the end of the sample due to unsynchro-
nized data releases, is a typical problem for real time estimation of the common factors
(Giannone, Reichlin, and Sala, 2004; Giannone, Reichlin, and Small, 2005).

The paper is organized as follows. Section two states the assumptions for the model
generating the model and those for the approximating model we will use in estimation.
Section three states the basic proposition showing consistency and rates for the quasi
maximum likelihood estimator. Section four illustrates the empirical results and Section
five concludes.

2 Models

2.1 Notation

For any positive definite square matrix M , we will denote by λmax(M) (λmin(M))
its largest (smallest) eigenvalue. Moreover, for any matrix M we will denote by
‖M‖ the spectral norm defined as ‖M‖ =

√
λmax(M ′M). Given a stochastic pro-

cess {Xn,T ;T ∈ Z, n ∈ Z}, and a real sequence {an,T ;T ∈ Z, n ∈ Z} we will say that
Xn,T = OP

(
1

anT

)
as n, T → ∞, if the probability that an,TXn,T is bounded tends to

one.

2.2 The approximate dynamic factor model

We suppose that an n-dimensional zero-mean stationary process xt is the sum of two
unobservable components:

xt = Λ0ft + et (2.1)

where ft = (f1t, ..., frt)′, the common factors, is an r-dimensional stationary process
with mean zero; Λ0, the factor loadings is an n × r matrix; et = (e1t, ..., ent)′, the
idiosyncratic components, is an n-dimensional stationary process with mean zero and
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covariance matrix E(ete′t) = Ψ0, whose entries will be denoted by E(eitejt) = ψ0,ij .
The common factors ft and the idiosyncratic component et are also assumed to be
uncorrelated at all leads and lags, that is E(fjteis) = 0 for all j = 1, ..., r, i = 1, ..., n
and t, s ∈ Z. The number of common factors, r, is typically much smaller than the
cross-sectional dimension, n.

Notice that this model is quite general since it does not impose cross-sectional
orthogonality of the ei’s and can accomodate dynamic effects of the common factors.

Given a sample of size T , we will denote by capital cases the matrices collecting all
the variables, that is X = (x1, ...,xT )′ is the T×nmatrix of observables, F = (f1, ..., fT )′

is the T×r matrix of common factors and E = (e1, ..., eT )′. All these quantities depend
on the size of the cross-section and on the sample size. For notational convenience we
will not index them by n, T .

The following assumptions define an approximate factor model for large-cross-
section.

Assumptions A (Approximate factor model)

A1 0 < λ < lim infn→∞ 1
nλmin (Λ′0Λ0) ≤ lim supn→∞ λmax

1
n (Λ′0Λ0) < λ̄ <∞

A2 0 < ψ < lim infn→∞ λmin (Ψ0) ≤ lim supn→∞ λmax (Ψ0) < ψ̄ <∞

A2 limits the cross-correlation of the idiosyncratic components. While it includes
the case in which they are mutually orthogonal, it allows for a more general structure
with an upper bound for the variances as a special case. A1 entails that, for n sufficiently
large, Λ′0Λ0/n has full rank r (pervasiveness of the common factors). Consequently, by
regressing the observations xxxt on the factor loadings Λ0, it is possible to extract the r
common factors fff t.

Moreover, since λmin(Ψ0) ≤ ψ0,ii ≤ λmax(Ψ0), a consequence of A2 is that the
variance of the idiosyncratic component is uniformly bounded and greater than zero.
The assumption that the variance of the idiosyncratic component is uniformly greater
than zero implies that the factor extraction is not trivial, i.e. that there is no variable
which has no idiosyncratic component.

We will also assume that the common factors and the idiosyncratic component
processes are ergodic, so that for large sample size, T → ∞, the sample covariances
converge to their population counterpart, uniformly with respect to the cross-sectional
dimension.

Assumptions B
There exists a positive constant M such that for all i, j ∈ N and for all T ∈ Z
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i) E
(

1√
T

∑T
t=1(eitejt − ψ0,ij)

)2
< M

ii) E
∥∥∥ 1√

T

∑T
t=1 ftejt

∥∥∥2
< M

iii) E
∥∥∥ 1√

T

∑T
t=1(ftf

′
t − Ir)

∥∥∥2
< M

Under the assumptions above, the common factors can be estimated consistently
by mean of principal components. Denote by D the r × r diagonal matrix containing
the r largest eigenvalues of sample covariance matrix S = 1

T X′X and and by V the
n× r matrix whose columns are the corresponding normalized eigenvalues (V ′V = Ir),
that is SV = VD. The common factors can be estimated as:

F̂t = XVD−1/2

where F̂t are the principal components normalized to have sample covariance equal to
the identity matrix: 1

T

∑T
t=1 f̂tf̂ ′t = Ir. Recent literature has shown that the principal

components estimator of the common factors provides a good approximation of the
common factors for large cross-section and sample size, that is the principal components
consistently estimate the space spanned by the true common factors as n, T → ∞
(Forni, Hallin, Lippi, and Reichlin, 2000, 2005b; Stock and Watson, 2002a,b; Bai and
Ng, 2002; Bai, 2003; Forni, Giannone, Lippi, and Reichlin, 2005a; Doz, Giannone, and
Reichlin, 2005).

In order to develop our alternative maximum likelihood estimator, next section will
introduce different approximating models to the data generating process defined here.

2.3 The approximating factor models

An approximating model is a possibly misspecified model that we will use to define the
likelihood.

Let us first consider the approximating model: ft i.i.d. N (0, Ir), et i.i.d. N (0, σ2In).
This approximating model is parameterized by Λ and σ2 which will be collected into
θ. In this case, the log likelihood takes the form:

LX (X; θ) = −nT
2

log 2π − T

2
|ΛΛ′ + σ2In| −

T

2
Tr
(
ΛΛ′ + σ2In

)−1
S

The following normalization is typically made to identify the model for any given cross-
sectional size: Λ′Λ is a diagonal matrix with diagonal entries in decreasing order of
magnitude 1. The maximum likelihood solution is given by:

Λ̂ = V(D − σ̂2Ir)1/2 and σ̂2 =
1
n

Trace(S − Λ̂Λ̂′)

1Further, if Λ0 is the true value of the matrix Λ, it is usually assumed that Λ′
0Λ0 has distinct

eigenvalues.
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(see, for instance, Lawley and Maxwell (1970), chap.4).

The common factors can be approximated by their expected value under the esti-
mated parameters Λ̂ and σ̂2:

F̂Λ̂,σ̂2 = EΛ̂,σ̂2 [F|X] = X
(
Λ̂Λ̂′ + σ̂2In

)−1
Λ̂ = XΛ̂

(
Λ̂′Λ̂′ + σ̂2In

)−1
= XV(D−σ̂2Ir)1/2D−1

which are proportional to principal components.
Hence, principal components can be seen as Maximum Likelihood estimator for the

factor loadings of the approximate factor model, in a situation in which the approximat-
ing probability model is not correctly specified: the true model satisfies condition A1
and A2 while we use an approximating model that restricts the data to be not serially
correlated and the idiosyncratic component to be spherical. This is what White (1982)
called a Quasi Maximum Likelihood (QML) estimator. Consistency results for principal
components can be reinterpreted in the following way. The bias arising from this mis-
specification of the approximating model is negligible if the cross-sectional dimension
is large enough.

The approximating model implicit in principal components has three sources of
misspecification since it does not take into account: a) the serial correlation of the
common factors and idiosyncratic components; b) the cross-sectional heteroscedasticity
of the idiosyncratic components; c) the cross-sectional correlation of the idiosyncratic
components.

We know that the misspecification implied by the principal components estimator
does not compromise the consistency of the common factors for n, T →∞. Is this also
true when the approximating model is less tight, i.e. when some of the assumptions
above are relaxed?

We will now consider a model that is more general and that can potentially allow
for efficiency improvements. A natural candidate is the model that has been typically
used in traditional exact factor analysis for small cross-section (see, for example, Stock
and Watson, 1991).

Approximating parametric model

R1 the common factors follow a finite order gaussian VAR: A(L)ft = ut, with A(L) =
I −A1L− ...−ApL

p an r × r filter of finite length p with roots outside the unit
circle, and ut an r dimensional gaussian white noise, ut ∼ i.i.d N (0,H).

R2 the idiosyncratic components are cross-sectionally independent gaussian white
noises: et ∼ i.i.d N (0,Ψd) where Ψd is a diagonal matrix.

The idiosyncratic component is modelled as a cross-sectionally independent and
non serially correlated gaussian processes. The orthogonality restriction among id-
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iosyncratic component is key to maintain parsimony in the estimation2. The model
defined by R1 and R2 is more general than the one under which principal components
is the maximum likelihood estimator of the factors since it allows for dynamics of the
factors and non sphericity of the idiosyncratic variance.

Let us characterize it by the quadruplet Λ,Ψd, A(L),H. All the parameters will be
collected into θ ∈ Θ, where Θ is the parameter space defined by R1 and R2.

Notice that the approximating model under which principal components is the max-
imum likelihood estimator is a particular case of R1 and R2 with non serially correlated
factors, A(L) = Ir,H = Ir, and spherical idiosyncratic component, Ψd = σ2In.

Under assumptions R1 and R2, the model can be cast in a state space form with
the number of states equal the number of common factors r. For any set of parameters
the likelihood can then be evaluated using the Kalman filter.

Given the quasi maximum likelihood estimates of the parameters θ, the common
factors can be approximated by their expected value, which can be computed using the
Kalman smoother:

F̂θ̂ = Eθ̂ [F|X]

In the next section we study the properties of the estimated common factors as n
and T go to infinity. Assuming that the true model is approximated, we will consider
the effects of misspecification on the estimates.

3 The asymptotic properties of the QML estimator of the
common factors

We will now study the properties of a maximum likelihood estimator in which the data
follow a factor model that is dynamic and approximate (Assumptions A), while we
restrict the approximating model to be exact, with non serially correlated idiosyncratic
component and autoregressive common factors (R1 and R2). The proposition below
proves consistency of this QML estimator.

To avoid degenerate solutions for the maximum likelihood problem, we will impose
the following constraints in the maximization of the likelihood:

Constraints in the maximization of the likelihood

i) c ≤ ψ̂ii ≤ c̄ for all i ∈ N.

ii) |Â(z)| < 1

The constraints (i) and (ii) define a new parameter space Θc ⊆ Θ.
2We could also take into account serial correlation of the idiosyncratic components without com-

promising the parsimony of the model by modelling it as cross-sectionally orthogonal autoregressive
process. We do not consider this case in order not to compromise the expositional simplicity.
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Remark 0.The constraint is necessary to avoid situations in which estimated pa-
rameters imply non-stationarity of the common factors and/or trivial situation in which
the variance of the idiosyncratic noise is either zero or infinite.

Assumption C below insures that the constraint on the size of the idiosyncratic
component is never binding.

Assumption C
There exists δ > 0 such that c ≤ ψ − δ ≤ ψ̄ + δ ≤ c̄ where c and c̄ are the constant in
Assumption A (ii).

Proof See the appendix.

Remark 1 The result of Proposition 1 still holds if the approximating model has more
than r common factors. The proof of this remark is in the appendix.

Remark 2 The result of Proposition 1 still holds if the approximating model has
spherical idiosyncratic component, that is Ψ = σ2In. Consistency of the principal
components estimates is a particular case of Proposition 1 which provides an alternative
proof of the result in Bai and Ng (2002) under a different set of assumptions. The proof
of this remark is in the appendix.

Remark 3 Traditional factor analysis with non serially correlated data correponds to
the case A(L) = Ir, H = Ir.

13
ECB

Working Paper Series No 674
September 2006

Proposition 1 Under assumptions A, B and C we have:

trace
(

1
T

(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)
)

= Op

(
1

∆nT

)
as n, T →∞

where

Ĥ =
(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
F is the coefficient of the OLS projection of F on F̂θ̂

∆nT = min
{√

T , n
log(n)

}
is the consistency rate.

The result holds under any restriction on A(L) and H.



4 Monte Carlo study

In this section we run a simulation study to asses the performances of our estimator.
The model from which we simulate is standard in the literature. A similar model

has been used, for example, in Stock and Watson (2002a).
Let us define it below.

xt = Λft + Et

A(L)ft = ut, with ut i.i.d. N (0, Ir);

D(L)Et = vt with vt i.i.d. N (0, T )

Aij(L) =

{
1− ρL if i = j

0 if i 6= j
; i, j = 1, ..., r

Dij(L) =

{ √
αi(1− dL) if i = j

0 if i 6= j
; i, j = 1, ..., n

Λij i.i.d. N (0, 1), i = 1, ..., n; j = 1, .., r

αi = βi
1−βi

1
T

∑T
t=1

(∑r
j=1 Λijfjt

)2
with βi i.i.d. U([u, 1− u])

Tij = τ |i−j| 1
1−d2 , i, j = 1, ..., n

Notice that we allow for cross-correlation between idiosyncratic elements. Since T
is a Toeplitz matrix the cross-correlation among idiosyncratic elements is limited and
it is easily seen that Assumption A (ii) is satisfied. The coefficient τ controls for the
amount of cross-correlation. The exact factor model correspond to τ = 0.

The coefficient βi is the ratio between the variance of the idiosyncratic component,
eit, and the variance of the common component,

∑r
j=1 Λijfjt. The is also known as

the noise to signal ratio. In our simulation this ratio is uniformly distributed with an
average of 50%. If u = .5 then the standardized observations have cross-sectionally
homoscedastic idiosyncratic components.

Notice that if τ = 0, d = 0, our approximating model is well specified and hence
Maximum Likelihood provides the most efficient estimates. If τ = 0, d = 0, ρ = 0, we
have a static exact factor model and iteratively reweighed principal components provide
the most efficient estimates. Finally, if τ = 0, d = 0, u = 1/2, then on standardized
variables we have a static factor models with spherical idiosyncratic components, situa-
tion in which principal components on standardized variables provide the most efficient
estimates.

We generate the model for different sizes of the cross-section: n = 5, 10, 25, 50, 100,
and for sample size T = 50, 100.

Maximum likelihood estimates are computed using the EM algorithm as in Engle
and Watson (1981) and Quah and Sargent (1992).
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This algorithm has the advantage of requiring only one run of the Kalman smoother
at each iteration. The computational complexity of the Kalman smoother depends
mainly on the number of states which in our approximating model corresponds to the
number of factors, r, and hence is independent of the size of the cross-section n.

To initialize the algorithm, we compute the first r sample principal components, fpc,t,
and estimate the parameters Λ̂(0)Â(0)(L), Ψ̂(0)

d by OLS, treating the principal compo-
nents as if they were the true common factors. Since these estimates have been proved
to be consistent for large cross-sections (Bai, 2003; Forni et al., 2005a; Doz et al., 2005),
the initialization is quite good if the cross-section dimension is large. We hence expect
the number of iterations required for consistency to decrease as the cross-sectional
dimension increases.

The two features highlighted above – small number of state variables and good
initialization – make the algorithm feasible in a large cross-section.

To get the intuition of the EM algorithm, let us collect the initial values of the
parameters in θ̂(0). We obtain a new value of the common factors by applying the
Kalman smoother:

f̂θ(1),t = Eθ̂(0)(ft|x1, ...,xT ).

If we stop here we have the two-step estimates of the common factors proposed by
(Giannone et al., 2004, 2005; Doz et al., 2005).

A new estimate of the parameters, to be collected in θ̂(2), can then be computed
by OLS regression treating f̂θ(1),t as if they were the true common factors. If the OLS
regressions are modified in order to take into account the fact that the common factors
are estimated3, then we have the EM algorithm that converges to the local maximum
of the likelihood4.

We control convergence by looking at cm = LX(X;θ̂(m))−LX(X;θ̂(m−1)

(LX(X;θ̂(m))+LX(X;θ̂(m−1))/2
. We stop

after M iterations if cM < 10−4.

We simulate the model 500 times and, at each repetition, we apply the algorithm to
standardized data since the principal components used for initialization are not scale
invariant.

We compute the following estimates of the common factors:

- principal components: f̂pc,t;

- two-steps estimates: f̂θ̂(0),t

- maximum likelihood estimates: f̂θ(M),t := f̂θ̂,t

We measure the performance of the different estimators by means of the following
trace statistics:

3This requires the computation of Eθ(m)(f̂θ(m),t − ft)(f̂θ(m),t−k − ft−k)′, k = 0, ..., p, which are also
computed by the Kalman smoother. See for example Engle and Watson (1981).

4A detailed derivation of the EM algorithm for dynamic factor model is provided by Ghahramani
and Hinton (1996)
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Tr
(
F′F̂(F̂′F̂)−1F̂′F

)
Tr (F′F)

where F̂ =
(
f̂1, ..., f̂T

)′
, and f̂t is any of the three estimates of the common factors.

This statistics is a multivariate version of the R2 of the regression of the observed
factors on the estimated factors, and the reason why we use it is that the common
factors are identified only up to a rotation. This statistics is also closely related to
the empirical canonical correlation between the true factors and their estimates. A
number close to one indicates a good approximation of the true common factors. De-
noting by TRpc, TR2s TRml the trace statistics for principal component, two steps and
maximum likelihood estimates of the common factors, we compute the relative trace
statistics TRml/TRpc and TRml/TR2s. Numbers higher than one indicates that Max-
imum Likelihood estimates of the common factors are more accurate than principal
components and two-steps estimates.

Table 1: Simulation results for the model: ρ = .9, d = .5, τ = .5, u = .1, r = 1
TRml

n = 5 n = 10 n = 25 n = 50 n = 100
T = 50 0.52 0.68 0.74 0.75 0.76
T = 100 0.64 0.78 0.84 0.85 0.86

Number of iterations
n = 5 n = 10 n = 25 n = 50 n = 100

T = 50 13 9 5 4 3
T = 100 13 7 4 4 3

Computation time: seconds
n = 5 n = 10 n = 25 n = 50 n = 100

T = 50 0.53 0.25 0.20 0.33 1.07
T = 100 0.66 0.37 0.33 0.61 2.13

TRml/TRpc
n = 5 n = 10 n = 25 n = 50 n = 100

T = 50 1.11 1.04 1.00 1.00 1.00
T = 100 1.09 1.02 1.01 1.00 1.00

TRml/TR2s

n = 5 n = 10 n = 25 n = 50 n = 100
T = 50 1.03 1.01 1.00 1.00 1.00
T = 100 1.02 1.00 1.00 1.00 1.00

Table 1 reports the results of the Montecarlo experiment for one common factor, r =
1, with serial correlation in both common factors, ρ = .9, and idiosyncratic components,
d = .5. The model is approximated because of the weak cross-sectional correlation
among idiosyncratic components, τ = .5. Finally the idiosyncratic component is cross-
sectionally heteroscedastic, u = .1. The numbers in the table refer to the average across
experiments. We would like to stress the following results:

1. The precision of the common factors estimated by Maximum Likelihood increases
with the size of the cross-section n.
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2. The number of iterations required for convergence is small and decreases with the
size of the cross-section. As remarked above this is explained by the fact that, as
n increases, the initialization provided by principal components are increasingly
accurate and hence the computation time for convergence does not increase too
much with the cross-sectional dimension.

3. The Maximum Likelihood estimates always dominate simple principal compo-
nents and to a less extend the two-step procedure. As both n, T become large,
the precision of the estimated common factors increases and all methods tend to
perform similarly. This is not surprising given that both methods provide consis-
tent estimates for n and T large. Improvement of the ML estimates are significant
for n = 5 and the improvement is of the order of 10% with respect to principal
components and less than 5% for the two-step estimates. This suggests that the
two step kalman smoother estimates already take appropriately into account the
dynamics of the common factors and the cross-sectional heteroscedasticity of the
idiosyncratic component and hence the gains from further iterations are small.

Table 2 reports the results for r = 3 while the remaining parameters are the same
as those used the Table 1: ρ = .9, d = .5, τ = .5, u = .1. The simulations have been
run for n ≥ 10 only, because an exact factor model with n = 5 and r = 3 would not be
identifiable. Notice that, although the main features outlined above are still present,
as expected, the estimates of the common factors are less precise with respect to the
case of only one common factors (given the same a set of data, it is more difficult to
extract additional factors). Improvements by the maximum likelihood are more sizable
in this case which just indicates that efficiency improvements are larger, the harder is
the factor extraction.
We finally study a case in which our approximating model is well specified, that is the
idiosyncratic components is neither serially nor cross-sectionally correlated d = 0, τ = 0.
The remaining parameters are set as for the experiments reported in Table 1 and 2. In
this case, as one can see from table 3 below, the efficiency gains of ML estimates over
the principal components and two-steps estimates are more relevant.

Summarizing, QML estimates of approximate factor models work well in finite sam-
ple. Because of the explicit modelling of the dynamics and the cross-sectional het-
eroscedasticity, the maximum likelihood estimates dominate the principal components
and, to a less extent, the two two-step procedure. Efficiency improvements are relevant
when the factor extraction is difficult, that is, when there are more common factors to
estimate.
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Table 2: Simulation results for the model: ρ = .9, d = .5, τ = .5, u = .1, r = 3
TRml

n = 10 n = 25 n = 50 n = 100
T = 50 0.48 0.59 0.65 0.67
T = 100 0.58 0.75 0.80 0.82

Number of iterations
n = 10 n = 25 n = 50 n = 100

T = 50 26 12 7 5
T = 100 20 9 5 4

Computation time: seconds
n = 10 n = 25 n = 50 n = 100

T = 50 0.72 0.46 0.56 1.44
T = 100 1.08 0.68 0.87 2.31

TRml/TRpc
n = 10 n = 25 n = 50 n = 100

T = 50 1.08 1.05 1.03 1.01
T = 100 1.10 1.06 1.02 1.01

TRml/TR2s

n = 10 n = 25 n = 50 n = 100
T = 50 1.05 1.02 1.01 1.00
T = 100 1.07 1.03 1.00 1.00

Table 3: Simulation results for the model: ρ = .9, d = 0, τ = 0, u = .1, r = 3
TRml

n = 10 n = 25 n = 50 n = 100
T = 50 0.54 0.65 0.68 0.70
T = 100 0.66 0.78 0.81 0.82

Number of iterations
n = 10 n = 25 n = 50 n = 100

T = 50 21 9 6 5
T = 100 15 7 5 4

Computation time: seconds
n = 10 n = 25 n = 50 n = 100

T = 50 0.58 0.36 0.49 1.30
T = 100 0.83 0.54 0.84 2.29

TRml/TRpc
n = 10 n = 25 n = 50 n = 100

T = 50 1.14 1.06 1.03 1.01
T = 100 1.19 1.06 1.02 1.01

TRml/TR2s

n = 10 n = 25 n = 50 n = 100
T = 50 1.07 1.02 1.01 1.00
T = 100 1.10 1.01 1.00 1.00

18
ECB
Working Paper Series No 674
September 2006



5 Summary and conclusions

The paper has studied quasi maximum likelihood estimation of the factors for an ap-
proximate factor model. Consistency under different source of miss-specification is
shown for n and T going to infinity. The results of this paper show that the effects of
misspecification of the approximating model goes to zero asymptotically.

The estimator is then a valid parametric alternative to principal components which
can potentially produce efficiency improvements due to the exploitation of the factor
dynamics and the non sphericity of the idiosyncratic components. The estimator is
feasible when n is large and easily implementable using the Kalman smoother and the
EM algorithm as in traditional factor analysis.

Simulation results illustrate in what empirical conditions we can expect improve-
ment with respect to simple principle components.

There are three desirable characteristics of the parametric approach.
First, as mentioned, it may produce efficiency improvements.
Second, it provides a natural framework for structural analysis since it allows to

impose restrictions on the loadings (as done, for example, in Bernanke, Boivin, and
Eliasz (2005); Boivin and Giannoni (2005); Kose, Otrok, and Whiteman (2003); Forni
and Reichlin (2001)) and to extract shocks. These features are not studied in this paper
but they are natural extensions to explore in further work.

Finally, once we have a parametric model estimated by likelihood based methods,
it is possible to handle missing data and enlarge the range of interesting empirical
applications for large factor models. Missing data at the end of the sample due to
unsynchronized data releases, is a typical problem for real time estimation of macro
variables (see Giannone, Reichlin, and Sala, 2004; Giannone, Reichlin, and Small, 2005
for applications based on parametric factor models).
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6 Appendix

We adopt the following notations to define the pseudo likelihood under the approxi-
mating model which is completely characterized by the parameter θ:

- f(X,F)(X,F ; θ) is the joint density of the common factors and the observables,
depending on the parameter θ,

- fX(X; θ) and fF(F ; θ) are the corresponding marginal densities,

- fX|F=F (X; θ) and fF|X=X(F ; θ) are the corresponding conditional densities

where F ∈ R(T×r) and X ∈ R(T×n). We know that, for any (X,F ):

f(X,F)(X,F ; θ) = fX|F=F (X; θ)fF(F ; θ)
= fF|X=X(F ; θ)fX(X; θ)

so that:

fX(X; θ) =
fX|F=F (X; θ)fF(F ; θ)

fF|X=X(F ; θ)
.

The log-likelihood of the data LX(X; θ) = log fX(X; θ) can then be decomposed in
the following way:

LX(X; θ) = LX|F(X|F ; θ) + LF(F ; θ)− LF|X(F |X; θ)

where LX|F(X|F ; θ) = log fX|F=F (X; θ), LF(F ; θ) = log fF(F ; θ) and LF|X(F |X; θ) =
log fF|X=X(F ; θ).

Under our gaussian restriction, and denoting by X the actual observed values of
the underlying process, we can write, for any value of F :

LX|F(X|F ; θ) = −nT
2 log(2π)− T

2 log |Ψd| − 1
2Tr(X− FΛ′)Ψ−1

d (X− FΛ′)′

LF(F ; θ) = − rT
2 log(2π)− 1

2 log |Φθ| − 1
2(vecF ′)′Φ−1

θ (vecF ′)

LF|X(F |X; θ) = − rT
2 log(2π)− 1

2 log |Ωθ| − 1
2(vec(F − F̂θ)′)′Ω−1

θ (vec(F − F̂θ)′)

with
Φθ = Eθ [(vecF′)(vecF′)′],
F̂θ = Eθ [F|X] = (f̂θ,1, ..., f̂θ,T )′

and
Ωθ = Eθ

[
(vec(F− F̂θ)′)(vec(F− F̂θ)′)′

]
.
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We hence have, for any value of F :

LX(X; θ) = −nT
2 log(2π)− T

2 log |Ψd| − 1
2Tr(X− FΛ′)Ψ−1

d (X− FΛ′)′

−1
2(vecF ′)′Φ−1

θ (vecF ′)− 1
2 log |Ωθ|+ 1

2(vec(F − F̂θ)′)′Ω−1
θ (vec(F − F̂θ)′)

(6.2)

If we consider the likelihood computed by using F = F̂θ, (6.2) the above expression
becomes:

L(X; θ) = −nT
2 log(2π)− T

2 log |Ψd| − 1
2vec(F̂′θ)

′Φ−1
θ vec(F̂′θ)−

1
2 log |Ωθ|

−1
2Tr(FΛ′0 − F̂θΛ′ + E)Ψ−1

d (FΛ′0 − F̂θΛ′ + E)′
(6.3)

Let us now evaluate the likelihood at the following set of parameters:

θc
0 := {A(L) = Ir;H = Ir; Λ = Λ0; Ψ = Ψ0,d}

where Ψ0,d is the diagonal matrix obtained by setting equal to zero all the out of
diagonal elements of Ψ0.

For θ = θc
0, we have Φθc

0
= IrT and Ωθc

0
= IT ⊗

(
Ir − Λ′0 (Λ0Λ′0 + Ψ0,d)

−1 Λ0

)
.

It can be easily checked that

(
Λ0Λ′0 + Ψ0,d

)−1 = Ψ−1
0,d −Ψ−1

0,dΛ0

(
Ir + Λ′0Ψ

−1
0,dΛ0

)−1
Λ′0Ψ

−1
0,d (6.4)

so that: Ωθc
0

= IT ⊗
(
Ir + Λ′0Ψ

−1
0,dΛ0

)−1
.

We then have:

L(X; θc
0) = −nT

2 log(2π)− T
2 log |Ψ0,d| − 1

2TrF̂′θc
0
F̂θc

0
− T

2 log
∣∣∣Ir + Λ′0Ψ

−1
0,dΛ0

∣∣∣
−1

2Tr
(
(F− F̂θc

0
)Λ′0 + E

)
Ψ−1

0,d

(
(F− F̂θc

0
)Λ′0 + E

)′
.

(6.5)

As n and T go to infinity (6.5) simplifies drastically since some of the terms are
asymptotically negligible. This is shown as a corollary of the following Lemma.
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Lemma 1 Under assumptions A, B, we have

1.
∥∥∥E′E

nT

∥∥∥ = Op

(
1
n

)
+Op

(
1√
T

)
as n, T →∞

2. 1
T Tr(F− F̂θc

0
)′(F− F̂θc

0
) = Op

(
1
n

)
+Op

(
1√
T

)
as n, T →∞

3. 1
nT Tr(E′Ψ−1

0,dE) = 1 +Op

(
1√
T

)
as n, T →∞

4. 1
nT TrF̂′θc

0
F̂θc

0
= Op

(
1
n

)
+Op

(
1√
T

)
as n, T →∞

5. 1
n log

∣∣∣Ir + Λ′0Ψ
−1
0,dΛ0

∣∣∣ = (
log(n)

n

)
as n→∞

Proof
We have: ∥∥∥∥E′EnT

∥∥∥∥ ≤ 1
n
‖Ψ0‖+

1
n

∥∥∥∥E′ET −Ψ0

∥∥∥∥

∥∥∥∥ 1
n

(
E′E
T

−Ψ0

)∥∥∥∥2

≤ 1
n2

trace

[(
E′E
T

−Ψ0

)′ (E′E
T

−Ψ0

)]
=

1
n2

n∑
i=1

n∑
j=1

(
1
T

T∑
t=1

eitejt − ψ0,ij

)2

Taking expectations, from assumption B we obtain:

1
n2

E

 n∑
i=1

n∑
j=1

(
1
T

T∑
t=1

eitejt − ψ0,ij

)2
 =

1
n2

n∑
i=1

n∑
j=1

E

( 1
T

T∑
t=1

eitejt − ψ0,ij

)2
 ≤ M

T

Result 1 hence follows from the Markov inequality.

Let us turn now to result 2. First, we have: Tr(F− F̂θc
0
)′(F− F̂θc

0
) ≤ r‖F− F̂θc

0
‖2.

Then, using (6.4), we have:

F̂θc
0

= XΨ−1
0,dΛ0(Λ′0Ψ

−1
0,dΛ0+Ir)−1 = FΛ′0Ψ

−1
0,dΛ0(Λ′0Ψ

−1
0,dΛ0+Ir)−1+EΨ−1

0,dΛ0(Λ′0Ψ
−1
0,dΛ0+Ir)−1

so that:

1√
T
‖F−F̂θc

0
‖ ≤

∥∥∥∥ 1√
T

F
∥∥∥∥ ‖Λ′0Ψ−1

0,dΛ0(Λ′0Ψ
−1
0,dΛ0+Ir)−1−Ir‖+

∥∥∥∥ 1√
nT

E
∥∥∥∥ ‖√nΛ0Ψ−1

0,d(Λ
′
0Ψ

−1
0,dΛ0+Ir)−1‖

Assumptions A implies:

Λ′0Ψ
−1
0,dΛ0(Λ′0Ψ

−1
0,dΛ0 + Ir)−1 − Ir = (Λ′0Ψ

−1
0,dΛ0 + Ir)−1 = O

(
1
n

)
as n→∞
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Further, we have: ‖Λ0Ψ−1
0,d(Λ

′
0Ψ

−1
0,dΛ0+Ir)−1‖ ≤ ‖Λ′0Ψ

−1/2
0,d ‖‖Ψ−1/2

0,d ‖‖(Λ′0Ψ−1
0,dΛ0+Ir)−1‖.

As assumptions A also imply: ‖Ψ−1/2
0,d ‖ ≤ 1√

λmin(Ψ0)
= O (1) as n→∞

and: ‖Λ′0Ψ
−1/2
0,d ‖ = ‖Λ′0Ψ−1

0,dΛ0‖1/2 ≤ 1
λmin(Ψ0)‖Λ

′
0Λ0‖1/2 = O (

√
n) as n→∞,

result 2 then follows from the previous result of this lemma and the fact that by
assumption B we have

∥∥∥ 1√
T
F
∥∥∥ = Op(1).

Result 3 is a direct consequence of Assumption B (i) and the Markov inequality. In
fact:

1
nT

Tr
(
EΨ−1

0,dE
′
)

=
1
n

n∑
i=1

(
1
T

∑T
t=1 e

2
it

ψ0,ii

)
=

1
n

n∑
i=1

ψ0,ii

ψ̂0,ii

+Op

(
1√
T

)

To obtain result 4, notice that:

1
nT

TrF̂′θc
0
F̂θc

0
≤ r

nT

∥∥∥F̂θc
0

∥∥∥2
=

r

nT

∥∥∥F + F̂θc
0
− F

∥∥∥2
≤ 2r

n

(
‖ 1√

T
F‖2 +

1
T
‖F− F̂θc

0
‖2
)

As ‖F− F̂θc
0
‖2 ≤ Tr

(
F− F̂θc

0

)′ (
F− F̂θc

0

)
, the desired rate follows from Assumption B

(iii) and result 2.

Concerning result 5, notice that, by assumptions A:

log
∣∣∣Ir + Λ′0Ψ

−1
0,dΛ0

∣∣∣ = log(n) + log
∣∣∣∣ Ir

n +
Λ′

0Ψ−1
0,d

Λ0

∣∣∣∣, with:

log
∣∣∣∣ Ir

n +
Λ′

0Ψ−1
0,d

Λ0

n

∣∣∣∣ ' log
∣∣∣∣Λ′

0Ψ−1
0,d

Λ0

n

∣∣∣∣ ≤ r log
λmax

(
Λ′0Λ0

n

)
λmin(Ψ0) = O(1) as n→∞. Q.E.D.

Corollary Under the same assumptions of Lemma 1, we have:

1
nT

L(X; θc
0) = − 1

2n
log(2π)− 1

2
log |Ψ0,d|−

1
2

+Op

(
log(n)
n

)
+Op

(
1√
T

)
, as n, T →∞

Proof

The only term for which the asymptotic behavior is not a direct consequence of
Lemma 1 is the following:

1
nT Tr

(
(F− F̂θc

0
)Λ′0 + E

)
Ψ−1

0,d

(
(F− F̂θc

0
)Λ′0 + E

)′
= 1

nT TrΛ′0Ψ
−1
0,dΛ0(F−F̂θc

0
)′(F−F̂θc

0
)−2 1

nT TrΛ′0Ψ
−1
0,dE

′(F−F̂θc
0
)+ 1

nT TrΨ−1
0,dE

′E

Let us analyze the three terms in the summation separately.

26
ECB
Working Paper Series No 674
September 2006



The asymptotic behavior of the third term in the summation is a direct consequence
on Lemma 1 (3).

The asymptotic behavior of the first term follows from Assumption A and Lemma 1
(2):

1
nT

TrΛ′0Ψ
−1
0,dΛ0(F− F̂θc

0
)′(F− F̂θc

0
) ≤ 1

nT
λmax

(
Λ′0Ψ

−1
0,dΛ0

)
Tr(F− F̂θc

0
)′(F− F̂θc

0
)

We know (see the proof of lemma 1) that 1
nλmax

(
Λ′0Ψ

−1
0,dΛ0

)
= 1

n‖Λ
′
0Ψ

−1
0,dΛ0‖ = O(1)

so that the result directly follows from lemma 1 (2).

For the second term:

1
nT TrΛ′0Ψ

−1
0,dE

′(F− F̂θ) ≤ r
∥∥∥E′E

nT

∥∥∥1/2 ∥∥∥Λ′
0Λ0

n

∥∥∥ 1

(λminΨ0,d)2
1√
T
‖F− F̂θc

0
‖

= Op

(
1
n

)
+Op

(
1√
T

)
where the last equality follows for Lemma 1 (1-2) and Assumptions A and B.

This drastic simplification is due to the fact that under the simple approximating
model the expected common factor converge to the true ones (Lemma 1 (i)). The
expected values of the common factors, F̂θc

0
, are essentially the coefficients of an OLS

regression of the observation, X, on the factor loadings, Λ0. If data are gaussian and
the restrictions in θc

0 are satisfied, then such estimates of the common factors are the
most efficient. However, the estimates are still consistent under the weaker assumptions
A (i) and A (ii). This result also tells us that a large cross-section solves the common
factors indeterminacy we have with a finite cross-section dimension.

Consider now the likelihood evaluated at its maximum where θ̂ :=
{
Â(L); Ĥ; Λ̂; Ψ̂d

}
are the Maximum Likelihood estimates of the parameters, with θ̂ ∈ Θc. We will denote
by F̂θ̂ the corresponding estimates of the common factors.

The likelihood at its maximum takes the form (see equation(6.2)):

L(X; θ̂) = −nT
2 log(2π)− T

2 log |Ψ̂d| − 1
2Tr(X− F̂θ̂Λ̂

′)Ψ̂−1
d (X− F̂θ̂Λ̂

′)′

−1
2vec(F̂′

θ̂
)′Φ−1

θ̂
vec(F̂′

θ̂
)− 1

2 log |Ωθ̂|
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Assumption C below insures that the constraints on the size of the idiosyncratic
variance that is imposed in the maximization is not binding, that is θc

0 ∈ Θc. Conse-
quently, L(X; θ̂) ≥ L(X; θ0). Using the Corollary, this implies:

0 ≥ 2
nT

(
L(X; θc

0)− L(X; θ̂)
)

= 1
n log |Ψ̂d|+ 1

nT Tr(X− F̂θ̂Λ̂
′)Ψ̂−1

d (X− F̂θ̂Λ̂
′)′

+ 1
nT vec(F̂′

θ̂
)′Φ−1

θ̂
vec(F̂′

θ̂
) + 1

nT log |Ωθ̂|

− 1
n log |Ψ0,d| − 1 +Op

(
1√
T

)
+Op

(
log(n)

n

)

Lemma 2 Under assumptions A, B, and C, we have:

1
nT Tr(X− F̂θ̂Λ̂

′)Ψ̂−1
d (X− F̂θ̂Λ̂

′)′ ≥ 1
nT Tr(Λ′

0Ψ̂
−1
d Λ0)′(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

−2
√

1
T Tr((F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ))

√
Op

(
1√
T

)
+Op

(
1
n

)
+ 1

n

∑n
i=1

ψ0,ii

ψ̂ii
+Op

(
1√
T

)
+Op

(
1
n

)
where Ĥ =

(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
F is the coefficient of the OLS projection of F on F̂θ̂

Proof Consider the coefficients of the OLS projection of X on F̂θ̂:

ˆ̂Λ = X′F̂θ̂

(
F̂′

θ̂
F̂θ̂

)−1

Least squares properties imply that:

1
nT Tr(X− F̂θ̂Λ̂

′)Ψ̂−1
d (X− F̂θ̂Λ̂

′)′ ≥ 1
nT Tr(X− F̂θ̂

ˆ̂Λ′)Ψ̂−1
d (X− F̂θ̂

ˆ̂Λ′)′

Notice that:

(X− F̂θ̂
ˆ̂Λ′) =

(
FΛ′0 + E− F̂θ̂

(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
FΛ′

0 − F̂θ̂

(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
E
)

= (F− F̂θ̂Ĥ)Λ′0 + (IT − PF̂θ̂
)E

where Ĥ =
(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
F is the coefficient of the OLS projection of F on F̂θ̂ and

PF̂θ̂
= F̂θ̂

(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
is the projection matrix associated with F̂θ̂.
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Consequently:

1
nT Tr(X− F̂θ̂

ˆ̂Λ′)Ψ̂−1
d (X− F̂θ̂

ˆ̂Λ′)′ = 1
nT Tr(F− F̂θ̂Ĥ)Λ′0Ψ̂

−1
d Λ0(F− F̂θ̂Ĥ)′

+ 1
nT Tr(IT − PF̂θ̂

)EΨ̂−1
d E′(IT − PF̂θ̂

)

+2 1
nT Tr(F− F̂θ̂Ĥ)Λ′0Ψ̂

−1
d E′(IT − PF̂θ̂

)

We have:

1
nT Tr(IT − PF̂θ̂

)EΨ̂−1
d E′(IT − PF̂θ̂

) = 1
nT Tr

(
EΨ̂−1

d E′(IT − PF̂θ̂
)
)

= 1
nT Tr

(
EΨ̂−1

d E′
)
− 1

nT Tr
(
EΨ̂−1

d E′PF̂θ̂

)
By assumption B (ii):

1
nT

Tr
(
EΨ̂−1

d E′
)

=
1
n

n∑
i=1

(
1
T

∑T
t=1 e

2
it

ψ̂ii

)
=

1
n

n∑
i=1

ψ0,ii

ψ̂ii

+Op

(
1√
T

)
Furthermore:

1
nT

Tr
(
EΨ̂−1

d E′PF̂θ̂

)
=

1
nT

Tr
(
F̂′
θ̂
EΨ̂−1

d E′F̂θ̂
(
F̂′
θ̂
F̂θ̂
)−1

)
≤ r

1
nT

λmax

(
EΨ̂−1

d E′
)

= Op

(
1√
T

)
+Op

(
1
n

)

Finally,

1
nT

∣∣∣Tr(F− F̂θ̂Ĥ)Λ′
0Ψ̂

−1
d E′(IT − PF̂θ̂

)
∣∣∣ ≤

√
1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

√
1

n2T Tr(Λ′
0Ψ̂

−1
d E′EΨ̂−1

d Λ0)

=
√

1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

√
Op

(
1√
T

)
+Op

(
1
n

)
The desired result follows. Q.E.D.

To prepare the proof of Proposition 1, notice first that vec(F̂′
θ̂
)′Φ−1

θ̂
vec(F̂′

θ̂
) ≥ 0.

Moreover, it can be shown that: log |Ωθ̂| > 0.

Indeed, if we denote Σθ = Eθ [(vecX′)(vecX′)′], we have:

Σθ = (IT ⊗ Λ)Φθ (IT ⊗ Λ)′ + (IT ⊗Ψd)

It can the be checked that
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Σ−1
θ =

(
IT ⊗Ψ−1

d

)
−
(
IT ⊗Ψ−1

d Λ
) (

Φ−1
θ + IT ⊗ Λ′Ψ−1

d Λ
)−1 (

IT ⊗ Λ′Ψ−1
d

)
and that Ωθ = IrT +

(
IT ⊗ Λ′Ψ−1

d Λ
)

Φθ.

It then follows that Ωθ > IrT , so that log |Ωθ̂| > 0. This property holds for all A(L)
and H satisfying R1.

Finally:

1
n

log |Ψ̂d|+
1
n

n∑
i=1

ψ0,ii

ψ̂ii

− 1
n

log |Ψ̂0d| − 1 =
1
n

n∑
i=1

(
ψ0i

ψ̂i

− log

(
ψ0i

ψ̂i

)
− 1

)
≥ 0

Using the fact that n
log(n) = O(n), we then obtain:

0 ≥ 2
nT

(
L(X; θc0)− L(X; θ̂)

)
≥ 1

nT Tr(Λ′
0Ψ̂

−1
d Λ0)(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

−2
√

1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)Op

(√
1

∆nT

)
+Op

(
1

∆nT

)
where

∆nT = min
{√

T ,
n

log(n)

}

We can now prove our main result.

Proof of Proposition 1

0 ≥ 1
nT Tr(Λ′0Ψ̂

−1
d Λ0)(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

−2
√

1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)Op

(√
1

∆nT

)
+Op

(
1

∆nT

)
≥ λmin

(
Λ′

0Ψ̂−1
d

Λ0

n

)
1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

−2Op

(√
1

∆nT

)√
1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ) +Op

(
1

∆nT

)
= λmin

(
Λ′

0Ψ̂−1
d

Λ0

n

)
VnT − 2

√
VnTOp

(√
1

∆nT

)
+Op

(
1

∆nT

)
where VnT = 1

T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ).
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Since lim infn,T→∞ λmin

(
Λ′

0Ψ̂−1
d

Λ0

n

)
> 0, we have:

VnT −
√
VnTOp

(√
1

∆nT

)
+Op

(
1

∆nT

)
≤ 0 (6.6)

This implies that: VnT = Op

(
1

∆nT

)

In order to proves this, it is actually sufficient to notice that for any T and n we have
a second order polynomial: y2 +by+c with y :=

√
VnT , b = Op

(√
1

∆nT

)
, c = Op

(
1

∆nT

)
which is supposed to take a negative value in y.

This is possible only if the following conditions are satisfied:

a) the discriminant is positive, i.e. c < 1
4b

2 (which is possible since b2 = Op

(
1

∆nT

)
)

b) y is between the two roots of the polynomial, i.e.

1
2

(
b−

√
b2 − 4c

)
≤ y ≤ 1

2

(
b+

√
b2 + 4c

)
This implies y = Op

(√
1

∆nT

)
and hence VnT := y2 = Op

(
1

∆nT

)
.

The fact that Proposition 1 holds for any A(L) and H is easily proved by noticing
that:
a) A(L),H only enter in vec(F̂′

θ̂
)′Φ−1

θ̂
vec(F̂′

θ̂
) and log

(
IrT + Φθ̂Γθ̂

)
and the proof only

requires these quantities to be positive.
b) imposing restrictions on A(L) and H in the approximating model, we define a
parameter space Θ̃c ⊆ Θc for which we still have θc

0 ∈ Θc and hence L(X; θ̂) ≥ L(X; θ0).
Q.E.D.

Proof of Remark 1
If the maximization is run for a number of common factors r̃ > r the new model

will encompass the previous one and hence L(X; θ̂) ≥ L(X; θ0). This is all we need for
Proposition 1 to hold.

Proof of Remark 2
This case does not follow immediately from the proof of Proposition 1. In fact,

under the approximating model of the principal components we have a restricted pa-
rameter space, say Θc

pc, that does not necessarily contains θc
0 defined above for which

the idiosyncratic component is left unrestricted. However, if we replace in the proof of
Proposition 1 θc

0 with

θpc
0 :=

{
A(L) = Ir;H = Ir,Λ = Λ0; Ψd = σ2

0In
}
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where σ2
0 = 1

nTrΨ0, the result will follow along the same lines since we would have
θpc
0 ∈ Θc

pc and hence L(X; θ̂) ≥ L(X; θpc
0 ). In addition it is possible to show that Fθpc

0

have the same asymptotic properties of Fθc
0
. A detailed proof is available under request.
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