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Abstract. We describe an infeasible interior point algorithm for convex minimiza-
tion problems. The method uses quasi-Newton techniques for approximating the
second derivatives and providing superlinear convergence. We propose a new feasi-
bility control of the iterates by introducing shift variables and by penalizing them
in the barrier problem. We prove global convergence under standard conditions on
the problem data, without any assumption on the behavior of the algorithm.
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1 Introduction

We consider the smooth convex minimization problem

{ min f(), (1.1)

c(x) <0,

where f : R — R, ¢ : R® — R™, and where f and the components ¢; are convex
and differentiable functions. We solve (1.1) by a quasi-Newton interior point method
based on the algorithm introduced by Armand, Gilbert and Jan-Jégou [1] and further
developed in [2]. Our new method can start from an infeasible initial point, but it
differs from the algorithm proposed in [2] about the feasibility control of the iterates.
As a result of our new approach, the algorithm is simpler to analyze and it has stronger
convergence properties.

To handle infeasible iterates, we adopt a strategy similar to the one developed in [2].
The boundary of the feasible set is shifted, so that the iterates remain inside a feasible
region and an exact penalization is used to shift back the boundary to its original
position. But a difficult, and unsolved, issue in [2] was the control of the penalty
parameter. In that paper, the authors have not succeeded in proving that the sequence
of penalty parameters generated by their algorithm remains bounded, and therefore
the whole convergence analysis has been done under a boundedness hypothesis of this
sequence. In the present paper, shift and penalization are introduced in a different way
and an explicit control of the penalty parameters is proposed. Our main result shows
that the sequence of penalty parameters generated by the algorithm remains bounded.

fLACO-CNRS, Université de Limoges, Faculté des Sciences, 123, avenue Albert Thomas, 87060
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The whole convergence analysis is done by using the same assumptions on the problem
data as those in [2], but without any assumption on the behavior of the algorithm.
We associate to problem (1.1) the following penalized problem

min f(z)+o's,
c(x) <s, (1.2)
s >0,

where the objective function is parametrized with a penalty vector ¢ € R™. The
motivation for introducing this problem is the following. The penalization is exact,
in the sense that if (x,\) is a primal-dual solution of (1.1), then (z,s) with s = 0,
is solution of (1.2) whenever o > A\ (the inequality is understood componentwise).
On the other hand, given any initial point x1, not necessarily feasible for (1.1), it is
easy to find s; such that the pair (z1,s1) is strictly feasible for (1.2). Therefore, any
interior point algorithm, that maintains strict feasibility of the iterates, can be applied
to solve problem (1.2). During the iterations for solving (1.2), it then suffices to update
conveniently the components of the penalty vector ¢ in order to drive s to zero, and in
this way to obtain a convergent sequence to a solution of the original problem (1.1).

The primal-dual interior point algorithm to solve (1.2) is as follows. We associate
to (1.2) the penalized barrier problem

min ¢, (z,s) = f(z) +o's —pd 1 log ((si — ci(z))sq),
{ (s — c(xls, s) >0, ' (13)

where ¢, ,, is a barrier function parametrized by p > 0 and o € R™. This problem is
unconstrained, the positivity constraint being implicit, and, as is said above, a strictly
feasible starting point can be easily computed. For fixed parameters u and o, prob-
lem (1.3) is approximately solved by applying a sequence of primal-dual quasi-Newton
(BFGS) iterations to the perturbed optimality conditions of the penalized problem
(1.2), see [1]. The convergence of the iterates is guaranteed by means of a line search
procedure on some merit function. These iterations are called inner iterations. Once
an approximate solution of (1.3) is found, the parameters p and o are updated. The
barrier parameter 4 is reduced to zero, to force convergence to a solution of (1.2). Using
the estimate of the optimal multipliers available at the end of the inner iterations, the
components of the penalty parameter o are possibly increased, to force the convergence
of s to zero. The stabilization of ¢’s values is obtained by standard update rules ensur-
ing that the sequence of penalty parameters is either stationary or unbounded. Then,
a new sequence of inner iterations is applied, until convergence to a solution of (1.1).
The collection of inner iterations corresponding to the same value of p and o is called
an outer iteration.

Let us mention the main differences with the strategy proposed in [2]. In that paper,
problem (1.1) is transformed into the equivalent form:

min f(z),
c(z) < s, (1.4)
s =0,



where s € R" is a vector of shift variables. The advantage of the transformation was to
preserve the convexity of the original problem, that would not have been the case with
the use of slack variables, that is with the transformation ¢(x)+s = 0, s > 0 (see [3], for
example). The barrier problem associated to (1.4) is the following equality constraint
problem:

{ min ¢,,(z) = f(z) — p 7, log (s — ci(x)),
s=0.

In this approach, the inequality s — ¢(x) > 0 is maintained thanks to the logarithmic
barrier function, while the equality s = 0 is relaxed and asymptotically enforced by
exact penalization. The merit function, used to force the global convergence of the
inner iterates, contains the term ¢, () + pl|s||, where p is a penalty parameter. Since
the algorithm is a line search method, the quasi-Newton direction computed at each
inner iteration must be a descent direction of the merit function. This property is
guaranteed by a possible increase of the penalty parameter value before performing the
line search, hence the need of a stability property of the sequence of penalty parameters
to prove the convergence of the inner iterates. In our new approach this problem is
avoided, because the penalty parameter is fixed during an inner iteration, the update
of its value is done at the outer iteration only, which simplifies both the algorithm and
its convergence analysis. Let us mention also that in [2] the shift variables are updated
according to sy = (1 — a)s, where « is the step length. This formula follows from
the linearization of the equation s = 0 in (1.4). For the efficiency of the algorithm
(to prevent a non-acceptance of the unit step length by the line search), the constraint
s = 0 is relaxed into s = r,, where r, is an additional parameter that converges to
0 with u. Our new algorithm does not need such a relaxation, the shift variables are
progressively driven to 0 thanks to the combination of the logarithmic barrier function
and the penalization term.

We briefly mention a link between our approach and previous works in nonlinear
programming. In [9], Mayne and Polak proposed a scheme to incorporate equality
constraints in methods that solve inequality constraints problems by generating feasible
iterates. This scheme has been used in some feasible directions algorithms, see [6, 8]
and the recent work of Tits, Urban, Bakhtiari and Lawrence [15]. It consists of keeping
the iterates on one side of each equality constraint and penalizing the iterates to force
them to go more and more near the boundary of these fictive inequality constraints.
This is exactly what is done when the equivalent formulation (1.4) of problem (1.1) is
transformed into (1.2).

The paper is organized as follows. In the next section we introduce the notation
and state the assumption used throughout the paper. The algorithm for solving the
penalized barrier problem is presented in Section 3 and its convergence properties are
stated. In Section 4 the overall algorithm is presented and the convergence of the outer
iterates is analyzed. Part of the results of the paper, especially those concerning the
inner iterations, are proved by using similar techniques to those used in [1]. To simplify
the presentation and to highlight the main contribution of the paper, some proofs are
relegated in appendix at the end of the paper.



2 Notation and assumption

Vector inequalities are understood componentwise: u > 0 means that each component
satisfies u; > 0 and u > v means that u — v > 0, with similar meanings when > is
replaced by >. Given two vectors z, y € R”, 2"y denotes the Euclidean scalar product
and ||z|| denotes the associated £, norm. A function is of class C1! if it is continuously
differentiable and if its derivative is Lipschitz continuous.

Let us recall some definitions of convex analysis (see for example [7]). A function
¢ : R™ — R is strongly convex with modulus x > 0, if the function ¢(-) — & - ||? is
convex. For a differentiable function, the strong convexity is equivalent to the strong
monotonicity of its gradient, that is: for all (z,y) € R" x R, (V(x) — Vo(y))' (z —
y) > kljz — y||?>. Consider now a closed proper convex function f : R" — R U {+oc0}.
Its asymptotic derivative is the closed proper convex function defined for d € R™ by

flz+td) - f(x)

t—>+oo t ’

f2(d) =

where x is an arbitrary point in the domain of f. The level sets of f are compact if and
only if f°°(d) > 0 for all nonzero d € R™ (see [7, Proposition IV.3.2.5]). As corollary
(see [14, Corollary 27.3.3]), if problem (1.1) is feasible, then its solution set is nonempty
and compact if and only if the following property holds:

(Vd#0) ¢°d)<0 Vi=1,....m = [f>(d)>0. (2.1)

The Lagrangian associated with problem (1.1) is the function ¢ : R” x R™ — R
defined by ¢(z,\) = f(z) + ATc(x). When f and c are twice differentiable, the gradient
and Hessian of £ with respect to = are given by

Vol(2,\) = V() + Ve(z)h and V2 L(z,\) = V2f(z) + i A Ve ()

where V f(z) is the gradient of f at x (for the Euclidean scalar product), Ve(z) is
the matrix whose columns are the gradients V¢;(z). Provided the constraints satisfy
some qualification assumption, the Karush-Kuhn-Tucker (KKT) optimality conditions
of problem (1.1) can be written as follows (see [12] for example): if x is a solution of
(1.1) there exists a vector of multipliers A € R™ such that

Vf(
)

)+ Ve(x)\ =0,
)fi (22)

0,

> Q8
(VAN

where C(x) is the diagonal matrix diag(ci(x),...,cm(x)).
Our minimal assumption refers to the convexity and smoothness of problem (1.1).

Assumption 2.1 The functions f and ¢; (1 < i < m) are convex and differentiable
from R™ to R. There exists A € R™, such that the Lagrangian (-, A) is strongly convex.



A first consequence of this assumption is the strong convexity of the Lagrangian
£(-,A) for any multiplier A > 0, with a modulus depending continuously on A, see
[2, Lemma 3.2]. This property plays a key role in the convergence analysis of the
minimization algorithm.

A second consequence of Assumption 2.1 is the compactness of the solution set of
problem (1.1).

Proposition 2.2 [2] Suppose that Assumption 2.1 holds. Then, there is no nonzero
vector d € R™ such that f>°(d) < oo and ¢;°(d) < oo, for alli =1,...,m. In particular,
if problem (1.1) is feasible, then its solution set is nonempty and compact.

3 Solving the penalized barrier problem

This section presents the algorithm for solving the penalized barrier problem (1.3) for
fixed parameters p and o. We first prove some elementary properties of problems (1.2)
and (1.3), that provide the basis for the minimization method. Next, the quasi-Newton
step and the merit function are defined, then the line search minimization algorithm,
is described. At last, the convergence results are stated.

The optimality conditions of the penalized problem (1.2) can be written (from now
on, to simplify the notation we drop most of the dependencies in x)

Vf+Vel=0,
(S—=C)x=0,
S(o—\) =0, (3.1)
(s—c,s,\,0—X) >0,
where S = diag(si,...,Sm). Note that o — A corresponds to the vector of multipliers

associated with the nonnegativity constraint of (1.2). Assumption 2.1 implies that the
solution set of the penalized problem (1.2) is nonempty and compact, even if problem
(1.1) is infeasible.

Proposition 3.1 Suppose that Assumption 2.1 holds. Then, the penalized problem
(1.2) is strictly feasible and for any penalty vector o > 0 its solution set is nonempty
and compact. If (z, ;\) is a primal-dual solution of (1.1), then for any o > A, the vector
triple (:i‘,é,j\), with § = 0, is a solution of (3.1), which means that (i‘,é,j\,d - 5\) is
a primal-dual solution of the penalized problem (1.2). Conversely, let (24, 4, 5\0) be a
solution of (3.1), if 0 > Ay then 8, = 0 and (&g, As) is a primal-dual solution of (1.1).

Proof. It is clear that problem (1.2) is strictly feasible. Let us prove that its solution set
is nonempty and compact by using the characterization (2.1). Let d := (d*,d®) € R™ x
R™, d # 0, such that ¢{°(d*) < df for all i =1,...,m and d° > 0. By Proposition 2.2,
it follows that either f>°(d*) = oo or d* = 0. In both cases, since o > 0, one has
f(d®) +o'd® > 0.

Let (&, \) be a solution of (2.2). If ¢ — A > 0, then by setting § = 0, (&, §, A) solves
(3.1). Conversely, suppose that (24, 85, As) solves (3.1). Since o — Ay > 0, the second
complementarity condition in (3.1) implies §, = 0, and thus (&4, As) solves (2.2). O



A usual way to introduce interior point strategy for solving an inequality constraint
problem, is to perturb the complementarity conditions by a parameter p > 0 (see for
example [16]). Let us denote by e = (1---1)T, the vector of all ones. Conditions (3.1)
are transformed into

Vf+Vel=0,
(S —=C) A\ = pe,
S(o—A) = pe, (3.2)

(s—c,s,\,0—X)>0.

The substitution (S — C)~le for A in the first and third equalities of (3.2) gives the
optimality conditions of the penalized barrier problem (1.3).

Proposition 3.2 Suppose that Assumption 2.1 holds. Then, for any penalty vector
o >0 and any barrier parameter p > 0, the barrier function yg,, is strictly convex on
its domain and its level sets are compact. In particular, the penalized barrier problem
(1.3) has a unique solution, denoted by (Zs,,34,u). This one is characterized by the
existence of 5\0# € R™ such that (Zgu, 80,4, S\U’u) is a solution of (3.2).

Proof. Assumption 2.1 implies that for all x # 2’ and a € (0,1), f(az + (1 — «)
) < af(zx)+ (1 —a)f(2) and ¢i(azr + (1 — a)2’) < aci(x) + (1 — a)¢i(2), for all
i=1,...,m; and at least one inequality is strictly satisfied (otherwise we would have
lazx + (1 — a)r',e) = al(z,e) + (1 — a)l(2’,e), contradicting the strong convexity
of £(-,e)). Now consider two pairs (x,s) # (2/,s'). If s = ¢, then x # 2/ and the
strict convexity of ¢, , follows from the previous remark and the properties of the log
function (strict monotonicity and concavity). If s # s’, the result follows from the strict
convexity of the function s — o's — >, log s;, the monotonicity and the concavity of
the log.

The compactness of the level sets of ¢, is a consequence of Proposition 3.1 and
of the well known compactness property of the level sets of the log barrier function
associated to an inequality convex problem, see [5, Lemma 12]. It is clear that the
domain of ¢, , is nonempty, therefore its minimum exits and is unique. It satisfies

Vf+pVe(S—C)7te = 0,
o—u(S—-0C)te—puS~le = 0.

Defining 5\0# by (S\U,u)i =1t/ (36, — c(Z0,))i, the result is proved. O

Equations (3.2) are approximately solved by applying a sequence of Newton iter-
ations. The Newton step (d®,d*,d*) € R" x R™ x R™ at a given iterate (z,s,)) is a
solution of the following linear system

M 0 Ve d® Vit
—AVeT A S—-C &l == (S—-C)A—pe]l, (3.3)
0 Y-A =S d* S(oc— ) — ue
in which M = V2.{(z,)\), A and ¥ are the diagonal matrices diag(\i,...,\,) and
diag(o1,...,0m). In the quasi-Newton algorithm that we consider, M is a positive

definite approximation to the Hessian of the Lagrangian, updated by the BFGS formula.



Proposition 3.3 Suppose that M is positive definite and that (s — ¢, s, \,0 — ) > 0,
then the linear system (3.3) has a unique solution.

Proof. By permuting the last two lines of the square matrix in (3.3), one has the
following block LU decomposition:

M 0 Ve I 0 o\ /M 0 Ve
0 T-A -S |= 0 I oo =-A -5,
~AVeT A S-C AVEMTL A -AT T/ N0 0 K

where K = S — C + A (Ve'M™'Ve+ (S —A)71S). The lower triangular factor is
nonsingular because it has only ones on its diagonal. The assumptions made on the
data imply that the three blocks M, ¥ — A and K are positive definite. Therefore, the
block upper triangular factor is nonsingular. O

To simplify the notation, we denote by z the vector triple (x,s,A) and define the
following domain:

Zyi={z=(2,8A) ER"xR™ xR : (s — c(z),s,\,0 — A) > 0}.

To force convergence of the quasi-Newton iterates, we use the following primal-dual
merit function (see [1]):

1/}07/1(2) = @a,u(fva S) + TVU7M(Z)7 (34)

where 7 > 0 is a scaling parameter and
Voul2) = Al(s—c(2)) — Y log ()\i (si — ci(x)))
i=1

+5'(0—A)— MZm:IOg(Si (05 — )\i));
=1

is a centralization term. Its purpose is to control the displacement in the dual space.
Indeed, its minimum value (with respect to z) is achieved if and only if the perturbed
complementarity conditions (second and third equations in (3.2)) are satisfied. The
following proposition shows that v, can act as merit function.

Proposition 3.4 Suppose that Assumption 2.1 holds. Then, 1, , has for unique min-
imizer the vector triple 25, = (Zou, So,u, S\U,H) given by Proposition 3.2 and it has no
other stationary point. Furthermore, suppose that M is symmetric positive definite.
Let z € Z, and let d be the unique solution of (3.3). If z # 25, then d is a descent

direction of 1y, at z, meaning that Vi, ,(2)"d < 0.
The proof is given in Appendix A.1.

We can now state the algorithm used to solve the perturbed KKT system (3.2),
with fixed penalty vector ¢ > 0 and barrier parameter p > 0. The following constants



are given independently of the iteration index: the Armijo’s slope w € (0, %), the
backtracking reduction coefficients 0 < £ < ¢’ < 1 and the centralization factor 7 > 0.
At the beginning of the iteration, the current iterate z = (z,s,\) € Z, is supposed
available, as well as a positive definite matrix M approximating the Hessian of the

Lagrangian V2, ((z, ).

ALGORITHM A, for solving (3.2) (one inner iteration).

1. Compute d := (d*,d*,d), the unique solution to the linear system (3.3).
If d = 0, stop (z solves the system (3.2)).

2. Compute a step length o > 0 by backtracking:

2.1. Set a = 1.
2.2. While z 4+ ad € Z,, choose a new step length « in [(a, & a].
2.3. While the sufficient decrease condition (or Armijo condition)

Vo u(z + ad) < u(2) + wa Viby,(2)'d (3.5)

is not satisfied, choose a new step length a in [€cv, .
24. Set z4 ==z + ad.

3. Update M by the BFGS formula

MS§STM AT
where v and ¢ are given by
di=xy —x and y:=Vil(xg, Ay) — Vl(z, Ap). (3.7)

Under Assumption 2.1, every step of the algorithm is well defined. In Step 1, the direc-
tion d exists because z € Z, and M is positive definite (Proposition 3.3). The algorithm
does not loop in Step 2 because z # 25, (Step 1), so that d is a descent direction of 1,
(Proposition 3.4) and the backtracking line search guarantees a sufficient step length
reduction so that z + ad € Z, and (3.5) can be satisfied. In Step 3, formula (3.6) is
well defined because v'd > 0, due to the strong convexity of the Lagrangian (see the
remark following Assumption 2.1).

The convergence analysis of this kind of algorithm has been fully detailed in [1, 2],
but it is worth noting that Algorithm A, , presented here is not Algorithm A, of [1]
applied to the perturbed optimality conditions of the penalized problem (1.2). To be
convinced, suppose that we apply directly the algorithm of [1]. The perturbed KKT
conditions to solve would then be

Vf+Vel=0,
oc—A—€=0,
(S —C) A\ = pe,
SE = pe,

(s —c,8,\,6) >0.
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Though these conditions are equivalent to the formulation (3.2), applying the Newton
method to this system does not produce the same iterates as Algorithm A, ,, unless
¢ = 0 — A\. Moreover, the required strong convexity assumption on the Lagrangian
associated to problem (1.2), does not hold here because this Lagrangian function is
only linear is s. Nevertheless, the r-linear and g-superlinear convergence properties
also apply to Algorithm A, , and they are stated in the next two results.

Theorem 3.5 Suppose that Assumption 2.1 holds and that f and ¢ are of class C!
in a neighborhood of the level set {z € Z5 : Y5 u(2) < Vgu(21)}, where 2y € Z, is
a starting point. Suppose that Algorithm A, does not stop in Step 1. Then, the
generated sequence {z} converges to Z,,, the unique solution of (3.2). The rate of
convergence is r-linear, which means that limsupy,_, . ||z — z?g,#Hl/lC < 1. In particular,
the series Y~ |2k — 24| is convergent.

The proof is given in Appendix B.1.

A stronger convergence result can be proved by using an additional assumption on
the second derivatives. A function ¢, twice differentiable in a neighborhood of a point
x € R™, is said to have a locally radially Lipschitzian Hessian at z, if there exists a
positive constant L such that for 2’ near x, one has

IV2¢(x) = V2p(a")| < Lz — /|

Theorem 3.6 Suppose that all assumptions of Theorem 3.5 hold and in addition that
f and c are twice continuously differentiable near T, ,, with locally radially Lipschitzian
Hessians at &,,. Then, the sequence {z} generated by this algorithm converges to
Zo.u q-superlinearly, which means that ||zp11 — 26l = o(||2k — Zo.ul|). Moreover, for k
sufficiently large, the unit step length oy, = 1 is accepted by the line search.

The proof is given in Appendix B.2.

4 Overall algorithm

This section presents and analyses the overall algorithm for solving problem (1.1). Part
of the analysis requires the existence of a strictly feasible point.

Assumption 4.1 There exists x € R™ such that c(x) < 0.

This property is usually called the Slater condition. It is equivalent to the boundedness
of the set of dual solutions of problem (1.1).

The perturbed KKT conditions (3.2) are approximately solved for a sequence of
barrier parameters p decreasing to zero. The control of the penalty parameter o is
based on Proposition 3.1. The latter suggests that o should be increased whenever the
difference o — A is to close to zero. A stable control is obtained with standard update
rules ensuring boundedness of the sequence of penalty parameters if and only if their
values change finitely often.



We state now the overall algorithm for solving problem (1.1). A constant vector
g € R™, g >0, is given independently of the iteration index. At the beginning of the

jth outer iteration, the penalty parameter o/ > ¢ and an approximation z{ : (.%jl, s{,
)\]1) Z,; of the solution of (3.2) are supposed available, as well as a positive definite

matrix M{ approximating the Hessian of the Lagrangian. The barrier parameter w >0

and the precision threshold €/ := (61 , ei, es) > 0 are also known.

ALGORITHM A for solving problem (1.1) (one outer iteration).

1. Starting from z{, use Algorithm A, , until 2/ := (27,57, \) satisfies
2z € Z_; and
V() + Ve(@i)N | <,
I(87 — Ca )N — e < e (4.1)
189(09 = M) — pidel] < .

2. Update the penalty vector with the followmg rule: For all i € {1...m},
if 0] > )\J + o;, then crj+ =0, else crj+ = max(1. 103 )\] +0; )

3. Set the new barrler parameter ;H + s O, the precision thresholds etl .=
(e{“,e{“,e@“) > 0, such that {y/} and {€/} converge to zero when
j — oo. Choose a new starting iterate z{“ € Z,j+1 for the next outer

iteration and a new positive definite matrix M +

If the functions f and ¢ are C™! and if Assumption 2.1 holds, then Algorithm A is
well defined. Indeed, Theorem 3.5 implies that the stopping criterion (4.1) is satisfied
after a finite number of iterations of Algorithm A, ,. In Step 2, the update rule of the
penalty parameters implies that for all index i, each sequence {aj } is nondecreasing

and is either unbounded or stationary. In Step 3, a possible choice is to set 27 1 —
(note that Z,; is included in Z,;41) and M = M7,
Lemma 4.2 For all i = 1,...,m, the nondecreasing sequence of penalty parameters

{JZ} is bounded if and only if the sequence of multipliers {\!} is bounded. In that case,
there exist an index j; and o; > 0 such that for all j > j;,

o} =0,
and in addition the sequence {sf} tends to 0 when j — oo.

Proof. The first part follows directly from the update rule in Step 2 of Algorithm A. If
{)\] } is bounded, then o7 — /\j =0, — /\] > g; >0 for all j > j;. The third inequality of
the stopping criterion (4 1) and the convergence of the sequences {17/} and {€l} to zero
imply that the products s] (o7 — )\j ) tend to zero, and thus s] — 0 when j — co. O
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The following lemma is a consequence of the convexity of the Lagrangian, it gives
an estimate of the penalty function value at an outer iteration.

Lemma 4.3 Suppose that Assumption 2.1 holds. If (27,57, \) satisfies (4.1), then for
any x € R™ one has

f@) 4+ (o)) s < t(x, X)) + m%(e{; + &)+ 2mpd + ||27 — :U||e{ (4.2)

Proof. Let x be any vector of R™. The convexity of the Lagrangian implies
027, N 4+ Vl(2? D) (2 — 29) < bz, V).

Using the Cauchy-Schwarz inequality and the first inequality of (4.1) we obtain

F@) + (o)) T8 <z, V) + (07)Ts7 — (W) Te(a?) + |27 — z||€].
The last two inequalities of (4.1) imply

M) (87 —c(@?)) = e (87 — C(a?)N — ple) +mpd < m2el + myd
and
(07 = N)TsT = e (S(07 — NT) — ple) + mpd < mzel +myd.

Writing (09)Ts? — (A Te(2?) = (09 — M) Ts7 4+ (M) T(s7 — ¢(27)) and combining the three
preceding inequalities, we obtain (4.2). O

Proposition 4.4 Suppose that Assumption 2.1 holds and that f and c are CY' func-
tions. Then, Algorithm A generates a sequence {27} satisfying (4.1) and one of the
following three situations occurs.

(i) The sequence {2’} is unbounded. In this case, problem (1.1) is infeasible and
{N} is unbounded.
(ii) The sequence {2’} is bounded, but the sequence {N} is unbounded. In this
case, the sequence {s'} is bounded and for any of its limit point 5, the set
{z : c(x) < 5} is nonempty but does not satisfy the Slater condition.
(iii) Both sequences {x7} and {N} are bounded. In this situation, {s’} tends to zero
and any limit point of {(x?, M)} is a primal-dual solution of problem (1.1).

Proof. Assumption 2.1 and Theorem 3.5 imply that the stopping criterion (4.1) can
be satisfied after a finite number of iterations of Algorithm A, ,. The sequence {27} is
then well defined.

To prove (i), suppose that there exists a subset J of indices such that ||27| — oo
when j — oo in J. Let x be any point in R™. Let us show that x is not feasible for
(1.1) and that {\};c s is unbounded. Define #/ := |2/ — z|| and & := (27 —x)/t/. One
has #/ — oo when j — oo in J and d/ — d # 0 for some subsequence J' C J. Using
(4.2) and next ¢ > 0, 0/ > g and (s7,s/ — ¢(27)) > 0, for any x € R™ one has

F@) = f@) + o (e(@) —ex)) < (N —a)Te(z) + o (e(a?) — ) + (@ — o) T8
+m2 (el + €) + 2mpd + a? — ze]
(N —o)Te(z) + (14 /)¢, (4.3)

IN
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where {¢7} is a sequence that converges to zero. Dividing both sides of (4.3) by #/ we
obtain

1 .
SN /7 O JNT _ J
5 7 +(tj+1)§.

f@) = flo) -~ al@d) —c@) (¥ —o)e(x)
£ + ;Qi : < >

Since ¢ > 0, we deduce from Proposition 2.2 that the left hand side tends to
FX(d) + ) 05 ¢°(d) = +oo
i=1

when j — oo in J'. It follows that (M)'c(z) — oo, therefore z is infeasible and
|A|| — oo when j — oo in J'.

To prove the first part of outcome (i7), we proceed by contradiction. Assuming {27}
bounded and {)} unbounded, suppose that there exists an index 4 such that sl — o0
when j — oo for a subsequence J. When j — oo in J, one has af - )\z — 0 by the
third inequality in (4.1), )\g — 00 by the update rule of af in Step 2 of Algorithm A
and next sg — ¢i(27) — 0 by the second inequality in (4.1), a contradiction with the
boundedness of {z7}.

To prove the second part of (ii), suppose that {27} is bounded and that || M| — oo
when j — oo for a subsequence J. There exists J' C J such that the subsequence
{(27, 57, )\j/H)\jH)}jeJ, converges to (Z,5, ). Dividing the first two inequalities in (4.1)
by || M| and taking limits when j — oo in J’, we deduce that

Ve(@A=0 and X' (¢(Z) —35) = 0.
Using the convexity of the components of ¢, for all x € R™ one has
c(x) =5+ V(@) (z —7) < c(x) - 5.

Multiplying by A we obtain B
0< A (c(z) —3). (4.4)

Since A > 0 and ||| = 1, we deduce that the set {z : c(z) < 5} has no strictly feasible
point. Suppose now that 5 is a limit point of {s’} and let us show that the Slater
condition is not satisfied for the set {z : ¢(x) < §}. Let J” be a subsequence such that
(27,s7) — (%,5) when j — oo in J”. Since s/ — c(2’) > 0, it is clear that ¢() < 3.
If {\} jegn is unbounded, the previous reasoning with J = J” applies, so that the set
{z : ¢(z) < 5} has no strictly feasible point. On the other hand, the sequence {\};c
is bounded. For all index i, each sequence {ag } is either stationary or tends to infinity.
In both cases, Lemma 4.2 or the third inequality in (4.1) implies that §; = 0 for all
index i, and thus § = 0. Since the set {x : ¢(z) < 0} is included in {z : ¢(x) < §}, the
former does not satisfy the Slater condition either.

To prove the third outcome, suppose that {27} and {\} are bounded. Lemma 4.2
implies that ¢/ has constant value for j large enough, say o, and that s/ — 0. Let

12



(j’,;\) be any limit point of the sequence {(z7,)\)}. Since 2/ € Z, one has ¢(z) < 0,
A > 0 and by taking limits in (4.1) Vf(Z) + Ve(@)A = 0 and C(Z)A = 0. This shows
that (z, \) satisfies (2.2), therefore (Z, A) is a primal-dual solution of problem (1.1). O

The following result summarizes the behavior of the algorithm with respect to the
feasibility of problem (1.1).

Theorem 4.5 Suppose that Assumption 2.1 holds and that f and ¢ are CH' func-
tions. Then, Algorithm A generates a sequence {2’} satisfying (4.1) and the following
properties hold:

(i) If problem (1.1) is infeasible, then the sequence of multipliers {N} is unbounded
and for at least one index i the sequence {o]} tends to infinity.
(i) If problem (1.1) is feasible, then the sequence {(27,s7)} is bounded.
(iii) If problem (1.1) is strictly feasible, then the sequence of penalty parameters {o7}
is stationary, the sequence {s’} tends to zero, the sequence {(z7, )} is bounded
and any of its limit point is a primal-dual solution of problem (1.1).

Proof. If the sequence {\} is bounded, then assertion (i) of Proposition 4.4 implies
that the sequence {27} is bounded and assertion (iii) implies that problem (1.1) is
feasible. This proves that whenever (1.1) is infeasible, the sequence of multipliers is
unbounded and, by Lemma 4.2, there exists ¢ such that the nondecreasing sequence
{07} is unbounded.

To prove (ii), suppose that problem (1.1) is feasible. Proposition 4.4 implies that
{27} is bounded and whether the sequence of multipliers is bounded or not, the sequence
{s7} is bounded.

To prove the third outcome, suppose that problem (1.1) is strictly feasible. For
any limit point (z,3) of {(27,s7)}, since 5 > 0, the set {x : c(x) < 35} satisfies the
Slater condition. It follows from (ii) of Proposition 4.4 that {\} is bounded, so that
conclusion (44i) of Proposition 4.4 applies. O

When problem (1.1) is feasible but not strictly feasible, it is not guaranteed that
the limit points of {27} are feasible. To obtain this property, it suffices to modify the
update rule of the penalty parameters, in order to force the convergence of the whole
sequence {s’} to zero. Let p > 0 be a constant, set the value of the penalty parameter
with a

ol = ple, (4.5)

where {p’} is a nondecreasing sequence of positive numbers updated according to the
following rule:

If p7 > | M]|os + p, then p/t1 = p7 else p/*1 := max(1.1p7, |V || + p)- (4.6)

It follows that the sequence {p’} is nondecreasing and either tends to infinity, or is
bounded and so is stationary.
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Lemma 4.6 The nondecreasing sequence {p’} is bounded if and only if the sequence of
multipliers {\} is bounded. Moreover, for any index i, if the sequence {\!} is bounded

J
then the sequence {s]} converges to zero.

Proof. The first part is a straightforward consequence of (4.6). Suppose that {)\g }
is bounded for some index i. The third inequality in (4.1) implies that the product
s](p? —X]) tends to zero when j — oo. If {p’} is bounded, then by (4.6) p’ =X > p >0
for sufficiently large j. On the other hand, if {p’} is unbounded, then (p’ — /\g ) — oo

when j — co. In both cases, we deduce that the variables s! tend to zero when j — co.
O

It is easy to see that the modifications of the computation of ¢/ in Algorithm A do
not alter the conclusions of Proposition 4.4. Taking into account the new setting of o7,
we can restate Theorem 4.5 in a stronger form.

Theorem 4.7 Suppose that Assumption 2.1 holds and that f and ¢ are C*' functions.
Suppose that Algorithm A is modified according to (4.5) for setting the penalty parameter
and to (4.6) for the update rule in Step 2. Then the modified algorithm generates a
sequence {27} satisfying (4.1) and the following properties hold:

(i) If problem (1.1) is infeasible, then the sequence of multipliers { N} is unbounded
and the penalty parameters p? tend to infinity.
(ii) If problem (1.1) is feasible, then the sequence {x7} is bounded and {s'} tends
to zero, in particular any limit point of {x7} is feasible.
(iii) If problem (1.1) is strictly feasible, then the sequence of penalty parameters {p’}
is stationary, {s7} tends to zero, {(x7, M)} is bounded and any of its limit point
is a primal-dual solution of problem (1.1).

Proof. Points (i) and (7i7) follow straightforwardly from Theorem 4.5 and Lemma 4.6.

To prove the second outcome, we proceed by contradiction. Suppose that (1.1) is
feasible and that for some index ¢ the variables s{ do not tend to zero. The feasibility
assumption and Proposition (4.4) imply that the sequence {(27,s7)} is bounded. Since
{sg } does not tend to zero, Lemma 4.6 implies that {)\f } is unbounded and so {p’}
tends to infinity. There exist s, with 5; > 0 and a subsequence J such that s/ — 5 when
j — oo in J. Using the third inequality in (4.1) one has (p/ — A?) — 0 when j — oo in
J, and thus ||N||cc — 0o when j — oo in J. Algorithm A guarantees that 2/ € Z,; for
all j, therefore || M| < p/. For all j one has 0 < [|M| o — X! < p/ — ], Dividing both
sides by ||M||o and taking the limit j — oo in J, we obtain /\g/H/\jHOo — 1. Following
the proof of outcome (ii) of Proposition 4.4, there exists a subsequence J' C J, such
that {(z7,s7, M /||M||s)} tends to (Z,5,A) when j — oo in J’ and such that inequality
(4.4) holds for some feasible point z. Since (5,A) > 0 and ¢(x) < 0, we obtain 0 <
A5 < ATe(x) <0, and thus A'5 = 0, a contradiction with A5 > \;5; = 5; > 0. O

In [1] it is proved that if, in addition to the Slater condition, problem (1.1) has the
strict complementarity property, then the whole sequence of outer iterates converges
to the analytic center of the primal-dual optimal set. A similar result is proved in [2],
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on condition that the sequence of penalty parameters remains bounded. In the present
paper, we prove also convergence to a particular point of the primal-dual optimal
set. Since the barrier problem is associated with a penalized problem, this limit point
depends on the value reached by the penalty vector. This point is the analytic center
of the primal-dual optimal set of the penalized problem (1.2). In the primal space, this
center corresponds to the analytic center of the primal optimal set associated to (1.1),
because the limit value of the variables s? is zero. On the other hand, in the dual space
the vector of multipliers associated to the constraint s > 0 is ¢ — A (see (3.1)) and
therefore the limit point of the multipliers is not the analytic center of the dual optimal
set. We call this point the o-center of the dual optimal set and define it below.

Let us first recall the definition of the analytic center of an optimal set (see [11] for
related results). Let us denote by opt(P) and by opt(D) the sets of primal and dual
solutions of problem (1.1). If opt(P) is reduced to a single point, the analytic center
is that point. Otherwise, opt(P) is a convex set with more than one point and the
following index set

B := {i: 3z € opt(P) such that ¢;(z) < 0}

is nonempty (otherwise, for any A > 0, the Lagrangian ¢(-, \) would be constant on
a nontrivial segment of optimal points, a contradiction with the strong convexity as-
sumption). By convexity of the component of ¢, {z € opt(P) : cg(z) < 0} is nonempty
either. The analytic center of opt(P) is then defined as the unique solution to the
following problem:

max » ;. log ( — ¢i(z)),

x € opt(P), (4.7)

cp(z) < 0.

Lemma 4.8 [2] Suppose that Assumption 2.1 and 4.1 hold. Then, problem (4.7) has
a unique solution.

Similarly, let us define the o-center of the set of dual solutions of problem (1.1). Let
o € R™ be such that o > X for at least one A € opt(D). If opt(D) is reduced to a single
point, the o-center is that point. In case of multiple dual solutions, the index set

N := {i: 3\ € opt(D) such that \; > 0}

is nonempty (otherwise opt(D) would be reduced to {0}). The o-center of opt(D) is
then defined as the unique solution to the following problem:

max » -y logAi + > log(oy — Ai),
A € opt(D),

Ay >0,

o—A>0.

(4.8)

Lemma 4.9 Suppose that Assumption 2.1 and 4.1 hold. Then, for any o € R™ such
that o > X for at least one multiplier \ € opt(D), problem (4.8) has a unique solution.
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Proof. The feasibility of problem (4.8) follows from the convexity of opt(D). Let
0B the objective value at some feasible solution. Assumption 4.1 is equivalent to the
compactness of opt(D)(see for example [7]). Then, the set

{A t A €opt(D), Ay > 0,0 —A>0and Y loghi+ > log(oi — i) > B}
1EN =1

is nonempty and compact. Therefore, problem (4.8) has a solution and since the ob-
jective function is strictly concave, the solution is unique. O

By complementarity (i.e., C'(z)A = 0) and convexity of problem (1.1), the index sets
B and N do not intersect, but there may be indices that are neither in B nor in N. It is
said that problem (1.1) has the strict complementarity property if BUN = {1,...,m}.

Theorem 4.10 Suppose that Assumptions 2.1 and 4.1 hold and that f and c are C!
functions. Suppose also that problem (1.1) has the strict complementarity property and

that the stopping tolerance € := (e{,eﬁ,eé) used in Algorithm A satisfies the estimate

e/ = o(u?). Then, Algorithm A generates a sequence of penalty parameters {o’} and
a sequence of iterates {z7} such that o/ = o for j large enough, and {#7} converges to
the point z* = (x*,s*, \*), where x* is the analytic center of the primal optimal set,
s* =0 and A\* is the o-center of the dual optimal set.

Proof. Since the Slater condition is satisfied, we know from Theorem 4.5 that the
sequence {07} is stationary, {(27,\)} is bounded, {s’} tends to zero and any limit
point of {(27, M)} is a primal-dual solution of (1.1). Let o be the value reached by o7.
Step 2 of Algorithm A implies that o > M + ¢ for j large enough. It follows that any
limit point \ of the sequence {\} satisfies o — A > 0, therefore problem (4.8) is feasible
and the o-center of the dual optimal set is well defined.

Let (Z,)) be a primal-dual solution of problem (1.1) such that ¢ — A > 0. The
Lagrangian £(-, \) is minimized at Z and AT¢(z) = 0, so that

f(Z) =z, N) < a7, N) = fa?) + Ae(?).

Using the upper bound on f(z/) — f(Z) given by (4.2) at z = & and using the fact that
o) = o for large j, one has

0 Ne@@?) + (V) Te(@) — oTs? +m2 (el + ) + 2mpd + |27 — z||e]

A A

< Ae(a?) = s7) + (M) e(@) + (A —0) s+ m2 (e + ) + 2mpd + || — ze],
for sufficiently large j. Since {27} is bounded and €/ = o(y/), we deduce

Mw! —(X)Te(@) + (0 = N)'s? < 2mp? + o),
where w/ := s/ — ¢(27). By definition of the sets B and N, we obtain finally

ANwh — (V) Te(@) + (0 = N)Ts? < 2mp? + o(p?). (4.9)
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The remainder of the proof uses an argument due to McLinden [10]. Let us define
IV := AMw — e and AV := S/ (0 — M) — pfe. One has for all indices i:
W — u]+1“f’ N B Y

i J ? J g BERVE
A wy; o — X

Substituting this in (4.9) gives

I e D D L S LR
P VI o w w g N W

By assumption ¢/ = o(p?), so that the last two inequalities in (4.1) imply that Fg =
o(p7) and Al = o(p?). Let (z*,\*) be a limit point of {(27,\)}. Taking the limits in
the preceding estimate yields (recall that s/ — 0, so that w/ — —c(z*))

) “ i_j\i
RS S N o P

iEN z i€B i=1

Necessarily iy > 0, cg(z*) < 0 and o — A* > 0. By strict complementarity, there are
exactly 2m positive fractions in the left-hand side of the last inequality. Therefore, by
monotonicity and concavity of the log function, one has

Zlog——i—Zl

iEN Z i€B

Taking successively A = A* and Z = z* in this inequality, we obtain

Zlog — ¢z Zlog —¢i(x )

1€B 1€B
and
Z log \; + Z log (o Z log AT + Z log(o; — A).
1EN 1EN
We deduce that z* is a solution of (4.7) and \* is a solution of (4.8). Since these
problems have a unique solution, the conclusion follows. O

5 Concluding remarks

In this paper we have extended the BFGS interior point method described in [1] to
an infeasible algorithm. We have studied a different scheme than those proposed in
[2] and have proved that it leads to a simpler algorithm with stronger convergence
properties. It is worth noting that the strategy described in Section 4 can be used in
other algorithmic frameworks than line search quasi-Newton methods.
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Adding linear equality constraints which are not satisfied at each iteration, should
not present any difficulty. Suppose that the problem to solve has the following form:

min f(z),
c(x) <0,
Axr = b,

where A = (a])}_, is a p x n matrix. By possibly changing the sign of some lines

of (A4,b) (depending on the sign of a;x! — b; at the starting point z'), the penalized
problem becomes

min f(z) + p'(Az —b) +o's,

c(x) <s,

Ax > b,

s >0,

where p is an additional vector of penalty parameters. The associated KKT conditions
can be written

Vf(z)+Ve(z)A+ AT =0,

(S=C(x)A=0,

Lx)(p—&) =0,
S(oc—A) =0,
(S —C(CL'),AJI - ba‘S?)‘ap_g?J - )‘) 2 05

where L(x) = diag(a{z — by, ..., a;a: —bp) and £ € RP. Note that p — £ is the vector
of multipliers associated with the constraint Az > b. The update rule of p is a straight
extension of the one of ¢ and one can expect that the sequences of penalty parameters
are bounded whenever the Slater condition holds. Note that, since the additional terms
are only linear in x, the convergence properties of the inner iterates also apply.

A Merit function properties

In this appendix we prove Proposition 3.4, then we give additional properties of 1 ,
that will be used by the convergence proofs of Appendix B.

A.1 Descent direction
Lemma A.1 Let z € Z, and let d := (d*,d*,d") be a solution of (3.3), then
Vibou(2)d = —(d*) M
CAYE(S — OV — d)|? - (S — A28V 202

—7[(S = C)"VPAT 2 (pe — (S — C)A)|?
—7[[STV2(2 — A) T2 (pe — S(o — M) (A1)

Proof. From the definition (3.4) of v, ,, one has

T

Vo (2)Td = Vo (,5) " (fzs) V() d. (A2)
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The gradient of ¢, is given by

_( VI+pVe(S—C)te
Voou(z,s) = <J —u((S—0) 1+ S—l)e> )

From the first and third equations of (3.3), one has

(z\g 5 8 A> (Zﬁ) + (Y;) A+ d) = — (ng_fue> , (A.4)

while the second equation gives

A+d = (S—C)"1(AVET —A) (f;) +u(S = C) e

Eliminating A + d* in (A.4) and using (A.3), we obtain

Vo u(x,s) (A.5)
(M 0 N Ve(S — C) TAVeT —Ve(S - O0)7 A d*
- 0 ST —-A) —(S—C) AV (S—O)IA d
From this last formula, we deduce
Veanloos) () = ~@) M~ AV - O AV - )P
(= = A)2512g9) 2. (A.6)

It remains to compute the second directional derivative in the right hand side of
(A.2). The gradient of V, , is given by

—Ve(A=p(S=C)e) 0
VVou(z) = ( A—p(S—C)le ) + ( o—XA—puS~te ) . (A.7)
s—c—puhle —s+uX—A)"lte

By using the last two equations in (3.3), one has

VWou(2)'d

= (A +u(S—C)te)'Ved® + (A — (S —C)te)'d® + (6 — A — uS~te) d®
+(s—c—pAte) d + (—s + (= - A) ) ad

= A=—p(S—C)te) (=Ve'd® +d° + ATH(S-C)d)
+(e—pSTHEZ -A)te) (2 = A)d® — Sd)

= A—u(S-C)e) (pA~te — (S = C)e)
+e—puS7HE = A)te) (e — S(o —N))

= ((S=C)A=pe)T (5= C)"A (e — (S = C)N)
+(S(o = X) — pe) STHE = M) (pe — S(o = V)

= (S =C)PAT R (e — (S = CNIP = [[STVA(E = A) T (e — S(o = W)

19



O

Proof of Proposition 3.4. Since (2,4, 55,,) is the unique minimizer of ¢, , (Propo-
sition 3.2), one has

Cou(Topus Sou) < @opu(z,s) forall (z,s) such that (s — c(z),s) > 0.

On the other hand, since ¢ — ¢ — plogt is minimized at ¢ = p and since %, ,, satisfies
the last two equalities of (3.2), one has

Vo (o) < Vo pu(z) forall z € Z,.

Adding up the two preceding inequalities gives 14, (25.) < You(2) for all z € Z,.

It remains to show that 1), , has a unique stationary point. Using the definition
(3.4) of 9, formula (A.3) and (A.7), and the fact that 7 > 0, any stationary point
must satisfy the following three equations:

Vi+uVe(S—0)te+7Ve(u(S—C)te—N) = 0, (A.8)
o—u((S-0)'+S5He = 0, (A.9)
(s—c—puAte)—(s—pu(X—A)"te) = 0. (A.10)

After some factorizations, equation (A.9) can be written
AS—C)y M s—c—puAte) + STHE = A)(s — u(X — A)~te) = 0.
It follows that (A.9) and (A.10) are of the form

Au+ Bv = 0,
U —v = 0,

with positive definite matrices A and B. We deduce that S(oc—\) = pe and (S—C)\ =
pe. Substituting A for u(S — C)~te in (A.8) gives Vf + Vel = 0. According to
Proposition 3.2, one has (z,5,\) = (Zo,u, S0, 5‘07/1)' The first part of the proposition
is proved.

Lemma A.1 and the positive definiteness of M imply that Vz/;mu(z)—rd < 0. If this
directional derivative vanishes, then d* = 0, d* =0, (S — C)\ = pe and S(o — ) = pe.
Since (d*,d*,d") is the solution of (3.3), we deduce that d* = 0 and that (z,s,\) is
solution of (3.2). It follows from Proposition 3.2 that (z,s,\) = (Zo,us S0, 5\0,#).

O

A.2 Boundedness and local strong convexity

The following derivatives will be useful in the sequel:

2 xX,S — C — -2
Viorate) = (5T e S ore s y)

where

V2 Pou(@, ) = Ve l(z, u(S — C)te) + pVe(S — C) 2V,
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and

V2 V5 u(2) —uVe(S—-C)"2 —Ve
Ve ulz) = [ —w(S—-C)2vel  pu(S—-0C)72 I
-ve' I A2
0 0 0
+ {0 wpS?2 —I : (A.12)
0 —I puE—A)2

where V2V, ,(2) = S0 (4 — N)V2,¢; + uVe(S — C)~2Ve'. Note that

S§;—¢Cj

<3>TV2%,H(35, s) (Z‘) (A.13)

— WVl 1S — C) 7 e)ut (S — €) 7N (VeTu — o) 2 4+ pl S o2

The next result shows that the level sets of the merit function are compact and that
the vector quadruple (s —c(z), s, A, 0 — A) is bounded and bounded away from zero over
these sets.

Lemma A.2 Suppose that Assumption 2.1 holds. Then, for any r € R, the level set
Ly :={z€ Z; :su(2) <r} is compact and there exist positive numbers Ki and Ko
such that

Ky <(s—c(x),s,\,0 —A) < Ky forallz€L,.

Proof. The function V, , is bounded below by 2mpu(1 — logu) on its domain. There-
fore, there exists K| such that ¢, ,(z,s) < K| for all z € £,. Assumption 2.1 and
Proposition 3.2 imply that the level set £ := {(z,s) : pou(z,s) < K|} is compact.
The set {(s — ¢(x),s) : (z,s) € L'} is the image of a compact set by a continuous func-
tion, therefore it is compact. It follows that (s — ¢(z), s) is bounded for all (z,s) € £/,
and hence for z € £,. It is also bounded away from zero, because ¢, ,(z,s) < K{ and
f(x) + o 's is bounded below for all z € L.

The function ¢, , is bounded below on the compact set L', then Vo,u is bounded
above on the level set £,. It follows that there exist positive numbers K} and K% such
that Kj < (Xi(si — ci(2)), si(oi — Ni)) < Kj for all z € £, and all index i. We then
deduce that (A\,0 — \) is bounded and bounded away from zero for all z € £,. Since
L, is contained in a bounded set and 1, is continuous, then it is compact. O

Though the merit function v, , is not convex it is strongly convex in a neighborhood
of its minimizer Z, , and more generally, in the neighborhood of any point satisfying
the centrality conditions.

Lemma A.3 Suppose that Assumption 2.1 holds. If z € Z, satisfies the centrality

conditions (S — C)\ = pe and S(o — ) = pe, then the merit function v, is locally
strongly conver at z.
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Proof. Let z € Z, satisfying the centrality conditions. Let us show that the Hessian
matrix of 14, is positive definite at z. Using (A.11), (A.12) and the fact that z satisfies
(S —C)X = pe and S(o — A) = pe, the Hessian of 95, can be written

V0 u(2)

: 0\  [nVe(S—C)?Vel —pVe(s—C)? Ve
_ \Y% 4,00,;1(1'7 S) 0] +7 _M(S — C’)fQVCT ,U(S - 0)72 I
00 0 —VeT I pH(S - 0)?

0 0 0
+7(0 pwS2 I
0 —I pts?

Multiplying on both sides by (u,v,w) € R™ x R™ x R™ and using (A.13) give
w2 (@, Ayu+ pl|(S = C) 7 (VeTu = o)|P + pll S~ o]
+7[| 2 (8 = C) T (VeTu—v) + 73S = C)wl® + 7?8 o — p= 2 Sw?,

which is nonnegative. If it is equal to zero, the positive definiteness of the Hessian of
the Lagrangian implies that v = 0, and next v = w = 0. O

The following result shows that, on the level set of v, ,, the distance of a point to
the minimizer is bounded by the value of the merit function itself or by the norm of
its gradient. This result is a consequence of the local strong convexity of v, , at Z5 ,
(Lemma A.3) and of the compactness of the level set £, (Lemma A.2).

Lemma A.4 Suppose that Assumption 2.1 holds. Then, for any r € R there exists a
number a > 0 such that for any z € L,

1
allz — 207“”2 < @ZJo,u(Z) - @Da,u(éo,u) < EIIV%,#(Z)HQ- (A.14)

The proof is omitted, see [1, Proposition 3.2].

B Convergence of Algorithm A, ,

In this appendix, we give the convergence proofs of Algorithm A, .

B.1 R-linear convergence

Let us denote by z; := (z1, 51, A1) the starting iterate of Algorithm A, ,. We define
the level set

L1:={2€ Z; :Y5u(2) <thou(21)}

Since the merit function decreases at each iteration, all the iterates stay in L;.

The convergence analysis rests on two lemmas. The first one is a consequence of the
sufficient decrease condition (3.5). The second one is a property of the BFGS update
formula (3.6).
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Lemma B.1 [4] Suppose that ¢, is CYHl on an open convex neighborhood N of the
level set Lq. There exists a constant K3 > 0 such that for any z € L1 and for any
descent direction d of s, if the step length « is determined by the line search in
Step 2 of Algorithm A, ., then one of the following inequalities holds:

Voulz + ad) < ou(2) = Ks|Vibou(z)d), (B.1)
V()2
1]
Lemma B.2 [4] Let { My} be positive definite matrices generated by the BFGS formula

using pairs of vectors {(vg, 0x) }k>1, satisfying for all k > 1

wa,,u(z + ad) < wa,u(z) - K3 (BQ)

Wk = arl|dl® and 0k = az|w?, (B.3)

where a1 > 0 and as > 0 are independent of k. Then, there exist positive constants by,
ba, and bs, such that

5;€|—Mk5k || MO ||
e =01 and by < < bs, (B.4)
|| M0 || 1] 0| 6% ||

for at least half of the iterations.

cos by, :=

Lemma B.3 Suppose that Assumption 2.1 holds and that f and c are of class CH!
in a neighborhood of the level set L1. Suppose that the step length oy, is determined
according to the backtracking line search of Algorithm Ay, (Step 2). Then, there exists
a constant K > 0 such that for any iteration k satisfying (B.4),

You(2 + ardi) < You(zr) — K| Vibou(zi)[*: (B.5)

Proof. To simplify the notation we do not use the iteration index and denote by z the
current iterate. We denote by K7, K}, ... some positive constants (independent of the
iteration index).

The bounds on (s — ¢, s,\,0 — \) given by Lemma A.2 and the fact that f and ¢
are of class C1! imply that v, is of class C'! on some open convex neighborhood of
the level set £;1. Therefore, by the line search and Lemma B.1, either (B.1) or (B.2) is
satisfied.

Suppose now that the current iterate satisfies the bounds of Lemma B.2. Using
(A.1), the bounds of Lemma A.2 and (B.4), one has

Vipou(2) d]
— (da:)TMda: + HAI/Q(S o C)—1/2(chdm o ds)||2 + H(E o A)1/28—1/2d3||2
+7[(S = C)EATY 2 (pe — (S — C)N)|I?
+ 7] ST = A) T2 (pe — S(o = V)|

b1 x - x s s
> gHMd 1>+ K Ky (| VeTd® — d*|)? + [|d°)])
+ 7K5 2 (lue — (S = COA? + [lue — S(o — N)[*)
> Ki(|Md*|* + | VeTd® — & + ||d°|]* + ||lue — (S — C)AI® + ||lue — S(a — A)[1?).
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Let us denote by K} an upper bound of ||Ve|| on £;. Using (A.5), (A.7) and next the
inequality [| 337, &ll* < p3°F; [1€1%, we obtain

V%o, (2)II?
”Vaﬂ/}a,u(z)nz + ||v5¢a7u(z)”2 + ”V)\@bo,u(z)”Z
= |IMd® +Ve(S — C) IA(VeTd® — d¥) +7Ve(S — C) (S — C)X\ — pe)|?
+IS7HE = A)d® — (S — C)TA(VeTd® — d*) + 7(u(S — C) e — o 4 uS7te) |
+ 72 le+ pAle — p(E — A)e|?

< 3||Md”|]® + 3(K5 Ky ' Ko)? Ve d* — df|* + 3(T KK )2 |pe — (S — C)A|1?
+ 4K () + ([VeTd® — df|)?)
+6(rK ) (e — (S = )M + ||ue — S(o = N)|1%)
< KY(|MA”|? + Ve d®™ — d* || + [|d°]|* + [|jue — (S — C)A|* + [lue — S(o = M)|I?).

Form the Newton system (3.3), one has

Il 1= 1Z + [la®]1* + [l
1)1 + [|&*]* + 1ISTH(E = A)d® + 0 = X — pS~e]?
by %[ Md®||* + (1 + 2(K7 ' K2)?)||d*||* + 2K7 2 ||e — S(o — N)|?

KG(IMd® | + [|d*])* + [lpe — S(o = N)]1?).

<
<

Finally, combining these three inequalities with (B.1) or (B.2) and taking we obtain
(B.5) with the constant K = K3K|/K5min(1, K{/K}). O

Proof of Theorem 3.5. By virtue of the strong convexity assumption (Assump-
tion 2.1), there exist positive constants a; and ag such that the inequalities (B.3) are
satisfied (see [2, Lemma 4.5]). From Lemma B.2, Lemma B.3 and Lemma A.4 there
exist constants K > 0 and a > 0 such that

wa,u(szrl) - wa,u(éa,u) <(1- aK)(wa,u(zk) - wa,u(éa,u))a

is satisfied for at least half of the iterations. On the other hand, by (3.5) one has

Tpa,u(zkﬂ) - T/Jmu(ému) < wa,u(zk) - wmu(éo,u)v
for any iteration index k. It follows that
@Z)d,u(zk—&-l) - ¢o7u(2¢7,u) <(1- aK)k/2(wa,u(Zl) - @Da,#(éﬂyu))a
for all k£ > 1. Finally, using the left inequality in (A.14), we conclude that for k£ > 1
2k 1 = Zoull < K'(1 = aK)*/*,

where K’ = a™2(45.1(21) — Vo u(Zo ) V2. H
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B.2 Q-superlinear convergence

Recall that {z;} is g-superlinear convergent if 211 — 25, = o(||zx — Z5,/|), meaning
that [|zx11 — Zo.ull/llzk — Zo,ull — O (assuming z # Zo,,,).

Lemma B.4 Suppose that Assumptions 2.1 holds and that f and c are twice con-
tinuously differentiable near Z,,. Suppose also that the sequence {z;} generated by
Algorithm A, converges to Z,, and that the positive definite matrices My, satisfy the
estimate

(df) (Mg — M) di; > o(||d %), (B.6)
where R

My o= V2 l(E o Aop)-
Then, for k sufficiently large the unit step length is accepted by the line search condition
(3.5), that is
%,u(% + dk) < 7/’0,#(319) +w VQ[)U,/L (Zk)Tdk-

Proof. To simplify the notation we do not use the iteration index k and denote by z
the current iterate. Since we prove an asymptotic property, it is implicitly assumed
that k is sufficiently large so that the various mentioned properties are satisfied and
that all the limits are taken when k — co. We denote by K1, K, ... positive constants
(independent of the iteration index).

Observe first that the positive definiteness of Ma,u and (B.6) imply that

(d®)"Md® > K||d®|>. (B.7)

Observe also that d — 0 (for (d*,d®) — 0, use (A.6), the bounds of Lemma A.2,
(B.7) and Vg ,(x,s) — 0). Therefore, z and z + d are near %, , and one can expand
Yo.u(2 4+ d) about z. Using a Taylor series expansion to the second order, one has

wa,u(z + d) - '@Do,u(z) - wv¢a,u(z)—rd

— (% - w)V¢U7u(z)Td + %(V%,u(Z)Td + dTV2¢U7u(z)d) +o([ld]*).  (B.8)

We begin by showing that the second term in parenthesis in the right-hand side is
smaller than a term of order o(||d||?). Using (A.1) and (3.3) one has

Vipou(z)'d = —(d")"Md"
_ HAl/Q(S - C)fl/Q(VCTd:L‘ - ds)”Q - ”(E - A)1/2Sfl/2ds”2
- TH(S - C)—1/2A1/2(chd5L‘ o ds) o (S - C)l/QA—l/Qd)\HZ
- THS_l/Z(E o A)1/2ds - 51/2(2 o A)—l/Qd)\H2
= — (@) Md® - (1+7)AY3(S - )2 (Veld® — d*)|?
— (L4 IS = V2SR — 7)|(S — O)PAT 2P
— 7| SY2(% — A) T2 + 27 (a) T (VeTd® - d)
+ 27 (d*) T d®. (B.9)
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On the other hand, using (A.11) and (A.12) we obtain

A"y (2)d
(d™) V2,0, Nd™ + (1+ 7)pll (S — €)1 (VeTd™ — a*)||?
= 27(dN) (Ve d” — &) + 7p| A MNP + (1 + 7)pl|S™1d%|)? — 27 (dY) Ta®
+ 72— A)_ld’\HQ, (B.10)

where A = (14 7)u(S — C)~'e — 7. By using (B.6), (B.9), (B.10) and the fact that
2 — 25, we deduce

V¢0M(z)—rd + dTVQQ/)au( )d
= (d") (Vi l(w,\) — M)d*
(1+TXVJHZ d*) (u(S — C) 2 = A(S = C)")(Ve'd" — )
(D)8 = (5 = NS + (@) (e~ = (5 = )~
(@) (S = A)2 = S8 - A) D
< o([ldl).

Combining this estimate with (B.8) we obtain

Yoz + ) ~ iy (2) — F4hou(2)d < (5 — @) Viboa(2) T + o 1)),

Since w < 3, the proof will be completed if we show that Vi, ,(2)'d < —K'||d||?
for some positive constant K’. Using the Cauchy-Schwarz inequality one has

1—|—27’

2r(dMT(VeTd® —d®) < —||AY2(S — )" V2(VeTd® — a°)|?
2 1/2 A—1/2 77 (12
P8 - 0 AT
and
27_(d)\)Tds 1+2T||S 1/2(2 A)l/stHZ HSl/Z(E A) 1/2d/\H2

Combining these two inequalities with (B.9), and next using (B.7) and Lemma A.2 we
obtain

Viou(2)'d = —(d%) Md*
1||A1/2<s -0 VAT - - SIS - A2

”(S 0)1/2A 1/2d)\||2 ||Sl/2(2 A) 1/2d)\||2

1+2 1+2
= Ki|d|* = K3[|Ve'd” — d°||* — Kgld*||* - Kj[ld*|*.

IN
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For any € > 0:
[Veld® — d?|? [Veld®||? — 2(Ve d®) Td® + ||d°||?

> |[Ve'd® | = (1+e)|[Ve'd®|* ~

\%

1
d 2 ds 2
S+ )

v

€
—e| Vel | ]la|* + Tl

Set now € := K} /(2K4||VeT||?) to conclude that

eK)
1+e

K/ T S
Viou(2)'d < —=Hd"|* = (K3 + 2 d°)1* = Killd*|* < —K'||d]|*.

O

The following lemma gives a characterization of the g-superlinear convergence of
Algorithm A, ,. The proof is analogous to the one of Proposition 4.2 in [1] and is
omitted.

Lemma B.5 Suppose that Assumption 2.1 holds and that f and ¢ are twice differen-
tiable at Z5,. Suppose that the sequence {z} generated by Algorithm A, , converges
to 25, and that, for k sufficiently large, the unit step length oy, = 1 is accepted by the
line search. Then {z} converges q-superlinearly towards 2, ,, if and only if

(Mg — Mo)di; = ol | di]])- (B.11)

Proof of Theorem 3.6. According to the proof of Theorem 4.4 in [1], the convergence
of the series Y.<, |2k — Zo,u|| (Theorem 3.5), the local radial Lipschitz continuity of
the Hessians of f and ¢ and a standard result from the BEGS theory (see [13, Theorem
3] and [4]), imply A

(Mk - Ma,u) ?c: = O(Hdiﬂ)
This estimate implies that (B.6) holds, therefore the unit step length is accepted

(Lemma B.4). It implies also that (B.11) holds, and thus g-superlinear convergence
follows (Lemma B.5). O
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