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Abstract. Models of planetary, atmospheric and oceanic cir-
culation involve eddy viscosity and eddy diffusivity,KM and
KH , that account for unresolved turbulent mixing and diffu-
sion. The most sophisticated turbulent closure models used
today for geophysical applications belong in the family of
the Reynolds stress models. These models are formulated
for the physical space variables; they consider a hierarchy
of turbulent correlations and employ a rational way of its
truncation. In the process, unknown correlations are related
to the known ones via “closure assumptions” that are based
upon physical plausibility, preservation of tensorial proper-
ties, and the principle of the invariant modeling according to
which the constants in the closure relationships are univer-
sal. Although a great deal of progress has been achieved
with Reynolds stress closure models over the years, there
are still situations in which these models fail. The most
difficult flows for the Reynolds stress modeling are those
with anisotropy and waves because these processes are scale-
dependent and cannot be included in the closure assump-
tions that pertain to ensemble-averaged quantities. Here,
we develop an alternative approach of deriving expressions
for KM andKH using the spectral space representation and
employing a self-consistent, quasi-normal scale elimination
(QNSE) algorithm. More specifically, the QNSE procedure
is based upon the quasi-Gaussian mapping of the velocity
and temperature fields using the Langevin equations. Tur-
bulence and waves are treated as one entity and the effect
of the internal waves is easily identifiable. This model im-
plies partial averaging and, thus, is scale-dependent; it al-
lows one to easily introduce into consideration such param-
eters as the grid resolution, the degree of the anisotropy,
and spectral characteristics, among others. Applied to tur-
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bulent flows affected by anisotropy and waves, the method
traces turbulence anisotropization and shows how the dis-
persion relationships for linear waves are modified by tur-
bulence. In addition, one can derive the internal wave fre-
quency shift and the threshold criterion of internal wave gen-
eration in the presence of turbulence. The spectral method
enables one to derive analytically various one-dimensional
and three-dimensional spectra that reflect the effects of waves
and anisotropy. When averaging is extended to all scales,
the method yields a Reynolds-averaged, Navier-Stokes equa-
tions based model (RANS). This RANS model shows that
there exists a range ofRi, approximately between 0.1 and
1, in which turbulence undergoes remarkable anisotropiza-
tion; the vertical mixing becomes suppressed while the hori-
zontal mixing is enhanced. AlthoughKH decreases at large
Ri and tends to its molecular value,KM remains finite and
larger than its molecular value. This behavior is attributable
to the effect of internal waves that mix the momentum but
do not mix a scalar. In the Reynolds stress models, this fea-
ture is not replicated; instead, all Reynolds stress models pre-
dict KM→0 at some value ofRi≤1 which varies from one
model to another. The presented spectral model indicates that
there is no a single-valued critical Richardson numberRi at
which turbulence is fully suppressed by stable stratification.
This result is in agreement with large volume of atmospheric,
oceanic and laboratory data. The new spectral model has
been implemented in theK−ε format and tested in simu-
lations of the stably stratified atmospheric boundary layers.
The results of these simulations are in good agreement with
the data collected in BASE, SHEBA and CASES99 cam-
paigns. Implementation of the QNSE-derivedKM andKH

in the high-resolution weather prediction system HIRLAM
results in significant improvement of its predictive skills.



10 S. Sukoriansky et al.: A new spectral theory of stratified flows

1 Introduction

Turbulence is one of the principal unsolved problems in
physics. Difficulties in the theory of turbulence stem from
strong nonlinearity of the equations of motion. Various in-
stabilities at large Reynolds number,Re, lead to excitation
of secondary flows, such as vortices and waves, developing
on different spatial and temporary scales. Nonlinear inter-
actions between motions on various scales generate highly
irregular, “stochastic” flow fields. Solutions exist only for
simplest flows that are locally isotropic and depend on a sin-
gle nondimensional parameterRe.

In the context of geophysical, planetary and astrophysi-
cal turbulence, turbulent flows are further complicated by
such factors as spatial anisotropy and waves. On relatively
small scales, the gravity force causes density stratification
and emergence of internal gravity waves. On larger scales,
the Coriolis force, caused by the planetary rotation, leads to
quasi-two-dimensionalization of the flow and emergence of
inertial waves. On yet larger, planetary scales, the variation
of the Coriolis force with latitude, or the so-calledβ-effect,
leads to the emergence of Rossby waves and flow zonation.
Models of turbulence used to simulate all these flows must be
capable of accounting for different effects on different scales
but Reynolds averaging does not differentiate between scales
lumping them all together. On the other hand, a spectral ap-
proach does account for scale-specific phenomena. This pa-
per is concerned with the development of a spectral model
for turbulent flows with stable density stratification.

The article is organized in the following fashion. Section2
presents the basics of the quasi-normal scale elimination the-
ory and explains the derivation of the scale-dependent, hor-
izontal and vertical, eddy viscosities and eddy diffusivities.
Section3 shows some theoretical results that can be obtained
from the model; they include the dispersion relation of inter-
nal waves in the presence of turbulence, the threshold of in-
ternal waves generation, and various one-dimensional spec-
tra. Section4 explains how RANS models can be derived
from the spectral model while Sect.5 compares the spectral
model results with laboratory and observational data. Sec-
tion 6 provides a brief description of theK−ε model that
employs the vertical eddy viscosities and eddy diffusivities
derived from the spectral model while Sect.7 demonstrates
that the use of these eddy viscosities and eddy diffusivities
improves the predictive skills of a high-resolution, limited
area, numerical weather forecast system HIRLAM. Finally,
Sect.8 provides a discussion and conclusions.

2 Basics of the spectral theory of turbulent flows with
stable stratification

2.1 Governing equations and their Fourier transform

The spectral theory is developed for a fully three-
dimensional turbulent flow field with imposed vertical, stabi-
lizing temperature gradient. The flow is governed by the mo-

mentum, temperature and continuity equations in the Boussi-
nesq approximation,

∂u
∂t

+ (u · ∇)u − αgT ê3 = ν0∇
2u −

1

ρ
∇P + f0, (1)

∂T

∂t
+ (u · ∇)T +

d2

dz
u3 = κ0∇

2T , (2)

∇ · u = 0, (3)

whereP is the pressure,ρ is the constant reference density,
ν0 andκ0 are the molecular viscosity and diffusivity, respec-
tively, α is the thermal expansion coefficient,g is the accel-
eration due to gravity directed downwards,2 is the mean
potential temperature, andT is the fluctuation of2. The
external solenoidal forcef0 mimics the effect of large-scale
instabilities and maintains turbulence in a statistically steady
state. Note that the temperature Eq. (2) does not involve a
separate forcing implying that the temperature fluctuations
are excited by the velocity fluctuations.

The spectral domain is bounded by the viscous dissipation
wave numberkd=(ε/ν3

0)1/4, whereε is the dissipation rate.
The Fourier transforms of the velocity and temperature fields
are

ui(x, t) =
1

(2π)4

∫
k≤kd

dk
∫

dωui(ω, k) exp[i(kx − ωt)], (4)

T (x, t) =
1

(2π)4

∫
k≤kd

dk
∫

dω T (ω, k) exp[i(kx − ωt)]. (5)

The continuity Eq. (3) takes the form

uα(k̂)kα = 0, (6)

where k̂≡(ω, k) is a four-dimensional vector in Fourier
space. The Fourier-transformed momentum and temperature
equations are

(−iω + ν0k
2)uβ(k̂) = f 0

β (k̂) − ikβ

P(k̂)

ρ
+ αgT (k̂)δβ3

− ikµ

∫
uβ(q̂)uµ(k̂ − q̂)

dq̂

(2π)4
, (7)

(−iω + κ0k
2)T (k̂) = −

d2

dz
u3(k̂)

− ikα

∫
uα(q̂)T (k̂ − q̂)

dq̂

(2π)4
, (8)

whereq̂≡(�, q). The central difficulty in solving Eqs. (7)
and (8) is posed by their nonlinearity represented by the con-
volution integrals. Another, but less severe problem is caused
by their coupling. It would be natural to tackle the nonlinear-
ity by using a perturbative solution based upon the expansion
in powers of the Reynolds numberRe. However,Re based
upon the large-scale flow parameters is very large and the
corresponding expansion is strongly divergent.

The approach used in this study is based upon the method-
ology of the renormalized perturbation theory of turbulence,
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briefly, RPT (McComb, 1991, 1995). The RPT operates with
effective, or renormalized, or eddy viscosity and diffusivity
rather than their molecular values. In the framework of RPT,
the central idea of the present approach can be formulated in
terms of theeffectiveReynolds number: sinceRe is of the or-
der ofO(1) for the smallest scales of motion, one can derive
a perturbative solution for these small scales. Then, using
this solution, an ensemble averaging is performed over an in-
finitesimal band of small scale modes. This averaging yields
corrections to viscosity and diffusivity giving rise to “effec-
tive” or “eddy” viscosity and diffusivity. Then, this proce-
dure is repeated for the next band of the remaining smallest
scales, etc. In this process, the small-scale modes are succes-
sively purged from the governing equations which thus un-
dergo a gradual coarsening while the effective, based upon
the eddy viscosity, Reynolds numberRe remainsO(1).

2.2 Preconditioning of the momentum and temperature
equations

Using the continuity Eq. (6), the pressure term can be ex-
cluded in the momentum Eq. (7),

G−1
0 (ω, k) uβ (k̂) = f 0

β (k̂) + αgT (k̂)P3β(k)

−
i

2
Pβµν(k)

∫
uµ(q̂)uν(k̂ − q̂)

dq̂

(2π)4
, (9)

where

Pij (k) = δij − kikj/k2, (10)

Plmn(k) = kmPln(k) + knPlm(k), (11)

G−1
0 (ω, k) = −iω + ν0k

2, (12)

G0(ω, k) is the “bare” auxiliary Green function andδij is the
Kroneckerδ-symbol. The Eq. (9) still contains the tempera-
ture on its right side and, thus, is not self-contained. Invoke
now the temperature Eq. (8) rewritten as

G−1
T 0(k̂)T (k̂) = −

d2

dz
u3(k̂)

− ikα

∫
uα(q̂)T (k̂ − q̂)

dq̂

(2π)4
, (13)

whereGT 0(ω, k) is the “bare” temperature Green function,

GT 0(ω, k) =

(
−iω + κ0k

2
)−1

. (14)

Equation (13) represents a forced-dissipative system where
the forcing is described by the first term on its right side and
the dissipation is included in the Green function. The non-
linear term represents the excitation and damping of the tem-
perature modeT (k̂) by all other modes. Let us assume that
in the process of small-scale modes elimination, the contri-
bution of the nonlinear term to the forcing is small so that
the forcing term preserves its form. The contribution of the
nonlinear term to the damping is not small and needs to be
calculated. Absorbing this contribution, the diffusivity be-
comes flow dependent. Due to the anisotropy introduced by

stable stratification, the diffusivity is expected to vary differ-
ently in the vertical and the horizontal directions. In this rep-
resentation, the nonlinear Eq. (13) which explicitly describes
the interaction between all modes is replaced by a stochas-
tic equation that describes the balance between the excitation
and the damping of a single mode and in which the nonlin-
earity is implicitly included in the damping term,

T (k̂) = −
d2

dz
GT (k̂)u3(k̂). (15)

The temperature Green function in Eq. (15) is

GT (ω, k) =

(
−iω + κhk

2
h + κzk

2
3

)−1
, (16)

whereκh andκz are the horizontal and vertical effective dif-
fusivities, andk2

=k2
1+k2

2+k2
3=k2

h+k2
3. At the start of the

scale elimination process,κh=κz=κ0, such thatGT 0=GT .
We shall prove the correctness of the formal solution (15)
retroactively by showing that this functional form self-
reproduces in the process of small-scale modes elimination.

Using Eq. (15), the temperature can be excluded from the
momentum Eq. (9) yielding[
G0

αβ (k̂)
]−1

uβ(k̂) = f 0
α (k̂)

−
i

2
Pαµν(k)

∫
uµ(q̂)uν(k̂ − q̂)

dq̂

(2π)4
, (17)

where the “bare” velocity Green function,G0
αβ(k̂), has a non-

diagonal tensorial structure that reflects the anisotropy intro-
duced by stable stratification,

G0
αβ(ω, k) = G0(ω, k)

[
δαβ

+ N2GT (ω, k)G0(ω, k)Pα3(k)δβ3

]−1
. (18)

Similarly to the temperature Eq. (13), Eq. (17) includes the
forcing and the nonlinear terms on its right side. The forc-
ing is concentrated on the largest scales of the system and is
small otherwise. The effect of the forcing is transmitted to
higher and higher wave number modes via nonlinear interac-
tions. The nonlinear interactions are also responsible for the
modal damping; every mode loses the same amount of en-
ergy it gains due to the forcing. In the process of the small-
scale modes elimination, the viscosity undergoes “renormal-
ization.” Similarly to the “renormalized,” or effective diffu-
sivity, the “renormalized,” or effective viscosity is also ex-
pected to become anisotropic yielding the effective auxiliary
Green functionG(ω, k) in the form

G(ω, k) =

(
−iω + νhk

2
h + νzk

2
3

)−1
. (19)

Here, νh=νz=ν0 at the beginning of the scale elimination
process. Similarly to the case of the temperature, the correct-
ness of Eq. (19) is proved by demonstrating that this form is
self-reproducible in the process of small-scale modes elim-
ination. Since all bare Green functions are equal to their
respective effective Green functions at the beginning of the
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scale elimination process, the index ‘0’ will be removed from
all bare Green functions from now on.

The matrix in Eq. (18) can be inverted to yield a gen-
eral expression for the tensorial velocity Green function
Gαβ(ω, k),

Gαβ(ω, k) = G(ω, k)
[
δαβ + A(ω, k)Pα3(k)δβ3

]
, (20)

where the functionA(ω, k) is

A(ω, k) = −
N2

G−1(ω, k)G−1
T (ω, k) + N2 sin2 φ

, (21)

N≡

(
αg d2

dz

)1/2
is the buoyancy, or Brunt-V̈ais̈alä frequency,

andφ is the angle betweenk and the vertical. Note that the
term N2 sin2 φ in the denominator ofA generates complex
poles. These poles reflect the appearance of internal waves
in turbulent flow field.

2.3 Quasi-Normal Scale Elimination Model (QNSE)

The formal procedure of the small-scale modes elimination is
applied to Eqs. (13) and (17). This procedure requires one to
differentiate between the modes designated for purging and
the rest of the modes. Assume that all the modes up to a wave
number3 have already been eliminated and we now pro-
ceed to eliminate the next thin shell13, where13/3�1.
Let us define the following domains:D<

=(0,3−13],
D>

=(3−13, 3], andD=(0, 3]=D<
∪D>. Then, we de-

fine the “slow” (u<, T <) and “fast” (u>, T >) velocity and
temperature modes in such a way thatk∈D< for u< andT <

while k∈D> for u> andT >. Finally, uα andT are decom-
posed into sums,uα=u<

α +u>
α andT =T <

+T >, which are
substituted back in Eqs. (13) and (17) to obtain equations
for the slow modes. These equations are not self-contained
because they involve terms with fast modes. One can elim-
inate the fast modes by ensemble-averaging the slow-mode
equations over the fast modes in the assumption of quasi-
normality of the fast modes. The averaging eliminates all the
odd moments of the fast modes. The remaining terms contain
the velocity correlation,〈uα(�, q)uβ(�′, q′)〉. The assump-
tion of statistical homogeneity suggests that the velocity cor-
relation is proportional toδ(q+q′) while the assumption of
stationarity yields the proportionality toδ(�+�′). Thus, the
velocity correlation can be written in the form

〈uα(�, q)uβ(�′, q′)〉 = (2π)4δ(q + q′)δ(� + �′)

× Uαβ(�, q), (22)

where the coefficient(2π)4 is added for convenience. The
form of the velocity correlation tensor,Uαβ(�, q), can be
established from the general form of the momentum Eq. (17),
uβ=GβαFα, whereFα represents the right side of Eq. (17),
the requirement of the incompressibility, and the dimensional
considerations,

Uαβ(q̂) = Cεq−3Gαµ(q̂)G∗
βσ (q̂)Pµσ (q), (23)

whereε has a meaning of the energy flux through the modeq
and the constant,C'26.2, is found from the balance between

the energy gain due to the eddy forcing and the energy loss
due to the eddy damping (Sukoriansky et al., 2005b). Strictly
speaking, the expression (23) should also be factored with
some function of the polar angleφ but we shall neglect the
angular dependence in this study. The ensemble-averaging
over the fast modes eliminates a small shell of fast modes,
D>, from the equations for the slow modes thus shrinking the
domain of definition of the slow modes by13; as a result,
the velocity and temperature Green functions receive small
gains,

1G−1
αβ (ω, k, k3) = Pαµθ (k)

∫ >

Pνσβ(k − q)

×Gθν(ω − �, |k − q|, k3 − q3)Uµσ (�, q, q3)
dq d�

(2π)4
, (24)

1G−1
T (ω, k, k3) = kαkβ

∫ >

Uαβ(�, q, q3)

×GT (ω − �, q, q3)
dq d�

(2π)4
. (25)

The symbol
∫ > in Eqs. (24), (25) denotes the integration over

the shellD>. Using Eq. (23), one can evaluate the integrals
in Eqs. (24) and (25) and compute these gains; they, in turn,
yield corrections to the effective viscosities and diffusivities.
The computation is performed in the assumptionk/3�1;
the details of the integration can be found inSukoriansky
et al. (2005b). Due to anisotropy, these corrections are dif-
ferent in the vertical and the horizontal directions and are
proportional tok2

3 andk2
h, respectively. The elimination of

the shellD> from the equations for the slow modes leaves
the form of these equations intact such that the same proce-
dure can be repeated to eliminate the next13 shell. Taking
a limit 13→0, a coupled system of four ordinary differ-
ential equations forνh, νz, κh andκz is obtained to calcu-
late all corrections. This system can be solved analytically
for weak and numerically for arbitrary stratification to ob-
tain scale-dependent, horizontal and vertical eddy viscosities
and eddy diffusivities. The integration can be extended to
an arbitrary wave number3. If 3−1 is smaller than the tur-
bulence macroscale,k−1

L , then the effective viscosities and
diffusivities can be used as subgridscale parameters in large-
eddy simulations (LES) where the grid resolution is3−1.
Extending3−1 to the integral macroscale, one eliminates all
turbulent modes from the equations of motion and arrives at
the Reynolds-averaged Navier-Stokes (RANS) description of
the system.

Summarizing, let us recap that the present method is based
upon the assumption of the quasi-normality of the veloc-
ity and temperature fluctuations and the process of succes-
sive small-scale modes elimination. To reflect these main
features, the method has been coined a quasi-normal scale
elimination model, or, briefly, the QNSE model (Sukorian-
sky et al., 2005b).
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3 Some results from the QNSE model

Figure 1 shows the numerical solution to the coupled sys-
tem of equations forνh, νz, κh and κz given in Sukorian-
sky et al.(2005b). All eddy viscosities and eddy diffusivities
are normalized withνn, the eddy viscosity for a neutral flow
with the same rate of the viscous dissipationε. The hori-
zontal axis is in the units of the wave numberk normalized
with the Ozmidov wave numberkO=(N3/ε)1/2. This figure
demonstrates different behaviors of horizontal and vertical
eddy viscosities and eddy diffusivities with increasing sta-
ble stratification. While the vertical viscosity and diffusivity
are suppressed compared to their values in the neutral case,
their horizontal counterparts are enhanced. Also, while un-
der the action of strong stable stratification the vertical eddy
diffusivity becomes small, the vertical eddy viscosity retains
a finite value compared to its corresponding neutral value.

3.1 Modification of the internal wave dispersion relation
by turbulence

By solving the equation

det
[
G−1

αβ (ω, k)
]

= 0, (26)

one finds the eigenfrequencies of the system (17); they are
given by the real parts of the roots of Eq. (26),

ω = ω0

{
1 −

(
k

kO

)4/3

×


(

κz

νn
−

νz

νn

)
cos2 φ +

(
κh

νn
−

νh

νn

)
sin2 φ

4 sinφ

2


1/2

. (27)

Equation (27) provides the dispersion relation for internal
waves in the presence of turbulence. In the limit of strong
stratification, wherek→0 orN→∞, the classical dispersion
relation for linear internal waves,ω=N sinφ, is recovered.
As the scales decrease, turbulence becomes the dominant dy-
namical factor; when the wave numberkt (φ), given by

kt (φ) = kO

∣∣∣∣∣ 4 sinφ(
κz

νn
−

νz

νn

)
cos2 φ +

(
κh

νn
−

νh

νn

)
sin2 φ

∣∣∣∣∣
3/2

' 32kO | sinφ|
3/2, (28)

is reached, the turbulent overturn completely overwhelms
the generation of waves, such thatkt (φ) provides a thresh-
old scale at which the internal waves disappear. The waves
can only exist inside the torusk≤kt (φ). One can see that
kt (φ) reaches its maximum atφ=±π/2. This value is shown
in Fig. 1 by a vertical straight line. It is easy to see that
the threshold of the internal wave generation is in the range
where the eddy viscosities and eddy diffusivities just begin
to deviate from their values under neutral stratification, i.e.,
the threshold (28) coincides with the beginning of the flow
anisotropization under the action of stable stratification.

0.01 0.1 1 10 100
0

0.5

1

1.5

2

2.5

Fig. 1. Horizontal and vertical eddy viscosities and diffusivities
normalized with the corresponding value of the eddy viscosity in
the neutral case,νn, as functions ofk/kO , kO=(N3/ε)1/2 is the
Ozmidov wave number. The dashed vertical line indicates the max-
imum wave number threshold of internal wave generation in the
presence of turbulence, Eq. (28).

3.2 The asymptotic case of weak stable stratification

For weakly stable stratification,(k/kO)−1
�1, and one can

use this ratio as a small parameter in power series expansions
of the eddy viscosities and eddy diffusivities. Retaining only
the first term in these expansions, we obtain

νh/νn = 1 + 0.38(k/kO)−4/3, (29)

νz/νn = 1 − 1.24(k/kO)−4/3, (30)

κh/νn = α + 0.22(k/kO)−4/3, (31)

κz/νn = α − 1.6(k/kO)−4/3, (32)

whereα−1
=Prt0'0.72 is the turbulent Prandtl number for

neutral flows (Sukoriansky et al., 2005b). These equations
show that the normalized horizontal eddy viscosity and dif-
fusivity tend to increase with increasing stratification while
their vertical counterparts decrease thus pointing to the large-
scale anisotropization of the turbulent transport of momen-
tum and heat in stably stratified flows. Equations (29)–(32)
can be used to quantify the onset of this anisotropization; for
instance, atk/kO'6, all effective viscosities and diffusivities
differ from their neutral values by less than 10%.

3.3 Turbulence spectra

Due to the flow anisotropy, a traditional 3-D energy spectrum
provides only limited information; as shown inSukoriansky
et al. (2005b), it remains close to the classical Kolmogorov
spectrum. Various 1-D spectra provide more detailed infor-
mation on flow anisotropization under the action of stable
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Fig. 2. Horizontal and vertical turbulent exchange coefficients nor-
malized withνn as functions ofRi (a) andFr (b).

stratification. In the limit of weak stratification, these spectra
can be computed analytically using Eqs. (23) and (29)–(32).
The vertical spectrum of the horizontal velocity then takes
the form

E1(k3) =
8

(2π)4

∫
U11(ω, k)dωdk1dk2

= 0.626ε2/3 k
−5/3
3 + 0.214N2k−3

3 . (33)

Equation (33) shows that the QNSE model reproduces the
N2k−3

3 spectrum; the transition from the Kolmogorov−5/3
to the stable stratification dominated−3 spectrum takes place
on scales of the order of the Ozmidov scale. The coefficients
in Eq. (33) are in very good agreement with experimental

data (Gargett et al., 1981) and LES (Carnevale et al., 2001)
where the factor with the termN2k−3

3 was found to be about
0.2.

For other 1-D spectra one obtains:

E3(k1) =
8

(2π)4

∫
U33(ω, k)dωdk2dk3

= 0.626ε2/3 k
−5/3
1 − 0.704N2k−3

1 , (34)

E3(k3) =
8

(2π)4

∫
U33(ω, k)dωdk1dk2

= 0.47ε2/3 k
−5/3
3 − 0.143N2k−3

3 . (35)

The anisotropization of the flow field manifests itself as en-
ergy increase in the horizontal velocity components at the
expense of their vertical counterpart.

4 RANS modeling

In the conventional RANS modeling, equations of motion
are Reynolds-averaged and then a system of closure assump-
tions is introduced to derive expressions for eddy viscosity
and eddy diffusivity,KM andKH (see, e.g.,Mellor and Ya-
mada, 1982). The sum of the diagonal Reynolds stresses is
used to obtain the equation for the total kinetic energy,K,
and then one more equation is required to specify the tur-
bulence macroscale,L, or, equivalently, the rate of the tur-
bulent dissipation,ε. The latter equation cannot be derived
analytically and is, thus, postulated. The distribution ofL

can be prescribed by either an algebraic equation leading to
the family of one-equation models, or by a differential equa-
tion usually constructed following the template of the energy
equation and leading to the family of two-equation models.
Thus, the RANS models involve two components that require
ad hoc approximations – expressions for eddy viscosities and
eddy diffusivities and an equation forL or ε.

The use of the QNSE methodology to derive the RANS-
type models yields expressions for the eddy viscosities and
eddy diffusivities directly from the theory and thus allows
one to bypass the use of the Reynolds stress closure assump-
tions. An equation forL or ε, on the other hand, still needs
to be postulated. It is hypothesized, however, that the QNSE-
based expressions forνh, νz, κh andκz (νz andκz are iden-
tified with KM andKH , respectively) can significantly im-
prove the performance of the RANS models. In this and the
following sections, we shall substantiate this hypothesis by
testing the QNSE-based RANS models against various ex-
perimental and field data.

When the process of small-scale modes elimination in the
QNSE model is extended to the wave number correspond-
ing to the turbulence macroscale,k−1

L , the RANS-type equa-
tions are obtained. The details of derivation of the RANS
models based upon the QNSE methodology are given in
Sukoriansky et al.(2005b). Very briefly, this derivation
is based upon the theoretically obtained expression for the
total kinetic energy spectrum. Integrating this expression
to kL, a key relationship between the total kinetic energy,
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Fig. 3. Vertical turbulent Prandtl number as a function ofRi. Data
points are laboratory measurements from Huq and Stewart (private
communication); the solid line represents QNSE model’s results.

K, the rate of the energy transfer,ε, and kL is derived.
These parameters can be utilized to form the Froude num-
ber,Fr=ε/NK, which characterizes the strength of stratifi-
cation. Note thatFr can be used in both shear and shear-
free flows. If the source of turbulence is the velocity shear
with the mean strengthS, then the gradient Richardson num-
ber, Ri=N2/S2, can be introduced as an alternative mea-
sure of the strength of stratification. Determining the value
of ε as a difference between the energy production due to
the shear,P=νzS

2, and the buoyancy destruction,B=κzN
2,

find ε=P−B=νzS
2
−κzN

2
=S2(νz−κzRi). This expression

enables one to relateRi to Fr such that the vertical eddy vis-
cosity and eddy diffusivity can be expressed as functions of
eitherRi or Fr, Fig. 2.

The inspection of Fig.2 reveals that
(i) for Ri>0.1, both vertical viscosity and diffusivity de-
crease, with the diffusivity decreasing faster than the vis-
cosity (supposedly, due to the mixing from internal gravity
waves);
(ii) while the vertical eddy diffusivity becomes small with
increasing stratification, the vertical eddy viscosity remains
equal to about 25% of its neutral value. This behavior in-
dicates that internal waves are more effective in mixing the
momentum than the scalar;
(iii) the horizontal mixing increases withRi; the model ac-
counts for the increasing flow anisotropization;
(iv) the crossover from neutral to stratified flow regime is
replicated as a sharp drop in the vertical eddy viscosities and
eddy diffusivities compared to their neutral values.

One of the general conclusions that may be drawn from
these results is that a single valued critical Richardson num-
ber at which turbulence is abruptly suppressed does not exist.
Instead, there exists a gradual turbulence - internal wave tran-
sition. This result is consistent with the abundant volume of
data collected in meteorological and oceanographic observa-
tions (see, e.g.,Kondo et al., 1978; Yagüe and Cano, 1994;
Yagüe et al., 2001; Strang and Fernando, 2001; Monti et al.,
2002; Mahalov et al., 2004; Mack and Schoeberlein, 2004,
and many others) in which turbulence survived in flows with

Fig. 4. Inverse Prandtl number,Pr−1
t =κz/νz, as a function ofRi.

Experimental data points are fromMonti et al.(2002).

Ri far exceeding the critical value of1/4 obtained from the
linear stability analysis byMiles (1961) andHoward(1961)
or 1 that follows from the nonlinear analysis byAbarbanel
et al.(1984).

5 Comparison with experimental and observational
data and numerical simulations

5.1 The vertical turbulent Prandtl number and the flux
Richardson number

The vertical turbulent Prandtl number is an important charac-
teristic of momentum and temperature mixing under the ac-
tion of stable stratification. The significance of the accurate
representation ofPrt has been underscored in recent numeri-
cal simulations byNoh et al.(2005) who have shown that the
ocean general circulation models provide more realistic de-
scription of the equatorial mixed layer, deep Equatorial Un-
dercurrent, and the zonal slope of the thermocline when they
incorporate growing with stratification vertical Prandtl num-
ber.

We have compared QNSE model predictions forPrt as a
function of the gradient Richardson number,Ri, with lab-
oratory data by Huq and Stewart (private communication),
in Fig. 3 and observations in stably stratified atmospheric
boundary layers byMonti et al. (2002) in Fig. 4. In both
cases the agreement was very good for all available Richard-
son numbers up toRi∼10. As was explained in Sect.4, the
derivation of the RANS equations is based upon the theoreti-
cal expression for the total kinetic energy integrated tokL. In
real flows, the spectral behavior on large scales in the vicin-
ity of k−1

L is not universal such that the above relationship
betweenK, ε andkL may need to be adjusted by introducing
an experimentally determined factor. This adjustment would
be equivalent to calibration of the values ofFr or Ri. We
have used a factor of 0.5 withRi to compare our results for
Pr−1

t with the data byYagüe et al.(2001) collected at Hal-
ley Base, Antarctica. The comparison in Fig.5 shows good
agreement between the model and the data. The same factor
would have improved the agreement with the data in Fig.4
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Fig. 5. Inverse Prandtl number,Pr−1
t =κz/νz, as a function of

Ri. The observational data points are from Halley Base, Antarc-
tica (Yagüe et al., 2001).

as well but a more detailed exploration of this issue requires
further research.

Another characteristic of stably stratified turbulent flows
is the flux Richardson number,Rif =B/P=Ri/P rt , which
sometimes is referred to as the mixing efficiency. This pa-
rameter is often used to characterize the eddy diffusivities.
The relationship betweenRif andRi has been a subject of
an extensive research. Figures4 and5 indicate that at large
Ri, the present model yieldsPrt∝Ri such thatRif reaches a
maximum of about 0.5 atRi'1.5 when the aforementioned
correcting factor of 0.5 withRi is not used and about 0.3
when this correction is employed. This theoretical behavior
of Rif agrees with some other theories and data sets. Some
data sets, e.g.,Monti et al. (2002), show a decrease ofRif
for Ri>2. The latter paper also presents a relatively recent
review of data sets and theories regardingRif .

5.2 Composite spectrum of the vertical shear in the upper
ocean

The composite spectrum of the vertical shear in the upper
ocean was compiled inGargett et al.(1981) but has never
been obtained theoretically. Figure6 compares the observa-
tional data with the spectrum (33) derived analytically from
the QNSE model in the limit of weak stable stratification,
k/kO≥1. Note that although Eq. (33) has been obtained in
the asymptoticsk/kO≥1, we have extended this solution be-
yond that range for illustration of the−3 slope.

Fig. 6. Composite spectrum of the vertical shear in the upper ocean:
the data is fromGargett et al.(1981), the solid line is based upon
Eq. (33).

6 A newK−ε model

Based upon the QNSE theory, we have developed a new
K−ε model (Sukoriansky et al., 2005a). The effect of strat-
ification was incorporated in theε-equation similarly to the
effect of rotation in the model byDetering and Etling(1985).
The new model has been implemented in the 1-D version of
the weather forecast model HIRLAM (high-resolution, lim-
ited area model) described inPerov and Gollvik(1996) and
Perov et al.(2001) to simulate a stably stratified atmospheric
boundary layer (ABL). The resulting model has been tested
against observational data collected in several campaigns.
Here we show several examples of these comparisons in or-
der to demonstrate good agreement between the data and the
QNSE-basedK−ε model predictions.

6.1 Comparison with the data from CASES-99

The Cooperative Atmosphere-Surface Exchange Study-1999
(CASES-99) campaign took place in southeastern Kansas in
the fall of 1999; the data description can be found inPou-
los et al. (2002). Here, we are concerned with an event
that occurred over the night of 20–21 October 1999, dur-
ing the intensive observation period (IOP) 9. The starting
time was on 22:00 UTC (Greenwich Mean Time) on 20 Oc-
tober and the ending time was on 13:00 UTC (UTC = Lo-
cal time + 5 h) on 21 October. The temperature and wind
speed profiles at the beginning of the event are the green
dashed lines in Fig.7a and b, respectively. During IOP-9,
the surface temperature decreased from 293 K to 278 K. Af-
ter 4–5 h from the beginning, a well-developed low-level jet
(LLJ) was formed, shown by blue asterisks in Fig.7b; it at-
tained a maximum speed of about 14 m s−1 at an altitude
of approximately 120 m. Within a span of an hour, between
06:30 UTC and 07:30 UTC, the wind speed evolved from a
narrow LLJ to a profile that increased with height from the
ground to a point somewhat higher than the earlier LLJ peak,
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with roughly constant wind speed (9–12 m s−1) above that
height, shown by the red crosses in Fig.7b. Some of the tem-
perature measurements made during that period showed the
development of an extremely steep positive temperature gra-
dient near 180–190 m. As recorded inBalsley et al.(2003),
the change of temperature could reach 1 K over only 5 cm
altitude which would correspond to a vertical temperature
gradient of 20 K m−1. This sharp temperature gradient re-
mained for at least next 20 min.Balsley et al.(2003) note
that such a steep temperature gradient exceeds all previously
observed gradients in the atmospheric boundary layers (see,
for instance,Yagüe and Cano, 1994; Yagüe and Redondo,
1995; Yagüe et al., 2001, for ABLs at Halley Base in Antarc-
tica) by over an order of magnitude.

We have simulated the IOP-9 event with the newK−ε

model in a single-column format, where measured verti-
cal profiles of wind velocities and potential temperature at
23:00 UTC were used as initial conditions. Figure7 com-
pares the simulated temperature and velocity profiles with
those measured during IOP-9. One can see that the agree-
ment between the model and the data is very good, in par-
ticular that the model reproduces LLJ, although the latter
could only be replicated by introducing a horizontal advec-
tion of turbulent kinetic energy. Since we are operating with
a one-dimensional model, processes responsible for the hor-
izontal advection cannot develop in the model and can only
be introduced as external parameters. We have included the
horizontal advection of turbulence kinetic energy in our one-
column simulations based upon the following citation from
the “IOP Summary Report” for IOP-9: “At one point, an ap-
parent ‘fossil turbulence’ event some 700 m deep and ele-
vated at∼500 m above ground level seemed to advect into
the area. The King Air flew at 3 levels through this event and
the NOAA HRDL, in vertical stare, captured vertical veloci-
ties of 50–60 cm s−1. This was not a wave-like or developed
strong shear both above and below the jet. Sometime after
midnight (local time) the jet nearly disappeared over the site,
apparently it mixed out. The jet was re-established by 03:00
(local time, 08:00 UTC), October 21.”

Another surprising feature during IOP-9 was the steepness
of the gradients of turbulence characteristics at the top of
the nocturnal boundary layer (NBL) and inside the residual
layer (RL) defined as a region above the NBL that usually
bears slight stable stratification and extends upward reach-
ing the height affected by the signature of the capping in-
version from the previous day. At the NBL top (z=200 m
in Fig. 8, the rate of the energy dissipation and tempera-
ture structure parameters dropped sharply exceeding one or-
der of magnitude over an altitude of only a few meters. At
higher altitudes within the RL, a region of very weak turbu-
lence was observed whose thickness was about 60m. This
low-turbulence region exhibited sharp edges at whichε and
temperature structure parameters could change by an order
of magnitude and more over vertical distances of only a few
meters. Figure8 demonstrates that our newK−ε model can
reproduce an irregular behavior ofε with a good degree of
accuracy.

Fig. 7. Evolution of the potential temperature(a) and wind(b) pro-
files in CASES-99 as simulated by the newK−ε model. The green
dashed lines – initial profiles at 23:00 UTC; the blue asterisks – ob-
servations at 06:30 UTC; the blue dotted lines – model predictions
at 0630 UTC; the red crosses – observations at 07:30 UTC; the red
solid lines – model predictions at 07:30 UTC.

Summarizing the simulations of the IOP-9 of CASES-99,
we note that the newK−ε model is capable of faithfully
replicating complicated processes that take place in NBLs
including fast formation and disappearance of the low-level
jets, sharp temperature gradients, and irregular and sharply
changing vertical profiles of turbulence characteristics.
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Fig. 8. Vertical profiles of the dissipation rateε during IOP-9
of CASES-99. Red crosses – observations at 07:30 UTC; blue
dotted line and red solid line are model predictions at 06:30 and
07:30 UTC, respectively.

6.2 Comparison with the data from BASE

The goal of BASE (Beaufort Arctic Storms Experiment) was
to improve understanding of the Arctic weather systems dur-
ing the fall season. Accordingly, BASE was conducted from
19 September through 29 October 1994 in the Beaufort Sea.
The data description can be found inCurry et al.(1996). The
data from BASE was successfully simulated in LES byKoso-
vic and Curry(2000) who considered two cases which dif-
fered by the rate of the surface cooling equal to 0.25 K hr−1

(a moderately stable ABL, Fig.9a) and 1.0 K hr−1 (a strongly
stable ABL, Fig.9b). The strength of the overlying inversion
was 0.01 K m−1 and the surface roughness was 0.1 m. The
LES simulated the transitional process of the boundary layer
adjustment to the respective surface cooling rates for each of
the two cases.

Using the new QNSE-basedK−ε model, we have simu-
lated these two experiments in a single-column formulation
with a vertical resolution of 10 m. Both simulations were
executed for 12 h of physical time during which the flow at-
tained a quasi-steady state. The initial values of the turbulent
kinetic energy and dissipation were set equal to small con-
stants. In the course of the simulations, the model “forgot”
the initial distributions of the turbulence energyK andε after
approximately one hour of integration.

Figure 9 shows the profiles of the potential temperature
(PT) simulated with the new and the standardK−ε models
as well as with the LES after 12 h simulation. The agree-
ment of the new model with the LES data is good for the
case of moderate stratification. The standard model strongly

Fig. 9. Vertical profiles of mean potential temperature (PT) for the
cases of moderate(a) and strong(b) stable stratification simulated
with the new (solid line) and standard (dashed-dotted line)K−ε

models. The LES results byKosovic and Curry(2000) are shown
by asterisks. The initial PT profiles (marked as PT0) are shown by
straight solid lines.

overestimates the height of the temperature boundary layer
in that case. In the case of strong stratification, the sim-
ulated temperature profile is lower than in LES, which ig-
nored the effect of stable stratification on the sub-grid scale
(SGS) viscosities and diffusivities by adopting the parame-
ters from the neutral case. As can be seen on Fig.1, such an
approximation is justified when the grid size is smaller than
the Ozmidov length scale,LO=π/kO . However, in strong
stratification,LO decreases and may become comparable to
or even smaller than the grid size. The eddy viscosities and
diffusivities in this case are significantly reduced compared
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Fig. 10. Vertical profiles of mean horizontal wind components,U

andV , simulated with the new and standardK − ε models. The
initial profiles are marked asU0 andV 0, respectively. The order of
the panels and the description of the lines and asterisks are the same
as in Fig.9.

to their neutral values. The use of these values in strongly
stratified flows may result in overestimated mixing and over-
predicted boundary layer height. Since the eddy diffusivity
in such flows decreases much faster than the eddy viscosity,
the overprediction of the temperature boundary layer height
can be expected to be most profound. To avoid this problem,
one can either increase the grid resolution or account for the
effect of stratification on SGS parameters (Sukoriansky et al.,
2005a).

The vertical profiles of the horizontal wind components,
U andV , are shown in Fig.10. The results obtained with the
newK−ε model show good agreement with those produced
in LES by Kosovic and Curry(2000). The standardK−ε

Fig. 11. Vertical profiles of potential temperature(a) and wind
speed(b) in SHEBA experiment. The observational data is rep-
resented by asterisks, the simulations with the newK−ε model are
shown by thin solid lines. The short dashed lines refer to the case in
which the vertical advection is not accounted for.

model does not perform well in the case of the moderate
stratification but under strong stratification its performance
improves significantly.

6.3 Comparison with the data from SHEBA

During the Surface Heat Budget of the Arctic Ocean
(SHEBA) experiment, an array of instrument sites was ar-
ranged around an icebreaker frozen in the Arctic Ocean pack
ice (Uttal et al., 2002; Andreas et al., 1999). Over the year
1998, the entire field camp drifted together with the pack
ice across the Beaufort and Chukchi seas for approximately
1500 km. A large volume of atmospheric and surface data
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Fig. 12. Percentage of relative improvement in +48h weather fore-
cast over Scandinavia using QNSE-based eddy viscosity and eddy
diffusivity in HIRLAM. Black dotes and red squares and corre-
sponding lines refer to temperature and relative humidity at 2 m
height, respectively, and blue triangles and line denote the mean
sea-level pressure.

was recorded. One of the main objectives of the SHEBA
experiment was to collect surface and ABL data suitable
for evaluation of the parameterization schemes employed in
global circulation and numerical weather prediction mod-
els for high latitudes. The present model-data comparisons,
shown in Fig.11, were performed for the winter case of 15
January, from 0 to 12 h. The initial time was characterized
by strong stability, where the low surface temperature was
Ts=235 K and the geostrophic wind velocity wasUg=6 m
s−1. During the span of 12 h,Ug increased to 8.2 m s−1

andTs decreased to 233.5 K. This process was simulated us-
ing the newK−ε model in a single-column format; the re-
sults of the 12 h integration are shown in Fig.11. The ob-
served vertical profile of potential temperature above ABL
had shifted during the integration period relative to the initial
profile. The analysis of the ECMWF weather forecast for this
period has shown a week subsidence (negative vertical veloc-
ity) over the area of study. To reflect the ensuing processes
of the large-scale vertical advection of potential temperature
and velocity, a negative vertical velocity of−10−3 m s−1 was
incorporated in the model. With vertical advection accounted
for, the simulated potential temperature and velocity profiles
are in good agreement with the observational data. Figure11
demonstrates that the data cannot be reliably reproduced if
the vertical advection is not accounted for.

7 Testing ofνz and κz in a high-resolution weather pre-
diction model

We have tested the QNSE-model derived vertical eddy vis-
cosity and eddy diffusivity in the numerical weather pre-
diction system based upon HIRLAM which is being rou-
tinely used for operational weather prediction in Europe. The
model’s grid covers the North-East Atlantic, Europe, and
Greenland. HIRLAM is a hydrostatic model with 438×336
points in the horizontal that provide 22 km×22 km resolu-
tion, and 40 levels in the vertical. Lateral boundary condi-
tions and the first guess field are adopted from the European
Centre (ECMWF) operations. HIRLAM employs massive
data assimilation that utilizes data from over 1000 stations all
over Europe; the data assimilation cycle is 6 h. Weather fore-
casts are obtained by executing the HIRLAM code for 48 h
from the initial times at 00:00, 06:00, 12:00, 18:00 UTC. In
total, for a one-month diagnostics, some 120, +48 h forecasts
are available. These data sets are used for statistical analysis
and calculation the skills of the forecast. We have chosen to
run such diagnostics for the month of January, 2005 because
it was a relatively cold month with significant signature of
strong stable stratification.

To test the QNSE-based vertical eddy viscosity and eddy
diffusivity, νz and κz, shown on Fig.1, against their con-
ventional counterparts employed in HIRLAM, we have com-
pared one-month statistical skills of parallel simulations that
used both formulations. The difference between the simula-
tions was only in the formulation of the vertical eddy viscos-
ity and eddy diffusivity for the case of stable stratification;
the rest of the model was left intact. Although the model
in these simulations was run over the entire computational
domain, we have concentrated on its predictions over Scan-
dinavia only as this area was strongly affected by the cold
weather. Figure12summarizes the results of the parallel ex-
periment; it shows the percentage of relative improvement
(PRI) in +48 h weather forecast for the bias of the sea-level
pressure as well as those of the temperature and relative hu-
midity at the height of 2 m. The PRI was calculated as (new
bias – reference bias)/(reference bias). As one can see, the
new stability functions significantly improve the predictive
skills of HIRLAM for stably stratified atmospheric boundary
layers.

8 Conclusions

The basic assumption of the new spectral model of turbu-
lence presented in this paper, the QNSE model, is the hypoth-
esis of quasi-normality which leads to a self-contained pro-
cedure of consecutive coarse-graining. The model explicitly
resolves the stable stratification-induced disparity between
the transport processes in the horizontal and vertical direc-
tions and accounts for the combined effect of turbulence and
waves. Anisotropic turbulent viscosities and diffusivities ob-
tained from the model are in good agreement with experi-
mental data. Various anisotropic spectra can be calculated
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analytically in the limit of weak stratification; one of the re-
sults is the demonstration that the energy of the horizontal
flow components increases at the expense of their vertical
counterpart. For the first time, the transition from the Kol-
mogorov to theN2k−3

3 spectral laws for the one-dimensional
spectrum of the horizontal velocity,E1(k3), has been de-
rived analytically. The QNSE model yields modification of
the classical dispersion relation for internal waves that ac-
counts for turbulence. The QNSE theory provides subgrid-
scale parameterizations that can be used in both LES and
RANS models. The QNSE approach has been implemented
in a K−ε model of a stratified ABL; good agreement with
CASES99, BASE and SHEBA datasets has been demon-
strated for cases of moderate and strong stable stratification.
When implemented in the numerical weather forecast sys-
tem HIRLAM, the QNSE-based vertical eddy viscosity and
eddy diffusivity substantially improve the system’s predic-
tive skills. The QNSE model indicates that there is no single
Richardson number at which turbulence is completely sup-
pressed. Instead, there exists a range ofRi where the ver-
tical eddy viscosity and eddy diffusivity undergo dramatic
decrease but turbulence survives even at very large values of
Ri. The QNSE-basedK−ε model can be applied to engi-
neering flows and ABL with and without effects of rotation
and stratification using invariant set of constants. In this ap-
proach, the problem of the model realizability does not arise.
Thus, the QNSE-based RANS models present a viable alter-
native to the Reynolds stress closure models widely used in
meteorological, oceanographic and engineering applications.
The utility of the QNSE-based LES and RANS models and
their performance are being further assessed in the ongoing
theoretical and computational research.
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