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Abstract In many statistical problems, maximum likeli-
hood estimation by an EM or MM algorithm suffers from
excruciatingly slow convergence. This tendency limits the
application of these algorithms to modern high-dimensional
problems in data mining, genomics, and imaging. Unfortu-
nately, most existing acceleration techniques are ill-suited to
complicated models involving large numbers of parameters.
The squared iterative methods (SQUAREM) recently pro-
posed by Varadhan and Roland constitute one notable ex-
ception. This paper presents a new quasi-Newton accelera-
tion scheme that requires only modest increments in com-
putation per iteration and overall storage and rivals or sur-
passes the performance of SQUAREM on several represen-
tative test problems.

Keywords Maximum likelihood · Multivariate t ·
Admixture models · Imaging · Generalized eigenvalues

1 Introduction

Maximum likelihood and least squares are the dominant
estimation methods in applied statistics. Because closed-
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form solutions to the score equations of maximum like-
lihood are the exception rather than the rule, numerical
methods such as the EM algorithm (Dempster et al. 1977;
Little and Rubin 2002; McLachlan and Krishnan 2008) en-
joy wide usage. In the past decade, statisticians have come
to realize that the EM algorithm is a special case of a
broader MM (minorization-maximization or majorization-
minimization) algorithm (de Leeuw 1994; Heiser 1995;
Becker et al. 1997; Lange 2000; Hunter and Lange 2004;
Wu and Lange 2008). This has opened new avenues to al-
gorithm design. One advantage of MM algorithms is their
numerical stability. Every MM algorithm heads uphill in
maximization. In addition to this desirable ascent property,
the MM algorithm handles parameter constraints gracefully.
Constraint satisfaction is by definition built into the solution
of the maximization step. However, MM algorithms suffer
from two drawbacks. One is their often slow rate of con-
vergence in a neighborhood of the maximum point. Slow
convergence is an overriding concern in high-dimensional
applications. A second criticism, which applies to scoring
and Newton’s method as well, is their inability to distinguish
local from global maxima.

Most of the existing literature on accelerating EM al-
gorithms is summarized in Chap. 4 of McLachlan and Kr-
ishnan (2008). As noted by Varadhan and Roland (2008),
the existing methods can be broadly grouped into two cat-
egories. Members of the first category use the EM iter-
ates to better approximate the observed information ma-
trix of the log-likelihood. Examples include quasi-Newton
approximation (Lange 95; Jamshidian and Jennrich 1997)
and conjugate gradient methods (Jamshidian and Jennrich
1993). In exchange for speed, these methods sacrifice the
stability and simplicity of the unadorned EM algorithm. The
second category focuses on directly modifying a particu-
lar EM algorithm. These methods include data augmenta-
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tion (Meng and van Dyk 1997), parameter expansion EM
(PX-EM) (Liu et al. 1998), ECM (Meng and Rubin 1993),
and ECME (Liu and Rubin 1994). Methods in the second
category retain the ascent property of the EM algorithm
while boosting its rate of convergence. However, they are ad
hoc and subtle to concoct. Recently Varadhan and Roland
(2008) have added a third class of squared iterative methods
(SQUAREM) that seek to approximate Newton’s method
for finding a fixed point of the EM algorithm map. They
resemble the multivariate version of Aitken’s acceleration
method (Louis 1982) in largely ignoring the observed log-
likelihood. SQUAREM algorithms maintain the simplicity
of the original EM algorithms, have minimal storage re-
quirement, and are suited to high-dimensional problems.

In this article, we develop a new quasi-Newton accelera-
tion that resembles SQUAREM in many respects. First, it is
off-the-shelf and broadly applies to any search algorithm de-
fined by a smooth algorithm map. It requires nothing more
than the map updates and a little extra computer code. Sec-
ond, in contrast to the previous quasi-Newton acceleration
methods (Lange 1995; Jamshidian and Jennrich 1997), it
neither stores nor manipulates the observed information ma-
trix or the Hessian of the algorithm map. This makes it par-
ticularly appealing in high-dimensional problems. Third, al-
though it does not guarantee the ascent property when ap-
plied to an MM algorithm, one can revert to ordinary MM
whenever necessary. This fallback position is the major rea-
son we focus on MM and EM algorithms. Algorithms such
as block relaxation (de Leeuw 1994) and steepest ascent
with a line search share the ascent property; these algorithms
also adapt well to acceleration.

In Sect. 2, we describe the new quasi-Newton acceler-
ation. Section 3 illustrates the basic theory by a variety of
numerical examples. Our examples include the truncated
beta-binomial model, a Poisson admixture model, the mul-
tivariate t distribution, an admixture model in genetics, PET
imaging, a movie rating model, and an iterative algorithm
for finding the largest or smallest generalized eigenvalue of
a pair of symmetric matrices. The number of parameters
ranges from two to tens of thousands in these examples. Our
discussion summarizes our findings.

2 A quasi-Newton acceleration method

In this section we derive a new quasi-Newton method of
acceleration for smooth optimization algorithms. Previous
work (Lange 1995; Jamshidian and Jennrich 1997) takes up
the current theme from the perspective of optimizing the
objective function by Newton’s method. This requires stor-
ing and handling the full approximate Hessian matrix, a de-
manding task in high-dimensional problems. It is also possi-
ble to apply Newton’s method for finding a root of the equa-

tion 0 = x −F(x), where F is the algorithm map. This alter-
native perspective has the advantage of dealing directly with
the iterates of the algorithm. Let G(x) now denote the dif-
ference G(x) = x −F(x). Because G(x) has the differential
dG(x) = I −dF(x), Newton’s method iterates according to

xn+1 = xn − dG(xn)−1G(xn)

= xn − [I − dF(xn)]−1G(xn). (1)

If we can approximate dF(xn) by a low-rank matrix M , then
we can replace I − dF(xn) by I − M and explicitly form
the inverse (I − M)−1.

Quasi-Newton methods operate by secant approxima-
tions. We can generate one of these by taking two iterates
of the algorithm starting from the current point xn. If we
are close to the optimal point x∞, then we have the linear
approximation

F ◦ F(xn) − F(xn) ≈ M[F(xn) − xn],

where M = dF(x∞). If v is the vector F ◦ F(xn) − F(xn)

and u is the vector F(xn) − xn, then the secant requirement
is Mu = v. In fact, for the best results we require several
secant approximations Mui = vi for i = 1, . . . , q . These can
be generated at the current iterate xn and the previous q − 1
iterates. One answer to the question of how to approximate
M is given by the following proposition.

Proposition 1 Let M = (mij ) be a p×p matrix, and denote
its squared Frobenius norm by ‖M‖2

F = ∑
i

∑
j m2

ij . Write
the secant constraints Mui = vi in the matrix form MU =
V for U = (u1, . . . , uq) and V = (v1, . . . , vq). Provided U

has full column rank q , the minimum of the strictly convex
function ‖M‖2

F subject to the constraints is attained by the
choice M = V (UtU)−1Ut .

Proof If we take the partial derivative of the Lagrangian

L = 1

2
‖M‖2

F + tr
[
Λt(MU − V )

]

with respect to mij and equate it to 0, then we get the La-
grange multiplier equation

0 = mij +
∑

k

λikujk.

These can be collectively expressed in matrix notation as
0 = M + ΛUt . This equation and the constraint equation
MU = V uniquely determine the minimum of the objec-
tive function. Straightforward substitution shows that M =
V (UtU)−1Ut and Λ = −V (UtU)−1 constitute the solu-
tion. �
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To apply the proposition in our proposed quasi-Newton
scheme, we must invert the matrix I − V (UtU)−1Ut . For-
tunately, we have the explicit inverse

[I − V (UtU)−1Ut ]−1 = I + V [UtU − UtV ]−1Ut .

The reader can readily check this variant of the Sherman-
Morrison formula (Lange 1999). It is noteworthy that the
q ×q matrix UtU −UtV is trivial to invert for q small even
when p is large.

With these results in hand, the Newton update (1) can be
replaced by the quasi-Newton update

xn+1 = xn − [I − V (UtU)−1Ut ]−1[xn − F(xn)]
= xn − [I + V (UtU − UtV )−1Ut ][xn − F(xn)]
= F(xn) − V (UtU − UtV )−1Ut [xn − F(xn)].

The special case q = 1 is interesting in its own right. In this
case the secant ingredients are clearly u = F(xn) − xn and
v = F ◦ F(xn) − F(xn). A brief calculation lets us express
the quasi-Newton update as

xn+1 = (1 − cn)F (xn) + cnF ◦ F(xn), (2)

where

cn = − ‖F(xn) − xn‖2

[F ◦ F(xn) − 2F(xn) + xn]t [F(xn) − xn]

= − utu

ut (v − u)
.

The acceleration (2) differs from the squared extrapola-
tion acceleration proposed by Varadhan and Roland (2008).
In their SQUAREM acceleration

xn+1 = xn − 2s[F(xn) − xn]
+ s2[F ◦ F(xn) − 2F(xn) + xn]

= xn − 2su + s2(v − u),

where s is a scalar steplength. The versions of SQUAREM
diverge in how they compute s:

SqS1: s = utu

ut (v − u)
,

SqS2: s = ut (v − u)

(v − u)t (v − u)
,

SqS3: s = −
√

utu

(v − u)t (v − u)
.

We will compare the performance of quasi-Newton acceler-
ation and SQUAREM in several concrete examples.

Thus, the quasi-Newton method is feasible for high-di-
mensional problems and potentially faster than SQUAREM

if we take q > 1. It takes two ordinary iterates to generate
a secant condition and quasi-Newton update. If the quasi-
Newton update fails to send the objective function in the
right direction, then with an ascent or descent algorithm one
can always revert to the second iterate F ◦F(xn). For a given
q , we propose doing q initial ordinary updates and forming
q −1 secant pairs. At that point, quasi-Newton updating can
commence. After each accelerated update, we replace the
earliest retained secant pair by the new secant pair.

On the basis of the evidence presented by Varadhan and
Roland (2008), we assume that SQUAREM is the current
gold standard for acceleration. Hence, it is crucial to com-
pare the behavior of quasi-Newton updates to SQUAREM
on high-dimensional problems. There are good reasons for
optimism. First, earlier experience (Lange 1995; Jamshidian
and Jennrich 1997) with quasi-Newton methods was posi-
tive. Second, the effort per iteration is relatively light: two
ordinary iterates and some matrix times vector multiplica-
tions. Most of the entries of UtU and UtV can be computed
once and used over multiple iterations. Third, the whole ac-
celeration scheme is consistent with linear constraints. Thus,
if the parameter space satisfies a linear constraint wtx = a

for all feasible x, then the quasi-Newton iterates also satisfy
wtxn = a for all n. This claim follows from the equalities
wtF (x) = a and wtV = 0 in the above notation. Finally,
the recipe for constructing the approximation M to dF(x∞)

feels right, being the minimum M consistent with the secant
conditions.

3 Examples

In this section, we compare the performance of the quasi-
Newton acceleration and the SQUAREMs on various ex-
amples, including: (a) a truncated beta-binomial model, (b)
a Poisson admixture model, (c) estimation of the location
and scale for the multivariate t distribution, (d) an admix-
ture problem in genetics, (e) PET imaging, (f) a movie rat-
ing problem, and (g) computation of the largest and small-
est generalized eigenvalues of two large symmetric matrices.
The number of parameters ranges from two to tens of thou-
sands. For examples (a) and (b) with only a few parameters,
whenever the accelerated step occurs outside the feasible re-
gion, we fall back to the most recent iterate of the original
ascent or descent algorithm. For large scale problems (d),
(e) and (f), we always project the accelerated point back to
the feasible region. In most examples, we iterate until the
relative change of the objective function between successive
iterations falls below a pre-set threshold. In other words, we
stop at iteration n when

|On − On−1|
|On−1| + 1

≤ ε,
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where ε > 0 is small and On and On−1 represent two suc-
cessive values of the objective function under the unaccel-
erated algorithm. In most cases the objective function is a
log-likelihood. We compare the performance of the different
algorithms in terms of the number of evaluations of the algo-
rithm map, the value of the objective function at termination,
and running times. Computations for the genetics admixture
and PET imaging problems were performed using the C++
programming language. All other examples were handled in
MATLAB. Running times are recorded in seconds using the
tic/toc functions of MATLAB.

3.1 Truncated beta-binomial

In many discrete probability models, only data with posi-
tive counts are observed. Counts that are 0 are missing. The
likelihood function takes the form

L(θ |x) =
m∏

i=1

g(xi | θ)

1 − g(0 | θ)
,

where g(x|θ) is a standard discrete distribution with pa-
rameter vector θ . For household disease incidence data, a
commonly used model is beta-binomial with density

g(x | t, π,α) =
(

t

x

)∏x−1
j=0(π + jα)

∏t−x−1
k=0 (1 − π + kα)

∏t−1
l=0(1 + lα)

,

x = 0,1, . . . , t,

where the parameters π ∈ (0,1) and α > 0 (Griffiths 1973).
Given m independent observations x1, . . . , xm from a trun-
cated beta-binomial model with possibly variable batch
sizes t1, . . . , tm, an MM algorithm proceeds with updates

αn+1 =
∑t−1

k=0(
s1kkαn

πn+kαn + s2kkαn

1−πn+kαn )
∑t−1

k=0
rkk

1+kαn

,

πn+1 =
∑t−1

k=0
s1kπ

n

πn+kαn

∑t−1
k=0[ s1kπ

n

πn+kαn + s2k(1−πn)
1−πn+kαn ] ,

where s1k , s2k , and rk are the pseudo-counts

s1k =
m∑

i=1

1{xi≥k+1},

s2k =
m∑

i=1

[

1{xi≤t−k−1} + g(0 | ti , πn,αn)

1 − g(0 | ti , πn,αn)

]

,

rk =
m∑

i=1

[

1 + g(0 | ti , πn,αn)

1 − g(0 | ti , πn,αn)

]

1{ti≥k+1}|.

See Zhou and Lange (2009b) for a detailed derivation.

Table 1 The Lidwell and Somerville (1951) cold data on households
of size 4 and corresponding MLEs under the truncated beta-binomial
model

Household Number of cases MLE

type 1 2 3 4 π̂ α̂

(a) 15 5 2 2 0.0000 0.6151

(b) 12 6 7 6 0.1479 1.1593

(c) 10 9 2 7 0.0000 1.6499

(d) 26 15 3 9 0.0001 1.0594

Table 2 Comparison of algorithms for the Lidwell and Somerville
Data. The starting point is (π0, α0) = (0.5,1), the stopping criterion
is ε = 10−9, and the number of parameters is two

Data Algorithm lnL Evals Time

(a) MM −25.2277 30209 10.5100

q = 1 −25.2270 157 0.1164

q = 2 −25.2276 36 0.0603

SqS1 −25.2277 1811 0.8046

SqS2 −25.2276 53 0.0589

SqS3 −25.2275 39 0.0569

(b) MM −41.7286 2116 0.7872

q = 1 −41.7286 423 0.2390

q = 2 −41.7286 20 0.0526

SqS1 −41.7286 165 0.1095

SqS2 −41.7286 193 0.1218

SqS3 −41.7286 111 0.0805

(c) MM −37.3592 25440 9.2434

q = 1 −37.3582 787 0.4008

q = 2 −37.3586 26 0.0573

SqS1 −37.3590 3373 1.4863

SqS2 −37.3588 2549 1.1283

SqS3 −37.3591 547 0.2791

(d) MM −65.0421 28332 10.1731

q = 1 −65.0402 1297 0.6255

q = 2 −65.0410 24 0.0603

SqS1 −65.0418 3219 1.4537

SqS2 −65.0412 4327 1.9389

SqS3 −65.0419 45 0.0621

As a numerical example, we revisit the cold incidence
data of Lidwell and Somerville (1951) summarized in Ta-
ble 1. Zero-truncated models apply here because only house-
holds with at least one affected person are reported. The
households were classified as: (a) adults only; (b) adults
and school children; (c) adults and infants; and (d) adults,
school children, and infants. Table 2 lists the number of
MM evaluations, final log-likelihood, and running times un-
til convergence for each acceleration tested. The starting
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Fig. 1 Ascent of the different
algorithms for the Lidwell and
Somerville household type (a)
data starting from
(π0, α0) = (0.5,1) with
stopping criterion ε = 10−9. Top
left: naive MM; Top right:
q = 1; Middle left: q = 2;
Middle right: SqS1; Bottom left:
SqS2; Bottom right: SqS3

point is (π0, α0) = (0.5,1), and the stopping criterion is
ε = 10−9. Convergence is excruciatingly slow under the
MM algorithm. Both the quasi-Newton acceleration and
SQUAREM methods significantly reduce the number of it-
erations and time until convergence. Figure 1 depicts the
progress of the different algorithms for the household type
(a) data. Note the giant leaps made by the accelerated al-
gorithms. For all four data sets, the quasi-Newton acceler-
ation with q = 2 shows the best performance, consistently
cutting time to convergence by two to three orders of mag-
nitude.

3.2 Poisson admixture model

Consider the mortality data from The London Times (Titter-
ington et al. 1985) during the years 1910–1912 presented in
Table 3. The table alternates two columns giving the num-
ber of deaths to women 80 years and older reported by day

and the number of days with i deaths. A Poisson distrib-
ution gives a poor fit to these frequency data, possibly be-
cause of different patterns of deaths in winter and summer.
A mixture of two Poissons provides a much better fit. Under
the Poisson admixture model, the likelihood of the observed
data is

9∏

i=0

[

πe−μ1
μi

1

i! + (1 − π)e−μ2
μi

2

i!
]ni

,

where π is the admixture parameter and μ1 and μ2 are the
means of the two Poisson distributions. The standard EM
updates are

μn+1
1 =

∑
i ni iw

n
i∑

i niw
n
i

, μn+1
2 =

∑
i ni i[1 − wn

i ]
∑

i ni[1 − wn
i ] ,

πn+1 =
∑

i niw
n
i∑

i ni

,
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Table 3 Death notices from The London Times

Deaths i Frequency ni Death i Frequency ni

0 162 5 61

1 267 6 27

2 271 7 8

3 185 8 3

4 111 9 1

Fig. 2 EM acceleration for the Poisson admixture example

where wn
i are the weights

wn
i = πne−μn

1 (μn
1)i

πne−μn
1 (μn

1)i + πne−μn
2 (μn

2)i
.

The original EM algorithm converges slowly. Starting
from the method of moment estimates

(μ0
1,μ

0
2,π

0) = (1.101,2.582, .2870),

it takes 652 iterations for the log-likelihood L(θ) to at-
tain its maximum value of −1989.9461 and 1749 iterations
for the parameters to reach the maximum likelihood esti-
mates (μ̂1, μ̂2, π̂) = (1.256,2.663, .3599). Despite provid-
ing a better fit, the three parameter likelihood surface is very
flat. In contrast, the quasi-Newton accelerated EM algorithm
converges to the maximum likelihood in only a few dozen it-
erations, depending on the choice of q . Figure 2 shows the
progress of the various algorithms over the first 20 iterations.
Table 4 compares their EM algorithm map evaluations, final
log-likelihood, and running times. Here the quasi-Newton
acceleration with q = 3 performs best, showing a 40-fold
decrease in the number of EM map evaluations compared to
the unaccelerated EM algorithm.

Table 4 Comparison of different algorithms on the Poisson admixture
model. The starting point is (π0,μ0

1,μ
0
2) = (0.2870,1.101,2.582), the

stopping criterion is ε = 10−9, and the number of parameters is three

Algorithm lnL Evals Time

EM −1989.9461 652 0.0422

q = 1 −1989.9460 27 0.0031

q = 2 −1989.9459 38 0.0037

q = 3 −1989.9459 15 0.0025

SqS1 −1989.9459 41 0.0052

SqS2 −1989.9461 257 0.0294

SqS3 −1989.9459 31 0.0054

3.3 Multivariate t distribution

The multivariate t distribution is often employed as a robust
substitute for the normal distribution in data fitting (Lange
et al. 1989). For location vector μ ∈ R

p , positive definite
scale matrix Ω ∈ R

p×p , and degrees of freedom α > 0, the
multivariate t distribution has density

Γ (
α+p

2 )

Γ (α
2 )(απ)p/2|Ω|1/2[1 + 1

α
(x − μ)tΩ−1(x − μ)](α+p)/2

,

for x ∈ R
p . The standard EM updates (Lange et al. 1989)

are

μn+1 = 1

vn

m∑

i=1

wn
i xi,

Ωn+1 = 1

m

m∑

i=1

wn
i (xi − μn+1)(xi − μn+1)t ,

where vn = ∑m
i=1 wn

i is the sum of the case weights

wn
i = α + p

α + dn
i

, dn
i = (xi − μn)t (Ωn)−1(xi − μn).

An alternative faster algorithm (Kent et al. 1994; Meng and
van Dyk 1997) updates Ω by

Ωn+1 = 1

vn

m∑

i=1

wn
i (xi − μn+1)(xi − μn+1)t .

This faster version is called the parameter expanded EM
(PX-EM) algorithm.

Table 5 reports the performances of the different algo-
rithms on 100 simulated data sets each with 100 replicates of
a 10-variate t distribution with 0.5 degrees of freedom. We
used the original EM, PX-EM, quasi-Newton acceleration
with q = 0, . . . ,5, and SQUAREM algorithms to estimate μ

and Ω at fixed degrees of freedom 1, 0.5, 0.1, and 0.05. The
sample median vector and covariance matrix served as ini-
tial values for μ and Ω . The quasi-Newton accelerations of
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Table 5 Comparison of the
various algorithms for
estimating the location and scale
of a 10-variate t distribution
with 0.5 degrees of freedom.
The column lnL lists the
average converged
log-likelihood, and the column
Evals lists the average number
of EM evaluations. Running
times are averaged over 100
simulations with 200 sample
points each. The number of
parameters is 65, and the
stopping criterion is 10−9

D.F. Method EM PX-EM

lnL Evals Time lnL Evals Time

1 EM −3981.5470 160 0.8272 −3981.5470 15 0.0771

q = 1 −3981.5470 26 0.1363 −3981.5470 10 0.0497

q = 2 −3981.5470 22 0.1184 −3981.5470 10 0.0510

q = 3 −3981.5470 23 0.1216 −3981.5470 10 0.0540

q = 4 −3981.5470 24 0.1282 −3981.5470 11 0.0555

q = 5 −3981.5470 26 0.1381 −3981.5470 11 0.0558

SqS1 −3981.5470 29 0.1570 −3981.5470 10 0.0509

SqS2 −3981.5470 31 0.1646 −3981.5470 10 0.0507

SqS3 −3981.5470 30 0.1588 −3981.5470 10 0.0507

0.5 EM −3975.8332 259 1.3231 −3975.8332 15 0.0763

q = 1 −3975.8332 31 0.1641 −3975.8332 10 0.0506

q = 2 −3975.8332 25 0.1343 −3975.8332 10 0.0512

q = 3 −3975.8332 27 0.1405 −3975.8332 10 0.0544

q = 4 −3975.8332 28 0.1479 −3975.8332 10 0.0547

q = 5 −3975.8332 30 0.1553 −3975.8332 11 0.0552

SqS1 −3975.8332 34 0.1829 −3975.8332 10 0.0514

SqS2 −3975.8332 38 0.2017 −3975.8332 10 0.0513

SqS3 −3975.8332 35 0.1895 −3975.8332 10 0.0513

0.1 EM −4114.2561 899 4.5996 −4114.2561 16 0.0816

q = 1 −4114.2562 52 0.2709 −4114.2561 10 0.0521

q = 2 −4114.2561 36 0.1924 −4114.2561 10 0.0533

q = 3 −4114.2561 34 0.1820 −4114.2561 10 0.0544

q = 4 −4114.2561 36 0.1895 −4114.2561 10 0.0544

q = 5 −4114.2561 38 0.2041 −4114.2561 11 0.0558

SqS1 −4114.2561 51 0.2717 −4114.2561 10 0.0522

SqS2 −4114.2561 66 0.3492 −4114.2561 10 0.0518

SqS3 −4114.2561 54 0.2846 −4114.2561 10 0.0519

0.05 EM −4224.9190 1596 8.1335 −4224.9190 17 0.0857

q = 1 −4224.9192 62 0.3248 −4224.9190 10 0.0530

q = 2 −4224.9192 47 0.2459 −4224.9190 10 0.0539

q = 3 −4224.9191 39 0.2006 −4224.9190 10 0.0549

q = 4 −4224.9191 40 0.2089 −4224.9190 11 0.0564

q = 5 −4224.9191 42 0.2239 −4224.9190 11 0.0565

SqS1 −4224.9191 60 0.3156 −4224.9190 10 0.0543

SqS2 −4224.9191 91 0.4809 −4224.9190 10 0.0535

SqS3 −4224.9191 64 0.3417 −4224.9190 10 0.0535

the EM algorithm with q > 1 outperform the SQUAREM al-
gorithms. For the PX-EM algorithm, there is not much room
for improvement.

3.4 A genetic admixture problem

A genetic admixture problem described in Alexander et al.
(2009) also benefits from quasi-Newton acceleration. Mod-
ern genome-wide association studies type a large sample of

unrelated individuals at many SNP (single nucleotide poly-
morphism) markers. As a prelude to the mapping of dis-
ease genes, it is a good idea to account for hidden popu-
lation stratification. The problem thus becomes one of es-
timating the ancestry proportion of each sample individ-
ual attributable to each of K postulated founder popula-
tions. The unknown parameters are the allele frequencies
F = {fkj } for the J markers and K populations and the
admixture coefficients W = {wik} for the I sample peo-
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ple. The admixture coefficient wik is loosely defined as the
probability that a random gene taken from individual i orig-
inates from population k; these proportions obey the con-
straint

∑K
k=1 wik = 1. Under the assumption that individual

i’s genotype at SNP j is formed by random sampling of ga-
metes, we have

Pr(genotype 1/1 for i at SNP j) =
[∑

k

wikfkj

]2

,

Pr(genotype 1/2 for i at SNP j)

= 2

[∑

k

wikfkj

][∑

k

wik(1 − fkj )

]

,

Pr(genotype 2/2 for i at SNP j) =
[∑

k

wik(1 − fkj )

]2

.

Note here that the SNP has two alleles labeled 1 and 2. Un-
der the further assumptions that the SNPs are in linkage
equilibrium, we can write the log-likelihood for the entire
dataset as

I∑

i=1

J∑

j=1

{

nij ln

[∑

k

wikfkj

]

+ (2 − nij ) ln

[∑

k

wik(1 − fkj )

]}

,

where nij is the number of alleles of type 1 individual i pos-
sesses at SNP j .

In estimating the parameters by maximum likelihood,
Newton’s method and scoring are out of the question be-
cause they require storing and inverting a very large infor-
mation matrix. It is easy to devise an EM algorithm for this
problem, but its performance is poor because many para-
meters wind up on boundaries. We have had greater suc-
cess with a block relaxation algorithm that alternates up-
dates of the W and F parameter matrices. Block relaxation
generates a smooth algorithm map and involves only small
decoupled optimizations. These are relatively straightfor-
ward to solve using sequential quadratic programming. As
with MM, block relaxation enjoys the desirable ascent prop-
erty.

We implemented block relaxation with acceleration on
a sample of 912 European American controls genotyped
at 9,378 SNPs as part of an inflammatory bowel disease
(IBD) study (Mitchell et al. 2004). The data show strong
evidence of northwestern European and Ashkenazi Jewish
ancestry. The evidence for southeastern European ances-
try is less compelling. With K = 3 ancestral populations
there are 30,870 parameters to estimate. Although block re-
laxation converges, it can be substantially accelerated by
both quasi-Newton and SQUAREM extrapolation methods.

Table 6 Comparison of acceleration algorithms for the genetics ad-
mixture problem with K = 3 ancestral populations using an IBD
dataset (Mitchell et al. 2004) with 912 individuals and 9,378 SNP
markers. The number of parameters is 30,870

Algorithm Evals lnL Time

Block relax. 169 −9183720.22 1055.61

q = 1 32 −9183720.21 232.02

q = 2 44 −9183720.21 346.84

q = 3 36 −9183720.21 276.47

q = 4 36 −9183720.21 260.33

q = 5 32 −9183720.21 225.01

q = 6 32 −9183720.21 212.09

q = 7 34 −9183720.21 224.71

q = 8 38 −9183720.21 251.59

q = 9 36 −9183720.21 232.29

q = 10 44 −9183720.21 291.80

q = 15 46 −9183720.21 289.10

q = 20 54 −9183720.21 339.72

SqS1 32 −9183720.21 230.35

SqS2 38 −9183720.21 276.29

SqS3 30 −9183720.21 214.83

In this example, the best-performing acceleration method
is SqS3, with a 5.6-fold reduction in the number of block-
relaxation algorithm evaluations. SqS3 narrowly edges out
the best quasi-Newton accelerations (q = 1, 5, and 6).

3.5 PET imaging

The EM algorithm has been exploited for many years in the
field of computed tomography. Acceleration of the classic
algorithm (Lange and Carson 1984; Vardi et al. 1985) for
PET imaging (positron emission tomography) was explored
by Varadhan and Roland (2004). The problem consists of es-
timating Poisson emission intensities λ = (λ1, . . . , λp) for
p pixels arranged in a 2-dimensional grid and surrounded
by photon detectors. The observed data are coincidence
counts (y1, y2, . . . , yd) along d lines of flight connecting
pairs of photon detectors. The observed and complete data
log-likelihoods for the PET model are

Lobserved(λ) =
∑

i

[

yi ln

(∑

j

cij λj

)

−
∑

j

cij λj

]

,

Lcomplete(λ) =
∑

i

∑

j

[zij log(λj cij ) − λjcij ],

where the cij are constants derived from the geometry of
the grid and the detectors, and the missing data variable zij

counts the number of emission events emanating from pixel
j directed along line of flight i. Without loss of generality,
one can assume

∑
i cij = 1 for each j .
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The E step of the EM algorithm replaces zij by its condi-
tional expectation

zn
ij = yicij λ

n
j

∑
k cikλ

n
k

given the data yi and the current parameter values λn
j . Maxi-

mization of Lcomplete(λ) with this substitution yields the EM
updates

λn+1
j =

∑

i

zn
ij .

Full details can be found in McLachlan and Krishnan
(2008).

In experimenting with this EM algorithm, we found con-
vergence to the maximum likelihood estimate to be frus-
tratingly slow, even under acceleration. Furthermore, maxi-
mum likelihood yielded a reconstructed image of poor qual-
ity with a grainy appearance. The traditional remedy of pre-
mature halting of the algorithm cuts computational cost but
does not lend itself well to comparing different methods of
acceleration. A better option is to add a roughness penalty
to the observed log-likelihood. This device has long been
known to produce better images and accelerate convergence.
Thus, we maximize the amended objective function

f (λ) = Lobserved(λ) − μ

2

∑

{j,k}∈N

(λj − λk)
2,

where μ is the roughness penalty constant, and N is the
neighborhood system. A pixel pair {j, k} ∈ N if and only
if j and k are spatially adjacent. Although an absolute value
penalty is less likely to deter the formation of edges than
a square penalty, it is easier to deal with a square penalty
analytically, and we adopt it for the sake of simplicity. In
practice, the roughness penalty μ can be chosen by visual
inspection of the recovered images.

To maximize f (λ) by an MM algorithm, we first mi-
norize the log-likelihood part of f (λ) by the surrogate func-
tion

Q(λ | λn) =
∑

i

∑

j

[zn
ij log(λj cij ) − λj cij ]

derived from the E step of the EM algorithm. Here we have
omitted an irrelevant constant that does not depend on the
current parameter vector λ. To minorize the penalty, we cap-
italize on the evenness and convexity of the function x2. Ap-
plication of these properties yields the inequality

(λj − λk)
2 ≤ 1

2
(2λj − λn

j − λn
k)

2 + 1

2
(2λk − λn

j − λn
k)

2.

Equality holds for λj + λk = λn
j + λn

k , which is true when
λ = λn. Combining our two minorizations gives the surro-

gate function

g(λ | λn)

= Q(λ | λn)

− μ

4

∑

{j,k}∈N

[
(2λj − λn

j − λn
k)

2 + (2λk − λn
j − λn

k)
2].

In maximizing g(λ | λn), we set the partial derivative

∂g

∂λj

=
∑

i

[
zn
ij

λj

− cij

]

− μ
∑

k∈Nj

(2λj − λn
j − λn

k) (3)

equal to 0 and solve for λn+1. Here Nj is the set of pixels k

with {j, k} ∈ N . Multiplying equation (3) by λj produces a
quadratic with roots of opposite signs; we take the positive
root as λn+1

j . If we set μ = 0, then we recover the pure-EM
solution.

Results from running the various algorithms on a simu-
lated dataset (kindly provided by Ravi Varadhan) with 4,096
parameters (pixels) and observations from 2,016 detectors
are shown in Table 7. In all cases, we took the roughness-
penalty constant to be μ = 10−6 and the convergence cri-
terion to be ε = 10−8. Here, the best performing quasi-
Newton methods (q = 6 through 10 and 15) edge out SqS3,
the best of the SQUAREM methods.

Table 7 Comparison of various algorithms for the PET imaging prob-
lem. A 4,096-pixel image is recovered from photon coincidence counts
collected from 2,016 detector tubes. Here the roughness constant is
μ = 10−6, and the convergence criterion is ε = 10−8. The number of
parameters is 4,096

Algorithm Evals Objective Time

EM 3376 −15432.61 6836.05

q = 1 740 −15432.61 1743.55

q = 2 608 −15432.60 1432.38

q = 3 406 −15432.60 955.30

q = 4 372 −15432.57 875.51

q = 5 268 −15432.58 627.00

q = 6 222 −15432.57 520.97

q = 7 204 −15432.56 477.02

q = 8 188 −15432.54 441.48

q = 9 178 −15432.52 417.63

q = 10 176 −15432.51 411.20

q = 15 184 −15432.62 430.94

q = 20 236 −15432.45 559.32

SqS1 314 −15435.72 742.90

SqS2 290 −15432.54 684.79

SqS3 232 −15432.53 549.06
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3.6 Movie rating

In this example, we accelerate an EM algorithm for movie
rating (Zhou and Lange 2009a). Suppose a website or com-
pany asks consumers to rate movies on an integer scale from
1 to d ; typically d = 5 or 10. Let Mi be the set of movies
rated by person i. Denote the cardinality of Mi by |Mi |.
Each rater does so in one of two modes that we will call
“quirky” and “consensus”. In quirky mode rater i has a pri-
vate rating distribution with discrete density q(x | αi) that
applies to every movie regardless of its intrinsic merit. In
consensus mode, rater i rates movie j according to a dis-
crete density c(x | βj ) shared with all other raters in consen-
sus mode. For every movie i rates, he or she makes a quirky
decision with probability πi and a consensus decision with
probability 1 − πi . These decisions are made independently
across raters and movies. If xij is the rating given to movie
j by rater i, then the likelihood of the data is

L(θ) =
∏

i

∏

j∈Mi

[
πiq(xij | αi) + (1 − πi)c(xij | βj )

]
, (4)

where θ = (π,α,β) is the parameter vector of the model.
Once we estimate the parameters, we can rank the reliability
of rater i by the estimate π̂i and the popularity of movie j

by its estimated average rating
∑

k kc(k | β̂j ) in consensus
mode.

Among the many possibilities for the discrete densities
q(x | αi) and c(x | βj ), we confine ourselves to the shifted
binomial distribution with d − 1 trials and values 1, . . . , d

rather than 0, . . . , d − 1. The discrete densities are

q(k | αi) =
(

d − 1

k − 1

)

αk−1
i (1 − αi)

d−k,

c(k | βj ) =
(

d − 1

k − 1

)

βk−1
j (1 − βj )

d−k,

where the binomial parameters αi and βj occur on the unit
interval [0,1]. The EM updates

πn+1
i = 1

|Mi |
∑

j∈Mi

wn
ij ,

αn+1
i =

∑
j∈Mi

wn
ij (xij − 1)

(d − 1)
∑

j∈Mi
wn

ij

,

βn+1
j =

∑
i:j∈Mi

(1 − wn
ij )(xij − 1)

(d − 1)
∑

i:j∈Mi
(1 − wn

ij )

are easy to derive (Zhou and Lange 2009a). Here the weights

wn
ij = πn

i q(xij | αn
i )

πn
i q(xij | αn

i ) + (1 − πn
i )c(xij | βn

j )

Table 8 Comparison of accelerations for the movie rating problem.
Here the starting point is πi = αi = βj = 0.5, the stopping criterion is
ε = 10−9, and the number of parameters equals 2,771

Algorithm lnL Evals Time

EM −119085.2039 671 189.3020

q = 1 −119085.2020 215 64.1149

q = 2 −119085.1983 116 36.6745

q = 3 −119085.1978 153 46.0387

q = 4 −119085.1961 156 46.9827

q = 5 −119085.1974 161 48.6629

SqS1 −119085.2029 341 127.9918

SqS2 −119085.2019 301 110.9871

SqS3 −119085.2001 157 56.7568

reflect Bayes’ rule. The boundaries 0 and 1 are sticky in the
sense that a parameter started at 0 or 1 is trapped there for-
ever. Hence, acceleration must be monitored. If an accel-
erated point falls on a boundary or exterior to the feasible
region, then it should be projected to an interior point close
to the boundary. Even with this modification, the algorithm
can converge to an inferior mode.

We consider a representative data set sampled by the
GroupLens Research Project at the University of Minnesota
(movielens.umn.edu) during the seven-month period from
September 19, 1997 through April 22, 1998. The data set
consists of 100,000 movie ratings on a scale of 1 to 5 col-
lected from 943 users on 1682 movies. To avoid sparse data,
we discard movies or raters with fewer than 20 ratings. This
leaves 94,443 ratings from 917 raters on 937 movies. If
there are a raters and b movies, the shifted binomial model
involves 2a + b free parameters. For the current data set,
this translates to 2,771 free parameters. Table 8 summarizes
the performance of the different accelerations. The quasi-
Newton acceleration with q = 2 performs best, reducing the
number of EM algorithm map evaluations by 5.8-fold.

3.7 Generalized eigenvalues

Given two m × m matrices A and B , the generalized eigen-
value problem consists of finding all scalars λ and corre-
sponding nontrivial vectors x satisfying Ax = λBx. In the
special case where A is symmetric and B is symmetric and
positive definite, all generalized eigenvalues λ and gener-
alized eigenvectors x are real. The preferred algorithm for
solving the symmetric-definite generalized eigenvalue prob-
lem combines a Cholesky decomposition and a symmetric
QR algorithm (Golub and Van Loan 1996, Algorithm 8.7.1).
The number of floating point operations required is on the
order of 14m3. The alternative QZ algorithm (Golub and
Van Loan 1996, Algorithm 7.7.3) requires about 30m3 float-
ing point operations.

http://movielens.umn.edu
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In statistical applications such as principal component
analysis (Hotelling 1933; Jolliffe 1986), canonical corre-
lation analysis (Hotelling 1936), and Fisher’s discriminant
analysis, only a few of the largest generalized eigenvalues
are of interest. In this situation the standard algorithms rep-
resent overkill, particularly for large m. Numerical analysts
have formulated efficient Krylov subspace methods for find-
ing extremal generalized eigenvalues (Saad 1992). Here we
describe an alternative algorithm which is easier to imple-
ment. The key to progress is to reformulate the problem as
optimizing the Rayleigh quotient

R(x) = xtAx

xtBx
(5)

over the domain x 	= 0. Because the gradient of R(x) is

∇R(x) = 2

xtBx
[Ax − R(x)Bx],

a stationary point of R(x) furnishes an eigen-pair. Maximiz-
ing R(x) gives the largest eigenvalue, and minimizing R(x)

gives the smallest eigenvalue. Possible algorithms include
steepest ascent and steepest descent. These are notoriously
slow, but it is worth trying to accelerate them. Hestenes and
Karush (1951a, 1951b) suggest performing steepest ascent
and steepest descent with a line search.

Here are the details. Let xn be the current iterate, and put
u = xn and v = [A − R(xn)B]xn. We search along the line
c �→ u + cv emanating from u. There the Rayleigh quotient

R(u + cv) = (u + cv)tA(u + cv)

(u + cv)tB(u + cv)

reduces to a ratio of two quadratics in c. The coefficients
of the powers of c for both quadratics can be evaluated
by matrix-vector and inner product operations alone. No
matrix-matrix operations are needed. The optimal points are
found by setting the derivative

2
[
(vtAu + cvtAv)(u + cv)tB(u + cv)

− (u + cv)tA(u + cv)(vtBu + cvtBv)
]

× [(u + cv)tB(u + cv)]−2

with respect to c equal to 0 and solving for c. Conveniently,
the coefficients of c3 in the numerator of this rational func-
tion cancel. This leaves a quadratic that can be easily solved.
One root gives steepest ascent, and the other root gives
steepest descent. The sequence R(xn) usually converges to
the requisite generalized eigenvalue. The analogous algo-
rithm for the smallest eigenvalue is obvious.

Because of the zigzag nature of steepest ascent, naive ac-
celeration performs poorly. If xn+1 = F(xn) is the algorithm
map, we have found empirically that it is better to replace

Table 9 Average number of F(x) evaluations and running times for
100 simulated random matrices A and B of dimension 100×100. Here
s = 2, the stopping criterion is ε = 10−9, and the number of parameters
is 100

Algorithm Largest eigenvalue Smallest eigenvalue

Evals Time Evals Time

Naive 40785 7.5876 39550 7.2377

q = 1 8125 1.6142 8044 1.6472

q = 2 1521 0.3354 1488 0.3284

q = 3 1486 0.3302 1466 0.3384

q = 4 1435 0.3257 1492 0.3376

q = 5 1454 0.3250 1419 0.3305

q = 6 1440 0.3280 1391 0.3188

q = 7 1302 0.2959 1283 0.3041

q = 8 1298 0.3001 1227 0.2864

q = 9 1231 0.2838 1227 0.2931

q = 10 1150 0.2725 1201 0.2832

SqS1 5998 1.1895 6127 1.2538

SqS2 3186 0.6578 4073 0.8271

SqS3 2387 0.4922 3460 0.7246

F(x) by its s-fold functional composition Fs(x) before at-
tempting acceleration, where s is an even number. This sub-
stitution preserves the ascent property. Table 9 shows the
results of accelerating two-step (s = 2) steepest ascent and
steepest descent. Here we have averaged over 100 random
trials with 100 × 100 symmetric matrices. The matrices
A and B were generated as A = C + Ct and B = DDt ,
with the entries of both C and D chosen to be indepen-
dent, identically distributed uniform deviates from the in-
terval [−5,5]. Every trial run commences with x0 equal to
the constant vector 1. In general, quasi-Newton acceleration
improves as q increases. With q = 10, we see a more than
25-fold improvement in computational speed.

4 Discussion

The EM algorithm is one of the most versatile tools in the
statistician’s toolbox. The MM algorithm generalizes the
EM algorithm and shares its positive features. Among the
assets of both algorithms are simplicity, stability, graceful
adaptation to constraints, and the tendency to avoid large
matrix inversions. Scoring and Newton’s methods become
less and less attractive as the number of parameters in-
creases. Unfortunately, some EM and MM algorithms are
notoriously slow to converge. This is cause for concern as
statisticians head into an era dominated by large data sets
and high-dimensional models. In order for the EM and MM
algorithms to take up the slack left by competing algorithms,
statisticians must find efficient acceleration schemes. The
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quasi-Newton scheme discussed in the current paper is one
candidate.

Successful acceleration methods will be instrumental in
attacking another nagging problem in computational statis-
tics, namely multimodality. No one knows how often statis-
tical inference is fatally flawed because a standard optimiza-
tion algorithm converges to an inferior mode. The current
remedy of choice is to start a search algorithm from multiple
random points. Algorithm acceleration is welcome because
the number of starting points can be enlarged without an in-
crease in computing time. As an alternative, our recent paper
(Zhou and Lange 2009c) suggests modifications of several
standard MM algorithms that head reliably toward global
maxima. These simple modifications all involve variations
on deterministic annealing (Ueda and Nakano 1998).

Our acceleration scheme attempts to approximate New-
ton’s method for finding a fixed point of the algorithm map.
Like SQUAREM, our scheme is off-the-shelf and applies to
any search method determined by a smooth algorithm map.
The storage requirement is O(mq), where m is number of
parameters and q is number of secant conditions invoked.
The effort per iteration is very light: two ordinary updates
and some matrix times vector multiplications. The whole
scheme is consistent with linear constraints. These proper-
ties make it attractive for modern high-dimensional prob-
lems. In our numerical examples, quasi-Newton acceleration
performs similarly or better than SQUAREM. In defense of
SQUAREM, it is a bit easier to code.

As mentioned in our introduction, quasi-Newton meth-
ods can be applied to either the objective function or the
algorithm map. The objective function analog of our algo-
rithm map procedure is called the limited-memory BFGS
(LBFGS) update in the numerical analysis literature (No-
cedal and Wright 2006). Although we have not done ex-
tensive testing, it is our impression that the two forms of
acceleration perform comparably in terms of computational
complexity and memory requirements. However, there are
some advantages of working directly with the algorithm
map. First, the algorithm map is often easier to code than
the gradient of the objective function. Second, our map al-
gorithm acceleration respects linear constraints. A system-
atic comparison of the two methods is worth pursuing. The
earlier paper (Lange 1995) suggests an MM adaptation of
LBFGS that preserves curvature information supplied by the
surrogate function.

The current research raises as many questions as it an-
swers. First, the optimal choice of the number of secant
conditions q varied from problem to problem. Our exam-
ples suggest that high-dimensional problems benefit from
larger q . However, this rule of thumb is hardly universal.
Similar criticisms apply to SQUAREM, which exists in at
least three different flavors. A second problem is that quasi-
Newton acceleration may violate boundary conditions and

nonlinear constraints. When the feasible region is intersec-
tion of a finite number of closed convex sets, Dykstra’s
algorithm (Sect. 11.3, Lange 2004) is handy in projecting
wayward points back to the feasible region. Third, although
quasi-Newton acceleration almost always boosts the con-
vergence rate of an MM algorithm, there may be other al-
gorithms that do even better. One should particularly keep
in mind parameter expansion, block relaxation, or combina-
tions of block relaxation with MM. The multivariate t ex-
ample is a case in point. Neither the quasi-Newton nor the
SQUAREM acceleration of the naive EM algorithm beats
the PX-EM algorithm.

A final drawback of quasi-Newton acceleration is that it
can violate the ascent or descent property of the original al-
gorithm. This is a particular danger when accelerated points
fall outside the feasible region and must be projected back
to it. For the sake of simplicity in our examples, we revert to
the original algorithm whenever the ascent or descent prop-
erty fails. A more effective strategy might be back-tracking
(Varadhan and Roland 2008). In back-tracking a bad step
is contracted toward the default iterate. Contraction trades
more evaluations of the objective function for faster over-
all convergence. It would be worth exploring these tradeoffs
more carefully. Finally, in applications such as factor analy-
sis, latent class analysis, and multidimensional scaling, the
problems of multimodality and slow convergence are inter-
mingled. This too is worthy of closer investigations. In the
interests of brevity, we simply state these challenges rather
than seriously address them. Even without resolving them,
it seems to us that the overall quasi-Newton strategy has
proved its worth.
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