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Abstract

In this work we explore the extension of the quasi-optimal sparse grids
method proposed in our previous work “On the optimal polynomial ap-
proximation of stochastic PDEs by Galerkin and Collocation methods” to
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a Darcy problem where the permeability is modeled as a lognormal ran-
dom field. We propose an explicit a-priori/a-posteriori procedure for the
construction of such quasi-optimal grid and show its effectivenenss on a
numerical example. In this approach, the two main ingredients are an esti-
mate of the decay of the Hermite coefficients of the solution and an efficient
nested quadrature rule with respect to the Gaussian weight.

1 Introduction

Uncertainty quantification plays a crucial role in the area of groundwater flows
where, given the time and length scale of most problems, it is quite common
to have partial and fragmented knowledge about most of the system properties,
e.g. on the permeability field, forcing terms, boundary conditions. Broad classes
of applications of interest could be oil or water reservoir management, see e.g.
[8, 10].

Given the complexity of the deterministic solvers for such problems, a non-
intrusive computational approach to perform the uncertainty quantification anal-
ysis is quite appealing. In this work we consider a Darcy problem with uncer-
tain permeability modeled as a lognormal random field, and we explore (rather
heuristically) the possibility to extend to this problem the quasi-optimal sparse
grid method that we proposed in [4] for problems depending instead on a set of
uniform random variables.

The well-posedness of the lognormal problem has been thoroughly investi-
gated in [7, 15]. The optimal convergence rate of its so-called Polynomial Chaos
Expansion approximation has been analyzed theoretically in [18]. Although the
deterministic Darcy problem is more commonly approximated numerically in its
mixed form (see e.g. [1, 5, 9, 16]), in this work we will consider a standard Finite
Element discretization of the primal elliptic formulation of the Darcy problem,
in which the unknown is the water pressure p.

The rest of this work is organized as follows. In Section 2 we specify the model
assumptions on the random permeability field, on the deterministic problem and
on the quantity of interest. Section 3 deals with the finite dimensional Fourier
expansion of the random field, and Section 4 with the derivation of the quasi-
optimal sparse grid for the problem at hand. Finally, we present some numerical
results in Section 5, and draw some conclusions in Section 6.

2 Problem setting

Let (Ω,F , P ) be a complete probability space, where Ω denotes the set of out-
comes, F its σ-algebra, and P : F → [0, 1] a probability measure. Follow-
ing a standard notation, we denote with H1(D) the Sobolev space of square-
intergrable functions in D with square integrable derivatives. Lq

P (Ω) will denote
the Banach space of random functions with bounded q-th moment with respect
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to the probability measure P , and Lq
P (Ω;H

1(D)) the Bochner space of H1(D)-
valued random fields with q-th bounded moment with respect to P , that is

f ∈ Lq
P (Ω;H

1(D)) ⇔
∫

Ω
‖f(·, ω)‖q

H1(D)
dP (ω) < ∞ .

As mentioned in the introduction, the permeability field is supposed to be
uncertain. Since hydrogeologycal applications deal in general with composite
materials (sand, marl, clay), the pointwise permeability values can vary within
several orders of magnitude. It is thus rather common to model the logarithm
of the permeability as a random field, rather than the permeability itself. More
in detail, we will make the following assumption.

Assumption 2.1 The permeability a(x, ω) : D × Ω → R is a lognormal field,
that is

a(x, ·) = eγ(x,·), γ(x, ·) ∼ N (µ, σ2) ∀x ∈ D, (1)

where N (µ, σ2) denotes a Gaussian probability distribution with expected value
µ and variance σ2, and γ(x, ω) : D × Ω → R is such that for x,x′ ∈ D the
covariance function Cγ(x,x

′) = Cov [γ(x, ·)γ(x′, ·)] depends only on the distance
‖x− x′‖ (“isotropic” property). Moreover, Cγ(x,x

′) = Cγ(‖x− x′‖) is Lips-
chitz continuous, and is a positive definite function.

As for the choice of Cγ , several models have been proposed in the liter-
ature. While hydrogeological expertise seems to indicate that a reasonable
choice for Cγ for isotropic media would be the exponential correlation func-

tion Cγ(x,x
′) = σ2 exp

(

−‖x−x′‖
1

L2
c

)

, it is intuitive that the spike featured by this

choice will make the problem quite difficult to tackle. As a consequence, given
the exploratory level of this work, we choose here to work with the more regular
Gaussian covariance function,

Assumption 2.2 The Gaussian field γ(x, ω) has a Gaussian covariance func-
tion,

Cγ(x,x
′) = σ2 exp

(

−‖x− x′‖2
L2
c

)

. (2)

where Lc > 0 is called “correlation length”.

The Darcy problem will be set in a horizontal square domain D = (0, L)2,
L = 1, with no forcing terms. We impose a pressure gradient acting on the
water by setting p = 1 on the left boundary B1 = {x ∈ D : x1 = 0 } and p = 0
on the right boundary B2 = {x ∈ D : x1 = L }. Finally, we consider a no-flux
Neumann condition on the upper and lower boundaries B3 = {x ∈ D : x2 = 0 }
and B4 = {x ∈ D : x2 = L }. The Darcy problem thus reads:
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Strong Formulation 1 Find a random pressure p : D × Ω → R such that
P -almost everywhere the following equation holds























− div(a(x, ω)∇p(x, ω)) = 0 x ∈ D,

p(x, ω) = 1 x ∈ B1,

p(x, ω) = 0 x ∈ B2,

a(x, ω)∇p(x, ω) · n = 0 x ∈ B3 ∪ B4.

(3)

It is straightforward to see that, thanks to the Lax–Milgram lemma, (3) is well-
posed for almost every ω ∈ Ω. Proving the well-posedness of (3) in the Bochner
spaces Lq

P (Ω;H
1(D)) for q > 0 is instead not trivial, since a is not uniformely

bounded nor uniformely coercive with respect to ω. It is however possible to
prove the following result (see e.g. [2, 7, 11, 15]):

Proposition 2.1 For every q > 0, there exists a unique H1(D)-valued random
pressure p = p(x, ω) in Lq

P (Ω;H
1(D)) solving (3).

As for quantities of interest, we aim at computing the expected value of the
total flux crossing the right boundary B2. This is indeed a random variable,

Zp(ω) =

∫

B2

a(x, ω)∂np(x, ω)dx , (4)

and also represents the “effective permeability” of the random medium in D.

3 Series expansion of the log-permeability random

field

To get to a computable representation of p we need to derive an approximation of
a in terms of a finite set of N random variables yi(ω), i = 1, . . . , N (“finite noise
approximation”). Such approximation is usually obtained by suitably truncating
a series expansion such as the Karhunen-Loève expansion, see e.g. [21]. As an
alternative, we consider here a Fourier-based decompostion of γ, which uses
trigonometric polynomials as basis functions in the physical space. This choice
allows analytical computation of the expansion and highlights the contribution
of each spatial frequency to the total field a.

Proposition 3.1 (Fourier expansion) Let γ(x, ω) : [0, L]2 × Ω → R be a
weakly stationary gaussian random field as in Assumption 2.1, with pointwise
variance σ2. Then the covariance function can be expanded in cosine-Fourier
series

Cγ(
∥

∥x− x′∥
∥) = σ2

∑

k=(k1,k2)∈N2

0

ck cos(ωk1(x1 − x′1)) cos(ωk2(x2 − x′2)), (5)
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with ωk1 = k1π
L , ωk2 = k2π

L , and normalized Fourier coefficient ck so that

∑

k∈N2

0

ck = 1. (6)

In particular, for the Gaussian covariance function in Assumption 2.2, and for
sufficiently small values of Lc, ck are well approximated by

ck ≈ λk1λk2 , where λk =















Lc
√
π

2L
if k = 0

Lc
√
π

L
exp

(

− (kπLc)
2

4L2

)

if k > 0 .

(7)

The random field γ admits then the following expansion

γ(x, ω) = E [γ(x, ·)] + σ
∑

k∈N2

4
∑

i=1

(
√
ckyk,i(ω)φk,i(x) ) (8)

where yk,i(ω) are identically distributed and independent standard Gaussian ran-
dom variables, and φk,i are defined as φk,1(x) = cos(ωk1x1) cos(ωk2x2), φk,2(x) =
sin(ωk1x1) sin(ωk2x2), φk,3(x) = cos(ωk1x1) sin(ωk2x2), φk,4(x) = sin(ωk1x1) cos(ωk2x2).

Proof. See [27, Chapter 4]. �

A good approximation of γ, γN , can be achieved by retaining in (8) only the
N random variables corresponding to the frequencies k in the set

Kκ =
{

k ∈ N
2
0 : k

2
1 + k22 ≤ κ2, κ ∈ N

}

. (9)

Following the argument of [7], it can be shown in particular that γN converges
to γ almost surely in C0(D).

Example 3.1 Table 1 shows the number of random variables that need to be
included into (8) to take into account a fraction α of the total variance of γ
for different correlation lengths Lc. This has been computed by noting that,
thanks to (6), if

∑

k∈K ck = α then γN is taking into account α% of the total
variance of the field. The need to include a high number of random variables in
the approximation of the random field γ, and hence the high-dimensionality of
the vector y of input random variables clearly emerges. In practice, the level of
truncation should be related to the error in the variance of the solution of the
PDE.

Let us now denote Γi = R the support of yi(ω), Γ = Γ1 × . . . × ΓN the
support of y = [y1, . . . , yN ], ρi(yi) : Γi → R the probability density function of
yi and ρ(y) : Γ → R the joint probability density function of y, with ρ(y) =
∏N

n=1 ρi(yi), ρi(yi) = 1√
2π
e−

y2i
2 . Having introduced the random variables yi, we

can replace the abstract probability space (Ω,F , P )
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α = 0.7 α = 0.9 α = 0.99

Lc = 0.35 N = 13 N = 25 N = 49

Lc = 0.25 N = 25 N = 49 N = 97

Lc = 0.1 N = 161 N = 293 N = 593

Table 1: Random variables needed to represent α% of the total variance of a
random field with Gaussian covariance function for different correla-
tion lengths Lc.

with (Γ,B(Γ), ρ(y)dy), where B(Γ) denotes the Borel σ-algebra, and hence
Lq
P (Ω) with Lq

ρ(Γ) and Lq
P (Ω;H

1(D)) with Lq
ρ(Γ;H1(D)).

Moreover, the permeability and pressure fields can now be seen as functions
of x and y, a(x, ω) ≈ aN (x,y) = eγN (x,y), p(x, ω) ≈ pN (x,y) and the quantity
of interest (4) becomes a random function Zp : Γ → R. We will not however
address here the study on the convergence of pN to p, see e.g. [7] to this end.
Here we just mention that, following again the argument in [7], it is possible
to show that the almost sure convergence of γN to γ guarantees the almost
sure convergence of aN to a in C0(D), and that for any q > 0 there holds
‖aN(κ)−a‖Lq(Ω,C0(D)) ≤ C1(q)κe

−C2(L,Lc)κ2

, N(κ) being the cardinality of the set
Kκ defined in (9). In the rest of this work, with a slight abuse of notation, we will
therefore omit subscript ·N if no confusion arise. Moreover, the quasi-optimal
Sparse Grid Collocation technique that we will present in the next Section is able
to automatically select the “most important” random variables that should be
retained for the approximation of p. This would allow us to work with formally
N → ∞ random variables.

The previous results on the well-posedness of the problem still hold after
having replaced ω with y, and we can write the problem in weak form.

Weak Formulation 1 Find p ∈ H1(D)⊗ L2
ρ(Γ) such that p = 1 on B1, p = 0

on B2 and ∀ v ∈ H1
dir(D)⊗ L2

ρ(Γ)

∫

Γ

∫

D
a(x,y)∇p(x,y) · ∇v(x,y) ρ(y) dx dy = 0. (10)

where H1
dir(D) is the subset of H1(D) functions that vanish on the Dirichlet

boundary B1 ∪ B2.

4 Quasi-Optimal sparse grid approximation

As highlighted in Example 3.1, both the permeability a and the pressure p de-
pend on a high number of random variables yi. To obtain efficiently an approxi-
mation of p over Γ we then resort to the sparse grid method [2, 3, 6, 23, 24, 28],
that allows to obtain an accurate representation of p while keeping the number
of interpolation points considerably lower than what would be needed if a full
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tensor grid approximation was employed. In formulae, the sparse grid approxi-
mation of p is written as

pw(y) = Sm
I(w)[p](y) =

∑

i∈I(w)

N
⊗

n=1

∆m(in)
n [p](y), (11)

where

• i ∈ N
N
+ is a multiindex with non-zero components;

• ∆
m(in)
n = Um(in)

n − Um(in−1)
n is called “detail operator”, and is the dif-

ference between two consecutive one-dimensional interpolants, using m(i)
and m(i− 1) points respectively;

• ∆m(i)[p] =
⊗N

n=1∆
m(in)[p] is called “hierarchical surplus”;

• {I(w)}w∈N denotes a sequence of index sets. Each of these sets has to be
admissible in the following sense for the sparse grid to be consistent (see
e.g. [14]):

∀ i ∈ I, i− ej ∈ I for 1 ≤ j ≤ N, ij > 1, (12)

ej being the j-th canonical vector. Roughly speaking, the sparse grid approxima-
tion of p can be understood as a linear combination of tensor grid approximations
of p over Γ, each one built over “few” points.

The efficiency of the sparse grid depends on the choice of the interpolation

points used in Um(i)
n and of the index sets I(w). As for the interpolation points,

they should be chosen in agreement with the probability measure over Γ, a good
choice being given e.g. by the Gauss-Hermite points (see e.g. [26]).

Regarding the index sets I(w), the best strategy is to include in (11) only the
hierarchical surpluses with the highest profits [4, 14, 17]. The latter is defined
as the ratio between the expected error decrease by adding a given hierarchical
surplus to the sparse grid approximation and the corresponding cost, quantified
here by the number of interpolation points in the hierarchical surplus,

I(w) =
{

i ∈ N
N
+ :

∆E(i)

∆W (i)
≥ ǫ(w)

}

(13)

with {ǫ(w)}w∈N ↓ 0 and ∆E(i), ∆W (i) representing the error and work contri-
bution of each hierarchical surplus respectively. Note that I(w) in (13) may not
satisfy the admissibility condition (12), that has to be explicitely enforced.

This criterion can be implemented in an adaptive procedure [14, 19] that
explores the space of hierarchical surpluses and adds to I(w) the most profitable
according to (13). As an alternative, in [4] we have detailed an a-priori/a-
posteriori procedure to detect I(w) based on estimates of ∆E(i) and ∆W (i).
On the one hand, the a-priori approach saves the computational cost of the
exploration of the space of hierarchical surpluses, but on the other hand it will
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be effective only if the estimates of ∆E(i) and ∆W (i) are sufficiently sharp. In
[4] only the case of uniform random variables has been investigated. Deriving
sharp estimates for the problem at hand, that depends on Gaussian random
variables, is the goal of the present work.

We begin with the estimate of the work contribution corresponding to an
additional index i, which can be easily computed if the considered interpolant

operators Um(in)
n are nested and the set I(w) is admissible:

∆W (i) =
N
∏

n=1

(m(in)−m(in − 1)). (14)

The estimate of the error contribution requires instead more effort. As a pre-
liminary step, we need to introduce a spectral basis for L2

ρ(Γ). To this end,
let {Hp(yn)}p∈N be the family of orthonormal Hermite polynomials relative to

the weight e−y2/2/
√
2π in the n-th direction [12]. The set of multidimensional

Hermite polynomials Hq(y) =
∏N

n=1Hqn(yn), ∀q ∈ N
N is an orthonormal basis

for L2
ρ(Γ), that can be used to formally construct the spectral expansion of p(y)

p(y) =
∑

q∈NN

pqHq(y), pq =

∫

Γ
p(y)Hq(y)ρ(y)dy. (15)

We can now state a heuristic estimate for the error contribution of the hierar-
chical surplus ∆m(i) in the spirit of what was done in [4], eq. (4.9):

∆E(i) ≈ B(i)
∥

∥pm(i−1)

∥

∥

H1(D)
, (16)

where pm(i−1) is the m(i − 1)-th coefficient of the spectral expansion (15), and
B(i) is a factor that depends on the interpolation points only, in the spirit of
the Lebesgue constant. This is a reasonable heuristic assumption, since in this
way the error contribution estimate “encodes” information on both the quality
of the solution (through the decay of the spectral coefficients), and the quality
of the interpolant operator itself. Numerical results in the next section will also
show the effectiveness of (16).

To make estimates (14) and (16) computable we still need to:

1. choose a family of nested univariate interpolant operators for the Gaussian
measure;

2. provide an estimate for the factor B(i) in (16);

3. provide an estimate for the coefficients pm(i−1) in (15), (16).

4.1 Nested quadrature formulae for Gaussian measure

The family of nested points we choose is the so-called “Kronrod-Patterson-
Normal” (KPN in short, see Figure 1). Such family of interpolation/quadrature
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Gauss−Hermite

Figure 1: First 35 KPN and Gauss-Hermite knots.

points is due to Genz and Keister, see [13], that applied the Kronrod-Patterson
procedure [20, 25] to the classical Gauss-Hermite quadrature points (i.e. the
roots of the Hermite polynomialsHp(yn)). We recall that the Kronrod-Patterson
procedure is a way to modify a quadrature rule, by adding new points in a nested
fashion retaining the highest degree of exactness possible. The knots and the
corresponding quadrature weights are tabulated up to level 5 (35 nodes) and
can be found e.g. at http://www.sparse-grids.de/. For such family of points
there holds

m(in) = 1, 3, 9, 19, 35 for in = 1, . . . , 5 (17)

i.e. consecutive interpolants are built over 1, 3, 9, 19, 35 points respectively.

4.2 Estimate for B(i)

In [4] the constant B(i) in equation (16) was chosen to be equal to the product
of the Lebesgue constants of interpolant operators in each direction, B(i) =
∏N

n=1 L
m(in)
n . Such an estimate is also supported by numerical verification.

However, it is not easy to obtain a sharp bound for the Lebesgue constant in
case of interpolation in spaces with Gaussian measure. Thus, we propose here a
different estimate for B(i), which on the one hand gives good numerical results
when tested on model problems (see Figure 2) and on the other hand is close to
the original choice when applied to a problem with uniform random variables.

To this end, we go back to the definition of error contribution for a hierarchi-
cal surplus, and exploit the fact that p admits a Hermite expansion. To improve
the readibility we will use ‖·‖⊗ to denote the norm ‖·‖H1(D)⊗L2

ρ(Γ)
.

∆E(i) =
∥

∥

∥

(

p− Sm
{J∪i}[p]

)

−
(

p− Sm
J [p]

)
∥

∥

∥

⊗
=
∥

∥

∥
∆m(i)[p]

∥

∥

∥

⊗
(18)

=
∥

∥

∥
∆m(i)

[

∑

q∈NN

pqHq

]

∥

∥

∥

⊗
=
∥

∥

∥

∑

q∈NN

pq∆
m(i)[Hq]

∥

∥

∥

⊗
.

Observe now that by construction of hierarchical surplus there holds ∆m(i)[Hq] =
0 for polynomials such that ∃n : qn < m(in − 1). Next, we apply the triangular
inequality and get to

∆E(i) ≤
∑

q≥m(i−1)

‖pq‖H1(D)

∥

∥

∥
∆m(i)[Hq]

∥

∥

∥

L2
ρ(Γ)

. (19)
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0 5 10 15 20

10
−10

10
−5

10
0

 

 

∆ E(i)
p

m(i−1)

p
m(i−1)

 B(i)

(b) p(y1, y2) = e−1−y1−0.2y2 .

Figure 2: Numerical comparison between ∆E(i) and |pm(i−1)| for p of the

form p(y1, y2) = e−1−b1y−1−b2y2 . The quantities ∆E(i) for i s.t.
max{i1, i2} ≤ 4 have been computed with a standard Smolyak sparse
grid, with I(w) = {i ∈ N

N
+ : |i − 1| ≤ w}, w = 10, and “doubling”

function m(i): m(0) = 0,m(1) = 1,m(i) = 2i−1+1. The Hermite co-
efficients |pm(i−1)| have been computed analytically with the formula
stated in Lemma 4.1.

Therefore, the error estimate (16) is equivalent to assuming that the summation
on the right-hand side of (19) is dominated by the first term, with

B(i) =
∥

∥

∥
∆m(i)[Hm(i−1)]

∥

∥

∥

L2
ρ(Γ)

=
N
∏

n=1

Bn(in) , (20)

Bn(in) =
∥

∥

∥
∆m(in)[Hm(in)]

∥

∥

∥

L2
ρn

(Γn)
.

The quantity Bn(in) can be easily computed numerically, and has a moderate
growth with respect to in:

Bn(in) = 1, 1, 1, 1.28, 5.46 for i = 1, . . . , 5. (21)

Finally, we test estimate (16) on the model function p(y1, y2) = 1/ exp(1 +
b1y1 + b2y2), so that we can compute each ∆E(i) as

∆E(i) =
∥

∥

∥
∆m(i)[p]

∥

∥

∥

L2
ρ(Γ)

=
∥

∥

∥
Sm
{J∪i}[p]− Sm

J [p]
∥

∥

∥

L2
ρ(Γ)

using a sufficiently accurate sparse grid quadrature. The Hermite coefficients of
p can be computed either numerically or analytically, see Lemma 4.1 in the next
section. Once such quantities are available, we can verify the accuracy of (16),
with B(i) as in (20). The results are shown in Figure 2: the proposed estimate
is thus seen to be quite reasonable.
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Remark 4.1 As mentioned earlier, the procedure used here to derive an es-
timate for B(i) could be applied to the problems investigated in [4] as well.
It can be seen numerically (see [27]) that estimating B(i) in this way would
end up in results not significantly different from the original choice, namely

B(i) =
∏N

n=1 L
m(in)
n .

4.3 Convergence of Hermite expansions

To derive an estimate for ‖pq‖H1(D) we first consider a simplified Darcy problem

with a lognormal permeability field a constant overD, a = a(y) = exp
(

b0 +
∑N

i=1 biyi

)

and with homogeneous Dirichlet boundary conditions,
{

− div (a(y)∇p(x,y)) = f(x) x ∈ D,

p(x,y) = 0 x ∈ ∂D.
(22)

Furthermore, let h(x) be the solution of the Poisson problem −∆h = f with
homogeneous Dirichlet boundary conditions. We can then write the analytic
expression for p solving (22), which is separable with respect to y, p(x,y) =
h(x)e−b0

∏N
n=1 exp (− bnyn) , and further derive the exact expression of the co-

efficients of the Hermite expansion.

Lemma 4.1 Given problem (22), the H1(D) norm of the Hermite coefficients
(15) of p can be estimated as

‖pq‖H1(D) = CH

N
∏

n=1

e−gnqn

√
qn!

, (23)

with CH = ‖h‖H1(D) e
−b0
∏N

n=1 e
b2n/2 and gn = − log(bn).

Proof. See [27] for details. �

Our numerical experience shows that estimate (23) is satisfactory even in
the more general case where a(x,y) = eγ(x,y), and the boundary conditions
are those specified in eq. (3); on the other hand, the more general estimate
‖pq‖H1(D) = Ce−

∑
n gn

√
qn that applies to analytic (but not entire) functions

seems to be too pessimistic in this context.
As pointed out in [4], it is generally better to estimate the rates gn numeri-

cally to get sharper bounds. This is achieved by freezing all the variables yi but
the n∗-th one e.g. at the midpoint of their support, and computing the solution
pn

∗

w of such reduced problem increasing the sparse grid level w from 1 to i∗. If
the quadrature points are accurate enough (i.e. Gaussian quadrature points),
then the intermediate solutions pn

∗

w will converge to pn
∗

i∗ with the same rate, and
the same holds for any quantity of interest Zp = Zp(y) depending on pw, that is

∥

∥

∥
pn

∗

w − pn
∗

i∗

∥

∥

∥

⊗
≤ C

e−gnm(w)

√

m(w)!
,
∥

∥

∥
Zn∗

p,w − Zn∗

p,i∗

∥

∥

∥

L2
ρ(Γ)

≤ C
e−gnm(w)

√

m(w)!
. (24)
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It is then possible to use a least square fitting on the computed errors to
derive an estimated value for gn. Figure 3 in next Section shows the results of
such procedure applied to a test case, and confirms the quality of the method
proposed. Alternative estimates for the decay of the Hermite coefficients are
available in [18].

4.4 A computable expression for I(w)
We are now in position to write a computable expression for the quasi-optimal
set (13). Combining together the work contribution (14), the error contribution
estimate (16), the estimate (23) for

∥

∥pm(i−1)

∥

∥

H1(D)
and the numerical values

obtained for m(in), Bn(in) and gn, see respectively eq. (17), (21), and (24), we
obtain the following expression

I(w) =



























i ∈ N
N
+ :

N
∏

n=1

Bn(in)
e−gnm(in − 1)
√

m(in − 1)!

N
∏

n=1

(m(in)−m(in − 1))

≥ ǫ(w)



























, (25)

with e.g. ǫ(w) = e−w. Again, note that (25) may not satisfy the admissibility
condition (12), that has to be enforced by adding the missing multiindices.

5 Numerical results

In this section we test on an example the effectiveness of the proposed sparse
grid. We consider the case of a stratified material in the direction transversal to
the flow: that is, the log-permeability field γ depends only on x1 and is constant
along x2. Thus the covariance function is

Cγ(s, t) = σ2 exp

(

−|s− t|2
L2
c

)

, s, t ∈ [0, 1],

and the truncated Fourier expansion of γ (8) simplifies to

γ(x1,y) = E [γ(x, ·)] + σ
√
c0y0 + σ

K
∑

k=1

√
ck [ y2k−1 cos(ωkx1) + y2k sin(ωkx1)].

(26)
As in Proposition 3.1, we have yk ∼ N (0, 1), ωk = kπ/L, L = 1, and λk as in
equation (7). Obviously, in this case it holds ck ≈ λk rather than ck ≈ λk1λk2 ,
due to the layer structure of γ. We set the correlation length to Lc = 0.2 and
the pointwise standard deviation to σ = 0.3.

We consider three different levels of truncation for γ in (26): K = 6, 10, 16
corresponding to N = 13, 21, 33 random variables. With these truncation we
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Figure 3: Assessment of the rates gn, n = 0, 2, 5, used to build the quasi-
optimal set (25), estimated according to equation (24). For each ran-
dom variable yn the corresponding harmonic in the Fourier expansion

(26) is specified. The plots show the decay of
∥

∥

∥
Zn∗

p,w − Zn∗

p,i∗

∥

∥

∥

H1(D)
as

a function of the number of point m(w) and its fitting according to
the proposed estimate e−gnm(w)/

√

m(w)!.
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Figure 4: Convergence for MC and sparse grid methods.
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take into account up to 1%,10−2% and 10−9% respectively of the total variance of
γ. For each truncation we compute the quasi-optimal sparse grid approximation
pN,w using the sets (25), and then compute the expected value for the total
outgoing flux Z, using the resulting sparse grid quadrature rule. We also perform
a classical Monte Carlo simulation, repeated three times. The deterministic
problems are solved with P1 finite elements on an unstructured regular mesh
with approximately 1400 vertices.

We first fix the number of random variables N and study the convergence
of the sparse grid approximation as the number of points in the sparse grid
increases. Since we do not have an exact solution, we compute errors with respect

to a reference solution, i.e. we measure the error as
∣

∣

∣
E
[

ZpN,w

]

− E

[

ZpN,w∗

] ∣

∣

∣
.

Results are shown in Figure 4(a). The Monte Carlo simulations converge with the
expected rate 1/2; we also show the convergence rate 1 that would be obtained
with a quasi-Monte Carlo method, like Sobol’ sequences (see e.g. [22]). As for
the sparse grids approximation, it is important to observe that not only they all
converge with a rate higher than 1/2, but such rate seems to be independent of
the truncation level. This would mean that the strategy detailed in Section 4 is
quite effective in reducing the deterioration of the performance of the standard
sparse grids as the number of random variables increases. Indeed, the selection
of the most profitable hierarchical surpluses manages to “activate” (i.e. to put
interpolation points) only in those directions that are most useful in explaining
the total variance of the solution, so that the less influent random variables get
activated only for small approximation errors. Beside the number of “active”
variables, another interesting indicator is the number of “interacting” variables
in the sparse grid. As was previously mentioned, a sparse grid is indeed a linear
combinations of a number of “small” tensor grids, that put interpolation points
only in some of the directions y1, . . . , yN at a time, say n̄ directions out of N . We
call the largest n̄ in a sparse grid the number of interacting variables, that could
be much lower than the number of active ones. This approach could also be seen
as an “anisotropic ANOVA” analysis. In Figure 4(a) for each sparse grid we show
the number of active variables followed by the number of interacting variables in
parenthesis. For instance, the sparse grid labeled 18(3) places collocation points
in 18 variables, but each tensor grid covers 3 dimensions at most.

We then repeat the analysis by computing the error for all the three ap-
proximation corresponding to N = 13, 21, 33 with respect to the same reference
solution, i.e. p33,w∗ . Results are shown in 4(b): as expected, the convergence of
the solutions with N = 13 and 21 stagnates when the error due to the truncation
of the random field becomes predominant. However, the convergence rate up to
the stagnation is again independent of the number of random variables.

14



6 Conclusions

In this work we have considered a Darcy problem with uncertain permeability,
modeled as a lognormal random field with Gaussian covariance function, and we
have applied the quasi-optimal sparse grid paradigm derived in [4] to the problem
at hand. To this end, we have introduced a nested quadrature/interpolation
rule and we have estimated the proportionality constant B(i) between error
contribution of the sparse grids and the coefficients of the Hermite expansion of
the solution, for which we have derived an estimate as well.

We have applied our quasi-optimal sparse grid thus obtained to a test case
describing a layered material, that has been discretized with a Fourier expansion
with N = 13, 21 and 33 random variables. Numerical results on this preliminary
test seem to suggest that the quasi-optimal sparse grid procedure achieves a
convergence rate higher than the ones of the most common sampling methods.
Moreover, it is quite effective in reducing considerably the degradation of the
performance suffered by the standard sparse grids approach when the number
of input random variables increases.
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[21] M. Loève. Probability theory. II. Springer-Verlag, New York, fourth edition,
1978. Graduate Texts in Mathematics, Vol. 46.

16



[22] H. Niederreiter. Random number generation and quasi-Monte Carlo meth-
ods. CBMS-NSF regional conference series in applied mathematics. SIAM,
1992.

[23] F. Nobile, R. Tempone, and C.G. Webster. An anisotropic sparse grid
stochastic collocation method for partial differential equations with random
input data. SIAM J. Numer. Anal., 46(5):2411–2442, 2008.

[24] F. Nobile, R. Tempone, and C.G. Webster. A sparse grid stochastic col-
location method for partial differential equations with random input data.
SIAM J. Numer. Anal., 46(5):2309–2345, 2008.

[25] T. N. L. Patterson. The optimum addition of points to quadrature formulae.
Math. Comp. 22 (1968), 847–856; addendum, ibid., 22(104):C1–C11, 1968.

[26] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics, volume 37
of Texts in Applied Mathematics. Springer-Verlag, Berlin, second edition,
2007.

[27] L. Tamellini. Polynomial approximation of PDEs with stochastic coeffi-
cients. PhD thesis, Politecnico di Milano, 2012.

[28] D. Xiu and J.S. Hesthaven. High-order collocation methods for differential
equations with random inputs. SIAM J. Sci. Comput., 27(3):1118–1139,
2005.

17



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

49/2012 Migliorati, G.;Nobile, F.;von Schwerin, E.;Tempone, R.

Approximation of Quantities of Interest in stochastic PDEs by the ran-

dom discrete L2 projection on polynomial spaces

51/2012 Beck, J.; Nobile, F.; Tamellini, L.; Tempone, R.

A quasi-optimal sparse grids procedure for groundwater flows

50/2012 Carcano, S.; Bonaventura, L.; Neri, A.; Esposti Ongaro,

T.

A second order accurate numerical model for multiphase underexpanded

volcanic jets

48/2012 Ghiglietti, A.; Paganoni, A.M.

Statistical properties of two-color randomly reinforced urn design tar-

geting fixed allocations

47/2012 Astorino, M.; Chouly, F.; Quarteroni, A.

Multiscale coupling of finite element and lattice Boltzmann methods for

time dependent problems

46/2012 Dassi, F.; Perotto, S.; Formaggia, L.; Ruffo, P.

Efficient geometric reconstruction of complex geological structures

45/2012 Negri, F.; Rozza, G.; Manzoni, A.; Quarteroni, A.

Reduced basis method for parametrized elliptic optimal control problems

43/2012 Secchi, P.; Vantini, S.; Vitelli, V.

A Case Study on Spatially Dependent Functional Data: the Analysis of

Mobile Network Data for the Metropolitan Area of Milan

44/2012 Fumagalli, A.; Scotti, A.

A numerical method for two-phase flow in fractured porous media with

non-matching grids

42/2012 Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G.

Generalized reduced basis methods and n width estimates for the ap-

proximation of the solution manifold of parametric PDEs


