
Journal of Machine Learning Research 11 (2010) 1145-1200 Submitted 11/08; Revised 11/09; Published 3/10

A Quasi-Newton Approach to Nonsmooth

Convex Optimization Problems in Machine Learning

Jin Yu JIN.YU@ADELAIDE.EDU.AU

School of Computer Science

The University of Adelaide

Adelaide SA 5005, Australia

S.V. N. Vishwanathan VISHY@STAT.PURDUE.EDU

Departments of Statistics and Computer Science

Purdue University

West Lafayette, IN 47907-2066 USA

Simon Günter GUENTER SIMON@HOTMAIL.COM

DV Bern AG

Nussbaumstrasse 21, CH-3000 Bern 22, Switzerland

Nicol N. Schraudolph JMLR@SCHRAUDOLPH.ORG

adaptive tools AG

Canberra ACT 2602, Australia

Editor: Sathiya Keerthi

Abstract

We extend the well-known BFGS quasi-Newton method and its memory-limited variant LBFGS to

the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing

three components of BFGS to subdifferentials: the local quadratic model, the identification of

a descent direction, and the Wolfe line search conditions. We prove that under some technical

conditions, the resulting subBFGS algorithm is globally convergent in objective function value.

We apply its memory-limited variant (subLBFGS) to L2-regularized risk minimization with the

binary hinge loss. To extend our algorithm to the multiclass and multilabel settings, we develop a

new, efficient, exact line search algorithm. We prove its worst-case time complexity bounds, and

show that our line search can also be used to extend a recently developed bundle method to the

multiclass and multilabel settings. We also apply the direction-finding component of our algorithm

to L1-regularized risk minimization with logistic loss. In all these contexts our methods perform

comparable to or better than specialized state-of-the-art solvers on a number of publicly available

data sets. An open source implementation of our algorithms is freely available.

Keywords: BFGS, variable metric methods, Wolfe conditions, subgradient, risk minimization,

hinge loss, multiclass, multilabel, bundle methods, BMRM, OCAS, OWL-QN

1. Introduction

The BFGS quasi-Newton method (Nocedal and Wright, 1999) and its memory-limited LBFGS vari-

ant are widely regarded as the workhorses of smooth nonlinear optimization due to their combi-

nation of computational efficiency and good asymptotic convergence. Given a smooth objective

c©2010 Jin Yu, S.V.N. Vishwanathan, Simon Günter and Nicol N. Schraudolph.

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

!

"(!)

0
acceptable interval

∇J(wt)
⊤pt c2∇J(wt)

⊤pt

c1∇J(wt)
⊤pt

Figure 1: Geometric illustration of the Wolfe conditions (4) and (5).

function J : R
d → R and a current iterate wt ∈ R

d , BFGS forms a local quadratic model of J:

Qt(p) := J(wt)+ 1
2
p⊤B−1

t p+ ∇ J(wt)
⊤
p , (1)

whereBt ≻ 0 is a positive-definite estimate of the inverse Hessian of J, and ∇ J denotes the gradient.

Minimizing Qt(p) gives the quasi-Newton direction

pt := −Bt ∇ J(wt), (2)

which is used for the parameter update:

wt+1 =wt +ηtpt . (3)

The step size ηt > 0 is normally determined by a line search obeying the Wolfe (1969) conditions:

J(wt+1) ≤ J(wt)+ c1ηt ∇ J(wt)
⊤
pt (sufficient decrease) (4)

and ∇ J(wt+1)
⊤
pt ≥ c2∇ J(wt)

⊤
pt (curvature) (5)

with 0 < c1 < c2 < 1. Figure 1 illustrates these conditions geometrically. The matrix Bt is then

modified via the incremental rank-two update

Bt+1 = (I−ρtsty
⊤
t)Bt(I−ρtyts

⊤
t)+ρtsts

⊤
t , (6)

where st :=wt+1 −wt and yt := ∇ J(wt+1)− ∇ J(wt) denote the most recent step along the opti-

mization trajectory in parameter and gradient space, respectively, and ρt := (yt
⊤st)

−1. The BFGS

update (6) enforces the secant equation Bt+1yt = st . Given a descent direction pt , the Wolfe con-

ditions ensure that (∀t) s⊤t yt > 0 and henceB0 ≻ 0 =⇒ (∀t)Bt ≻ 0.

Limited-memory BFGS (LBFGS, Liu and Nocedal, 1989) is a variant of BFGS designed for

high-dimensional optimization problems where the O(d2) cost of storing and updatingBt would be

prohibitive. LBFGS approximates the quasi-Newton direction (2) directly from the last m pairs of

1146

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

st and yt via a matrix-free approach, reducing the cost to O(md) space and time per iteration, with

m freely chosen.

There have been some attempts to apply (L)BFGS directly to nonsmooth optimization problems,

in the hope that they would perform well on nonsmooth functions that are convex and differentiable

almost everywhere. Indeed, it has been noted that in cases where BFGS (resp., LBFGS) does not

encounter any nonsmooth point, it often converges to the optimum (Lemarechal, 1982; Lewis and

Overton, 2008a). However, Lukšan and Vlček (1999), Haarala (2004), and Lewis and Overton

(2008b) also report catastrophic failures of (L)BFGS on nonsmooth functions. Various fixes can be

used to avoid this problem, but only in an ad-hoc manner. Therefore, subgradient-based approaches

such as subgradient descent (Nedić and Bertsekas, 2000) or bundle methods (Joachims, 2006; Franc

and Sonnenburg, 2008; Teo et al., 2010) have gained considerable attention for minimizing nons-

mooth objectives.

Although a convex function might not be differentiable everywhere, a subgradient always exists

(Hiriart-Urruty and Lemaréchal, 1993). Let w be a point where a convex function J is finite. Then

a subgradient is the normal vector of any tangential supporting hyperplane of J at w. Formally, g

is called a subgradient of J at w if and only if (Hiriart-Urruty and Lemaréchal, 1993, Definition

VI.1.2.1)

(∀w′) J(w′) ≥ J(w)+(w′−w)⊤g. (7)

The set of all subgradients at a point is called the subdifferential, and is denoted ∂J(w). If this set

is not empty then J is said to be subdifferentiable at w. If it contains exactly one element, that is,

∂J(w) = {∇ J(w)}, then J is differentiable at w. Figure 2 provides the geometric interpretation of

(7).

The aim of this paper is to develop principled and robust quasi-Newton methods that are amenable

to subgradients. This results in subBFGS and its memory-limited variant subLBFGS, two new sub-

gradient quasi-Newton methods that are applicable to nonsmooth convex optimization problems. In

particular, we apply our algorithms to a variety of machine learning problems, exploiting knowl-

edge about the subdifferential of the binary hinge loss and its generalizations to the multiclass and

multilabel settings.

In the next section we motivate our work by illustrating the difficulties of LBFGS on nonsmooth

functions, and the advantage of incorporating BFGS’ curvature estimate into the parameter update.

In Section 3 we develop our optimization algorithms generically, before discussing their application

to L2-regularized risk minimization with the hinge loss in Section 4. We describe a new efficient

algorithm to identify the nonsmooth points of a one-dimensional pointwise maximum of linear

functions in Section 5, then use it to develop an exact line search that extends our optimization

algorithms to the multiclass and multilabel settings (Section 6). Section 7 compares and contrasts

our work with other recent efforts in this area. We report our experimental results on a number of

public data sets in Section 8, and conclude with a discussion and outlook in Section 9.

2. Motivation

The application of standard (L)BFGS to nonsmooth optimization is problematic since the quasi-

Newton direction generated at a nonsmooth point is not necessarily a descent direction. Never-

theless, BFGS’ inverse Hessian estimate can provide an effective model of the overall shape of a

nonsmooth objective; incorporating it into the parameter update can therefore be beneficial. We

1147

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

-4 -3 -2 -1 0 1 2 3 4
-1

0

1

2

3

4

5

Figure 2: Geometric interpretation of subgradients. The dashed lines are tangential to the hinge

function (solid blue line); the slopes of these lines are subgradients.

discuss these two aspects of (L)BFGS to motivate our work on developing new quasi-Newton meth-

ods that are amenable to subgradients while preserving the fast convergence properties of standard

(L)BFGS.

2.1 Problems of (L)BFGS on Nonsmooth Objectives

Smoothness of the objective function is essential for classical (L)BFGS because both the local

quadratic model (1) and the Wolfe conditions (4, 5) require the existence of the gradient ∇ J at every

point. As pointed out by Hiriart-Urruty and Lemaréchal (1993, Remark VIII.2.1.3), even though

nonsmooth convex functions are differentiable everywhere except on a set of Lebesgue measure

zero, it is unwise to just use a smooth optimizer on a nonsmooth convex problem under the as-

sumption that “it should work almost surely.” Below we illustrate this on both a toy example and

real-world machine learning problems.

2.1.1 A TOY EXAMPLE

The following simple example demonstrates the problems faced by BFGS when working with a

nonsmooth objective function, and how our subgradient BFGS (subBFGS) method (to be introduced

in Section 3) with exact line search overcomes these problems. Consider the task of minimizing

f (x,y) = 10 |x|+ |y| (8)

with respect to x and y. Clearly, f (x,y) is convex but nonsmooth, with the minimum located at (0,0)
(Figure 3, left). It is subdifferentiable whenever x or y is zero:

∂x f (0, ·) = [−10,10] and ∂y f (·,0) = [−1,1].

We call such lines of subdifferentiability in parameter space hinges.

We can minimize (8) with the standard BFGS algorithm, employing a backtracking line search

(Nocedal and Wright, 1999, Procedure 3.1) that starts with a step size that obeys the curvature

1148

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

-1
-0.5

1

0

2

0

4

6

y
0.5

8

10

x

0
0.5

-0.5 -1
1

-1.0 -0.5 0.0 0.5 1.0
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

BFGS

-0.01 0.00 0.01
-0.04

0.00

0.04

-1.0 -0.5 0.0 0.5 1.0
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

subBFGS

Figure 3: Left: the nonsmooth convex function (8); optimization trajectory of BFGS with inexact

line search (center) and subBFGS (right) on this function.

condition (5), then exponentially decays it until both Wolfe conditions (4, 5) are satisfied.1 The

curvature condition forces BFGS to jump across at least one hinge, thus ensuring that the gradient

displacement vector yt in (6) is non-zero; this prevents BFGS from diverging. Moreover, with such

an inexact line search BFGS will generally not step on any hinges directly, thus avoiding (in an

ad-hoc manner) the problem of non-differentiability. Although this algorithm quickly decreases the

objective from the starting point (1,1), it is then slowed down by heavy oscillations around the

optimum (Figure 3, center), caused by the utter mismatch between BFGS’ quadratic model and the

actual function.

A generally sensible strategy is to use an exact line search that finds the optimum along a given

descent direction (cf. Section 4.2.1). However, this line optimum will often lie on a hinge (as it does

in our toy example), where the function is not differentiable. If an arbitrary subgradient is supplied

instead, the BFGS update (6) can produce a search direction which is not a descent direction, causing

the next line search to fail. In our toy example, standard BFGS with exact line search consistently

fails after the first step, which takes it to the hinge at x = 0.

Unlike standard BFGS, our subBFGS method can handle hinges and thus reap the benefits of

an exact line search. As Figure 3 (right) shows, once the first iteration of subBFGS lands it on the

hinge at x = 0, its direction-finding routine (Algorithm 2) finds a descent direction for the next step.

In fact, on this simple example Algorithm 2 yields a vector with zero x component, which takes

subBFGS straight to the optimum at the second step.2

2.1.2 TYPICAL NONSMOOTH OPTIMIZATION PROBLEMS IN MACHINE LEARNING

The problems faced by smooth quasi-Newton methods on nonsmooth objectives are not only en-

countered in cleverly constructed toy examples, but also in real-world applications. To show this,

we apply LBFGS to L2-regularized risk minimization problems (30) with binary hinge loss (31), a

typical nonsmooth optimization problem encountered in machine learning. For this particular ob-

jective function, an exact line search is cheap and easy to compute (see Section 4.2.1 for details).

Figure 4 (left & center) shows the behavior of LBFGS with this exact line search (LBFGS-LS)

1. We set c1 = 10−3 in (4) and c2 = 0.8 in (5), and used a decay factor of 0.9.

2. This is achieved for any choice of initial subgradient g(1) (Line 3 of Algorithm 2).

1149

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

10

0

10

1

10

2

CPU Seconds

0.6

1.5

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Letter (

=10

✁6
)

LBFGS-LS

LBFGS-ILS

subLBFGS

J(0)

Figure 4: Performance of subLBFGS (solid) and standard LBFGS with exact (dashed) and inexact

(dotted) line search methods on sample L2-regularized risk minimization problems with

the binary (left and center) and multiclass hinge losses (right). LBFGS with exact line

search (dashed) fails after 3 iterations (marked as ×) on the Leukemia data set (left).

on two data sets, namely Leukemia and Real-sim.3 It can be seen that LBFGS-LS converges on

Real-sim but diverges on the Leukemia data set. This is because using an exact line search on a

nonsmooth objective function increases the chance of landing on nonsmooth points, a situation that

standard BFGS (resp., LBFGS) is not designed to deal with. To prevent (L)BFGS’ sudden break-

down, a scheme that actively avoids nonsmooth points must be used. One such possibility is to

use an inexact line search that obeys the Wolfe conditions. Here we used an efficient inexact line

search that uses a caching scheme specifically designed for L2-regularized hinge loss (cf. end of

Section 4.2). This implementation of LBFGS (LBFGS-ILS) converges on both data sets shown

here but may fail on others. It is also slower, due to the inexactness of its line search.

For the multiclass hinge loss (42) we encounter another problem: if we follow the usual practice

of initializing w = 0, which happens to be a non-differentiable point, then LBFGS stalls. One way

to get around this is to force LBFGS to take a unit step along its search direction to escape this

nonsmooth point. However, as can be seen on the Letter data set3 in Figure 4 (right), such an ad-hoc

fix increases the value of the objective above J(0) (solid horizontal line), and it takes several CPU

seconds for the optimizers to recover from this. In all cases shown in Figure 4, our subgradient

LBFGS (subLBFGS) method (as will be introduced later) performs comparable to or better than the

best implementation of LBFGS.

2.2 Advantage of Incorporating BFGS’ Curvature Estimate

In machine learning one often encounters L2-regularized risk minimization problems (30) with var-

ious hinge losses (31, 42, 55). Since the Hessian of those objective functions at differentiable points

equals λI (where λ is the regularization constant), one might be tempted to argue that for such

problems, BFGS’ approximation Bt to the inverse Hessian should be simply set to λ−1I . This

would reduce the quasi-Newton direction pt = −Btgt , gt ∈ ∂J(wt) to simply a scaled subgradient

direction.

To check if doing so is beneficial, we compared the performance of our subLBFGS method with

two implementations of subgradient descent: a vanilla gradient descent method (denoted GD) that

3. Descriptions of these data sets can be found in Section 8.

1150

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

10

0

10

1

10

2

10

3

CPU Seconds

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

✁6
)

GD

subGD

subLBFGS

x10

✂1

10

1

10

2

10

3

CPU Seconds

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

INEX (

=10

✁6
)

GD

subGD

subLBFGS

10

1

10

2

10

3

10

4

CPU Seconds

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

TMC2007 (

=10

✁5
)

GD

subGD

subLBFGS

Figure 5: Performance of subLBFGS, GD, and subGD on sample L2-regularized risk minimization

problems with binary (left), multiclass (center), and multilabel (right) hinge losses.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
BFGS Quadratic Model
Piecewise Linear Function

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
Gradient of BFGS Model
Piecewise Constant Gradient

Figure 6: BFGS’ quadratic approximation to a piecewise linear function (left), and its estimate of

the gradient of this function (right).

uses a random subgradient for its parameter update, and an improved subgradient descent method

(denoted subGD) whose parameter is updated in the direction produced by our direction-finding

routine (Algorithm 2) with Bt = I . All algorithms used exact line search, except that GD took

a unit step for the first update in order to avoid the nonsmooth point w0 = 0 (cf. the discussion

in Section 2.1). As can be seen in Figure 5, on all sample L2-regularized hinge loss minimization

problems, subLBFGS (solid) converges significantly faster than GD (dotted) and subGD (dashed).

This indicates that BFGS’ Bt matrix is able to model the objective function, including its hinges,

better than simply settingBt to a scaled identity matrix.

We believe that BFGS’ curvature update (6) plays an important role in the performance of

subLBFGS seen in Figure 5. Recall that (6) satisfies the secant conditionBt+1yt = st , where st and

yt are displacement vectors in parameter and gradient space, respectively. The secant condition in

fact implements a finite differencing scheme: for a one-dimensional objective function J : R → R,

1151

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

we have

Bt+1 =
(w+ p)−w

∇ J(w+ p)− ∇ J(w)
. (9)

Although the original motivation behind the secant condition was to approximate the inverse Hes-

sian, the finite differencing scheme (9) allows BFGS to model the global curvature (i.e., overall

shape) of the objective function from first-order information. For instance, Figure 6 (left) shows

that the BFGS quadratic model4 (1) fits a piecewise linear function quite well despite the fact that

the actual Hessian in this case is zero almost everywhere, and infinite (in the limit) at nonsmooth

points. Figure 6 (right) reveals that BFGS captures the global trend of the gradient rather than its in-

finitesimal variation, that is, the Hessian. This is beneficial for nonsmooth problems, where Hessian

does not fully represent the overall curvature of the objective function.

3. Subgradient BFGS Method

We modify the standard BFGS algorithm to derive our new algorithm (subBFGS, Algorithm 1) for

nonsmooth convex optimization, and its memory-limited variant (subLBFGS). Our modifications

can be grouped into three areas, which we elaborate on in turn: generalizing the local quadratic

model, finding a descent direction, and finding a step size that obeys a subgradient reformulation

of the Wolfe conditions. We then show that our algorithm’s estimate of the inverse Hessian has a

bounded spectrum, which allows us to prove its convergence.

Algorithm 1 Subgradient BFGS (subBFGS)

1: Initialize: t := 0,w0 = 0,B0 = I
2: Set: direction-finding tolerance ε ≥ 0, iteration limit kmax > 0,

lower bound h > 0 on
s⊤

t yt

y⊤
t yt

(cf. discussion in Section 3.4)

3: Compute subgradient g0 ∈ ∂J(w0)
4: while not converged do

5: pt = descentDirection(gt ,ε,kmax) (Algorithm 2)

6: if pt = failure then

7: Return wt

8: end if

9: Find ηt that obeys (23) and (24) (e.g., Algorithm 3 or 5)

10: st = ηtpt

11: wt+1 =wt +st

12: Choose subgradient gt+1 ∈ ∂J(wt+1) : s⊤t (gt+1 −gt) > 0

13: yt := gt+1 −gt

14: st := st +max
(

0, h− s⊤
t yt

y⊤
t yt

)

yt (ensure
s⊤

t yt

y⊤
t yt

≥ h)

15: UpdateBt+1 via (6)

16: t := t +1

17: end while

4. For ease of exposition, the model was constructed at a differentiable point.

1152

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

-4 -3 -2 -1 0 1 2 3 4
-1

0

1

2

3

4

5

-4 -3 -2 -1 0 1 2 3 4
-1

0

1

2

3

4

5

Figure 7: Left: selecting arbitrary subgradients yields many possible quadratic models (dotted

lines) for the objective (solid blue line) at a subdifferentiable point. The models were

built by keepingBt fixed, but selecting random subgradients. Right: the tightest pseudo-

quadratic fit (10) (bold red dashes); note that it is not a quadratic.

3.1 Generalizing the Local Quadratic Model

Recall that BFGS assumes that the objective function J is differentiable everywhere so that at the

current iterate wt it can construct a local quadratic model (1) of J(wt). For a nonsmooth objective

function, such a model becomes ambiguous at non-differentiable points (Figure 7, left). To resolve

the ambiguity, we could simply replace the gradient ∇ J(wt) in (1) with an arbitrary subgradient

gt ∈ ∂J(wt). However, as will be discussed later, the resulting quasi-Newton direction pt :=−Btgt

is not necessarily a descent direction. To address this fundamental modeling problem, we first

generalize the local quadratic model (1) as follows:

Qt(p) := J(wt)+Mt(p), where

Mt(p) := 1
2
p⊤B−1

t p + sup
g∈∂J(wt)

g⊤p. (10)

Note that where J is differentiable, (10) reduces to the familiar BFGS quadratic model (1). At non-

differentiable points, however, the model is no longer quadratic, as the supremum may be attained

at different elements of ∂J(wt) for different directions p. Instead it can be viewed as the tightest

pseudo-quadratic fit to J at wt (Figure 7, right). Although the local model (10) of subBFGS is

nonsmooth, it only incorporates non-differential points present at the current location; all others are

smoothly approximated by the quasi-Newton mechanism.

Having constructed the model (10), we can minimize Qt(p), or equivalently Mt(p):

min
p∈R

d

(

1
2
p⊤B−1

t p + sup
g∈∂J(wt)

g⊤p

)

(11)

to obtain a search direction. We now show that solving (11) is closely related to the problem of

finding a normalized steepest descent direction. A normalized steepest descent direction is defined

1153

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

as the solution to the following problem (Hiriart-Urruty and Lemaréchal, 1993, Chapter VIII):

min
p∈R

d
J′(wt , p) s.t. |||p||| ≤ 1, (12)

where

J′(wt , p) := lim
η↓0

J(wt +ηp)− J(wt)

η

is the directional derivative of J at wt in direction p, and ||| · ||| is a norm defined on R
d . In other

words, the normalized steepest descent direction is the direction of bounded norm along which

the maximum rate of decrease in the objective function value is achieved. Using the property:

J′(wt , p) = supg∈∂J(wt)g
⊤p (Bertsekas, 1999, Proposition B.24.b), we can rewrite (12) as:

min
p∈R

d
sup

g∈∂J(wt)

g⊤p s.t. |||p||| ≤ 1. (13)

If the matrixBt ≻ 0 as in (11) is used to define the norm ||| · ||| as

|||p|||2 := p⊤B−1
t p, (14)

then the solution to (13) points to the same direction as that obtained by minimizing our pseudo-

quadratic model (11). To see this, we write the Lagrangian of the constrained minimization problem

(13):

L(p,α) := α p⊤B−1
t p −α + sup

g∈∂J(wt)

g⊤p

= 1
2
p⊤(2αB−1

t)p −α + sup
g∈∂J(wt)

g⊤p, (15)

where α > 0 is a Lagrangian multiplier. It is easy to see from (15) that minimizing the Lagrangian

function L with respect to p is equivalent to solving (11) with B−1
t scaled by a scalar 2α, implying

that the steepest descent direction obtained by solving (13) with the weighted norm (14) only differs

in length from the search direction obtained by solving (11). Therefore, our search direction is

essentially an unnomalized steepest descent direction with respect to the weighted norm (14).

Ideally, we would like to solve (11) to obtain the best search direction. This is generally in-

tractable due to the presence a supremum over the entire subdifferential set ∂J(wt). In many ma-

chine learning problems, however, ∂J(wt) has some special structure that simplifies the calculation

of that supremum. In particular, the subdifferential of all the problems considered in this paper is

a convex and compact polyhedron characterised as the convex hull of its extreme points. This dra-

matically reduces the cost of calculating supg∈∂J(wt)g
⊤p since the supremum can only be attained

at an extreme point of the polyhedral set ∂J(wt) (Bertsekas, 1999, Proposition B.21c). In what fol-

lows, we develop an iterative procedure that is guaranteed to find a quasi-Newton descent direction,

assuming an oracle that supplies argsupg∈∂J(wt)g
⊤p for a given direction p ∈ R

d . Efficient oracles

for this purpose can be derived for many machine learning settings; we provides such oracles for

L2-regularized risk minimization with the binary hinge loss (Section 4.1), multiclass and multilabel

hinge losses (Section 6), and L1-regularized logistic loss (Section 8.4).

1154

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

Algorithm 2 pt = descentDirection(g(1),ε,kmax)

1: input (sub)gradient g(1) ∈ ∂J(wt), tolerance ε ≥ 0, iteration limit kmax > 0,

and an oracle to calculate argsupg∈∂J(w) g
⊤p for any given w and p

2: output descent direction pt

3: Initialize: i = 1, ḡ(1) = g(1), p(1) = −Btg
(1)

4: g(2) = argsupg∈∂J(wt)g
⊤p(1)

5: ε(1) := p(1)⊤g(2)−p(1)⊤ḡ(1)

6: while (g(i+1)⊤p(i) > 0 or ε(i) > ε) and ε(i) > 0 and i < kmax do

7: µ∗ := min
[

1, (ḡ(i)−g(i+1))⊤Bt ḡ
(i)

(ḡ(i)−g(i+1))⊤Bt(ḡ(i)−g(i+1))

]

; see (97)

8: ḡ(i+1) = (1−µ∗)ḡ(i) +µ∗g(i+1)

9: p(i+1) = (1−µ∗)p(i)−µ∗Btg
(i+1); see (76)

10: g(i+2) = argsupg∈∂J(wt)g
⊤p(i+1)

11: ε(i+1) := min j≤(i+1)

[
p(j)⊤g(j+1)− 1

2
(p(j)⊤ḡ(j) +p(i+1)⊤ḡ(i+1))

]

12: i := i+1

13: end while

14: pt = argmin j≤i Mt(p
(j))

15: if supg∈∂J(wt)g
⊤pt ≥ 0 then

16: return failure;

17: else

18: return pt .

19: end if

3.2 Finding a Descent Direction

A direction pt is a descent direction if and only if g⊤pt < 0 ∀g ∈ ∂J(wt) (Hiriart-Urruty and

Lemaréchal, 1993, Theorem VIII.1.1.2), or equivalently

sup
g∈∂J(wt)

g⊤pt < 0. (16)

For a smooth convex function, the quasi-Newton direction (2) is always a descent direction because

∇ J(wt)
⊤pt = −∇ J(wt)

⊤Bt ∇ J(wt) < 0

holds due to the positivity ofBt .

For nonsmooth functions, however, the quasi-Newton direction pt := −Btgt for a given gt ∈
∂J(wt) may not fulfill the descent condition (16), making it impossible to find a step size η > 0

that obeys the Wolfe conditions (4, 5), thus causing a failure of the line search. We now present an

iterative approach to finding a quasi-Newton descent direction.

Our goal is to minimize the pseudo-quadratic model (10), or equivalently minimize Mt(p).
Inspired by bundle methods (Teo et al., 2010), we achieve this by minimizing convex lower bounds

of Mt(p) that are designed to progressively approach Mt(p) over iterations. At iteration i we build

the following convex lower bound on Mt(p):

M
(i)
t (p) := 1

2
p⊤B−1

t p + sup
j≤i

g(j)⊤p, (17)

1155

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

where i, j ∈ N and g(j) ∈ ∂J(wt) ∀ j ≤ i. Given a p(i) ∈ R
d the lower bound (17) is successively

tightened by computing

g(i+1) := argsup
g∈∂J(wt)

g⊤p(i), (18)

such that M
(i)
t (p)≤ M

(i+1)
t (p)≤ Mt(p) ∀p ∈ R

d . Here we set g(1) ∈ ∂J(wt) arbitrarily, and assume

that (18) is provided by an oracle (e.g., as described in Section 4.1). To solve minp∈R
d M

(i)
t (p), we

rewrite it as a constrained optimization problem:

min
p,ξ

(
1
2
p⊤B−1

t p+ ξ
)

s.t. g(j)⊤p≤ ξ ∀ j ≤ i. (19)

This problem can be solved exactly via quadratic programming, but doing so may incur substantial

computational expense. Instead we adopt an alternative approach (Algorithm 2) which does not

solve (19) to optimality. The key idea is to write the proposed descent direction at iteration i + 1

as a convex combination of p(i) and −Btg
(i+1) (Line 9 of Algorithm 2); and as will be shown in

Appendix B, the returned search direction takes the form

pt = −Bt ḡt ,

where ḡt is a subgradient in ∂J(wt) that allows pt to satisfy the descent condition (16). The opti-

mal convex combination coefficient µ∗ can be computed exactly (Line 7 of Algorithm 2) using an

argument based on maximizing the dual objective of Mt(p); see Appendix A for details.

The weak duality theorem (Hiriart-Urruty and Lemaréchal, 1993, Theorem XII.2.1.5) states that

the optimal primal value is no less than any dual value, that is, if Dt(α) is the dual of Mt(p), then

minp∈R
d Mt(p) ≥ Dt(α) holds for all feasible dual solutions α. Therefore, by iteratively increasing

the value of the dual objective we close the gap to optimality in the primal. Based on this argument,

we use the following upper bound on the duality gap as our measure of progress:

ε(i) := min
j≤i

[

p(j)⊤g(j+1)− 1
2
(p(j)⊤ḡ(j) +p(i)⊤ḡ(i))

]

≥ min
p∈R

d
Mt(p)−Dt(α

∗), (20)

where ḡ(i) is an aggregated subgradient (Line 8 of Algorithm 2) which lies in the convex hull of

g(j) ∈ ∂J(wt) ∀ j ≤ i, and α∗ is the optimal dual solution; Equations 77–79 in Appendix A provide

intermediate steps that lead to the inequality in (20). Theorem 7 (Appendix B) shows that ε(i) is

monotonically decreasing, leading us to a practical stopping criterion (Line 6 of Algorithm 2) for

our direction-finding procedure.

A detailed derivation of Algorithm 2 is given in Appendix A, where we also prove that at a non-

optimal iterate a direction-finding tolerance ε ≥ 0 exists such that the search direction produced by

Algorithm 2 is a descent direction; in Appendix B we prove that Algorithm 2 converges to a solution

with precision ε in O(1/ε) iterations. Our proofs are based on the assumption that the spectrum

(eigenvalues) of BFGS’ approximationBt to the inverse Hessian is bounded from above and below.

This is a reasonable assumption if simple safeguards such as those described in Section 3.4 are

employed in the practical implementation.

1156

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

3.3 Subgradient Line Search

Given the current iterate wt and a search direction pt , the task of a line search is to find a step size

η > 0 which reduces the objective function value along the line wt +ηpt :

minimize Φ(η) := J(wt +ηpt). (21)

Using the chain rule, we can write

∂Φ(η) := {g⊤pt : g ∈ ∂J(wt +ηpt)}. (22)

Exact line search finds the optimal step size η∗ by minimizing Φ(η), such that 0 ∈ ∂Φ(η∗); inexact

line searches solve (21) approximately while enforcing conditions designed to ensure convergence.

The Wolfe conditions (4) and (5), for instance, achieve this by guaranteeing a sufficient decrease in

the value of the objective and excluding pathologically small step sizes, respectively (Wolfe, 1969;

Nocedal and Wright, 1999). The original Wolfe conditions, however, require the objective function

to be smooth; to extend them to nonsmooth convex problems, we propose the following subgradient

reformulation:

J(wt+1) ≤ J(wt) + c1ηt sup
g∈∂J(wt)

g⊤pt (sufficient decrease) (23)

and sup
g′∈∂J(wt+1)

g′⊤pt ≥ c2 sup
g∈∂J(wt)

g⊤pt , (curvature) (24)

where 0 < c1 < c2 < 1. Figure 8 illustrates how these conditions enforce acceptance of non-trivial

step sizes that decrease the objective function value. In Appendix C we formally show that for any

given descent direction we can always find a positive step size that satisfies (23) and (24). Moreover,

Appendix D shows that the sufficient decrease condition (23) provides a necessary condition for the

global convergence of subBFGS.

Employing an exact line search is a common strategy to speed up convergence, but it drastically

increases the probability of landing on a non-differentiable point (as in Figure 4, left). In order to

leverage the fast convergence provided by an exact line search, one must therefore use an optimizer

that can handle subgradients, like our subBFGS.

A natural question to ask is whether the optimal step size η∗ obtained by an exact line search

satisfies the reformulated Wolfe conditions (resp., the standard Wolfe conditions when J is smooth).

The answer is no: depending on the choice of c1, η∗ may violate the sufficient decrease condition

(23). For the function shown in Figure 8, for instance, we can increase the value of c1 such that

the acceptable interval for the step size excludes η∗. In practice one can set c1 to a small value, for

example, 10−4, to prevent this from happening.

The curvature condition (24), on the other hand, is always satisfied by η∗, as long as pt is a

descent direction (16):

sup
g′∈J(wt+η∗pt)

g′⊤pt = sup
g∈∂Φ(η∗)

g ≥ 0 > sup
g∈∂J(wt)

g⊤pt

because 0 ∈ ∂Φ(η∗).

1157

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

!

"(!)

0
acceptable interval

c1 sup

g∈∂J(wt)

g
⊤

pt

c2 sup

g∈∂J(wt)

g
⊤

pt

inf
g∈∂J(wt)

g
⊤

pt

sup

g∈∂J(wt)

g
⊤

pt

Figure 8: Geometric illustration of the subgradient Wolfe conditions (23) and (24). Solid disks are

subdifferentiable points; the slopes of dashed lines are indicated.

3.4 Bounded Spectrum of SubBFGS’ Inverse Hessian Estimate

Recall from Section 1 that to ensure positivity of BFGS’ estimate Bt of the inverse Hessian, we

must have (∀t) s⊤t yt > 0. Extending this condition to nonsmooth functions, we require

(wt+1 −wt)
⊤(gt+1 −gt) > 0, where gt+1 ∈ ∂J(wt+1) and gt ∈ ∂J(wt). (25)

If J is strongly convex,5 andwt+1 6=wt , then (25) holds for any choice of gt+1 and gt .
6 For general

convex functions, gt+1 need to be chosen (Line 12 of Algorithm 1) to satisfy (25). The existence of

such a subgradient is guaranteed by the convexity of the objective function. To see this, we first use

the fact that ηtpt =wt+1 −wt and ηt > 0 to rewrite (25) as

p⊤t gt+1 > p⊤t gt , where gt+1 ∈ ∂J(wt+1) and gt ∈ ∂J(wt). (26)

It follows from (22) that both sides of inequality (26) are subgradients of Φ(η) at ηt and 0, respec-

tively. The monotonic property of ∂Φ(η) given in Theorem 1 (below) ensures that p⊤t gt+1 is no less

than p⊤t gt for any choice of gt+1 and gt , that is,

inf
g∈∂J(wt+1)

p⊤t g ≥ sup
g∈∂J(wt)

p⊤t g. (27)

This means that the only case where inequality (26) is violated is when both terms of (27) are equal,

and

gt+1 = arg inf
g∈∂J(wt+1)

g⊤pt and gt = argsup
g∈∂J(wt)

g⊤pt ,

that is, in this case p⊤t gt+1 = p⊤t gt . To avoid this, we simply need to set gt+1 to a different subgra-

dient in ∂J(wt+1).

5. If J is strongly convex, then (g2 −g1)
⊤(w2 −w1) ≥ c‖w2 −w1‖

2, with c > 0, gi ∈ ∂J(wi), i = 1,2.

6. We found empirically that no qualitative difference between using random subgradients versus choosing a particular

subgradient when updating theBt matrix.

1158

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

Theorem 1 (Hiriart-Urruty and Lemaréchal, 1993, Theorem I.4.2.1)

Let Φ be a one-dimensional convex function on its domain, then ∂Φ(η) is increasing in the sense

that g1 ≤ g2 whenever g1 ∈ ∂Φ(η1), g2 ∈ ∂Φ(η2), and η1 < η2.

Our convergence analysis for the direction-finding procedure (Algorithm 2) as well as the global

convergence proof of subBFGS in Appendix D require the spectrum ofBt to be bounded from above

and below by a positive scalar:

∃(h,H : 0 < h ≤ H < ∞) : (∀t) h �Bt � H. (28)

From a theoretical point of view it is difficult to guarantee (28) (Nocedal and Wright, 1999, page

212), but based on the fact thatBt is an approximation to the inverse HessianH−1
t , it is reasonable

to expect (28) to be true if

(∀t) 1/H �Ht � 1/h.

Since BFGS “senses” the Hessian via (6) only through the parameter and gradient displacements st

and yt , we can translate the bounds on the spectrum of Ht into conditions that only involve st and

yt :

(∀t)
s⊤t yt

s⊤t st

≥
1

H
and

y⊤t yt

s⊤t yt

≤
1

h
, with 0 < h ≤ H < ∞. (29)

This technique is used in Nocedal and Wright (1999, Theorem 8.5). If J is strongly convex5 and

st 6=0, then there exists an H such that the left inequality in (29) holds. On general convex functions,

one can skip BFGS’ curvature update if (s⊤t yt/s
⊤
t st) falls below a threshold. To establish the

second inequality, we add a fraction of yt to st at Line 14 of Algorithm 1 (though this modification

is never actually invoked in our experiments of Section 8, where we set h = 10−8).

3.5 Limited-Memory Subgradient BFGS

It is straightforward to implement an LBFGS variant of our subBFGS algorithm: we simply modify

Algorithms 1 and 2 to compute all products between Bt and a vector by means of the standard

LBFGS matrix-free scheme (Nocedal and Wright, 1999, Algorithm 9.1). We call the resulting

algorithm subLBFGS.

3.6 Convergence of Subgradient (L)BFGS

In Section 3.4 we have shown that the spectrum of subBFGS’ inverse Hessian estimate is bounded.

From this and other technical assumptions, we prove in Appendix D that subBFGS is globally con-

vergent in objective function value, that is, J(w) → infw J(w). Moreover, in Appendix E we show

that subBFGS converges for all counterexamples we could find in the literature used to illustrate the

non-convergence of existing optimization methods on nonsmooth problems.

We have also examined the convergence of subLBFGS empirically. In most of our experiments

of Section 8, we observe that after an initial transient, subLBFGS observes a period of linear con-

vergence, until close to the optimum it exhibits superlinear convergence behavior. This is illustrated

1159

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

0 200 400 600 800 1000 1200 1400 1600

Iterations

10

-10

10

-9

10

-8

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

J
(
w

t

)

 J✁
CCAT (

✂
=10

✄6
)

0 500 1000 1500 2000 2500 3000 3500 4000

Iterations

10

-9

10

-8

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

J
(
w

t

)

 J✁
INEX (

✂
=10

✄6
)

Figure 9: Convergence of subLBFGS in objective function value on sample L2-regularized risk

minimization problems with binary (left) and multiclass (right) hinge losses.

in Figure 9, where we plot (on a log scale) the excess objective function value J(wt) over its “opti-

mum” J∗7 against the iteration number in two typical runs. The same kind of convergence behavior

was observed by Lewis and Overton (2008a, Figure 5.7), who applied the classical BFGS algorithm

with a specially designed line search to nonsmooth functions. They caution that the apparent super-

linear convergence may be an artifact caused by the inaccuracy of the estimated optimal value of

the objective.

4. SubBFGS for L2-Regularized Binary Hinge Loss

Many machine learning algorithms can be viewed as minimizing the L2-regularized risk

J(w) :=
λ
2
‖w‖2 +

1

n

n

∑
i=1

l(xi,zi,w), (30)

where λ > 0 is a regularization constant, xi ∈ X ⊆ R
d are the input features, zi ∈ Z ⊆ Z the cor-

responding labels, and the loss l is a non-negative convex function of w which measures the dis-

crepancy between zi and the predictions arising from using w. A loss function commonly used for

binary classification is the binary hinge loss

l(x,z,w) := max(0,1− zw⊤x), (31)

where z ∈ {±1}. L2-regularized risk minimization with the binary hinge loss is a convex but nons-

mooth optimization problem; in this section we show how subBFGS (Algorithm 1) can be applied

to this problem.

7. Estimated empirically by running subLBFGS for 104 seconds, or until the relative improvement over 5 iterations was

less than 10−8.

1160

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

Let E , M , and W index the set of points which are in error, on the margin, and well-classified,

respectively:

E := {i ∈ {1,2, . . . ,n} : 1− ziw
⊤xi > 0},

M := {i ∈ {1,2, . . . ,n} : 1− ziw
⊤xi = 0},

W := {i ∈ {1,2, . . . ,n} : 1− ziw
⊤xi < 0}.

Differentiating (30) after plugging in (31) then yields

∂J(w) = λw−
1

n

n

∑
i=1

βizixi = w̄−
1

n
∑

i∈M

βizixi, (32)

where w̄ := λw−
1

n
∑
i∈E

zixi and βi :=







1 if i ∈ E ,
[0,1] if i ∈M ,

0 if i ∈W .

4.1 Efficient Oracle for the Direction-Finding Method

Recall that subBFGS requires an oracle that provides argsupg∈∂J(wt)g
⊤p for a given direction p.

For L2-regularized risk minimization with the binary hinge loss we can implement such an oracle

at a computational cost of O(d |M t |), where d is the dimensionality of p and |M t | the number of

current margin points, which is normally much less than n. Towards this end, we use (32) to obtain

sup
g∈∂J(wt)

g⊤p = sup
βi,i∈M t

(

w̄t −
1

n
∑

i∈M t

βizixi

)⊤

p

= w̄⊤
t p −

1

n
∑

i∈M t

inf
βi∈[0,1]

(βizix
⊤
i p). (33)

Since for a given p the first term of the right-hand side of (33) is a constant, the supremum is attained

when we set βi ∀i ∈M t via the following strategy:

βi :=

{

0 if zix
⊤
i pt ≥ 0,

1 if zix
⊤
i pt < 0.

4.2 Implementing the Line Search

The one-dimensional convex function Φ(η) := J(w+ηp) (Figure 10, left) obtained by restricting

(30) to a line can be evaluated efficiently. To see this, rewrite (30) as

J(w) :=
λ
2
‖w‖2 +

1

n
1
⊤max(0, 1−z ·Xw), (34)

where 0 and 1 are column vectors of zeros and ones, respectively, · denotes the Hadamard (component-

wise) product, and z ∈ R
n collects correct labels corresponding to each row of data in X :=

[x1,x2, · · · ,xn]
⊤ ∈ R

n×d . Given a search direction p at a point w, (34) allows us to write

Φ(η) =
λ
2
‖w‖2 + ληw⊤p +

λη2

2
‖p‖2 +

1

n
1
⊤ max [0, (1− (f +η∆f))] , (35)

1161

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

´

)
´(

©

´

S
u
b
g
ra
d
ie
n
t

Figure 10: Left: Piecewise quadratic convex function Φ of step size η; solid disks in the zoomed

inset are subdifferentiable points. Right: The subgradient of Φ(η) increases monotoni-

cally with η, and jumps discontinuously at subdifferentiable points.

where f := z ·Xw and ∆f := z ·Xp. Differentiating (35) with respect to η gives the subdifferential

of Φ:

∂Φ(η) = λw⊤p+ηλ‖p‖2 −
1

n
δ(η)⊤∆f , (36)

where δ : R → R
n outputs a column vector [δ1(η),δ2(η), · · · ,δn(η)]⊤ with

δi(η) :=







1 if fi +η∆ fi < 1,
[0,1] if fi +η∆ fi = 1,

0 if fi +η∆ fi > 1.
(37)

We cache f and ∆f , expending O(nd) computational effort and using O(n) storage. We also

cache the scalars λ
2
‖w‖2, λw⊤p, and λ

2
‖p‖2, each of which requires O(d) work. The evaluation of

1− (f +η∆f), δ(η), and the inner products in the final terms of (35) and (36) all take O(n) effort.

Given the cached terms, all other terms in (35) can be computed in constant time, thus reducing the

cost of evaluating Φ(η) (resp., its subgradient) to O(n). Furthermore, from (37) we see that Φ(η) is

differentiable everywhere except at

ηi := (1− fi)/∆ fi with ∆ fi 6= 0, (38)

where it becomes subdifferentiable. At these points an element of the indicator vector (37) changes

from 0 to 1 or vice versa (causing the subgradient to jump, as shown in Figure 10, right); otherwise

δ(η) remains constant. Using this property of δ(η), we can update the last term of (36) in constant

time when passing a hinge point (Line 25 of Algorithm 3). We are now in a position to introduce an

exact line search which takes advantage of this scheme.

1162

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

!! !

"(!)

0

target segment

step size search direction

!! !

"(!)

0

target segment

step size search direction

Figure 11: Nonsmooth convex function Φ of step size η. Solid disks are subdifferentiable points;

the optimal step η∗ either falls on such a point (left), or lies between two such points

(right).

4.2.1 EXACT LINE SEARCH

Given a direction p, exact line search finds the optimal step size η∗ := argminη≥0 Φ(η) that satisfies

0 ∈ ∂Φ(η∗), or equivalently

inf∂Φ(η∗) ≤ 0 ≤ sup∂Φ(η∗).

By Theorem 1, sup∂Φ(η) is monotonically increasing with η. Based on this property, our algorithm

first builds a list of all possible subdifferentiable points and η = 0, sorted by non-descending value

of η (Lines 4–5 of Algorithm 3). Then, it starts with η = 0, and walks through the sorted list

until it locates the “target segment”, an interval [ηa,ηb] between two subdifferential points with

sup∂Φ(ηa) ≤ 0 and sup∂Φ(ηb) ≥ 0. We now know that the optimal step size either coincides with

ηb (Figure 11, left), or lies in (ηa,ηb) (Figure 11, right). If η∗ lies in the smooth interval (ηa,ηb),
then setting (36) to zero gives

η∗ =
δ(η′)⊤∆f/n−λw⊤p

λ ‖p‖2
, ∀η′ ∈ (ηa,ηb). (39)

Otherwise, η∗ = ηb. See Algorithm 3 for the detailed implementation.

5. Segmenting the Pointwise Maximum of 1-D Linear Functions

The line search of Algorithm 3 requires a vector η listing the subdifferentiable points along the line

w+ ηp, and sorts it in non-descending order (Line 5). For an objective function like (30) whose

nonsmooth component is just a sum of hinge losses (31), this vector is very easy to compute (cf.

(38)). In order to apply our line search approach to multiclass and multilabel losses, however, we

must solve a more general problem: we need to efficiently find the subdifferentiable points of a

1163

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

Algorithm 3 Exact Line Search for L2-Regularized Binary Hinge Loss

1: input w,p,λ,f , and ∆f as in (35)

2: output optimal step size

3: h = λ‖p‖2, j := 1

4: η := [(1−f)./∆f ,0] (vector of subdifferentiable points & zero)

5: π = argsort(η) (indices sorted by non-descending value of η)

6: while ηπj
≤ 0 do

7: j := j +1

8: end while

9: η := ηπj
/2

10: for i := 1 to f .size do

11: δi :=

{
1 if fi +η∆ fi < 1

0 otherwise
(value of δ(η) (37) for any η ∈ (0,ηπj

))

12: end for

13: ρ := δ⊤∆f/n−λw⊤p

14: η := 0, ρ′ := 0

15: g := −ρ (value of sup∂Φ(0))
16: while g < 0 do

17: ρ′ := ρ
18: if j > π.size then

19: η := ∞ (no more subdifferentiable points)

20: break

21: else

22: η := ηπj

23: end if

24: repeat

25: ρ :=

{
ρ−∆ fπj

/n if δπj
= 1 (move to next subdifferentiable

ρ+∆ fπj
/n otherwise point and update ρ accordingly)

26: j := j +1

27: until ηπj
6= ηπj−1

and j ≤ π.size
28: g := ηh−ρ (value of sup∂Φ(ηπj−1

))
29: end while

30: return min(η, ρ′/h) (cf. equation 39)

one-dimensional piecewise linear function ρ : R → R defined to be the pointwise maximum of r

lines:

ρ(η) = max
1≤p≤r

(bp +η ap), (40)

where ap and bp denote the slope and offset of the pth line, respectively. Clearly, ρ is convex since

it is the pointwise maximum of linear functions (Boyd and Vandenberghe, 2004, Section 3.2.3), see

Figure 12(a). The difficulty here is that although ρ consists of at most r line segments bounded by

at most r− 1 subdifferentiable points, there are r(r− 1)/2 candidates for these points, namely all

intersections between any two of the r lines. A naive algorithm to find the subdifferentiable points

of ρ would therefore take O(r2) time. In what follows, however, we show how this can be done in

just O(r logr) time. In Section 6 we will then use this technique (Algorithm 4) to perform efficient

exact line search in the multiclass and multilabel settings.

1164

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

����� �����

(a) Pointwise maximum of lines

����� �����

�

(b) Case 1

�

����������

(c) Case 2

Figure 12: (a) Convex piecewise linear function defined as the maximum of 5 lines, but comprising

only 4 active line segments (bold) separated by 3 subdifferentiable points (black dots).

(b, c) Two cases encountered by our algorithm: (b) The new intersection (black cross)

lies to the right of the previous one (red dot) and is therefore pushed onto the stack; (c)

The new intersection lies to the left of the previous one. In this case the latter is popped

from the stack, and a third intersection (blue square) is computed and pushed onto it.

Algorithm 4 Segmenting a Pointwise Maximum of 1-D Linear Functions

1: input vectors a and b of slopes and offsets

lower bound L, upper bound U , with 0 ≤ L < U < ∞
2: output sorted stack of subdifferentiable points η

and corresponding active line indices ξ

3: y := b+La

4: π := argsort(−y) (indices sorted by non-ascending value of y)

5: S.push (L,π1) (initialize stack)

6: for q := 2 to y.size do

7: while not S.empty do

8: (η,ξ) := S.top

9: η′ :=
bπq

−bξ
aξ −aπq

(intersection of two lines)

10: if L < η′ ≤ η or (η′ = L and aπq
> aξ) then

11: S.pop (cf. Figure 12(c))

12: else

13: break

14: end if

15: end while

16: if L < η′ ≤U or (η′ = L and aπq
> aξ) then

17: S.push (η′,πq) (cf. Figure 12(b))

18: end if

19: end for

20: return S

We begin by specifying an interval [L,U] (0 ≤ L <U < ∞) in which to find the subdifferentiable

points of ρ, and set y := b+La, where a= [a1,a2, · · · ,ar] and b= [b1,b2, · · · ,br]. In other words,

y contains the intersections of the r lines defining ρ(η) with the vertical line η = L. Let π denote

the permutation that sorts y in non-ascending order, that is, p < q =⇒ yπp
≥ yπq

, and let ρ(q) be the

1165

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

function obtained by considering only the top q ≤ r lines at η = L, that is, the first q lines in π:

ρ(q)(η) = max
1≤p≤q

(bπp
+η aπp

). (41)

It is clear that ρ(r) = ρ. Let η contain all q′ ≤ q− 1 subdifferentiable points of ρ(q) in [L,U] in

ascending order, and ξ the indices of the corresponding active lines, that is, the maximum in (41)

is attained for line ξ j−1 over the interval [η j−1,η j]: ξ j−1 := πp∗ , where p∗ = argmax1≤p≤q(bπp
+

ηaπp
) for η ∈ [η j−1,η j], and lines ξ j−1 and ξ j intersect at η j.

Initially we set η0 := L and ξ0 := π1, the leftmost bold segment in Figure 12(a). Algorithm 4

goes through lines in π sequentially, and maintains a Last-In-First-Out stack S which at the end of

the qth iteration consists of the tuples

(η0,ξ0),(η1,ξ1), . . . ,(ηq′ ,ξq′)

in order of ascending ηi, with (ηq′ ,ξq′) at the top. After r iterations S contains a sorted list of all

subdifferentiable points (and the corresponding active lines) of ρ = ρ(r) in [L,U], as required by our

line searches.

In iteration q+1 Algorithm 4 examines the intersection η′ between lines ξq′ and πq+1: If η′ >U ,

line πq+1 is irrelevant, and we proceed to the next iteration. If ηq′ < η′ ≤U as in Figure 12(b), then

line πq+1 is becoming active at η′, and we simply push (η′,πq+1) onto the stack. If η′ ≤ ηq′ as in

Figure 12(c), on the other hand, then line πq+1 dominates line ξq′ over the interval (η′,∞) and hence

over (ηq′ ,U] ⊂ (η′,∞), so we pop (ηq′ ,ξq′) from the stack (deactivating line ξq′), decrement q′, and

repeat the comparison.

Theorem 2 The total running time of Algorithm 4 is O(r logr).

Proof Computing intersections of lines as well as pushing and popping from the stack require O(1)
time. Each of the r lines can be pushed onto and popped from the stack at most once; amortized

over r iterations the running time is therefore O(r). The time complexity of Algorithm 4 is thus

dominated by the initial sorting of y (i.e., the computation of π), which takes O(r logr) time.

6. SubBFGS for Multiclass and Multilabel Hinge Losses

We now use the algorithm developed in Section 5 to generalize the subBFGS method of Section 4 to

the multiclass and multilabel settings with finite label set Z. We assume that given a feature vector

x our classifier predicts the label

z∗ = argmax
z∈Z

f (w,x,z),

where f is a linear function of w, that is, f (w,x,z) =w⊤φ(x,z) for some feature map φ(x,z).

6.1 Multiclass Hinge Loss

A variety of multiclass hinge losses have been proposed in the literature that generalize the binary

hinge loss, and enforce a margin of separation between the true label zi and every other label. We

1166

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

focus on the following rather general variant (Taskar et al., 2004):8

l(xi,zi,w) := max
z∈Z

[∆(z,zi)+ f (w,xi,z)− f (w,xi,zi)], (42)

where ∆(z,zi) ≥ 0 is the label loss specifying the margin required between labels z and zi. For

instance, a uniform margin of separation is achieved by setting ∆(z,z′) := τ > 0 ∀z 6= z′ (Crammer

and Singer, 2003a). By requiring that ∀z ∈ Z : ∆(z,z) = 0 we ensure that (42) always remains

non-negative. Adapting (30) to the multiclass hinge loss (42) we obtain

J(w) :=
λ
2
‖w‖2 +

1

n

n

∑
i=1

max
z∈Z

[∆(z,zi)+ f (w,xi,z)− f (w,xi,zi)]. (43)

For a givenw, consider the set

Z
∗
i := argmax

z∈Z
[∆(z,zi)+ f (w,xi,z)− f (w,xi,zi)]

of maximum-loss labels (possibly more than one) for the ith training instance. Since f (w,x,z) =
w⊤φ(x,z), the subdifferential of (43) can then be written as

∂J(w) = λw+
1

n

n

∑
i=1

∑
z∈Z

βi,z φ(xi,z) (44)

with βi,z =

{
[0,1] if z ∈ Z

∗
i

0 otherwise

}

− δz,zi
s.t. ∑

z∈Z

βi,z = 0, (45)

where δ is the Kronecker delta: δa,b = 1 if a = b, and 0 otherwise.9

6.2 Efficient Multiclass Direction-Finding Oracle

For L2-regularized risk minimization with multiclass hinge loss, we can use a similar scheme as

described in Section 4.1 to implement an efficient oracle that provides argsupg∈∂J(w)g
⊤p for the

direction-finding procedure (Algorithm 2). Using (44), we can write

sup
g∈∂J(w)

g⊤p = λw⊤p +
1

n

n

∑
i=1

∑
z∈Z

sup
βi,z

(

βi,z φ(xi,z)
⊤p
)

. (46)

The supremum in (46) is attained when we pick, from the choices offered by (45),

βi,z := δz,z∗i
−δz,zi

, where z∗i := argmax
z∈Z∗

i

φ(xi,z)
⊤p.

8. Our algorithm can also deal with the slack-rescaled variant of Tsochantaridis et al. (2005).

9. Let l∗i := maxz6=zi
[∆(z,zi)+ f (w,xi,z)− f (w,xi,zi)]. Definition (45) allows the following values of βi,z:







z = zi z ∈ Z
∗
i \{zi} otherwise

l∗i < 0 0 0 0

l∗i = 0 [−1,0] [0,1] 0

l∗i > 0 −1 [0,1] 0







s.t. ∑
z∈Z

βi,z = 0.

1167

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

6.3 Implementing the Multiclass Line Search

Let Φ(η) := J(w+ ηp) be the one-dimensional convex function obtained by restricting (43) to a

line along direction p. Letting ρi(η) := l(xi,zi,w+ηp), we can write

Φ(η) =
λ
2
‖w‖2 + ληw⊤p +

λη2

2
‖p‖2 +

1

n

n

∑
i=1

ρi(η). (47)

Each ρi(η) is a piecewise linear convex function. To see this, observe that

f (w+ηp,x,z) := (w+ηp)⊤φ(x,z) = f (w,x,z)+η f (p,x,z)

and hence

ρi(η) := max
z∈Z

[∆(z,zi)+ f (w,xi,z)− f (w,xi,zi)
︸ ︷︷ ︸

=: b
(i)
z

+ η (f (p,xi,z)− f (p,xi,zi))
︸ ︷︷ ︸

=: a
(i)
z

], (48)

which has the functional form of (40) with r = |Z|. Algorithm 4 can therefore be used to compute

a sorted vector η(i) of all subdifferentiable points of ρi(η) and corresponding active lines ξ(i) in the

interval [0,∞) in O(|Z| log |Z|) time. With some abuse of notation, we now have

η ∈ [η(i)
j ,η(i)

j+1] =⇒ ρi(η) = bξ(i)
j

+ η aξ(i)
j

. (49)

The first three terms of (47) are constant, linear, and quadratic (with non-negative coefficient)

in η, respectively. The remaining sum of piecewise linear convex functions ρi(η) is also piecewise

linear and convex, and so Φ(η) is a piecewise quadratic convex function.

6.3.1 EXACT MULTICLASS LINE SEARCH

Our exact line search employs a similar two-stage strategy as discussed in Section 4.2.1 for locat-

ing its minimum η∗ := argminη>0 Φ(η): we first find the first subdifferentiable point η̌ past the

minimum, then locate η∗ within the differentiable region to its left. We precompute and cache a

vector a(i) of all the slopes a
(i)
z (offsets b

(i)
z are not needed), the subdifferentiable points η(i) (sorted

in ascending order via Algorithm 4), and the corresponding indices ξ(i) of active lines of ρi for all

training instances i, as well as ‖w‖2, w⊤p, and λ‖p‖2.

Since Φ(η) is convex, any point η < η∗ cannot have a non-negative subgradient.10 The first

subdifferentiable point η̌ ≥ η∗ therefore obeys

η̌ := minη ∈ {η(i), i = 1,2, . . . ,n} : η ≥ η∗

= minη ∈ {η(i), i = 1,2, . . . ,n} : sup ∂Φ(η) ≥ 0. (50)

We solve (50) via a simple linear search: Starting from η = 0, we walk from one subdifferentiable

point to the next until sup ∂Φ(η) ≥ 0. To perform this walk efficiently, define a vector ψ ∈ N
n of

indices into the sorted vector η(i) resp. ξ(i); initially ψ := 0, indicating that (∀i) η(i)
0 = 0. Given the

current index vector ψ, the next subdifferentiable point is then

η′ := η(i′)
(ψi′+1), where i′ = argmin

1≤i≤n

η(i)
(ψi+1); (51)

10. If Φ(η) has a flat optimal region, we define η∗ to be the infimum of that region.

1168

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

Algorithm 5 Exact Line Search for L2-Regularized Multiclass Hinge Loss

1: input base point w, descent direction p, regularization parameter λ, vector a of

all slopes as defined in (48), for each training instance i: sorted stack Si of

subdifferentiable points and active lines, as produced by Algorithm 4

2: output optimal step size

3: a := a/n, h := λ‖p‖2

4: ρ := λw⊤p

5: for i := 1 to n do

6: while not Si.empty do

7: Ri.push Si.pop (reverse the stacks)

8: end while

9: (·,ξi) := Ri.pop
10: ρ := ρ+aξi

11: end for

12: η := 0, ρ′ = 0

13: g := ρ (value of sup∂Φ(0))
14: while g < 0 do

15: ρ′ := ρ
16: if ∀i : Ri.empty then

17: η := ∞ (no more subdifferentiable points)

18: break

19: end if

20: I := argmin1≤i≤n η′ : (η′, ·) = Ri.top (find the next subdifferentiable point)

21: ρ := ρ−∑i∈I aξi

22: Ξ := {ξi : (η,ξi) := Ri.pop, i ∈ I}
23: ρ := ρ+∑ξi∈Ξ aξi

24: g := ρ+η h (value of sup∂Φ(η))
25: end while

26: return min(η, −ρ′/h)

the step is completed by incrementing ψi′ , that is, ψi′ := ψi′ + 1 so as to remove η(i′)
ψi′

from future

consideration.11 Note that computing the argmin in (51) takes O(logn) time (e.g., using a priority

queue). Inserting (49) into (47) and differentiating, we find that

sup ∂Φ(η′) = λw⊤p+λη ′‖p‖2 +
1

n

n

∑
i=1

aξ(i)
ψi

. (52)

The key observation here is that after the initial calculation of sup∂Φ(0) = λw⊤p+ 1
n ∑n

i=1 aξ(i)
0

for η = 0, the sum in (52) can be updated incrementally in constant time through the addition of

a
ξ(i′)

ψ
i′

−a
ξ(i′)
(ψ

i′ −1)

(Lines 20–23 of Algorithm 5).

Suppose we find η̌ = η(i′)
ψi′

for some i′. We then know that the minimum η∗ is either equal to η̌
(Figure 11, left), or found within the quadratic segment immediately to its left (Figure 11, right).

11. For ease of exposition, we assume i′ in (51) is unique, and deal with multiple choices of i′ in Algorithm 5.

1169

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

We thus decrement ψi′ (i.e., take one step back) so as to index the segment in question, set the

right-hand side of (52) to zero, and solve for η′ to obtain

η∗ = min



η̌,
λw⊤p+ 1

n ∑n
i=1 aξ(i)

ψi

−λ‖p‖2



 . (53)

This only takes constant time: we have cachedw⊤p and λ‖p‖2, and the sum in (53) can be obtained

incrementally by adding a
ξ(i′)

ψ
i′

−a
ξ(i′)
(ψ

i′+1)

to its last value in (52).

To locate η̌ we have to walk at most O(n|Z|) steps, each requiring O(logn) computation of

argmin as in (51). Given η̌, the exact minimum η∗ can be obtained in O(1). Including the prepro-

cessing cost of O(n|Z| log |Z|) (for invoking Algorithm 4), our exact multiclass line search therefore

takes O(n|Z|(logn|Z|)) time in the worst case. Algorithm 5 provides an implementation which in-

stead of an index vector ψ directly uses the sorted stacks of subdifferentiable points and active lines

produced by Algorithm 4. (The cost of reversing those stacks in Lines 6–8 of Algorithm 5 can easily

be avoided through the use of double-ended queues.)

6.4 Multilabel Hinge Loss

Recently, there has been interest in extending the concept of the hinge loss to multilabel problems.

Multilabel problems generalize the multiclass setting in that each training instance xi is associated

with a set of labels Zi ⊆ Z (Crammer and Singer, 2003b). For a uniform margin of separation τ, a

hinge loss can be defined in this setting as follows:

l(xi,Zi,w) := max[0, τ +max
z′ /∈Zi

f (w,xi,z
′)−min

z∈Zi

f (w,xi,z)]. (54)

We can generalize this to a not necessarily uniform label loss ∆(z′,z) ≥ 0 as follows:

l(xi,Zi,w) := max
(z,z′): z∈Zi

z′ /∈Zi\{z}

[∆(z′,z)+ f (w,xi,z
′)− f (w,xi,z)], (55)

where as before we require that ∆(z,z) = 0 ∀z∈Z so that by explicitly allowing z′ = z we can ensure

that (55) remains non-negative. For a uniform margin ∆(z′,z) = τ ∀z′ 6= z our multilabel hinge loss

(55) reduces to the decoupled version (54), which in turn reduces to the multiclass hinge loss (42)

if Zi := {zi} for all i.

For a givenw, let

Z
∗
i := argmax

(z,z′): z∈Zi

z′ /∈Zi\{z}

[∆(z′,z)+ f (w,xi,z
′)− f (w,xi,z)]

be the set of worst label pairs (possibly more than one) for the ith training instance. The subdiffer-

ential of the multilabel analogue of L2-regularized multiclass objective (43) can then be written just

as in (44), with coefficients

βi,z := ∑
z′:(z′,z)∈Z∗

i

γ(i)
z′,z − ∑

z′:(z,z′)∈Z∗
i

γ(i)
z,z′ , where (∀i) ∑

(z,z′)∈Z∗
i

γ(i)
z,z′ = 1 and γ(i)

z,z′ ≥ 0. (56)

1170

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

Now let (zi,z
′
i) := argmax(z,z′)∈Z∗

i
[φ(xi,z

′)−φ(xi,z)]
⊤p be a single steepest worst label pair in

direction p. We obtain argsupg∈∂J(w)g
⊤p for our direction-finding procedure by picking, from the

choices offered by (56), γ(i)

z,z′ := δz,zi
δz′,z′i

.

Finally, the line search we described in Section 6.3 for the multiclass hinge loss can be ex-

tended in a straightforward manner to our multilabel setting. The only caveat is that now ρi(η) :=
l(xi,Zi,w+ηp) must be written as

ρi(η) := max
(z,z′): z∈Zi

z′ /∈Zi\{z}

[∆(z′,z)+ f (w,xi,z
′)− f (w,xi,z)

︸ ︷︷ ︸

=: b
(i)

z,z′

+η (f (p,xi,z
′)− f (p,xi,z))

︸ ︷︷ ︸

=: a
(i)

z,z′

] . (57)

In the worst case, (57) could be the piecewise maximum of O(|Z|2) lines, thus increasing the overall

complexity of the line search. In practice, however, the set of true labelsZi is usually small, typically

of size 2 or 3 (cf. Crammer and Singer, 2003b, Figure 3). As long as ∀i : |Zi|= O(1), our complexity

estimates of Section 6.3.1 still apply.

7. Related Work

We discuss related work in two areas: nonsmooth convex optimization, and the problem of seg-

menting the pointwise maximum of a set of one-dimensional linear functions.

7.1 Nonsmooth Convex Optimization

There are four main approaches to nonsmooth convex optimization: quasi-Newton methods, bundle

methods, stochastic dual methods, and smooth approximation. We discuss each of these briefly, and

compare and contrast our work with the state of the art.

7.1.1 NONSMOOTH QUASI-NEWTON METHODS

These methods try to find a descent quasi-Newton direction at every iteration, and invoke a line

search to minimize the one-dimensional convex function along that direction. We note that the line

search routines we describe in Sections 4–6 are applicable to all such methods. An example of this

class of algorithms is the work of Lukšan and Vlček (1999), who propose an extension of BFGS

to nonsmooth convex problems. Their algorithm samples subgradients around non-differentiable

points in order to obtain a descent direction. In many machine learning problems evaluating the

objective function and its (sub)gradient is very expensive, making such an approach inefficient. In

contrast, given a current iterate wt , our direction-finding routine (Algorithm 2) samples subgra-

dients from the set ∂J(wt) via the oracle. Since this avoids the cost of explicitly evaluating new

(sub)gradients, it is computationally more efficient.

Recently, Andrew and Gao (2007) introduced a variant of LBFGS, the Orthant-Wise Limited-

memory Quasi-Newton (OWL-QN) algorithm, suitable for optimizing L1-regularized log-linear

models:

J(w) := λ‖w‖1 +
1

n

n

∑
i=1

ln(1+ e−ziw
⊤xi)

︸ ︷︷ ︸

logistic loss

, (58)

1171

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

where the logistic loss is smooth, but the regularizer is only subdifferentiable at points where w

has zero elements. From the optimization viewpoint this objective is very similar to L2-regularized

hinge loss; the direction finding and line search methods that we discussed in Sections 3.2 and 3.3,

respectively, can be applied to this problem with slight modifications.

OWL-QN is based on the observation that the L1 regularizer is linear within any given orthant.

Therefore, it maintains an approximation Bow to the inverse Hessian of the logistic loss, and uses

an efficient scheme to select orthants for optimization. In fact, its success greatly depends on its

direction-finding subroutine, which demands a specially chosen subgradient gow (Andrew and Gao,

2007, Equation 4) to produce the quasi-Newton direction, pow = π(p,gow), where p := −Bowgow

and the projection π returns a search direction by setting the ith element of p to zero whenever

pig
ow
i > 0. As shown in Section 8.4, the direction-finding subroutine of OWL-QN can be replaced

by our Algorithm 2, which makes OWL-QN more robust to the choice of subgradients.

7.1.2 BUNDLE METHODS

Bundle method solvers (Hiriart-Urruty and Lemaréchal, 1993) use past (sub)gradients to build a

model of the objective function. The (sub)gradients are used to lower-bound the objective by a

piecewise linear function which is minimized to obtain the next iterate. This fundamentally dif-

fers from the BFGS approach of using past gradients to approximate the (inverse) Hessian, hence

building a quadratic model of the objective function.

Bundle methods have recently been adapted to the machine learning context, where they are

known as SVMStruct (Tsochantaridis et al., 2005) resp. BMRM (Smola et al., 2007). One notable

feature of these variants is that they do not employ a line search. This is justified by noting that

a line search involves computing the value of the objective function multiple times, a potentially

expensive operation in machine learning applications.

Franc and Sonnenburg (2008) speed up the convergence of SVMStruct for L2-regularized binary

hinge loss. The main idea of their optimized cutting plane algorithm, OCAS, is to perform a line

search along the line connecting two successive iterates of a bundle method solver. Recently they

have extended OCAS to multiclass classification (Franc and Sonnenburg, 2009). Although devel-

oped independently, their line search methods for both settings are very similar to the methods we

describe in Sections 4.2.1 and 6.3.1, respectively. In particular, their line search for multiclass clas-

sification also involves segmenting the pointwise maximum of r 1-D linear functions (cf. Section 5),

though the O(r2) time complexity of their method is worse than our O(r logr).

7.1.3 STOCHASTIC DUAL METHODS

Distinct from the above two classes of primal algorithms are methods which work in the dual do-

main. A prominent member of this class is the LaRank algorithm of Bordes et al. (2007), which

achieves state-of-the-art results on multiclass classification problems. While dual algorithms are

very competitive on clean data sets, they tend to be slow when given noisy data.

7.1.4 SMOOTH APPROXIMATION

Another possible way to bypass the complications caused by the nonsmoothness of an objective

function is to work on a smooth approximation instead—see for instance the recent work of Nes-

terov (2005) and Nemirovski (2005). Some machine learning applications have also been pursued

along these lines (Lee and Mangasarian, 2001; Zhang and Oles, 2001). Although this approach can

1172

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

be effective, it is unclear how to build a smooth approximation in general. Furthermore, smooth

approximations often sacrifice dual sparsity, which often leads to better generalization performance

on the test data, and also may be needed to prove generalization bounds.

7.2 Segmenting the Pointwise Maximum of 1-D Linear Functions

The problem of computing the line segments that comprise the pointwise maximum of a given set of

line segments has received attention in the area of computational geometry; see Agarwal and Sharir

(2000) for a survey. Hershberger (1989) for instance proposed a divide-and-conquer algorithm for

this problem with the same time complexity as our Algorithm 4. The Hershberger (1989) algo-

rithm solves a slightly harder problem—his function is the pointwise maximum of line segments,

as opposed to our lines—but our algorithm is conceptually simpler and easier to implement.

A similar problem has also been studied under the banner of kinetic data structures by Basch

(1999), who proposed a heap-based algorithm for this problem and proved a worst-case O(r log2 r)
bound, where r is the number of line segments. Basch (1999) also claims that the lower bound is

O(r logr); our Algorithm 4 achieves this bound.

8. Experiments

We evaluated the performance of our subLBFGS algorithm with, and compared it to other state-of-

the-art nonsmooth optimization methods on L2-regularized binary, multiclass, and multilabel hinge

loss minimization problems. We also compared OWL-QN with a variant that uses our direction-

finding routine on L1-regularized logistic loss minimization tasks. On strictly convex problems

such as these every convergent optimizer will reach the same solution; comparing generalisation

performance is therefore pointless. Hence we concentrate on empirically evaluating the convergence

behavior (objective function value vs. CPU seconds). All experiments were carried out on a Linux

machine with dual 2.4 GHz Intel Core 2 processors and 4 GB of RAM.

In all experiments the regularization parameter was chosen from the set 10{−6,−5,··· ,−1} so as to

achieve the highest prediction accuracy on the test data set, while convergence behavior (objective

function value vs. CPU seconds) is reported on the training data set. To see the influence of the

regularization parameter λ, we also compared the time required by each algorithm to reduce the

objective function value to within 2% of the optimal value.12 For all algorithms the initial iterate

w0 was set to 0. Open source C++ code implementing our algorithms and experiments is available

for download from http://www.cs.adelaide.edu.au/˜jinyu/Code/nonsmoothOpt.tar.gz.

The subgradient for the construction of the subLBFGS search direction (cf. Line 12 of Algo-

rithm 1) was chosen arbitrarily from the subdifferential. For the binary hinge loss minimization

(Section 8.3), for instance, we picked an arbitrary subgradient by randomly setting the coefficient

βi ∀i ∈M in (32) to either 0 or 1.

8.1 Convergence Tolerance of the Direction-Finding Procedure

The convergence tolerance ε of Algorithm 2 controls the precision of the solution to the direction-

finding problem (11): lower tolerance may yield a better search direction. Figure 13 (left) shows

12. For L1-regularized logistic loss minimization, the “optimal” value was the final objective function value achieved by

the OWL-QN∗ algorithm (cf. Section 8.4). In all other experiments, it was found by running subLBFGS for 104

seconds, or until its relative improvement over 5 iterations was less than 10−8.

1173

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

10

0

10

1

10

2

Iterations

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

✁6
)✂=100✂=10✄10✂=10✄5

x10

☎1

10

0

10

1

10

2

Iterations

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

INEX (

=10

✁6
)✂=10

0✂=10

✄10✂=10

✄5

10

0

10

1

10

2

10

3

10

4

Iterations

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

TMC2007 (

=10

✁5
)✂=100✂=10✄10✂=10✄5

10

0

10

1

10

2

10

3

CPU Seconds

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

✁6
)✂=100✂=10✄10✂=10✄5

x10

☎1

10

1

10

2

10

3

CPU Seconds

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

INEX (

=10

✁6
)✂=10

0✂=10

✄10✂=10

✄5

10

1

10

2

10

3

10

4

CPU Seconds

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

TMC2007 (

=10

✁5
)✂=100✂=10✄10✂=10✄5

Figure 13: Performance of subLBFGS with varying direction-finding tolerance ε in terms of ob-

jective function value vs. number of iterations (top row) resp. CPU seconds (bottom

row) on sample L2-regularized risk minimization problems with binary (left), multiclass

(center), and multilabel (right) hinge losses.

that on binary classification problems, subLBFGS is not sensitive to the choice of ε (i.e., the quality

of the search direction). This is due to the fact that ∂J(w) as defined in (32) is usually dominated by

its constant component w̄; search directions that correspond to different choices of ε therefore can

not differ too much from each other. In the case of multiclass and multilabel classification, where

the structure of ∂J(w) is more complicated, we can see from Figure 13 (top center and right) that

a better search direction can lead to faster convergence in terms of iteration numbers. However,

this is achieved at the cost of more CPU time spent in the direction-finding routine. As shown in

Figure 13 (bottom center and right), extensively optimizing the search direction actually slows down

convergence in terms of CPU seconds. We therefore used an intermediate value of ε = 10−5 for all

our experiments, except that for multiclass and multilabel classification problems we relaxed the

tolerance to 1.0 at the initial iterate w = 0, where the direction-finding oracle argsupg∈∂J(0)g
⊤p is

expensive to compute, due to the large number of extreme points in ∂J(0).

8.2 Size of SubLBFGS Buffer

The size m of the subLBFGS buffer determines the number of parameter and gradient displacement

vectors st and yt used in the construction of the quasi-Newton direction. Figure 14 shows that the

performance of subLBFGS is not sensitive to the particular value of m within the range 5 ≤ m ≤ 25.

1174

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

10

0

10

1

10

2

10

3

CPU Seconds

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

✁6
)

m=15

m=25

m=5

x10

✂1

10

1

10

2

10

3

CPU Seconds

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

INEX (

=10

✁6
)

m=15

m=25

m=5

10

1

10

2

10

3

10

4

CPU Seconds

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

TMC2007 (

=10

✁5
)

m=15

m=25

m=5

Figure 14: Performance of subLBFGS with varying buffer size on sample L2-regularized risk min-

imization problems with binary (left), multiclass (center), and multilabel hinge losses

(right).

Data Set Train/Test Set Size Dimensionality Sparsity

Covertype 522911/58101 54 77.8%

CCAT 781265/23149 47236 99.8%

Astro-physics 29882/32487 99757 99.9%

MNIST-binary 60000/10000 780 80.8%

Adult9 32561/16281 123 88.7%

Real-sim 57763/14438 20958 99.8%

Leukemia 38/34 7129 00.0%

Table 1: The binary data sets used in our experiments of Sections 2, 8.3, and 8.4.

We therefore simply set m = 15 a priori for all subsequent experiments; this is a typical value for

LBFGS (Nocedal and Wright, 1999).

8.3 L2-Regularized Binary Hinge Loss

For our first set of experiments, we applied subLBFGS with exact line search (Algorithm 3) to the

task of L2-regularized binary hinge loss minimization. Our control methods are the bundle method

solver BMRM (Teo et al., 2010) and the optimized cutting plane algorithm OCAS (Franc and Son-

nenburg, 2008),13 both of which were shown to perform competitively on this task. SVMStruct

(Tsochantaridis et al., 2005) is another well-known bundle method solver that is widely used in

the machine learning community. For L2-regularized optimization problems BMRM is identical to

SVMStruct, hence we omit comparisons with SVMStruct.

Table 1 lists the six data sets we used: The Covertype data set of Blackard, Jock & Dean,14

CCAT from the Reuters RCV1 collection,15 the Astro-physics data set of abstracts of scientific

papers from the Physics ArXiv (Joachims, 2006), the MNIST data set of handwritten digits16 with

13. The source code of OCAS (version 0.6.0) was obtained from http://www.shogun-toolbox.org.

14. Data set can be found at http://kdd.ics.uci.edu/databases/covertype/covertype.html.

15. Data set can be found at http://www.daviddlewis.com/resources/testcollections/rcv1.

16. Data set can be found at http://yann.lecun.com/exdb/mnist.

1175

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

L1-reg. logistic loss L2-reg. binary loss

Data Set λL1
kL1

kL1r λL2
kL2

Covertype 10−5 1 2 10−6 0

CCAT 10−6 284 406 10−6 0

Astro-physics 10−5 1702 1902 10−4 0

MNIST-binary 10−4 55 77 10−6 0

Adult9 10−4 2 6 10−5 1

Real-sim 10−6 1017 1274 10−5 1

Table 2: Regularization parameter λ and overall number k of direction-finding iterations in our

experiments of Sections 8.3 and 8.4, respectively.

10

-1

10

0

10

1

CPU Seconds

5.3

6.2

7.2

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Covertype (

=10

✁6
)

BMRM

OCAS

subLBFGS

x10

✂1

10

0

10

1

10

2

CPU Seconds

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

✁6
)

BMRM

OCAS

subLBFGS

x10

✂1

10

-1

10

0

CPU Seconds

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Astro

physics (

✁
=10

✂4
)

BMRM

OCAS

subLBFGS

x10

✄1

10

-1

10

0

10

1

10

2

10

3

CPU Seconds

2.5

3.3

4.5

6.0

7.5

O
b
j
e
c
t
i
v
e

V
a
l
u
e

MNIST

Binary (

✁
=10

✂6
)

BMRM

OCAS

subLBFGS

x10

✄1

10

-2

10

-1

10

0

10

1

CPU Seconds

3.5

4

5

6

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Adult9 (

=10

✁5
)

BMRM

OCAS

subLBFGS

x10

✂1

10

-1

10

0

CPU Seconds

0.6

1

2

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Real

sim (

✁
=10

✂5
)

BMRM

OCAS

subLBFGS

x10

✄1

Figure 15: Objective function value vs. CPU seconds on L2-regularized binary hinge loss minimiza-

tion tasks.

two classes: even and odd digits, the Adult9 data set of census income data,17 and the Real-sim data

set of real vs. simulated data.17 Table 2 lists our parameter settings, and reports the overall number

kL2
of iterations through the direction-finding loop (Lines 6–13 of Algorithm 2) for each data set.

The very small values of kL2
indicate that on these problems subLBFGS only rarely needs to correct

its initial guess of a descent direction.

It can be seen from Figure 15 that subLBFGS (solid) reduces the value of the objective con-

siderably faster than BMRM (dashed). On the binary MNIST data set, for instance, the objective

17. Data set can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html.

1176

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-1

10

0

10

1

C
P
U

S
e
c
o
n
d
s

Covertype

BMRM

OCAS

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

C
P
U

S
e
c
o
n
d
s

CCAT

BMRM

OCAS

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-2

10

-1

10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

Astro-physics

BMRM

OCAS

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-1

10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

MNIST-Binary

BMRM

OCAS

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-2

10

-1

10

0

10

1

C
P
U

S
e
c
o
n
d
s

Adult9

BMRM

OCAS

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-2

10

-1

10

0

10

1

C
P
U

S
e
c
o
n
d
s

Real-sim

BMRM

OCAS

subLBFGS

Figure 16: Regularization parameter λ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the

objective function to within 2% of the optimal value on L2-regularized binary hinge loss

minimization tasks.

function value of subLBFGS after 10 CPU seconds is 25% lower than that of BMRM. In this set of

experiments the performance of subLBFGS and OCAS (dotted) is very similar.

Figure 16 shows that all algorithms generally converge faster for larger values of the regular-

ization constant λ. However, in most cases subLBFGS converges faster than BMRM across a wide

range of λ values, exhibiting a speedup of up to more than two orders of magnitude. SubLBFGS

and OCAS show similar performance here: for small values of λ, OCAS converges slightly faster

than subLBFGS on the Astro-physics and Real-sim data sets but is outperformed by subLBFGS on

the Covertype, CCAT, and binary MNIST data sets.

8.4 L1-Regularized Logistic Loss

To demonstrate the utility of our direction-finding routine (Algorithm 2) in its own right, we plugged

it into the OWL-QN algorithm (Andrew and Gao, 2007)18 as an alternative direction-finding method

such that pow = descentDirection(gow,ε,kmax), and compared this variant (denoted OWL-QN*)

with the original (cf. Section 7.1) on L1-regularized minimization of the logistic loss (58), on the

same data sets as in Section 8.3.

An oracle that supplies argsupg∈∂J(w)g
⊤p for this objective is easily constructed by noting

that (58) is nonsmooth whenever at least one component of the parameter vector w is zero. Let

wi = 0 be such a component; the corresponding component of the subdifferential ∂λ‖w‖1 of the L1

18. The source code of OWL-QN (original release) was obtained from Microsoft Research through http://tinyurl.

com/p774cx.

1177

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

10

1

10

2

10

3

CPU Seconds

4.5

5.0

6.0

7.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Covertype (

=10

✁5
)

OWL-QN

OWL-QN*

OWL-QNr

OWL-QN*r

x10

✂1

10

2

10

3

10

4

CPU Seconds

0.1

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

✁6
)

OWL-QN

OWL-QN*

OWL-QN*r

10

1

10

2

10

3

CPU Seconds

0.1

0.7

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Astro

physics (

✁
=10

✂5
)

OWL-QN

OWL-QN*

OWL-QN*r

10

1

10

2

10

3

CPU Seconds

2.8

4.0

6.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

MNIST

Binary (

✁
=10

✂4
)

OWL-QN

OWL-QN*

OWL-QN*r

x10

✄1

10

0

10

1

CPU Seconds

3.2

4.0

5.0

6.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Adult9 (

=10

✁4
)

OWL-QN

OWL-QN*

OWL-QN*r

x10

✂1

10

0

10

1

10

2

10

3

CPU Seconds

0.4

2.0

6.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Real

sim (

✁
=10

✂6
)

OWL-QN

OWL-QN*

OWL-QN*r

x10

✄1

Figure 17: Objective function value vs. CPU seconds on L1-regularized logistic loss minimization

tasks.

regularizer is the interval [−λ,λ]. The supremum of g⊤p is attained at the interval boundary whose

sign matches that of the corresponding component of the direction vector p, that is, at λ sign(pi).

Using the stopping criterion suggested by Andrew and Gao (2007), we ran experiments until

the averaged relative change in objective function value over the previous 5 iterations fell below

10−5. As shown in Figure 17, the only clear difference in convergence between the two algorithms

is found on the Astro-physics data set where OWL-QN∗ is outperformed by the original OWL-QN

method. This is because finding a descent direction via Algorithm 2 is particularly difficult on the

Astro-physics data set (as indicated by the large inner loop iteration number kL1
in Table 2); the

slowdown on this data set can also be found in Figure 18 for other values of λ. Although finding a

descent direction can be challenging for the generic direction-finding routine of OWL-QN∗, in the

following experiment we show that this routine is very robust to the choice of initial subgradients.

To examine the algorithms’ sensitivity to the choice of subgradients, we also ran them with

subgradients randomly chosen from the set ∂J(w) (as opposed to the specially chosen subgradient

gow used in the previous set of experiments) fed to their corresponding direction-finding routines.

OWL-QN relies heavily on its particular choice of subgradients, hence breaks down completely

under these conditions: the only data set where we could even plot its (poor) performance was

Covertype (dotted “OWL-QNr” line in Figure 17). Our direction-finding routine, by contrast, is self-

correcting and thus not affected by this manipulation: the curves for OWL-QN*r lie on top of those

for OWL-QN*. Table 2 shows that in this case more direction-finding iterations are needed though:

kL1r > kL1
. This empirically confirms that as long as argsupg∈∂J(w)g

⊤p is given, Algorithm 2 can

1178

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

1

10

2

C
P
U

S
e
c
o
n
d
s

Covertype

OWL-QN

OWL-QN*

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

2

10

3

C
P
U

S
e
c
o
n
d
s

CCAT

OWL-QN

OWL-QN*

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

Astro-physics

OWL-QN

OWL-QN*

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

MNIST-Binary

OWL-QN

OWL-QN*

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

C
P
U

S
e
c
o
n
d
s

Adult9

OWL-QN

OWL-QN*

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

Real-sim

OWL-QN

OWL-QN*

Figure 18: Regularization parameter λ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the

objective function to within 2% of the optimal value on L1-regularized logistic loss min-

imization tasks. (No point is plotted if the initial parameter w0 = 0 is already optimal.)

indeed be used as a generic quasi-Newton direction-finding routine that is able to recover from a

poor initial choice of subgradients.

8.5 L2-Regularized Multiclass and Multilabel Hinge Loss

We incorporated our exact line search of Section 6.3.1 into both subLBFGS and OCAS (Franc and

Sonnenburg, 2008), thus enabling them to deal with multiclass and multilabel losses. We refer

to our generalized version of OCAS as line search BMRM (ls-BMRM). Using the variant of the

multiclass and multilabel hinge loss which enforces a uniform margin of separation (∆(z,z′) =
1 ∀z 6= z′), we experimentally evaluated both algorithms on a number of publicly available data sets

(Table 3). All multiclass data sets except INEX were downloaded from http://www.csie.ntu.

edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html, while the multilabel data sets were

obtained from http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multilabel.

html. INEX (Maes et al., 2007) is available from http://webia.lip6.fr/˜bordes/mywiki/

doku.php?id=multiclass_data. The original RCV1 data set consists of 23149 training instances,

of which we used 21149 instances for training and the remaining 2000 for testing.

8.5.1 PERFORMANCE ON MULTICLASS PROBLEMS

This set of experiments is designed to demonstrate the convergence properties of multiclass sub-

LBFGS, compared to the BMRM bundle method (Teo et al., 2010) and ls-BMRM. Figure 19 shows

1179

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

Data Set Train/Test Set Size Dimensionality |Z| Sparsity λ k

Letter 16000/4000 16 26 0.0% 10−6 65

USPS 7291/2007 256 10 3.3% 10−3 14

Protein 14895/6621 357 3 70.7% 10−2 1

MNIST 60000/10000 780 10 80.8% 10−3 1

INEX 6053/6054 167295 18 99.5% 10−6 5

News20 15935/3993 62061 20 99.9% 10−2 12

Scene 1211/1196 294 6 0.0% 10−1 14

TMC2007 21519/7077 30438 22 99.7% 10−5 19

RCV1 21149/2000 47236 103 99.8% 10−5 4

Table 3: The multiclass (top 6 rows) and multilabel (bottom 3 rows) data sets used, values of the

regularization parameter, and overall number k of direction-finding iterations in our exper-

iments of Section 8.5.

10

0

10

1

10

2

CPU Seconds

0.6

0.8

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Letter (

=10

✁6
)

BMRM

ls-BMRM

subLBFGS

10

0

10

1

10

2

CPU Seconds

0.1

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

USPS (

=10

✁3
)

BMRM

ls-BMRM

subLBFGS

10

0

10

1

CPU Seconds

0.8

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Protein (

=10

✁2
)

BMRM

ls-BMRM

subLBFGS

10

1

10

2

CPU Seconds

0.2

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

MNIST (

=10

✁3
)

BMRM

ls-BMRM

subLBFGS

10

1

10

2

10

3

CPU Seconds

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

INEX (

=10

✁6
)

BMRM

ls-BMRM

subLBFGS

10

0

10

1

10

2

CPU Seconds

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

News20 (

=10

✁2
)

BMRM

ls-BMRM

subLBFGS

Figure 19: Objective function value vs. CPU seconds on L2-regularized multiclass hinge loss mini-

mization tasks.

that subLBFGS outperforms BMRM on all data sets. On 4 out of 6 data sets, subLBFGS outper-

forms ls-BMRM as well early on but slows down later, for an overall performance comparable to

ls-BMRM. On the MNIST data set, for instance, subLBFGS takes only about half as much CPU

time as ls-BMRM to reduce the objective function value to 0.3 (about 50% above the optimal value),

1180

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

Letter

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

USPS

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

Protein

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

MNIST

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

INEX

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

News20

BMRM

ls-BMRM

subLBFGS

Figure 20: Regularization parameter λ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the

objective function to within 2% of the optimal value. (No point is plotted if an algorithm

failed to reach the threshold value within 104 seconds.)

yet both algorithms reach within 2% of the optimal value at about the same time (Figure 20, bottom

left). We hypothesize that subLBFGS’ local model (10) of the objective function facilitates rapid

early improvement but is less appropriate for final convergence to the optimum (cf. the discussion in

Section 9). Bundle methods, on the other hand, are slower initially because they need to accumulate

a sufficient number of gradients to build a faithful piecewise linear model of the objective function.

These results suggest that a hybrid approach that first runs subLBFGS then switches to ls-BMRM

may be promising.

Similar to what we saw in the binary setting (Figure 16), Figure 20 shows that all algorithms

tend to converge faster for large values of λ. Generally, subLBFGS converges faster than BMRM

across a wide range of λ values; for small values of λ it can greatly outperform BMRM (as seen on

Letter, Protein, and News20). The performance of subLBFGS is worse than that of BMRM in two

instances: on USPS for small values of λ, and on INEX for large values of λ. The poor performance

on USPS may be caused by a limitation of subLBFGS’ local model (10) that causes it to slow down

on final convergence. On the INEX data set, the initial point w0 = 0 is nearly optimal for large

values of λ; in this situation there is no advantage in using subLBFGS.

Leveraging its exact line search (Algorithm 5), ls-BMRM is competitive on all data sets and

across all λ values, exhibiting performance comparable to subLBFGS in many cases. From Fig-

ure 20 we find that BMRM never outperforms both subLBFGS and ls-BMRM.

1181

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

0.3 1.0 3.0

CPU Seconds

0.8

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Scene (

=10

✁1
)

BMRM

ls-BMRM

subLBFGS

10

1

10

2

10

3

10

4

CPU Seconds

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

TMC2007 (

=10

✁5
)

BMRM

ls-BMRM

subLBFGS

10

1

10

2

10

3

CPU Seconds

0.1

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

RCV1 (

=10

✁5
)

BMRM

ls-BMRM

subLBFGS

Figure 21: Objective function value vs. CPU seconds in L2-regularized multilabel hinge loss mini-

mization tasks.

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-1

10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

Scene

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

TMC2007

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

RCV1

BMRM

ls-BMRM

subLBFGS

Figure 22: Regularization parameter λ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the

objective function to within 2% of the optimal value. (No point is plotted if an algorithm

failed to reach the threshold value within 104 seconds.)

8.5.2 PERFORMANCE ON MULTILABEL PROBLEMS

For our final set of experiments we turn to the multilabel setting. Figure 21 shows that on the Scene

data set the performance of subLBFGS is similar to that of BMRM, while on the larger TMC2007

and RCV1 sets, subLBFGS outperforms both of its competitors initially but slows down later on,

resulting in performance no better than BMRM. Comparing performance across different values of

λ (Figure 22), we find that in many cases subLBFGS requires more time than its competitors to

reach within 2% of the optimal value, and in contrast to the multiclass setting, here ls-BMRM only

performs marginally better than BMRM. The primary reason for this is that the exact line search

used by ls-BMRM and subLBFGS requires substantially more computational effort in the multilabel

than in the multiclass setting. There is an inherent trade-off here: subLBFGS and ls-BMRM expend

computation in an exact line search, while BMRM focuses on improving its local model of the

objective function instead. In situations where the line search is very expensive, the latter strategy

seems to pay off.

1182

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

9. Discussion and Outlook

We proposed subBFGS (resp., subLBFGS), an extension of the BFGS quasi-Newton method (resp.,

its limited-memory variant), for handling nonsmooth convex optimization problems, and proved its

global convergence in objective function value. We applied our algorithm to a variety of machine

learning problems employing the L2-regularized binary hinge loss and its multiclass and multilabel

generalizations, as well as L1-regularized risk minimization with logistic loss. Our experiments

show that our algorithm is versatile, applicable to many problems, and often outperforms specialized

solvers.

Our solver is easy to parallelize: The master node computes the search direction and transmits

it to the slaves. The slaves compute the (sub)gradient and loss value on subsets of data, which is

aggregated at the master node. This information is used to compute the next search direction, and

the process repeats. Similarly, the line search, which is the expensive part of the computation on

multiclass and multilabel problems, is easy to parallelize: The slaves run Algorithm 4 on subsets of

the data; the results are fed back to the master which can then run Algorithm 5 to compute the step

size.

In many of our experiments we observe that subLBFGS decreases the objective function rapidly

at the beginning but slows down closer to the optimum. We hypothesize that this is due to an

averaging effect: Initially (i.e., when sampled sparsely at a coarse scale) a superposition of many

hinges looks sufficiently similar to a smooth function for optimization of a quadratic local model

to work well (cf. Figure 6). Later on, when the objective is sampled at finer resolution near the

optimum, the few nearest hinges begin to dominate the picture, making a smooth local model less

appropriate.

Even though the local model (10) of sub(L)BFGS is nonsmooth, it only explicitly models the

hinges at its present location—all others are subject to smooth quadratic approximation. Apparently

this strategy works sufficiently well during early iterations to provide for rapid improvement on

multiclass problems, which typically comprise a large number of hinges. The exact location of

the optimum, however, may depend on individual nearby hinges which are not represented in (10),

resulting in the observed slowdown.

Bundle method solvers, by contrast, exhibit slow initial progress but tend to be competitive

asymptotically. This is because they build a piecewise linear lower bound of the objective func-

tion, which initially is not very good but through successive tightening eventually becomes a faith-

ful model. To take advantage of this we are contemplating hybrid solvers that switch over from

sub(L)BFGS to a bundle method as appropriate.

While bundle methods like BMRM have an exact, implementable stopping criterion based on

the duality gap, no such stopping criterion exists for BFGS and other quasi-Newton algorithms.

Therefore, it is customary to use the relative change in function value as an implementable stopping

criterion. Developing a stopping criterion for sub(L)BFGS based on duality arguments remains an

important open question.

sub(L)BFGS relies on an efficient exact line search. We proposed such line searches for the

multiclass hinge loss and its extension to the multilabel setting, based on a conceptually simple yet

optimal algorithm to segment the pointwise maximum of lines. A crucial assumption we had to

make is that the number |Z| of labels is manageable, as it takes O(|Z| log |Z|) time to identify the

hinges associated with each training instance. In certain structured prediction problems (Tsochan-

taridis et al., 2005) which have recently gained prominence in machine learning, the set Z could

1183

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

be exponentially large—for instance, predicting binary labels on a chain of length n produces 2n

possible labellings. Clearly our line searches are not efficient in such cases; we are investigating

trust region variants of sub(L)BFGS to bridge this gap.

Finally, to put our contributions in perspective, recall that we modified three aspects of the

standard BFGS algorithm, namely the quadratic model (Section 3.1), the descent direction find-

ing (Section 3.2), and the Wolfe conditions (Section 3.3). Each of these modifications is versatile

enough to be used as a component in other nonsmooth optimization algorithms. This not only offers

the promise of improving existing algorithms, but may also help clarify connections between them.

We hope that our research will focus attention on the core subroutines that need to be made more

efficient in order to handle larger and larger data sets.

Acknowledgments

A short version of this paper was presented at the 2008 ICML conference (Yu et al., 2008). We

thank Choon Hui Teo for many useful discussions and help with implementation issues, Xinhua

Zhang for proofreading our manuscript, and the anonymous reviewers of both ICML and JMLR for

their useful feedback which helped improve this paper. We thank John R. Birge for pointing us to

his work (Birge et al., 1998) which led us to the convergence proof in Appendix D.

This publication only reflects the authors’ views. All authors were with NICTA and the Aus-

tralian National University for parts of their work on it. NICTA is funded by the Australian Gov-

ernment’s Backing Australia’s Ability and Centre of Excellence programs. This work was also

supported in part by the IST Programme of the European Community, under the PASCAL2 Net-

work of Excellence, IST-2007-216886.

Appendix A. Bundle Search for a Descent Direction

Recall from Section 3.2 that at a subdifferential point w our goal is to find a descent direction p∗

which minimizes the pseudo-quadratic model:19

M(p) := 1
2
p⊤B−1p+ sup

g∈∂J(w)

g⊤p. (59)

This is generally intractable due to the presence of a supremum over the entire subdifferential

∂J(w). We therefore propose a bundle-based descent direction finding procedure (Algorithm 2)

which progressively approaches M(p) from below via a series of convex functions M(1)(p), · · · ,M(i)(p),
each taking the same form as M(p) but with the supremum defined over a countable subset of ∂J(w).
At iteration i our convex lower bound M(i)(p) takes the form

M(i)(p) := 1
2
p⊤B−1p+ sup

g∈V
(i)

g⊤p, where

V
(i)

:= {g(j) : j ≤ i, i, j ∈ N} ⊆ ∂J(w). (60)

Given an iterate p(j−1) ∈ R
d we find a violating subgradient g(j) via

g(j) := argsup
g∈∂J(w)

g⊤p(j−1). (61)

19. For ease of exposition we are suppressing the iteration index t here.

1184

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

Violating subgradients recover the true objective M(p) at the iterates p(j−1):

M(p(j−1)) = M(j)(p(j−1)) = 1
2
p(j−1)⊤B−1p(j−1) +g(j)⊤p(j−1). (62)

To produce the iterates p(i), we rewrite minp∈R
d M(i)(p) as a constrained optimization problem

(19), which allows us to write the Lagrangian of (60) as

L(i)(p,ξ,α) := 1
2
p⊤B−1p+ ξ−α⊤(ξ1−G(i)⊤p), (63)

where G(i) := [g(1), g(2), . . . , g(i)] ∈ R
d×i collects past violating subgradients, and α is a column

vector of non-negative Lagrange multipliers. Setting the derivative of (63) with respect to the primal

variables ξ and p to zero yields, respectively,

α⊤
1 = 1 and (64)

p= −BG(i)α. (65)

The primal variable p and the dual variable α are related via the dual connection (65). To eliminate

the primal variables ξ and p, we plug (64) and (65) back into the Lagrangian to obtain the dual of

M(i)(p):

D(i)(α) := − 1
2
(G(i)α)⊤B(G(i)α), (66)

s.t. α ∈ [0,1]i, ‖α‖1 = 1.

The dual objective D(i)(α) (resp., primal objective M(i)(p)) can be maximized (resp., minimized)

exactly via quadratic programming. However, doing so may incur substantial computational ex-

pense. Instead we adopt an iterative scheme which is cheap and easy to implement yet guarantees

dual improvement.

Letα(i) ∈ [0,1]i be a feasible solution for D(i)(α).20 The corresponding primal solution p(i) can

be found by using (65). This in turn allows us to compute the next violating subgradient g(i+1) via

(61). With the new violating subgradient the dual becomes

D(i+1)(α) := − 1
2
(G(i+1)α)⊤B(G(i+1)α),

s.t. α ∈ [0,1]i+1, ‖α‖1 = 1, (67)

where the subgradient matrix is now extended:

G(i+1) = [G(i), g(i+1)]. (68)

Our iterative strategy constructs a new feasible solution α ∈ [0,1]i+1 for (67) by constraining it to

take the following form:

α=

[
(1−µ)α(i)

µ

]

, where µ ∈ [0,1]. (69)

20. Note that α(1) = 1 is a feasible solution for D(1)(α).

1185

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

In other words, we maximize a one-dimensional function D̄(i+1) : [0,1] → R:

D̄(i+1)(µ) := − 1
2

(

G(i+1)α
)⊤
B
(

G(i+1)α
)

(70)

= − 1
2

(

(1−µ)ḡ(i) +µg(i+1)
)⊤
B
(

(1−µ)ḡ(i) +µg(i+1)
)

,

where

ḡ(i) :=G(i)α(i) ∈ ∂J(w) (71)

lies in the convex hull of g(j) ∈ ∂J(w) ∀ j ≤ i (and hence in the convex set ∂J(w)) because α(i) ∈
[0,1]i and ‖α(i)‖1 = 1. Moreover, µ ∈ [0,1] ensures the feasibility of the dual solution. Noting that

D̄(i+1)(µ) is a concave quadratic function, we set

∂D̄(i+1)(µ) =
(

ḡ(i)−g(i+1)
)⊤
B
(

(1−η)ḡ(i) +ηg(i+1)
)

= 0 (72)

to obtain the optimum

µ∗ := argmax
µ∈[0,1]

D̄(i+1)(µ) = min

(

1,max

(

0,
(ḡ(i)−g(i+1))⊤Bḡ(i)

(ḡ(i)−g(i+1))⊤B(ḡ(i)−g(i+1))

))

. (73)

Our dual solution at step i+1 then becomes

α(i+1) :=

[
(1−µ∗)α(i)

µ∗

]

. (74)

Furthermore, from (68), (69), and (71) it follows that ḡ(i) can be maintained via an incremental

update (Line 8 of Algorithm 2):

ḡ(i+1) :=G(i+1)α(i+1) = (1−µ∗)ḡ(i) +µ∗g(i+1), (75)

which combined with the dual connection (65) yields an incremental update for the primal solution

(Line 9 of Algorithm 2):

p(i+1) := −Bḡ(i+1) = −(1−µ∗)Bḡ(i)−µ∗Bg(i+1)

= (1−µ∗)p(i)−µ∗Bg(i+1). (76)

Using (75) and (76), computing a primal solution (Lines 7–9 of Algorithm 2) costs a total of O(d2)
time (resp., O(md) time for LBFGS with buffer size m), where d is the dimensionality of the opti-

mization problem. Note that maximizing D(i+1)(α) directly via quadratic programming generally

results in a larger progress than that obtained by our approach.

In order to measure the quality of our solution at iteration i, we define the quantity

ε(i) := min
j≤i

M(j+1)(p(j))−D(i)(α(i)) = min
j≤i

M(p(j))−D(i)(α(i)), (77)

where the second equality follows directly from (62). Let D(α) be the corresponding dual prob-

lem of M(p), with the property D
([

α(i)

0

])

= D(i)(α(i)), and let α∗ be the optimal solution to

1186

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

argmaxα∈A D(α) in some domain A of interest. As a consequence of the weak duality theorem

(Hiriart-Urruty and Lemaréchal, 1993, Theorem XII.2.1.5), minp∈R
d M(p) ≥ D(α∗). Therefore

(77) implies that

ε(i) ≥ min
p∈R

d
M(p)−D(i)(α(i)) ≥ min

p∈R
d
M(p)−D(α∗) ≥ 0. (78)

The second inequality essentially says that ε(i) is an upper bound on the duality gap. In fact, The-

orem 7 below shows that (ε(i) − ε(i+1)) is bounded away from 0, that is, ε(i) is monotonically de-

creasing. This guides us to design a practical stopping criterion (Line 6 of Algorithm 2) for our

direction-finding procedure. Furthermore, using the dual connection (65), we can derive an imple-

mentable formula for ε(i):

ε(i) = min
j≤i

[
1
2
p(j)⊤B−1p(j) +p(j)⊤g(j+1) + 1

2
(G(i)α(i))⊤B(G(i)α(i))

]

= min
j≤i

[

− 1
2
p(j)⊤ḡ(j) +p(j)⊤g(j+1)− 1

2
p(i)⊤ḡ(i)

]

= min
j≤i

[

p(j)⊤g(j+1)− 1
2
(p(j)⊤ḡ(j) +p(i)⊤ḡ(i))

]

, (79)

where g(j+1) := argsup
g∈∂J(w)

g⊤p(j) and ḡ(j) :=G(j)α(j) ∀ j ≤ i.

It is worth noting that continuous progress in the dual objective value does not necessarily prevent

an increase in the primal objective value, that is, it is possible that M(p(i+1)) ≥ M(p(i)). Therefore,

we choose the best primal solution so far,

p := argmin
j≤i

M(p(j)), (80)

as the search direction (Line 18 of Algorithm 2) for the parameter update (3). This direction is a

direction of descent as long as the last iterate p(i) fulfills the descent condition (16). To see this, we

use (88–90) below to get supg∈∂J(w)g
⊤p(i) = M(p(i))+D(i)(α(i)), and since

M(p(i)) ≥ min
j≤i

M(p(j)) and D(i)(α(i)) ≥ D(j)(α(j)) ∀ j ≤ i,

definition (80) immediately gives supg∈∂J(w)g
⊤p(i) ≥ supg∈∂J(w)g

⊤p. Hence if p(i) is a descent

direction, then so is p.

We now show that if the current parameter vector w is not optimal, then a direction-finding

tolerance ε≥ 0 exists for Algorithm 2 such that the returned search direction p is a descent direction,

that is, supg∈∂J(w)g
⊤p< 0.

Lemma 3 Let B be the current approximation to the inverse Hessian maintained by Algorithm 1,

and h > 0 a lower bound on the eigenvalues of B. If the current iterate w is not optimal: 0 /∈
∂J(w), and the number of direction-finding iterations is unlimited (kmax = ∞), then there exists a

direction-finding tolerance ε ≥ 0 such that the descent direction p= −Bḡ, ḡ ∈ ∂J(w) returned by

Algorithm 2 at w satisfies supg∈∂J(w)g
⊤p< 0.

1187

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

Proof Algorithm 2 returns p after i iterations when ε(i) ≤ ε, where ε(i) = M(p)−D(i)(α(i)) by

definitions (77) and (80). Using definition (66) of D(i)(α(i)), we have

−D(i)(α(i)) = 1
2
(G(i)α(i))⊤B(G(i)α(i)) = 1

2
ḡ(i)⊤Bḡ(i), (81)

where ḡ(i) =G(i)α(i) is a subgradient in ∂J(w). On the other hand, using (59) and (76), one can

write

M(p) = sup
g∈∂J(w)

g⊤p + 1
2
p⊤B−1p

= sup
g∈∂J(w)

g⊤p + 1
2
ḡ⊤Bḡ, where ḡ ∈ ∂J(w). (82)

Putting together (81) and (82), and usingB ≻ h, one obtains

ε(i) = sup
g∈∂J(w)

g⊤p + 1
2
ḡ⊤Bḡ + 1

2
ḡ(i)⊤Bḡ(i) ≥ sup

g∈∂J(w)

g⊤p +
h

2
‖ḡ‖2 +

h

2
‖ḡ(i)‖2. (83)

Since 0 /∈ ∂J(w), the last two terms of (83) are strictly positive; and by (78), ε(i) ≥ 0 . The claim

follows by choosing an ε such that (∀i) h
2
(‖ḡ‖2 +‖ḡ(i)‖2) > ε ≥ ε(i) ≥ 0.

Using the notation from Lemma 3, we show in the following corollary that a stricter upper

bound on ε allows us to bound supg∈∂J(w)g
⊤p in terms of ḡ⊤Bḡ and ‖ḡ‖. This will be used in

Appendix D to establish the global convergence of the subBFGS algorithm.

Corollary 4 Under the conditions of Lemma 3, there exists an ε ≥ 0 for Algorithm 2 such that the

search direction p generated by Algorithm 2 satisfies

sup
g∈∂J(w)

g⊤p ≤− 1
2
ḡ⊤Bḡ ≤−

h

2
‖ḡ‖2 < 0. (84)

Proof Using (83), we have

(∀i) ε(i) ≥ sup
g∈∂J(w)

g⊤p + 1
2
ḡ⊤Bḡ +

h

2
‖ḡ(i)‖2.

The first inequality in (84) results from choosing an ε such that

(∀i)
h

2
‖ḡ(i)‖2 ≥ ε ≥ ε(i) ≥ 0. (85)

The lower bound h > 0 on the spectrum of B yields the second inequality in (84), and the third

follows from the fact that ‖ḡ‖ > 0 at non-optimal iterates.

1188

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

Appendix B. Convergence of the Descent Direction Search

Using the notation established in Appendix A, we now prove the convergence of Algorithm 2 via

several technical intermediate steps. The proof shares similarities with the proofs found in Smola

et al. (2007), Shalev-Shwartz and Singer (2008), and Warmuth et al. (2008). The key idea is that at

each iterate Algorithm 2 decreases the upper bound ε(i) on the distance from the optimality, and the

decrease in ε(i) is characterized by the recurrence ε(i) − ε(i+1) ≥ c(ε(i))2 with c > 0 (Theorem 7).

Analysing this recurrence then gives the convergence rate of the algorithm (Theorem 9).

We first provide two technical lemmas (Lemma 5 and 6) that are needed to prove Theorem 7.

Lemma 5 Let D̄(i+1)(µ) be the one-dimensional function defined in (70), and ε(i) the positive mea-

sure defined in (77). Then ε(i) ≤ ∂D̄(i+1)(0).

Proof Let p(i) be our primal solution at iteration i, derived from the dual solution α(i) using the

dual connection (65). We then have

p(i) = −Bḡ(i), where ḡ(i) := G(i)α(i). (86)

Definition (59) of M(p) implies that

M(p(i)) = 1
2
p(i)⊤B−1p(i) +p(i)⊤g(i+1), (87)

where

g(i+1) := argsup
g∈∂J(w)

g⊤p(i). (88)

Using (86), we haveB−1p(i) = −B−1Bḡ(i) = −ḡ(i), and hence (87) becomes

M(p(i)) = p(i)⊤g(i+1)− 1
2
p(i)⊤ḡ(i). (89)

Similarly, we have

D(i)(α(i)) = − 1
2
(G(i)α(i))⊤B(G(i)α(i)) = 1

2
p(i)⊤ḡ(i). (90)

From (72) and (86) it follows that

∂D̄(i+1)(0) = (ḡ(i)−g(i+1))⊤Bḡ(i) = (g(i+1)− ḡ(i))⊤p(i), (91)

where g(i+1) is a violating subgradient chosen via (61), and hence coincides with (88). Using (89)–

(91), we obtain

M(p(i))−D(i)(α(i)) =
(

g(i+1)− ḡ(i)
)⊤
p(i) = ∂D̄(i+1)(0). (92)

Together with definition (77) of ε(i), (92) implies that

ε(i) = min
j≤i

M(p(j))−D(i)
(

α(i)
)

≤ M(p(i))−D(i)(α(i)) = ∂D̄(i+1)(0).

1189

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

Lemma 6 Let f : [0,1] → R be a concave quadratic function with f (0) = 0, ∂ f (0) ∈ [0,a], and

∂ f 2(x) ≥−a for some a ≥ 0. Then maxx∈[0,1] f (x) ≥ (∂ f (0))2

2a
.

Proof Using a second-order Taylor expansion around 0, we have f (x) ≥ ∂ f (0)x − a
2
x2. x∗ =

∂ f (0)/a is the unconstrained maximum of the lower bound. Since ∂ f (0)∈ [0,a], we have x∗ ∈ [0,1].
Plugging x∗ into the lower bound yields (∂ f (0))2/(2a).

Theorem 7 Assume that at w the convex objective function J : R
d → R has bounded subgradient:

‖∂J(w)‖ ≤ G, and that the approximation B to the inverse Hessian has bounded eigenvalues:

B � H. Then

ε(i)− ε(i+1) ≥
(ε(i))2

8G2H
.

Proof Recall that we constrain the form of feasible dual solutions for D(i+1)(α) as in (69). Instead

of D(i+1)(α), we thus work with the one-dimensional concave quadratic function D̄(i+1)(µ) (70). It

is obvious that
[

α(i)

0

]

is a feasible solution for D(i+1)(α). In this case, D̄(i+1)(0) = D(i)(α(i)). (74)

implies that D̄(i+1)(µ∗) = D(i+1)(α(i+1)). Using the definition (77) of ε(i), we thus have

ε(i)− ε(i+1) ≥ D(i+1)(α(i+1))−D(i)(α(i)) = D̄(i+1)(µ∗)− D̄(i+1)(0). (93)

It is easy to see from (93) that ε(i) − ε(i+1) are upper bounds on the maximal value of the concave

quadratic function f (µ) := D̄(i+1)(µ)− D̄(i+1)(0) with µ ∈ [0,1] and f (0) = 0. Furthermore, the

definitions of D̄(i+1)(µ) and f (µ) imply that

∂ f (0) = ∂D̄(i+1)(0) = (ḡ(i)−g(i+1))⊤Bḡ(i) and (94)

∂2 f (µ) = ∂2D̄(i+1)(µ) = − (ḡ(i)−g(i+1))⊤B(ḡ(i)−g(i+1)).

Since ‖∂J(w)‖ ≤ G and ḡ(i) ∈ ∂J(w) (71), we have ‖ḡ(i) −g(i+1)‖ ≤ 2G. Our upper bound on the

spectrum of B then gives |∂ f (0)| ≤ 2G2H and
∣
∣∂2 f (µ)

∣
∣ ≤ 4G2H. Additionally, Lemma 5 and the

fact thatB � 0 imply that

∂ f (0) = ∂D̄(i+1)(0) ≥ 0 and ∂2 f (µ) = ∂2D̄(i+1)(µ) ≤ 0, (95)

which means that

∂ f (0) ∈ [0,2G2H] ⊂ [0,4G2H] and ∂2 f (µ) ≥ −4G2H.

Invoking Lemma 6, we immediately get

ε(i)− ε(i+1) ≥
(∂ f (0))2

8G2H
=

(∂D̄(i+1)(0))2

8G2H
. (96)

Since ε(i) ≤ ∂D̄(i+1)(0) by Lemma 5, the inequality (96) still holds when ∂D̄(i+1)(0) is replaced with

ε(i).

1190

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

(94) and (95) imply that the optimal combination coefficient µ∗ (73) has the property

µ∗ = min

[

1,
∂D̄(i+1)(0)

−∂2D̄(i+1)(µ)

]

.

Moreover, we can use (65) to reduce the cost of computing µ∗ by setting Bḡ(i) in (73) to be −p(i)

(Line 7 of Algorithm 2), and calculate

µ∗ = min

[

1,
g(i+1)⊤p(i)− ḡ(i)⊤p(i)

g(i+1)⊤Btg(i+1) +2 g(i+1)⊤p(i)− ḡ(i)⊤p(i)

]

, (97)

whereBtg
(i+1) can be cached for the update of the primal solution at Line 9 of Algorithm 2.

To prove Theorem 9, we use the following lemma proven by induction by Abe et al. (2001,

Sublemma 5.4):

Lemma 8 Let {ε(1), ε(2), · · ·} be a sequence of non-negative numbers satisfying ∀i ∈ N the recur-

rence

ε(i)− ε(i+1) ≥ c(ε(i))2,

where c ∈ R+ is a positive constant. Then ∀i ∈ N we have

ε(i) ≤
1

c
(

i+ 1

ε(1)c

) .

We now show that Algorithm 2 decreases ε(i) to a pre-defined tolerance ε in O(1/ε) steps:

Theorem 9 Under the assumptions of Theorem 7, Algorithm 2 converges to the desired precision ε
after

1 ≤ t ≤
8G2H

ε
−4

steps for any ε < 2G2H.

Proof Theorem 7 states that

ε(i)− ε(i+1) ≥
(ε(i))2

8G2H
,

where ε(i) is non-negative ∀i ∈ N by (78). Applying Lemma 8 we thus obtain

ε(i) ≤
1

c
(

i+ 1

ε(1)c

) , where c :=
1

8G2H
. (98)

Our assumptions on ‖∂J(w)‖ and the spectrum ofB imply that

D̄(i+1)(0) = (ḡ(i)−g(i+1))⊤Bḡ(i) ≤ 2G2H.

1191

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

Hence ε(i) ≤ 2G2H by Lemma 5. This means that (98) holds with ε(1) = 2G2H. Therefore we can

solve

ε ≤
1

c
(

t + 1

ε(1)c

) with c :=
1

8G2H
and ε(1) := 2G2H (99)

to obtain an upper bound on t such that (∀i≥ t) ε(i) ≤ ε < 2G2H. The solution to (99) is t ≤ 8G2H
ε −4.

Appendix C. Satisfiability of the Subgradient Wolfe Conditions

To formally show that there always is a positive step size that satisfies the subgradient Wolfe con-

ditions (23, 24), we restate a result of Hiriart-Urruty and Lemaréchal (1993, Theorem VI.2.3.3) in

slightly modified form:

Lemma 10 Given two points w 6= w′ in R
d , define wη = ηw′ + (1− η)w. Let J : R

d → R be

convex. There exists η ∈ (0,1) and g̃ ∈ ∂J(wη) such that

J(w′)− J(w) = g̃⊤(w′−w) ≤ ĝ⊤(w′−w),

where ĝ := argsupg∈∂J(wη) g
⊤(w′−w).

Theorem 11 Let p be a descent direction at an iteratew. If Φ(η) := J(w+ηp) is bounded below,

then there exists a step size η > 0 which satisfies the subgradient Wolfe conditions (23, 24).

Proof Since p is a descent direction, the line J(w) + c1η supg∈∂J(w)g
⊤p with c1 ∈ (0,1) must

intersect Φ(η) at least once at some η > 0 (see Figure 1 for geometric intuition). Let η′ be the

smallest such intersection point; then

J(w+η′p) = J(w) + c1η′ sup
g∈∂J(w)

g⊤p. (100)

Since Φ(η) is lower bounded, the sufficient decrease condition (23) holds for all η′′ ∈ [0,η′]. Setting

w′ =w+η′p in Lemma 10 implies that there exists an η′′ ∈ (0,η′) such that

J(w+η′p) − J(w) ≤ η′ sup
g∈∂J(w+η′′p)

g⊤p. (101)

Plugging (100) into (101) and simplifying it yields

c1 sup
g∈∂J(w)

g⊤p ≤ sup
g∈∂J(w+η′′p)

g⊤p. (102)

Since p is a descent direction, supg∈∂J(w)g
⊤p < 0, and thus (102) also holds when c1 is replaced

by c2 ∈ (c1,1).

1192

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

Algorithm 6 Algorithm 1 of Birge et al. (1998)

1: Initialize: t := 0 and w0

2: while not converged do

3: Find wt+1 that obeys

J(wt+1) ≤ J(wt) − at ‖gε′t‖
2 + εt (104)

where gε′t ∈ ∂ε′t J(wt+1), at > 0, εt ,ε′t ≥ 0 .

4: t := t +1

5: end while

Appendix D. Global Convergence of SubBFGS

There are technical difficulties in extending the classical BFGS convergence proof to the nonsmooth

case. This route was taken by Andrew and Gao (2007), which unfortunately left their proof critically

flawed: In a key step (Andrew and Gao, 2007, Equation 7) they seek to establish the non-negativity

of the directional derivative f ′(x̄; q̄) of a convex function f at a point x̄ in the direction q̄, where

x̄ and q̄ are the limit points of convergent sequences {xk} and {q̂k}κ , respectively. They do so by

taking the limit for k ∈ κ of

f ′(xk + α̃kq̂k; q̂k) > γf ′(xk; q̂k), where {α̃k}→ 0 and γ∈ (0,1) ,

which leads them to claim that

f ′(x̄; q̄) ≥ γf ′(x̄; q̄) , (103)

which would imply f ′(x̄; q̄) ≥ 0 because γ∈ (0,1). However, f ′(xk, q̂k) does not necessarily con-

verge to f ′(x̄; q̄) because the directional derivative of a nonsmooth convex function is not continu-

ous, only upper semi-continuous (Bertsekas, 1999, Proposition B.23). Instead of (103) we thus only

have

f ′(x̄; q̄) ≥ γ limsup
k→∞,k∈κ

f ′(xk; q̂k) ,

which does not suffice to establish the desired result: f ′(x̄; q̄) ≥ 0. A similar mistake is also found

in the reasoning of Andrew and Gao (2007) just after Equation 7.

Instead of this flawed approach, we use the technique introduced by Birge et al. (1998) to prove

the global convergence of subBFGS (Algorithm 1) in objective function value, that is, J(wt) →
infw J(w), provided that the spectrum of BFGS’ inverse Hessian approximationBt is bounded from

above and below for all t, and the step size ηt (obtained at Line 9) is not summable: ∑∞
t=0 ηt = ∞.

Birge et al. (1998) provide a unified framework for convergence analysis of optimization algo-

rithms for nonsmooth convex optimization, based on the notion of ε-subgradients. Formally, g is

called an ε-subgradient of J at w iff (Hiriart-Urruty and Lemaréchal, 1993, Definition XI.1.1.1)

(∀w′) J(w′) ≥ J(w)+(w′−w)
⊤
g− ε, where ε ≥ 0. (105)

The set of all ε-subgradients at a point w is called the ε-subdifferential, and denoted ∂εJ(w). From

the definition of subgradient (7), it is easy to see that ∂J(w) = ∂0J(w) ⊆ ∂εJ(w). Birge et al.

(1998) propose an ε-subgradient-based algorithm (Algorithm 6) and provide sufficient conditions

for its global convergence:

1193

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

Theorem 12 (Birge et al., 1998, Theorem 2.1(iv), first sentence)

Let J : R
d → R∪{∞} be a proper lower semi-continuous21 extended-valued convex function, and

let {(εt ,ε′t ,at ,wt+1,gε′t)} be any sequence generated by Algorithm 6 satisfying

∞

∑
t=0

εt < ∞ and
∞

∑
t=0

at = ∞. (106)

If ε′t → 0, and there exists a positive number β > 0 such that, for all large t,

β‖wt+1 −wt‖ ≤ at‖gε′t‖, (107)

then J(wt) → infw J(w).

We will use this result to establish the global convergence of subBFGS in Theorem 14. Towards

this end, we first show that subBFGS is a special case of Algorithm 6:

Lemma 13 Let pt = −Bt ḡt be the descent direction produced by Algorithm 2 at a non-optimal

iterate wt , where Bt � h > 0 and ḡt ∈ ∂J(wt), and let wt+1 = wt + ηtpt , where ηt > 0 satisfies

sufficient decrease (23) with free parameter c1 ∈ (0,1). Then wt+1 obeys (104) of Algorithm 6 for

at := c1ηt h
2

, εt = 0, and ε′t := ηt(1−
c1

2
) ḡ⊤t Bt ḡt .

Proof Our sufficient decrease condition (23) and Corollary 4 imply that

J(wt+1) ≤ J(wt) −
c1ηt

2
ḡ⊤t Bt ḡt (108)

≤ J(wt) − at‖ḡt‖
2, where at :=

c1ηth

2
.

What is left to prove is that ḡt ∈ ∂ε′t J(wt+1) for an ε′t ≥ 0. Using ḡt ∈ ∂J(wt) and the definition (7)

of subgradient, we have

(∀w) J(w) ≥ J(wt) + (w−wt)
⊤
ḡt

= J(wt+1) + (w−wt+1)
⊤
ḡt + J(wt)− J(wt+1) + (wt+1 −wt)

⊤
ḡt .

Using wt+1 −wt = −ηtBt ḡt and (108) gives

(∀w) J(w) ≥ J(wt+1) + (w−wt+1)
⊤
ḡt +

c1ηt

2
ḡ⊤t Bt ḡt − ηt ḡ

⊤
t Bt ḡt

= J(wt+1) + (w−wt+1)
⊤
ḡt − ε′t ,

where ε′t := ηt(1−
c1

2
) ḡ⊤t Bt ḡt . Since ηt > 0, c1 < 1, and Bt � h > 0, ε′t is non-negative. By the

definition (105) of ε-subgradient, ḡt ∈ ∂ε′t J(wt+1).

21. This means that there exists at least one w ∈ R
d such that J(w) < ∞, and that for all w ∈ R

d , J(w) > −∞ and

J(w) ≤ liminft→∞ J(wt) for any sequence {wt} converging to w. All objective functions considered in this paper

fulfill these conditions.

1194

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

Theorem 14 Let J : R
d → R∪{∞} be a proper lower semi-continuous21 extended-valued convex

function. Algorithm 1 with a line search that satisfies the sufficient decrease condition (23) with

c1 ∈ (0,1) converges globally to the minimal value of J, provided that:

1. the spectrum of its approximation to the inverse Hessian is bounded above and below: ∃(h,H :

0 < h ≤ H < ∞) : (∀t) h �Bt � H

2. the step size ηt > 0 satisfies ∑∞
t=0 ηt = ∞, and

3. the direction-finding tolerance ε for Algorithm 2 satisfies (85).

Proof We have already shown in Lemma 13 that subBFGS is a special case of Algorithm 6. Thus if

we can show that the technical conditions of Theorem 12 are met, it directly establishes the global

convergence of subBFGS.

Recall that for subBFGS at := c1ηt h
2

, εt = 0, ε′t := ηt(1−
c1

2
) ḡ⊤t Bt ḡt , and ḡt = gε′t . Our assump-

tion on ηt implies that ∑∞
t=0 at = c1h

2 ∑∞
t=0 ηt = ∞, thus establishing (106). We now show that ε′t → 0.

Under the third condition of Theorem 14, it follows from the first inequality in (84) in Corollary 4

that

sup
g∈∂J(wt)

g⊤pt ≤ − 1
2
ḡ⊤t Bt ḡt , (109)

where pt = −Bt ḡt , ḡt ∈ ∂J(wt) is the search direction returned by Algorithm 2. Together with the

sufficient decrease condition (23), (109) implies (108). Now use (108) recursively to obtain

J(wt+1) ≤ J(w0) −
c1

2

t

∑
i=0

ηi ḡ
⊤
i Biḡi .

Since J is proper (hence bounded from below), we have

∞

∑
t=0

ηi ḡ
⊤
i Biḡi =

1

1− c1

2

∞

∑
t=0

ε′i < ∞ . (110)

Recall that ε′i ≥ 0. The bounded sum of non-negative terms in (110) implies that the terms in the

sum must converge to zero.

Finally, to show (107) we usewt+1−wt =−ηtBt ḡt , the definition of the matrix norm: ‖B‖ :=

maxx6=0
‖Bx‖
‖x‖ , and the upper bound on the spectrum ofBt to write:

‖wt+1 −wt‖ = ηt‖Bt ḡt‖ ≤ ηt‖Bt‖‖ḡt‖ ≤ ηtH‖ḡt‖. (111)

Recall that ḡt = gε′t and at = c1ηt h
2

, and multiply both sides of (111) by c1h
2H

to obtain (107) with

β := c1h
2H

.

Appendix E. SubBFGS Converges on Various Counterexamples

We demonstrate the global convergence of subBFGS22 with an exact line search on various coun-

terexamples from the literature, designed to show the failure to converge of other gradient-based

algorithms.

22. We run Algorithm 1 with h = 10−8 and ε = 10−5.

1195

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

-1
5

0

15

30

45

45

60

60

GD

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

-1
5

0

15

30

45

45

60

60

subBFGS

Figure 23: Optimization trajectory of steepest descent (left) and subBFGS (right) on counterexam-

ple (112).

E.1 Counterexample for Steepest Descent

The first counterexample (112) is given by Wolfe (1975) to show the non-convergent behaviour of

the steepest descent method with an exact line search (denoted GD):

f (x,y) :=

{

5
√

(9x2 +16y2) if x ≥ |y|,

9x+16|y| otherwise.
(112)

This function is subdifferentiable along x ≤ 0, y = 0 (dashed line in Figure 23); its minimal value

(−∞) is attained for x = −∞. As can be seen in Figure 23 (left), starting from a differentiable

point (2,1), GD follows successively orthogonal directions, that is, −∇ f (x,y), and converges to

the non-optimal point (0,0). As pointed out by Wolfe (1975), the failure of GD here is due to the

fact that GD does not have a global view of f , specifically, it is because the gradient evaluated

at each iterate (solid disk) is not informative about ∂ f (0,0), which contains subgradients (e.g.,

(9,0)), whose negative directions point toward the minimum. SubBFGS overcomes this “short-

sightedness” by incorporating into the parameter update (3) an estimate Bt of the inverse Hessian,

whose information about the shape of f prevents subBFGS from zigzagging to a non-optimal point.

Figure 23 (right) shows that subBFGS moves to the correct region (x < 0) at the second step. In fact,

the second step of subBFGS lands exactly on the hinge x ≤ 0,y = 0, where a subgradient pointing

to the optimum is available.

E.2 Counterexample for Steepest Subgradient Descent

The second counterexample (113), due to Hiriart-Urruty and Lemaréchal (1993, Section VIII.2.2),

is a piecewise linear function which is subdifferentiable along 0 ≤ y = ±3x and x = 0 (dashed lines

in Figure 24):

f (x,y) := max{−100, ±2x+3y, ±5x+2y}. (113)

This example shows that steepest subgradient descent with an exact line search (denoted subGD)

may not converge to the optimum of a nonsmooth function. Steepest subgradient descent updates

1196

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

-6 -4 -2 0 2 4 6
x

-6

-4

-2

0

2

4

6
y

-8
08

1
6

2
4 2

4

3
2

3
2

4
0

4
0

subGD

-6 -4 -2 0 2 4 6
x

-6

-4

-2

0

2

4

6

y

-8
08

1
6

2
4 2

4

3
2

3
2

4
0

4
0

subBFGS

Figure 24: Optimization trajectory of steepest subgradient descent (left) and subBFGS (right) on

counterexample (113).

-10 -5 0 5 10
x

-10

-5

0

5

10

y

0

5

1
0

1
5

20

25

30

BFGS

-10 -5 0 5 10
x

-10

-5

0

5

10

y

0

5
1
0

1
5

20

25

30

subBFGS

Figure 25: Optimization trajectory of standard BFGS (left) and subBFGS (right) on counterexam-

ple (114).

parameters along the steepest descent subgradient direction, which is obtained by solving the min-

sup problem (13) with respect to the Euclidean norm. Clearly, the minimal value of f (−100) is

attained for sufficiently negative values of y. However, subGD oscillates between two hinges 0 ≤
y = ±3x, converging to the non-optimal point (0,0), as shown in Figure 24 (left). The zigzagging

optimization trajectory of subGD does not allow it to land on any informative position such as the

hinge y = 0, where the steepest subgradient descent direction points to the desired region (y < 0);

Hiriart-Urruty and Lemaréchal (1993, Section VIII.2.2) provide a detailed discussion. By contrast,

subBFGS moves to the y < 0 region at the second step (Figure 24, right), which ends at the point

(100,−300) (not shown in the figure) where the minimal value of f is attained .

1197

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

E.3 Counterexample for BFGS

The final counterexample (114) is given by Lewis and Overton (2008b) to show that the standard

BFGS algorithm with an exact line search can break down when encountering a nonsmooth point:

f (x,y) := max{2|x|+ y, 3y}. (114)

This function is subdifferentiable along x = 0, y ≤ 0 and y = |x| (dashed lines in Figure 25). Figure

25 (left) shows that after the first step, BFGS lands on a nonsmooth point, where it fails to find a

descent direction. This is not surprising because at a nonsmooth pointw the quasi-Newton direction

p := −Bg for a given subgradient g ∈ ∂J(w) is not necessarily a direction of descent. SubBFGS

fixes this problem by using a direction-finding procedure (Algorithm 2), which is guaranteed to

generate a descent quasi-Newton direction. Here subBFGS converges to f = −∞ in three iterations

(Figure 25, right).

References

N. Abe, J. Takeuchi, and M. K. Warmuth. Polynomial Learnability of Stochastic Rules with Respect

to the KL-Divergence and Quadratic Distance. IEICE Transactions on Information and Systems,

84(3):299–316, 2001.

P. K. Agarwal and M. Sharir. Davenport-Schinzel sequences and their geometric applications.

In J. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 1–47. North-

Holland, New York, 2000.

G. Andrew and J. Gao. Scalable training of L1-regularized log-linear models. In Proc. Intl. Conf.

Machine Learning, pages 33–40, New York, NY, USA, 2007. ACM.

J. Basch. Kinetic Data Structures. PhD thesis, Stanford University, June 1999.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

J. R. Birge, L. Qi, and Z. Wei. A general approach to convergence properties of some methods for

nonsmooth convex optimization. Applied Mathematics and Optimization, 38(2):141–158, 1998.

A. Bordes, L. Bottou, P. Gallinari, and J. Weston. Solving multiclass support vector machines with

LaRank. In Proc. Intl. Conf. Machine Learning, pages 89–96, New York, NY, USA, 2007. ACM.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge,

England, 2004.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal

of Machine Learning Research, 3:951–991, January 2003a.

K. Crammer and Y. Singer. A family of additive online algorithms for category ranking. J. Mach.

Learn. Res., 3:1025–1058, February 2003b.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support vector machines. In

A. McCallum and S. Roweis, editors, ICML, pages 320–327. Omnipress, 2008.

1198

QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for large-scale risk minimization.

Journal of Machine Learning Research, 10:2157–2192, 2009.

M. Haarala. Large-Scale Nonsmooth Optimization. PhD thesis, University of Jyväskylä, 2004.

J. Hershberger. Finding the upper envelope of n line segments in O(n logn) time. Information

Processing Letters, 33(4):169–174, December 1989.

J. B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms, I and II,

volume 305 and 306. Springer-Verlag, 1993.

T. Joachims. Training linear SVMs in linear time. In Proc. ACM Conf. Knowledge Discovery and

Data Mining (KDD). ACM, 2006.

Y. J. Lee and O. L. Mangasarian. SSVM: A smooth support vector machine for classification.

Computational optimization and Applications, 20(1):5–22, 2001.

C. Lemarechal. Numerical experiments in nonsmooth optimization. Progress in Nondifferentiable

Optimization, 82:61–84, 1982.

A. S. Lewis and M. L. Overton. Nonsmooth optimization via BFGS. Technical report, Opti-

mization Online, 2008a. URL http://www.optimization-online.org/DB_FILE/2008/12/

2172.pdf. Submitted to SIAM J. Optimization.

A. S. Lewis and M. L. Overton. Behavior of BFGS with an exact line search on non-

smooth examples. Technical report, Optimization Online, 2008b. URL http://www.

optimization-online.org/DB_FILE/2008/12/2173.pdf. Submitted to SIAM J. Optimiza-

tion.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.

Mathematical Programming, 45(3):503–528, 1989.

L. Lukšan and J. Vlček. Globally convergent variable metric method for convex nonsmooth un-

constrained minimization. Journal of Optimization Theory and Applications, 102(3):593–613,

1999.

F. Maes, L. Denoyer, and P. Gallinari. XML structure mapping application to the PASCAL/INEX

2006 XML document mining track. In Advances in XML Information Retrieval and Evalua-

tion: Fifth Workshop of the INitiative for the Evaluation of XML Retrieval (INEX’06), Dagstuhl,

Germany, 2007.

A. Nedić and D. P. Bertsekas. Convergence rate of incremental subgradient algorithms. In S. Urya-

sev and P. M. Pardalos, editors, Stochastic Optimization: Algorithms and Applications, pages

263–304. Kluwer Academic Publishers, 2000.

A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with

Lipschitz continuous monotone operators and smooth convex-concave saddle point problems.

SIAM J. on Optimization, 15(1):229–251, 2005. ISSN 1052-6234.

Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–152,

2005.

1199

YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research.

Springer, 1999.

S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability:

New relaxations and efficient boosting algorithms. In Proceedings of COLT, 2008.

A. J. Smola, S. V. N. Vishwanathan, and Q. V. Le. Bundle methods for machine learning. In

D. Koller and Y. Singer, editors, Advances in Neural Information Processing Systems 20, Cam-

bridge MA, 2007. MIT Press.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun, L. Saul, and

B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 25–32,

Cambridge, MA, 2004. MIT Press.

C.-H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for regularized risk

minimization. Journal of Machine Learning Research, 11:311–365, 2010.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and

interdependent output variables. Journal of Machine Learning Research, 6:1453–1484, 2005.

M. K. Warmuth, K. A. Glocer, and S. V. N. Vishwanathan. Entropy regularized LPBoost. In

Y. Freund, Y. Làszlò Györfi, and G. Turàn, editors, Proc. Intl. Conf. Algorithmic Learning Theory,

number 5254 in Lecture Notes in Artificial Intelligence, pages 256 – 271, Budapest, October

2008. Springer-Verlag.

P. Wolfe. Convergence conditions for ascent methods. SIAM Review, 11(2):226–235, 1969.

P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiable functions. Mathe-

matical Programming Study, 3:145–173, 1975.

J. Yu, S. V. N. Vishwanathan, S. Günter, and N. N. Schraudolph. A quasi-Newton approach to

nonsmooth convex optimization. In A. McCallum and S. Roweis, editors, ICML, pages 1216–

1223. Omnipress, 2008.

T. Zhang and F. J. Oles. Text categorization based on regularized linear classification methods.

Information Retrieval, 4:5–31, 2001.

1200

