
Huang Journal of Inequalities and Applications (2017) 2017:35

DOI 10.1186/s13660-017-1301-7

RESEARCH Open Access

A quasi-Newton algorithm for large-scale
nonlinear equations
Linghua Huang*

*Correspondence:

linghuahuang@163.com

School of Information and Statistics,

Guangxi University of Finance &

Economics, Nanning, Guangxi

530003, P.R. China

Abstract

In this paper, the algorithm for large-scale nonlinear equations is designed by the

following steps: (i) a conjugate gradient (CG) algorithm is designed as a sub-algorithm

to obtain the initial points of the main algorithm, where the sub-algorithm’s initial

point does not have any restrictions; (ii) a quasi-Newton algorithm with the initial

points given by sub-algorithm is defined as main algorithm, where a new

nonmonotone line search technique is presented to get the step length αk . The given

nonmonotone line search technique can avoid computing the Jacobian matrix. The

global convergence and the 1 + q-order convergent rate of the main algorithm are

established under suitable conditions. Numerical results show that the proposed

method is competitive with a similar method for large-scale problems.

Keywords: nonlinear equations; large-scale; conjugate gradient; quasi-Newton

method; global convergence

1 Introduction

Consider the following nonlinear equations:

e(x) = , x ∈ ℜn. (.)

Here e :ℜn → ℜn is continuously differentiable and n denotes large-scale dimension. The

large-scale nonlinear equations are difficult to solve since the relations of the variables

x are complex and the dimension is larger. Problem (.) can model many real-life prob-

lems, such as engineering problems, dimensions of mechanical linkages, concentrations

of chemical species, cross-sectional properties of structural elements, etc. If the Jacobian

∇e(x) of e is symmetric, then problem (.) is called a system of symmetric nonlinear equa-

tions. Let p be the norm function with p(x) =

‖e(x)‖, where ‖ · ‖ is the Euclidean norm.

Then (.) is equivalent to the following global optimization models:

minp(x), x ∈ ℜn. (.)

In fact, there are many actual problems that can convert to the above problems (.) (see

[–] etc.) and have similar models (see [–] etc.). The iterative formula for (.) is

xk+ = xk + αkdk ,

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1301-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1301-7&domain=pdf
mailto:linghuahuang@163.com

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 2 of 16

where αk is a step length and dk is a search direction. Now let us review somemethods for

αk and dk , respectively:

(i) Li and Fukashima [] proposed an approximately monotone technique for αk :

p(xk + αkdk) – p(xk) ≤ –δ‖αkdk‖
 – δ‖αkek‖

 + ǫk‖ek‖
, (.)

where ek = e(xk), δ > , δ > are positive constants, αk = rik , r ∈ (,), ik is the smallest

nonnegative integer i satisfying (.) and ǫk such that

∞
∑

k=

ǫk < ∞. (.)

(ii) Gu et al. [] presented a descent line search technique:

p(xk + αkdk) – p(xk) ≤ –δ‖αkdk‖
 – δ‖αkek‖

. (.)

(iii) Brown and Saad [] gave the following technique to obtain αk :

p(xk + αkdk) – p(xk) ≤ βαk∇p(xk)
Tdk , (.)

where β ∈ (,) and ∇p(xk) = ∇e(xk)e(xk).

(iv) Based on this technique, Zhu [] proposed a nonmonotone technique:

p(xk + αkdk) – p(xl(k)) ≤ βαk∇p(xk)
Tdk , (.)

p(xl(k)) = max≤j≤m(k){p(xk–j)}, m() = , and m(k) = min{m(k –) + ,M}, k ≥ , and M is

a nonnegative integer.

(v) Yuan and Lu [] gave a new technique:

p(xk + αkdk) – p(xk) ≤ βα
ke(xk)

Tdk , (.)

and some convergence results are obtained.

Next we present some techniques for the calculation of dk . At present, there exist many

well-known methods for dk , such as the Newton method, the trust region method, and

the quasi-Newton method, etc.

(i) The Newton method has the following form to get dk :

∇e(xk)dk = –e(xk). (.)

This method is regarded as one of the most effective methods. However, its efficiency

largely depends on the possibility to efficiently solve (.) at each iteration. Moreover, the

exact solution of the system (.) could be too burdensomewhen the iterative point xk is far

from the exact solution []. In order to overcome this drawback, inexact quasi-Newton

methods are often used.

(ii) The quasi-Newton method is of the form

Bkdk + ek = , (.)

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 3 of 16

where Bk is generated by a quasi-Newton update formula, where the BFGS (Broyden-

Fletcher-Goldfarb-Shanno) update formula is one of the well-known quasi-Newton for-

mulas with

Bk+ = Bk –
Bksks

T
k Bk

sTk Bksk
+
ykyk

T

ykT sk
, (.)

where sk = xk+ – xk , yk = ek+ – ek , and ek+ = e(xk+). Set Hk to be the inverse of Bk , then

the inverse formula of (.) has the following form:

Hk+ = Hk –
yk

T (sk –Hkyk)sks
T
k

(ykT sk)
+
(sk –Hkyk)s

T
k + sk(sk –Hkyk)

T

(ykT sk)

=

(

I –
skyk

T

ykT sk

)

Hk

(

I –
yks

T
k

ykT sk

)

+
sks

T
k

ykT sk
. (.)

There exist many quasi-Newton methods (see [, , –]) representing the basic ap-

proach underlying most of the Newton-type large-scale algorithms.

The earliest nonmonotone line search framework was developed by Grippo, Lampar-

iello, and Lucidi in [] for Newton’s methods. Many subsequent papers have exploited

nonmonotone line search techniques of this nature (see [–] etc.), which shows that

the nonmonotone technique works well inmany cases. Considering these points, Zhu []

proposed the nonmonotone line search (.). From (.), we can see that the Jacobian ma-

trix∇e(x) must be computed at every iteration. Computing the Jacobianmatrix∇e(x) may

be expensive if n is large and for any n at every iteration. Thus, onemight prefer to remove

the matrix, leading to a new nonmonotone technique.

Inspired by the above observations, we make a study of inexact quasi-Newton methods

with a new nonmonotone technique for solving smooth nonlinear equations. In the kth

iteration of our algorithm, the following new nonmonotone technique is used to obtain

αk :

p(xk + αkdk) ≤ p(xl(k)) + αkσ e(xk)
Tdk , (.)

where σ ∈ (,) is a constant and dk is a solution of (.). Comparing with (.), the new

technique (.) does not compute the Jacobian matrix ∇e(x). Then the storage and work-

load can be saved in theory. In Section , we will state the technique (.) is well defined.

It is well known that the initial point plays an important role in an algorithm. For exam-

ple, the local superlinear convergence needs the iteration point x lies in the neighborhood

of the optimal solution x∗, if the choice of the point x is correct then the Newton method

can get the optimal solution x∗ just need one step, moreover, the correct initial point can

speed up the efficiency of an algorithm. The nonlinear conjugate gradient method is one

of the most effective line search methods for unconstrained optimization problems due

to its simplicity and low memory requirement, especially for large-scale problems. Many

scholars have made many studies and obtained lots of achievements on the CG meth-

ods or other similar new methods (see [–] etc.), where the results of [] are espe-

cially interesting. It has been proved that the numerical performance of the CG methods

is very interesting for large-scale problems in different application fields. These considera-

tions prompt us to design aCGalgorithm (sub-algorithm) for solving large-scale nonlinear

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 4 of 16

equations, where the terminated iteration point of the CG algorithm was used as the ini-

tial point of the given algorithm (main algorithm). Then there exist two advantages from

this process: one is that we can use the CG’s characteristic to get a better initial point and

another is that the good convergent results of the main algorithm can be preserved. The

main attributes of this paper are stated as follows:

• A sub-algorithm is designed to get the initial point of the main algorithm.

• A new nonmonotone line search technique is presented, moreover, the Jacobian

matrix ∇ek must not be computed at every iteration.

• The given method possesses the sufficient descent property for the normal function

p(x).

• The global convergence and the + q-order convergent rate of the new method are

established under suitable conditions.

• Numerical results show that this method is more effective than other similar methods.

We organize the paper as follows. In Section , the algorithms are stated. Convergent

results are established in Section and numerical results are reported in Section . In the

last section, our conclusion is given. Throughout this paper, we use these notations: ‖ · ‖

is the Euclidean norm, e(xk) and g(xk+) are replaced by ek and gk+, respectively.

2 Algorithm

In this section, we will design a sub-algorithm and themain algorithm, respectively. These

two algorithms are listed as follows.

Initial point algorithm (sub-algorithm)

Step : Given any x ∈ ℜn, δ, δ ∈ (,), ǫk > , r ∈ (,), ǫ ∈ [,), let k := .

Step : If ‖ek‖ ≤ ǫ, stop. Otherwise let dk = –ek and go to next step.

Step : Choose ǫk+ satisfies (.) and let αk = , r, r, r, . . . until (.) holds.

Step : Let xk+ = xk + αkdk .

Step : If ‖ek+‖ ≤ ǫ, stop.

Step : Compute dk+ = –ek+ + βkdk , set k = k + and go to Step .

Remark (i) βk of Step is a scalar and different βk will determine different CG methods.

(ii) From Step and [], it is easy to deduce that there exists αk such that (.). Thus,

this sub-algorithm is well defined.

In the following, we will state the main algorithm. First, assume that the terminated

point of sub-algorithm is xsup, then the given algorithm is defined as follows.

Algorithm (Main algorithm) Step : Choose xsup ∈ ℜn as the initial point, an initial

symmetric positive definite matrix B ∈ ℜn×n, and constants r,σ ∈ (,), ǫmain < ǫ, a posi-

tive integer M > ,m(k) = , let k := ;

Step : Stop if ‖ek‖ ≤ ǫmain. Otherwise solve (.) to get dk .

Step : Let αk = , r, r, r, . . . until (.) holds.

Step : Let the next iterative be xk+ = xk + αkdk .

Step : Update Bk by quasi-Newton update formula and ensure the update matrix Bk+

is positive definite.

Step : Let k := k + . Go to Step .

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 5 of 16

Remark Step of Algorithm can ensure that Bk is always positive definite. This means

that (.) has a unique solution dk . By positive definiteness of Bk , it is easy to obtain e
T
k dk <

. In the following sections, we only concentrate to the convergence of themain algorithm.

3 Convergence analysis

Let � be the level set with

� =
{

x|
∥

∥e(x)
∥

∥ ≤
∥

∥e(x)
∥

∥

}

. (.)

Similar to [, ,], the following assumptions are needed to prove the global conver-

gence of Algorithm .

AssumptionA (i) e is continuously differentiable on an open convex set� containing�.

(ii) The Jacobian of e is symmetric, bounded, and positive definite on �, i.e., there exist

positive constantsM∗ ≥ m∗ > such that

∥

∥∇e(x)
∥

∥ ≤ M∗ ∀x ∈ � (.)

and

m∗‖d‖ ≤ dT∇e(x)d ∀x ∈ �,d ∈ ℜn. (.)

Assumption B Bk is a good approximation to ∇ek , i.e.,

∥

∥(∇ek – Bk)dk
∥

∥ ≤ ǫ∗‖ek‖, (.)

where ǫ∗ ∈ (,) is a small quantity.

Considering Assumption B and using the von Neumann lemma, we deduce that Bk is

also bounded (see []).

Lemma . Let Assumption B hold. Then dk is a descent direction of p(x) at xk , i.e.,

∇p(xk)
Tdk ≤ –(– ǫ∗)

∥

∥e(xk)
∥

∥

. (.)

Proof By using (.), we get

∇p(xk)
Tdk = e(xk)

T∇e(xk)dk

= e(xk)
T
[(

∇e(xk) – Bk

)

dk – e(xk)
]

= e(xk)
T
(

∇e(xk) – Bk

)

dk – e(xk)
Te(xk). (.)

Thus, we have

∇p(xk)
Tdk +

∥

∥e(xk)
∥

∥

= e(xk)

T
(

∇e(xk) – Bk

)

dk

≤
∥

∥e(xk)
∥

∥

∥

∥

(

∇e(xk) – Bk

)

dk
∥

∥.

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 6 of 16

It follows from (.) that

∇p(xk)
Tdk ≤

∥

∥e(xk)
∥

∥

∥

∥

(

∇e(xk) – Bk

)

dk
∥

∥ –
∥

∥e(xk)
∥

∥

≤ –(– ǫ∗)
∥

∥e(xk)
∥

∥

. (.)

The proof is complete. �

The following lemma shows that the line search technique (.) is reasonable, then

Algorithm is well defined.

Lemma . Let Assumptions A and B hold. Then Algorithm will produce an iteration

xk+ = xk + αkdk in a finite number of backtracking steps.

Proof From Lemma . in [] we have in a finite number of backtracking steps

p(xk + αkdk) ≤ p(xk) + αkσ e(xk)
Tdk ,

from which, in view of the definition of p(xl(k)) = max≤j≤m(k){p(xk–j)} ≥ p(xk), we obtain

(.). Thus we conclude the result of this lemma. The proof is complete. �

Now we establish the global convergence theorem of Algorithm .

Theorem . Let Assumptions A and B hold, and {αk ,dk ,xk+, ek+} be generated by Algo-

rithm . Then

lim
k→∞

‖ek‖ = . (.)

Proof By the acceptance rule (.), we have

p(xk+) – p(xl(k)) ≤ σαke
T
k dk < . (.)

Usingm(k +) ≤ m(k) + and p(xk+) ≤ p(xl(k)), we obtain

p(xl(k+)) ≤ max
{

p(xl(k)),p(xk+)
}

= p(xl(k)).

This means that the sequence {p(xl(k))} is decreasing for all k. Then {p(xl(k))} is convergent.

Based on Assumptions A and B, similar to Lemma . in [], it is not difficult to deduce

that there exist constants b ≥ b > such that

b‖dk‖
 ≤ dT

k Bkdk = –eTk dk ≤ b‖dk‖
. (.)

By (.) and (.), for all k >M, we get

p(xl(k)) = p(xl(k)– + αl(k)–dl(k)–)

≤ max
≤j≤m(l(k)–)

{

p(xl(k)–j–)
}

+ σαl(k)–g
T
l(k)–dl(k)–

≤ max
≤j≤m(l(k)–)

{

p(xl(k)–j–)
}

– σbαl(k)–‖dl(k)–‖
. (.)

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 7 of 16

Since {p(xl(k))} is convergent, from the above inequality, we have

lim
k→∞

αl(k)–‖dl(k)–‖
 = .

This implies that either

lim
k→∞

infdl(k)– = (.)

or

lim
k→∞

infαl(k)– = . (.)

If (.) holds, following [], by induction we can prove that

lim
k→∞

‖dl(k)–j‖ = (.)

and

lim
k→∞

p(xl(k)–j) = lim
k→∞

p(xl(k))

for any positive integer j. As k ≥ l(k)≥ k –M andM is a positive constant, by

xk = xk–M– + αk–M–dk–M– + · · · + αl(k)–dl(k)–

and (.), it can be derived that

lim
k→∞

p(xl(k)) = lim
k→∞

p(xk). (.)

According to (.) and the rule for accepting the step αkdk ,

p(xk+) – p(xl(k)) ≤ αkσ e
T
k dk ≤ αkσb‖dk‖

. (.)

This means

lim
k→∞

αk‖dk‖
 = ,

which implies that

lim
k→∞

αk = (.)

or

lim
k→∞

‖dk‖ = . (.)

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 8 of 16

If equation (.) holds, since Bk is bounded, then ‖ek‖ = ‖Bkdk‖ ≤ ‖Bk‖‖dk‖ → holds.

The conclusion of this lemma holds. If (.) holds. Then acceptance rule (.) means

that, for all large enough k, α′
k =

αk
r
such that

p
(

xk + α′
kdk

)

– p(xk) ≥ p
(

xk + α′
kdk

)

– p(xl(k)) > σα′
ke

T
k dk . (.)

Since

p
(

xk + α′
kdk

)

– p(xk) = α′
k∇p(xk)

Tdk + o
(

α′
k‖dk‖

)

. (.)

Using (.) and (.) in [], we have

∇p(xk)
Tdk = eTk ∇e(xk)dk ≤ δ∗eTk dk ,

where δ∗ > is a constant and σ < δ∗. So we get

[

δ∗ – σ
]

α′
ke

T
k dk + o

(

α′
k‖dk‖

)

≥ . (.)

Note that δ∗ – σ > and eTk dk < , we have from dividing (.) by α′
k‖dk‖

lim
k→∞

eTk dk

‖dk‖
= . (.)

By (.), we have

lim
k→∞

‖dk‖ = . (.)

Consider ‖ek‖ = ‖Bkdk‖ ≤ ‖Bk‖‖dk‖ and the bounded Bk again, we complete the

proof. �

Lemma . (see Lemma . in []) Let e be continuously differentiable, and ∇e(x) be

nonsingular at x∗ which satisfies e(x∗) = . Let

a ≡

{

∥

∥∇e
(

x∗
)
∥

∥ +

c
, c

}

, c =
∥

∥∇e
(

x∗
)–∥

∥. (.)

If ‖xk – x∗‖ sufficiently small, then the inequality

a

∥

∥xk – x∗
∥

∥ ≤
∥

∥e(xk)
∥

∥ ≤ a
∥

∥xk – x∗
∥

∥ (.)

holds.

Theorem . Let the assumptions in Lemma . hold. Assume that there exists a suffi-

ciently small ε > such that ‖Bk – ∇e(xk)‖ ≤ ε for each k. Then the sequence {xk} con-

verges to x∗ superlinearly for αk = . Moreover, if e is q-order smooth at x∗ and there is a

neighborhood U of x∗ satisfying for any xk ∈ U ,

∥

∥

[

Bk –∇e
(

x∗
)](

xk – x∗
)
∥

∥ ≤ η
∥

∥xk – x∗
∥

∥

+q
, (.)

then xk → x∗ with order at least + q, where η is a constant.

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 9 of 16

Proof Since g is continuously differentiable and ∇e(x) is nonsingular at x∗, there exists a

constant γ > and a neighborhood U of x∗ satisfying

max
{
∥

∥∇e(y)
∥

∥,
∥

∥∇e(y)–
∥

∥

}

≤ γ ,

where ∇e(y) is nonsingular for any y ∈U . Consider the following equality when αk = :

Bk

(

xk+ – x∗
)

+
[

∇e(xk)
(

xk – x∗
)

– Bk

(

xk – x∗
)]

+
[

e(xk) – e
(

x∗
)

–∇e(xk)
(

xk – x∗
)]

= e(xk) + Bkdk = , (.)

the second term and the third term are o(‖xk – x∗‖). By the von Neumann lemma, and

considering that ∇e(xk) is nonsingular, Bk is also nonsingular. For any y ∈ U and ∇e(y)

being nonsingular and max{‖∇e(y)‖,‖∇e(y)–‖} ≤ γ , then we obtain from Lemma .

∥

∥xk+ – x∗
∥

∥ = o
(∥

∥xk – x∗
∥

∥

)

= o
(∥

∥e(xk)
∥

∥

)

, as k → ∞,

this means that the sequence {xk} converges to x∗ superlinearly for αk = .

If e is q-order smooth at x∗, then we get

e(xk) – e
(

x∗
)

–∇e(xk)
(

xk – x∗
)

=O
(
∥

∥xk – x∗
∥

∥

q+)
.

Consider the second term of (.) as xk → x∗, and use (.), we can deduce that the

second term of (.) is also O(‖xk – x∗‖q+). Therefore, we have

∥

∥xk+ – x∗
∥

∥ =O
(
∥

∥xk – x∗
∥

∥

q+)
, as xk → x∗.

The proof is complete. �

4 Numerical results

In this section, we report results of some numerical experiments with the proposed

method. The test functions have the following form:

e(x) =
(

f(x), f(x), . . . , fn(x)
)T
,

where these functions have the associated initial guess x. These functions are stated as

follows.

Function Exponential function

f(x) = ex – ,

fi(x) =
i

(

exi + xi– –
)

, i = , , . . . ,n.

Initial guess: x = (
n
,
n
, . . . ,

n
)T .

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 10 of 16

Function Trigonometric function

fi(x) =

(

n + i(– cosxi) – sinxi –

n
∑

j=

cosxj

)

(sinxi – cosxi), i = , , , . . . ,n.

Initial guess: x = (
n

,
n

, . . . ,
n

)T .

Function Logarithmic function

fi(x) = ln(xi +) –
xi

n
, i = , , , . . . ,n.

Initial guess: x = (, , . . . ,)T .

Function Broyden tridiagonal function [[], pp. -]

f(x) = (– .x)x – x + ,

fi(x) = (– .xi)xi – xi– + xi+ + ,

i = , , . . . ,n – ,

fn(x) = (– .xn)xn – xn– + .

Initial guess: x = (–,–, . . . , –)T .

Function Trigexp function [[], p.]

f(x) = x + x – + sin(x – x) sin(x + x),

fi(x) = –xi–e
xi––xi + xi

(

 + xi
)

+ xi+

+ sin(xi – xi+) sin(xi + xi+) – , i = , , . . . ,n – ,

fn(x) = –xn–e
xn––xn + xn – .

Initial guess: x = (, , . . . ,)T .

Function Strictly convex function [[], p.]. e(x) is the gradient of h(x) =
∑n

i=(e
xi –

xi).

fi(x) = exi – , i = , , , . . . ,n.

Initial guess: x = (
n
,
n
, . . . ,)T .

Function Strictly convex function [[], p.]

e(x) is the gradient of h(x) =
∑n

i=
i

(exi – xi).

fi(x) =
i

(

exi –
)

, i = , , , . . . ,n.

Initial guess: x = (, , . . . ,)T .

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 11 of 16

Function Variable dimensioned function

fi(x) = xi – , i = , , , . . . ,n – ,

fn–(x) =

n–
∑

j=

j(xj –),

fn(x) =

(

n–
∑

j=

j(xj –)

)

.

Initial guess: x = (–
n
, –

n
, . . . ,)T .

Function Discrete boundary value problem [].

f(x) = x + .h(x + h) – x,

fi(x) = xi + .h(xi + hi) – xi– + xi+,

i = , , . . . ,n –

fn(x) = xn + .h(xn + hn) – xn–,

h =

n +
.

Initial guess: x = (h(h –),h(h –), . . . ,h(nh –)).

Function The discretized two-point boundary value problem similar to the problem

in []

e(x) = Ax +

(n +)
F(x) = ,

when A is the n× n tridiagonal matrix given by

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

 –

– –

– –

. . .
. . .

. . .

. . .
. . . –

–

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and F(x) = (F(x),F(x), . . . ,Fn(x))
T with Fi(x) = sinxi – , i = , , . . . ,n, and x = (, ,

, , . . .).

In the experiments, all codes were written in MATLAB ra and run on a PC with

GT@. GHz CPU processor and . GBmemory andWindows XP operation sys-

tem. In order to compare the performance the given algorithm with CG’s initial points

(called new method with CG), we also do the experiment with only the main algorithm

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 12 of 16

with initial points x (called the normal method). Aslam Noor et al. [] presented a vari-

ational iteration technique for nonlinear equations, where the so-called VIMmethod has

the better numerical performance. The VIM method has the following iteration form:

xk+ = xk –
[

∇e – diag(βe,βe, . . . ,βnen)
]–

(xk)e(xk),

where βi ∈ (,) for i = , , . . . ,n. In their paper, only low dimension problems (two vari-

ables) are tested. In this experiment, we also give the numerical results of this method for

large-scale nonlinear equations to compare with our proposed algorithm.

The parameters were chosen as r = ., σ = .,M = , ǫ = –, and ǫmain = –. In

order to ensure the positive definiteness of Bk , in Step of the main algorithm: if yTk sk >

, update Bk by (.), otherwise let Bk+ = Bk . This program will also be stopped if the

iteration number of main algorithm is larger than . Since the line search cannot always

ensure these descent conditions dT
k ek < and dT

k ∇e(xk)ek < , an uphill search direction

may occur in numerical experiments. In this case, the line search rulemaybe fails. In order

to avoid this case, the stepsize αk will be accepted if the searching time is larger than six

in the inner circle for the test problems.

In the sub-algorithm, the CG formula is used by the following Polak-Ribière-Polyak

(PRP) method [,]

dk =

⎧

⎨

⎩

–ek +
eT
k
(ek–ek–)

‖ek–‖
 dk– if k ≥ ,

–ek if k = .
(.)

For the line search technique, (.) is used and the largest search number of times is ten,

where δ = δ = –, and ǫk =

NI
(NI is the iteration number). The sub-algorithm will

also stopped if the iteration number is larger than . The iteration number, the function

evaluations, and the CPU time of the sub-algorithm are added to the main algorithm for

new method with CG. The meaning of the items of the columns of Table is:

Dim: the dimension.

NI: the number of iterations.

NG: the number of function evaluations.

cpu time: the cpu time in seconds.

GF: the final norm function evaluations p(x) when the program is stopped.

GD: the final norm evaluations of search direction dk .

fails: fails to find the final values of p(x) when the program is stopped.

FromTables -, it is easy to see that the number of iterations and the number of function

evaluations of the newmethodwith CG are less than those of the normalmethod for these

test problems. Moreover, the cpu time and the final function norm evaluations of the new

method with CG are more competitive than those of the normal method. For the VIM

method, the results of Problems - are very interesting, but it fails for Problems -.

Moreover, it is not difficult to find that more CUP time is needed for this method. The

main reason maybe lies in the computation of the Jacobian matrix at every iteration.

The tool of Dolan and Moré [] is used to analyze the efficiency of these three algo-

rithms.

Figures - show that the performance of these methods are relative to NI, NG, and cpu

time of Tables -, respectively. The numerical results indicate that the proposed method

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 13 of 16

Ta
b
le
1

N
u
m
e
ri
ca
lr
e
su
lt
s

N
e
w
m
e
th
o
d
w
it
h
C
G

N
o
rm

a
lm

e
th
o
d
(o
n
ly
m
a
in

a
lg
o
ri
th
m
)

P
D
im

N
I/
N
G

G
F

G
D

cp
u
ti
m
e

N
I/
N
G

G
F

G
D

cp
u
ti
m
e

1
1
0
0
0

1
/1

6
.6
7
6
6
7
4
e
–
0
0
6

1
.3
3
5
3
3
5
e
–
0
0
5

0
.0
0
0
0
0
0
e
+
0
0
0

0
/2

6
.6
7
6
6
7
4
e
–
0
0
6

1
.3
3
5
3
3
5
e
–
0
0
5

0
.0
0
0
0
0
0
e
+
0
0
0

2
0
0
0

1
/1

3
.3
3
5
8
3
4
e
–
0
0
6

6
.6
7
1
6
6
8
e
–
0
0
6

0
.0
0
0
0
0
0
e
+
0
0
0

0
/2

3
.3
3
5
8
3
4
e
–
0
0
6

6
.6
7
1
6
6
8
e
–
0
0
6

0
.0
0
0
0
0
0
e
+
0
0
0

3
0
0
0

1
/1

2
.2
2
3
3
3
4
e
–
0
0
6

4
.4
4
6
6
6
7
e
–
0
0
6

1
.5
6
0
0
1
0
e
–
0
0
2

0
/2

2
.2
2
3
3
3
4
e
–
0
0
6

4
.4
4
6
6
6
7
e
–
0
0
6

3
.1
2
0
0
2
0
e
–
0
0
2

2
1
0
0
0

1
2
/1
7

1
.5
7
0
3
5
2
e
–
0
0
7

1
.2
1
4
9
5
4
e
–
0
0
7

1
.5
4
4
4
1
0
e
+
0
0
0

1
9
9
/2
8
7
9

1
.6
2
4
2
6
8
e
–
0
0
4

1
.2
2
8
5
5
1
e
+
0
0
0

1
.3
3
8
8
0
1
e
+
0
0
2

2
0
0
0

2
0
0
/2
9
2
7

8
.1
4
4
0
2
2
e
–
0
0
5

3
.1
3
8
9
4
5
e
–
0
0
1

8
.6
4
7
1
3
5
e
+
0
0
2

1
9
9
/2
9
2
8

8
.1
4
4
0
2
2
e
–
0
0
5

3
.1
3
8
9
4
5
e
–
0
0
1

8
.6
8
0
8
3
2
e
+
0
0
2

3
0
0
0

2
0
0
/2
3
2
6

5
.4
3
4
3
8
1
e
–
0
0
5

2
.4
8
1
1
2
1
e
–
0
0
3

1
.6
1
4
6
2
6
e
+
0
0
3

1
9
9
/2
3
2
7

5
.4
3
4
3
8
1
e
–
0
0
5

2
.4
8
1
1
2
1
e
–
0
0
3

1
.6
2
2
7
8
5
e
+
0
0
3

3
1
0
0
0

8
/8

4
.1
9
4
8
5
9
e
–
0
0
6

8
.3
8
9
7
1
8
e
–
0
0
6

1
.5
6
0
0
1
0
e
–
0
0
2

1
1
5
/1
0
0
9

5
.8
3
8
5
3
5
e
–
0
0
8

1
.1
7
1
2
5
1
e
–
0
0
7

7
.9
9
6
6
1
1
e
+
0
0
1

2
0
0
0

8
/8

7
.7
7
5
1
0
6
e
–
0
0
6

1
.5
5
5
0
2
1
e
–
0
0
5

7
.8
0
0
0
5
0
e
–
0
0
2

1
1
7
/1
0
4
0

1
.1
6
1
6
7
0
e
–
0
0
7

2
.3
2
8
0
5
6
e
–
0
0
7

5
.6
6
2
3
6
8
e
+
0
0
2

3
0
0
0

9
/9

1
.6
1
4
5
9
7
e
–
0
1
2

3
.2
3
1
6
3
0
e
–
0
1
2

1
.5
5
3
7
7
0
e
+
0
0
1

1
3
7
/1
3
6
2

1
.7
3
9
4
9
8
e
–
0
0
7

3
.4
8
4
8
9
1
e
–
0
0
7

2
.1
4
1
4
1
0
e
+
0
0
3

4
1
0
0
0

9
2
/1
6
5

5
.6
3
2
5
7
6
e
–
0
0
6

5
.6
6
9
4
4
2
e
–
0
0
6

2
.2
1
5
2
1
4
e
+
0
0
0

1
9
9
/2
8
5

3
.7
0
3
2
8
3
e
+
0
0
1

1
.1
9
6
0
5
1
e
+
0
0
1

1
.3
5
6
8
9
7
e
+
0
0
2

2
0
0
0

8
7
/1
5
6

6
.2
4
5
9
2
2
e
–
0
0
6

6
.0
8
5
0
4
3
e
–
0
0
6

1
.5
0
2
2
9
0
e
+
0
0
1

1
9
9
/2
3
0

3
.6
3
7
5
0
4
e
+
0
0
0

9
.5
7
0
7
7
9
e
+
0
0
0

9
.5
9
1
0
9
7
e
+
0
0
2

3
0
0
0

9
4
/1
6
9

6
.6
7
8
1
5
3
e
–
0
0
6

6
.4
3
7
5
8
5
e
–
0
0
6

4
.7
3
1
5
1
0
e
+
0
0
1

1
9
9
/2
3
4

2
.6
3
9
2
6
0
e
+
0
0
2

1
.9
0
4
8
6
5
e
+
0
0
1

3
.0
9
6
2
7
7
e
+
0
0
3

5
1
0
0
0

2
2
/5
1

8
.2
8
8
2
9
9
e
–
0
0
6

6
.2
6
8
9
4
6
e
–
0
0
7

2
.1
0
6
0
1
4
e
+
0
0
0

1
9
9
/2
5
7
0

3
.1
9
5
3
0
0
e
+
0
0
4

4
.6
4
9
7
8
2
e
+
0
0
6

1
.7
7
9
9
7
1
e
+
0
0
1

2
0
0
0

2
1
/5
0

4
.1
1
4
4
6
2
e
–
0
0
6

1
.9
4
3
3
5
1
e
–
0
0
6

5
.1
7
9
2
3
3
e
+
0
0
0

1
9
9
/2
6
5
2

6
.3
9
5
3
0
0
e
+
0
0
4

1
.3
5
4
9
7
2
e
+
0
0
5

8
.3
2
7
3
3
3
e
+
0
0
1

3
0
0
0

2
1
/5
1

9
.8
4
3
3
7
3
e
–
0
0
6

8
.5
0
4
7
1
9
e
–
0
0
6

1
.5
9
7
4
5
0
e
+
0
0
1

1
9
9
/2
8
5
3

9
.5
9
5
3
0
0
e
+
0
0
4

1
.1
3
5
3
5
6
e
+
0
0
5

1
.3
1
4
7
7
6
e
+
0
0
2

6
1
0
0
0

9
/1
1

5
.9
8
4
1
8
5
e
–
0
1
2

1
.1
9
7
5
9
6
e
–
0
1
1

7
.1
7
6
0
4
6
e
–
0
0
1

6
/9

6
.0
6
9
7
2
2
e
–
0
0
7

1
.1
1
8
4
3
7
e
–
0
0
6

4
.1
4
9
6
2
7
e
+
0
0
0

2
0
0
0

9
/1
1

1
.5
0
5
1
9
1
e
–
0
0
6

3
.0
1
0
3
8
3
e
–
0
0
6

7
.8
0
0
0
5
0
e
–
0
0
2

6
/9

1
.2
1
0
9
3
1
e
–
0
0
6

2
.2
3
1
7
6
5
e
–
0
0
6

2
.8
9
8
4
9
9
e
+
0
0
1

3
0
0
0

9
/1
1

2
.2
5
1
5
7
1
e
–
0
0
6

4
.5
0
3
1
4
2
e
–
0
0
6

1
.4
0
4
0
0
9
e
–
0
0
1

6
/9

1
.8
1
4
8
9
1
e
–
0
0
6

3
.3
4
5
0
9
3
e
–
0
0
6

9
.3
0
0
7
8
0
e
+
0
0
1

7
1
0
0
0

2
0
0
/6
0
2

1
.2
0
8
2
4
0
e
–
0
0
3

4
.6
9
7
0
0
5
e
+
0
0
0

3
.4
2
4
2
2
2
e
+
0
0
1

1
9
9
/5
7
3

3
.1
5
6
1
3
7
e
+
0
0
5

3
.8
9
3
3
8
0
e
+
0
0
4

1
.3
7
8
1
1
3
e
+
0
0
2

2
0
0
0

2
0
0
/7
6
0

1
.6
1
2
6
7
1
e
+
0
0
1

9
.0
3
4
3
1
9
e
+
0
0
0

2
.4
2
0
2
0
0
e
+
0
0
2

1
9
9
/6
4
4

1
.0
1
4
4
8
1
e
+
0
0
6

3
.1
3
1
5
7
6
e
+
0
0
5

9
.8
7
2
3
6
7
e
+
0
0
2

3
0
0
0

2
0
0
/6
9
3

5
.5
7
0
2
2
7
e
–
0
0
3

9
.5
0
1
1
4
9
e
+
0
0
1

7
.6
9
8
1
8
1
e
+
0
0
2

1
9
9
/7
4
3

9
.3
5
7
4
7
3
e
+
0
0
7

2
.0
8
7
4
8
8
e
+
0
0
7

3
.0
8
7
1
1
9
e
+
0
0
3

8
1
0
0
0

2
/2

0
.0
0
0
0
0
0
e
+
0
0
0

0
.0
0
0
0
0
0
e
+
0
0
0

0
.0
0
0
0
0
0
e
+
0
0
0

1
/3

0
.0
0
0
0
0
0
e
+
0
0
0

0
.0
0
0
0
0
0
e
+
0
0
0

6
.5
5
2
0
4
2
e
–
0
0
1

2
0
0
0

2
/2

0
.0
0
0
0
0
0
e
+
0
0
0

0
.0
0
0
0
0
0
e
+
0
0
0

0
.0
0
0
0
0
0
e
+
0
0
0

1
/3

0
.0
0
0
0
0
0
e
+
0
0
0

0
.0
0
0
0
0
0
e
+
0
0
0

4
.8
2
0
4
3
1
e
+
0
0
0

3
0
0
0

2
/2

0
.0
0
0
0
0
0
e
+
0
0
0

0
.0
0
0
0
0
0
e
+
0
0
0

6
.2
4
0
0
4
0
e
–
0
0
2

1
/3

0
.0
0
0
0
0
0
e
+
0
0
0

0
.0
0
0
0
0
0
e
+
0
0
0

1
.5
3
8
1
7
0
e
+
0
0
1

9
1
0
0
0

6
7
/1
1
8

7
.1
3
8
9
4
1
e
–
0
0
6

1
.8
2
0
0
5
3
e
–
0
0
5

3
.0
1
0
8
1
9
e
+
0
0
0

2
/5

2
.3
5
8
6
4
0
e
–
0
0
6

4
.6
1
1
2
0
3
e
–
0
0
6

1
.4
0
4
0
0
9
e
+
0
0
0

2
0
0
0

7
0
/1
2
4

6
.3
4
2
7
2
4
e
–
0
0
6

1
.6
0
7
3
2
6
e
–
0
0
5

2
.0
6
2
3
3
3
e
+
0
0
1

2
/5

5
.9
1
7
0
0
2
e
–
0
0
7

1
.1
6
9
9
6
9
e
–
0
0
6

9
.7
0
3
2
6
2
e
+
0
0
0

3
0
0
0

7
4
/1
3
1

7
.4
4
7
1
8
7
e
–
0
0
6

1
.7
9
9
9
2
0
e
–
0
0
5

6
.4
5
0
6
4
1
e
+
0
0
1

2
/5

2
.6
3
2
8
1
1
e
–
0
0
7

5
.2
2
5
6
5
5
e
–
0
0
7

3
.0
8
4
1
4
0
e
+
0
0
1

1
0

1
0
0
0

2
6
/4
9

2
.0
4
4
7
1
7
e
–
0
0
8

3
.9
0
0
1
4
0
e
–
0
0
8

2
.3
5
9
9
8
3
e
+
0
0
2

1
2
1
/1
2
5

7
.3
8
2
1
2
3
e
–
0
0
6

1
.4
6
7
6
7
3
e
–
0
0
5

4
.9
8
7
1
9
6
e
+
0
0
2

2
0
0
0

2
4
/4
7

9
.0
3
0
3
8
2
e
–
0
0
6

2
.7
1
7
0
6
0
e
–
0
0
6

1
.8
4
7
2
8
6
e
+
0
0
3

1
2
1
/1
2
5

7
.4
5
4
0
9
0
e
–
0
0
6

1
.4
8
1
9
8
1
e
–
0
0
5

3
.8
5
2
5
3
8
e
+
0
0
3

3
0
0
0

2
7
/5
1

6
.4
6
8
8
3
1
e
–
0
0
9

1
.1
3
8
3
7
7
e
–
0
0
8

6
.6
3
2
2
2
7
e
+
0
0
3

1
2
1
/1
2
5

7
.5
2
3
3
2
2
e
–
0
0
6

1
.4
9
5
7
4
5
e
–
0
0
5

1
.2
9
9
7
7
4
e
+
0
0
4

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 14 of 16

Table 2 Numerical results of VIM1method

P Dim NI/NG GF cpu time P Dim NI/NG GF cpu time

1 1000 1/1 6.676674e–006 1.560010e–002 6 1000 5/5 4.591162e–011 9.656462e+000

2000 1/1 3.335834e–006 0.000000e+000 2000 5/5 9.140464e–011 7.439688e+001

3000 1/1 2.223334e–006 3.120020e–002 3000 5/5 1.368978e–010 2.484628e+002

2 1000 18/18 2.840705e–007 5.494355e+001 7 1000 5/5 4.058902e–006 9.656462e+000

2000 27/27 2.532474e–006 6.315544e+002 2000 6/6 1.983880e–017 8.993458e+001

3000 22/22 9.781547e–007 1.669476e+003 3000 6/6 6.708054e–017 3.007543e+002

3 1000 5/5 5.430592e–007 9.578461e+000 8 1000 fails

2000 5/5 5.619751e–007 7.435008e+001 2000 fails

3000 5/5 5.870798e–007 2.484160e+002 3000 fails

4 1000 4/4 4.559227e–009 1.243328e+001 9 1000 fails

2000 4/4 9.082664e–009 1.026487e+002 2000 fails

3000 4/4 1.360090e–008 3.708768e+002 3000 fails

5 1000 9/9 2.648764e–006 3.196460e+001 10 1000 fails

2000 9/9 2.649263e–006 2.529244e+002 2000 fails

3000 9/9 2.649430e–006 8.258849e+002 3000 fails

Figure 1 Performance profiles of these three

methods (NI).

Figure 2 Performance profiles of these three

methods (NG).

performs best among these three methods. To this end, we think that the enhancement of

this proposed method is noticeable.

5 Conclusion

In this paper, we focus on two algorithms solved a class of large-scale nonlinear equations.

At the first step, a CG algorithm, called a sub-algorithm, was used as the initial points

of the main algorithm. Then a quasi-Newton algorithm with the initial points done by a

CG sub-algorithm was defined as the main algorithm. In order to avoid computing the

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 15 of 16

Figure 3 Performance profiles of these three

methods (cpu time).

Jacobian matrix, a nonmonotone line search technique was used in the algorithms. The

convergence results are established and numerical results are reported.

According to the numerical performance, it is clear that the CG technique is very ef-

fective for large-scale nonlinear equations. This observation inspires us to design the CG

methods to directly solve nonlinear equations in the future.

Competing interests

The author declares to have no competing interests.

Acknowledgements

Only the author contributed in writing this paper. The author thanks the referees and the Editor for their valuable

comments, which greatly improved the paper.

Received: 24 November 2016 Accepted: 18 January 2017

References

1. Chen, B, Shu, H, Coatrieux, G, Chen, G, Sun, X, Coatrieux, J: Color image analysis by quaternion-type moments. J. Math.

Imaging Vis. 51, 124-144 (2015)

2. Fu, Z, Ren, K, Shu, J, Sun, X, Huang, F: Enabling personalized search over encrypted outsourced data with efficiency

improvement. IEEE Trans. Parallel Distrib. Syst. (2015). doi:10.1109/TPDS.2015.2506573

3. Gu, B, Sheng, VS: A robust regularization path algorithm for ν-support vector classification. IEEE Trans. Neural Netw.
Learn. Syst. (2016). doi:10.1109/TNNLS.2016.2527796

4. Gu, B, Sheng, VS, Tay, KY, Romano, W, Li, S: Incremental support vector learning for ordinal regression. IEEE Trans.

Neural Netw. Learn. Syst. 26, 1403-1416 (2015)

5. Guo, P, Wang, J, Li, B, Lee, S: A variable threshold-value authentication architecture for wireless mesh networks.

J. Internet Technol. 15, 929-936 (2014)

6. Li, J, Li, X, Yang, B, Sun, X: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics

Secur. 10, 507-518 (2015)

7. Pan, Z, Zhang, Y, Kwong, S: Efficient motion and disparity estimation optimization for low complexity multiview video

coding. IEEE Trans. Broadcast. 61, 166-176 (2015)

8. Shen, J, Tan, H, Wang, J, Wang, J, Lee, S: A novel routing protocol providing good transmission reliability in

underwater sensor networks. J. Internet Technol. 16, 171-178 (2015)

9. Xia, Z, Wang, X, Sun, X, Wang, Q: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud

data. IEEE Trans. Parallel Distrib. Syst. 27, 340-352 (2015)

10. Fu, Z, Wu, X, Guan, C, Sun, X, Ren, K: Towards efficient multi-keyword fuzzy search over encrypted outsourced data

with accuracy improvement. IEEE Trans. Inf. Forensics Secur. (2016). doi:10.1109/TIFS.2016.2596138

11. Gu, B, Sun, X, Sheng, VS: Structural minimax probability machine. IEEE Trans. Neural Netw. Learn. Syst. (2016).

doi:10.1109/TNNLS.2016.2544779

12. Ma, T, Zhou, J, Tang, M, Tian, Y, Al-Dhelaan, A, Al-Rodhaan, M, Lee, S: Social network and tag sources based

augmenting collaborative recommender system. IEICE Trans. Inf. Syst. 98, 902-910 (2015)

13. Ren, Y, Shen, J, Wang, JN, Han, J, Lee, S: Mutual verifiable provable data auditing in public cloud storage. J. Internet

Technol. 16, 317-323 (2015)

14. Yuan, G: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale

optimization problems. Optim. Lett. 3, 11-21 (2009)

15. Yuan, G, Duan, X, Liu, W, Wang, X, et al.: Two new PRP conjugate gradient algorithms for minimization optimization

models. PLoS ONE 10, e0140071 (2015)

16. Yuan, G, Lu, X: A modified PRP conjugate gradient method. Ann. Oper. Res. 166, 73-90 (2009)

17. Yuan, G, Lu, X, Wei, Z: A conjugate gradient method with descent direction for unconstrained optimization.

J. Comput. Appl. Math. 233, 519-530 (2009)

http://dx.doi.org/10.1109/TPDS.2015.2506573
http://dx.doi.org/10.1109/TNNLS.2016.2527796
http://dx.doi.org/10.1109/TIFS.2016.2596138
http://dx.doi.org/10.1109/TNNLS.2016.2544779

Huang Journal of Inequalities and Applications (2017) 2017:35 Page 16 of 16

18. Yuan, G, Wei, Z: New line search methods for unconstrained optimization. J. Korean Stat. Soc. 38, 29-39 (2009)

19. Yuan, G, Wei, Z: The superlinear convergence analysis of a nonmonotone BFGS algorithm on convex objective

functions. Acta Math. Sin. Engl. Ser. 24(1), 35-42 (2008)

20. Yuan, G, Wei, Z: Convergence analysis of a modified BFGS method on convex minimizations. Comput. Optim. Appl.

47, 237-255 (2010)

21. Yuan, G, Wei, Z: A trust region algorithm with conjugate gradient technique for optimization problems. Numer. Funct.

Anal. Optim. 32, 212-232 (2011)

22. Yuan, G, Wei, Z: The Barzilai and Borwein gradient method with nonmonotone line search for nonsmooth convex

optimization problems. Math. Model. Anal. 17, 203-216 (2012)

23. Yuan, G, Wei, Z, Wang, Z: Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex

minimization. Comput. Optim. Appl. 54, 45-64 (2013)

24. Yuan, G, Wei, Z, Wu, Y: Modified limited memory BFGS method with nonmonotone line search for unconstrained

optimization. J. Korean Math. Soc. 47, 767-788 (2010)

25. Yuan, G, Wei, Z, Zhao, Q: A modified Polak-Ribière-Polyak conjugate gradient algorithm for large-scale optimization

problems. IIE Trans. 46, 397-413 (2014)

26. Yuan, G, Zhang, M: A modified Hestenes-Stiefel conjugate gradient algorithm for large-scale optimization. Numer.

Funct. Anal. Optim. 34, 914-937 (2013)

27. Zhang, Y, Sun, X, Baowei, W: Efficient algorithm for K-barrier coverage based on integer linear programming. China

Communications 13, 16-23 (2016)

28. Li, D, Fukushima, M: A global and superlinear convergent Gauss-Newton-based BFGS method for symmetric

nonlinear equations. SIAM J. Numer. Anal. 37, 152-172 (1999)

29. Gu, G, Li, D, Qi, L, Zhou, S: Descent directions of quasi-Newton methods for symmetric nonlinear equations. SIAM J.

Numer. Anal. 40, 1763-1774 (2002)

30. Brown, PN, Saad, Y: Convergence theory of nonlinear Newton-Krylov algorithms. SIAM J. Optim. 4, 297-330 (1994)

31. Zhu, D: Nonmonotone backtracking inexact quasi-Newton algorithms for solving smooth nonlinear equations. Appl.

Math. Comput. 161, 875-895 (2005)

32. Yuan, G, Lu, X: A new backtracking inexact BFGS method for symmetric nonlinear equations. Comput. Math. Appl. 55,

116-129 (2008)

33. Nash, SG: A surey of truncated-Newton matrices. J. Comput. Appl. Math. 124, 45-59 (2000)

34. Dembao, RS, Eisenstat, SC, Steinaug, T: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400-408 (1982)

35. Griewank, A: The ’global’ convergence of Broyden-like methods with a suitable line search. J. Aust. Math. Soc. Ser. B,

Appl. Math 28, 75-92 (1986)

36. Ypma, T: Local convergence of inexact Newton methods. SIAM J. Numer. Anal. 21, 583-590 (1984)

37. Yuan, G, Wei, Z, Lu, X: A BFGS trust-region method for nonlinear equations. Computing 92, 317-333 (2011)

38. Yuan, G, Wei, Z, Lu, S: Limited memory BFGS method with backtracking for symmetric nonlinear equations. Math.

Comput. Model. 54, 367-377 (2011)

39. Yuan, G, Yao, S: A BFGS algorithm for solving symmetric nonlinear equations. Optimization 62, 82-95 (2013)

40. Grippo, L, Lampariello, F, Lucidi, S: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal.

23, 707-716 (1986)

41. Birgin, EG, Martinez, JM, Raydan, M: Nonmonotone spectral projected gradient methods on convex sets. SIAM J.

Optim. 10, 1196-1211 (2000)

42. Han, J, Liu, G: Global convergence analysis of a new nonmonotone BFGS algorithm on convex objective functions.

Comput. Optim. Appl. 7, 277-289 (1997)

43. Liu, G, Peng, J: The convergence properties of a nonmonotonic algorithm. J. Comput. Math. 1, 65-71 (1992)

44. Zhou, J, Tits, A: Nonmonotone line search for minimax problem. J. Optim. Theory Appl. 76, 455-476 (1993)

45. Yuan, G: A new method with descent property for symmetric nonlinear equations. Numer. Funct. Anal. Optim. 31,

974-987 (2010)

46. Yuan, G, Meng, Z, Li, Y: A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth

minimizations and nonlinear equations. J. Optim. Theory Appl. 168, 129-152 (2016)

47. Yuan, G, Lu, S, Wei, Z: A new trust-region method with line search for solving symmetric nonlinear equations. Int. J.

Comput. Math. 88, 2109-2123 (2011)

48. Yuan, G, Wei, Z, Li, G: A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs.

J. Comput. Appl. Math. 255, 86-96 (2014)

49. Yuan, G, Zhang, M: A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear

equations. J. Comput. Appl. Math. 286, 186-195 (2015)

50. Yuan, G, Lu, X, Wei, Z: BFGS trust-region method for symmetric nonlinear equations. J. Comput. Appl. Math. 230,

44-58 (2009)

51. Gomez-Ruggiero, M, Martinez, J, Moretti, A: Comparing algorithms for solving sparse nonlinear systems of equations.

SIAM J. Sci. Comput. 23, 459-483 (1992)

52. Raydan, M: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM

J. Optim. 7, 26-33 (1997)

53. Moré, J, Garbow, B, Hillström, K: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17-41 (1981)

54. Aslam Noor, M, Waseem, M, Inayat Noor, K, Al-Said, E: Variational iteration technique for solving a system of nonlinear

equations. Optim. Lett. 7, 991-1007 (2013)

55. Polak, E, Ribière, G: Note sur la convergence de directions conjugees. Rev. Franaise Informat. Recherche

Opérationnelle 3, 35-43 (1969)

56. Polyak, E: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9, 94-112 (1969)

57. Dolan, ED, Moré, JJ: Benchmarking optimization software with performance profiles. Math. Program. 91, 201-213

(2002)

	A quasi-Newton algorithm for large-scale nonlinear equations
	Abstract
	Keywords

	Introduction
	Algorithm
	Convergence analysis
	Numerical results
	Conclusion
	Competing interests
	Acknowledgements
	References

