
A quasi-separation theorem for LQG optimal control with IQ constraints�

Andrew E.B. Lim
y & John B. Moore

z

February 1997

Abstract

We consider the deterministic, the full observation and the partial observation LQG optimal control

problems with �nitely many IQ (integral quadratic!) constraints, and show that Wohnam's famous Separation

Theorem for stochastic control has a generalization to this case. Although the problems of �ltering and control

are not independent, we show that the interdependence of these two problems is so super�cial that in e�ect,

they are problems which can be treated separately. It is in this context that the label Quasi-Separation

Theorem is to be understood. We conclude with a discussion of computation issues and show how gradient-

type optimization algorithms can be used to solve these problems. In this way, a systematic computation

algorithm is derived.

1 Introduction

In this paper, we consider the deterministic, the full observation and the partial observation LQG optimal

control problems subject to IQ (integral quadratic) constraints. In the unconstrained case, Wohnam's Sep-

aration Theorem [9] is a towering result. It states that in the unconstrained partially observed case, the

optimal control is obtained by solving both a �ltering problem and a control problem, and that these two

problems can be solved separately. In [5, 6], it is shown that a Separation Theorem holds in the case of linear

integral constraints. In this paper, we generalize these results to the case of IQ constraints.

We show that unlike the unconstrained or the linearly constrained cases, a Separation Theorem in the

true sense of the word does not hold for the LQG problem subject to IQ constraints. Although the optimal

control is calculated by solving a control problem and a �ltering problem, the control and �ltering problems

can not be solved separately - the solution of the control problem is dependent on the solution of the �ltering

Riccati equation. However, this dependence adds no complication to the control or the �ltering problems. It

is in this context that the label Quasi-Separation Theorem should be understood.

�The authors wish to acknowledge the funding of the activities of the Cooperative Research Centre for Robust and Adaptive

Systems by the Australian Commonwealth Government under the Cooperative Research Centre Program.
yDepartment of Systems Engineering and Cooperative Research Centre for Robust and Adaptive Systems, Research School

of Information Sciences and Engineering, Australian National University, Canberra A.C.T. 0200, AUSTRALIA. Email: An-

drew.Lim@anu.edu.au. Fax: +61 6 279 8688. Phone: +61 6 279 8831.
zDepartment of Systems Engineering and Cooperative Research Centre for Robust and Adaptive Systems, Research

School of Information Sciences and Engineering, Australian National University, Canberra A.C.T. 0200, AUSTRALIA. Email:

John.Moore@anu.edu.au

1



In the literature, it has been said that the use of multiple-objective LQG (and in particular, LQG control

subject to IQ constraints) in practise has been limited because it is computationally extensive. We conclude

this paper by examining computational issues. We show that the optimal control can be calculated by solving a

certain �nite dimensional optimization problem referred to in the literature as an optimal parameter selection

problem [8]. Optimal parameter selection problems can be solved using standard gradient-type optimization

algorithms so long as the gradient of the cost functional can be calculated. In this section, we show how this

cost functional gradient can be determined. In the deterministic case, it is shown in [4] that calculating the

gradient is an easy problem: it is equivalent to solving an unconstrained LQ optimal control problem. We

focus on the optimal parameter selection problem for the full observation and the partial observation cases,

and show that problem of calculating the gradient is equivalent to solving an unconstrained full observation

or partial observation LQG problem respectively. It follows from the Separation Theorem for unconstrained

LQG that there is a Separation Theorem for calculating the gradient. We also derive an alternative form of

the gradient that is easily to calculate. We show that the gradient can be calculated by solving a �rst order

matrix di�erential equation in addition to an unconstrained LQ problem. Thus, the gradient can be easily

calculated and e�cient optimization algorithms can be used to solve the optimal parameter selection problem

which in turn, gives the optimal control. It is appropriate to mention here that the software package MISER

3:1 [3] is designed to solve optimization problems of this type.

2 Deterministic Case

In this section, we summarize some relevant results from [4]. Assume that T < 1 and denote by Ln2 [0; T ]

the Hilbert space of Rn -valued, measurable square integrable functions on [0; T ] with inner product

hx; yi =

Z T

0

x0t � yt dt (1)

Let � 2 R
n be a given vector. Suppose that A(t) 2 R

n�n and B(t) 2 R
n�m are continuous matrix valued

functions on [0; T ]. For every u 2 Lm2 [0; T ], de�ne x 2 L
n
2 [0; T ] as the solution of the linear system

_xt = A(t)xt +B(t)ut; x0 = � (2)

Let z = (�z; 0) 2 Ln2 [0; T ]�L
m
2 [0; T ] where �z is the solution of the di�erential equation (2) with ut = 0. De�ne

the set

Y = f(x; u) 2 Ln2 [0; T ]� Lm2 [0; T ] : _xt = A(t)xt +B(t)ut; x0 = 0g (3)

It follows then that z+Y is the set of solutions of the linear system (2). Moreover, Y is a closed subspace of

Ln2 [0; T ]� Lm2 [0; T ] and therefore, z + Y is an a�ne subspace of Ln2 [0; T ]� Lm2 [0; T ].

De�ne the functionals fi : L
n
2 [0; T ]� Lm2 [0; T ]! R, i = 1; � � � ; N by

fi(x; u) =
1

2

Z T

0

(x0tQi(t)xt + u0tRi(t)ut) dt+
1

2
x0THixT +

Z T

0

(a0i(t)xt + b0i(t)ut) dt+ h0ixT (4)

where Hi, Qi(t) 2 R
n�n , Ri(t) 2 R

m�m , ai(t) 2 R
n , bi(t) 2 R

m are continuous functions of t 2 [0; T ] and

Ri(t) � 0 (i = 1; � � � ; N), Qi(t) � 0 and Hi � 0 (i = 0; � � � ; N) and R0(t) > 0 for each t 2 [0; T ]. Note

that this allows for the case of linear integral constraints. Let ci 2 R i = 1; � � �N be given constants. The
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deterministic LQ optimal control problem subject to IQ constraints can be stated as follows:8>>>><
>>>>:

f0(x; u)! min

fi(x; u) � ci; i = 1; � � � ; N

(x; u) 2 z + Y

(5)

We make the following assumption:

Assumption 2.1 There exists (x; u) 2 Ln2 [0; T ]� Lm2 [0; T ] which is feasible for (5).

We have the following result on the existence of an optimal solution (x�; u�) for (5).

Theorem 2.1 Suppose that Assumption 2.1 is true. Then there exists a unique optimal solution (x�; u�) of

(5).

Proof: Let (x; u) be feasible for (5) and � = f0(x; u). De�ne

H� = f(x; u) 2 Ln2 [0; T ]� Lm2 [0; T ] : f0(x; u) � �g

and consider the problem 8>>>>>>>><
>>>>>>>>:

f0(x; u)! min

f0(x; u) � �

fi(x; u) � ci; i = 1; � � � ; N

(x; u) 2 z + Y

(6)

Since f0(x; u) is strictly convex on L
n
2 [0; T ]�L

m
2 [0; T ], the constraints of (6) de�ne a bounded, closed, convex

subset of the Hilbert space Ln2 [0; T ]�L
m
2 [0; T ]. Since every continuous, convex functional de�ned on a Hilbert

space achieves its minimum on every bounded, closed, convex set [1, Theorem 2.6.1], it follows that there exists

(x�; u�) which is optimal for (6). Furthermore, the uniqueness of (x�; u�) follows from the strict convexity of

f0(x; u). Now we show that (x�; u�) is optimal for (5). Note �rst that (x�; u�) is feasible for (5). Suppose that

(x�; u�) is not optimal for (5). Then there exists (�x; �u) which is feasible for (5) and f0(�x; �u) < f0(x
�; u�) � �.

However, this implies that (�x; �u) is feasible for (6) and hence, it follows from the optimality of (x�; u�) for (6)

that f0(x
�; u�) � f0(�x; �u) - a contradiction. Therefore, f0(x

�; u�) � f0(�x; �u) for every feasible solution (�x; �u)

of (5). The result follows.

We summarize the results obtained in [4]. For every � = (�1; � � � ; �N ) � 0 and � = (x; u) 2 z + Y let

g(�; �) = f0(�) +

NX
i=1

�i fi(�; �) (7)

and de�ne the Lagrangian

L(�; �) = g(�; �)� �0c (8)

Also, we shall denote

Q(t; �) =

NX
i=1

�iQi(t) H(�) =

NX
i=1

�iHi; a(t; �) =

NX
i=1

�iai(t)

with a similar interpretation for R(t; �); b(t; �) and h(�). We have the following result
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Proposition 2.1 Let � � 0 be given and �(�) = (x(�); u(�)) denote the optimal state-control pair for the

problem 8<
:

min� g(�; �)

� 2 z + Y
(9)

Then the optimal control u(�) is

ut(�) = �R�1(t; �) [B0(t)P (t; �)xt +B0(t)d(t; �) + b(t; �)] (10)

and x(�) is the solution of (2) with u = u(�). The optimal cost is

g(�(�); �) =
1

2
�0P (0; �)� + d0(0; �)� +

1

2
p(0; �) (11)

Proof: Let � � 0 be �xed. Then (9) is just an unconstrained LQ optimal control problem, and the result

follows immediately.

We make the following assumption:

Assumption 2.2 For every �i � 0, i = 1; � � � ; N (not all equal to zero), there exists (x; u) 2 z+Y such that

NX
i=1

�i(fi(x; u)� ci) < 0

Remark 2.1 A su�cient condition for Assumption 2.2 to hold is the existence of (�x; �u) 2 z + Y such that

fi(�x; �u) < ci, for i = i; � � � ; N .

Theorem 2.2 Let g(�(�); �) be given by (11). Then there exists a �� � 0 which is optimal for

max
�

fg(�(�); �) � �0cg (12)

_P = �PA�A0P + PBR�1(�)B0P �Q(�); P (T ) = H(�) (13)

_d = �
�
A�BR�1(�)B0P

�
d� a(�) + PBR�1(�) b(�); d(T ) = h(�) (14)

_p = [B0d+ b(�)]
0
R�1(�) [B0d+ b(�)] ; p(T ) = 0 (15)

� � 0 (16)

Furthermore, the optimal control u� of (5) exists and is given by

u�t = �R�1(t; ��) [B0(t)P (t; ��)xt +B0(t)d(t; ��) + b(t; ��)] (17)

Proof: This is an immediate consequence of the Lagrange Duality Theorem [7, Theorem 1, pp 224] which

is true under Assumption 3.2.

Remark 2.2 The notation P (t; ��) is to interpreted as the solution of the Riccati equation (13) when � = ��.

A similar interpretation holds for d(t; ��), p(t; ��).

From Theorem 2.2, it follows that the optimal control u� for the LQ problem subject to IQ constraints

is calculated by solving the �nite dimensional optimization problem (12)-(16). In the literature, (12)-(16)

is known as an optimal parameter selection problem, and can be solved using gradient-type optimization

algorithms if the gradient of the cost functional (12) can be determined. We return to this issue in Section 5.
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3 Full observation stochastic case

Let (
;F ; P ) be a probability space and x = fxt : t 2 [0; T ]g, u = fut : t 2 [0; T ]g be stochastic processes on

(
;F ; P ). De�ne the sets

X =
�
x : xt 2 L

n
2 (
;F ; P ); and Ejxtj

k is bounded for any k > 0; t 2 [0; T ]
	

(18)

U = fu : ut 2 L
m
2 (
;F ; P ) for all t 2 [0; T ] and E

Z T

0

jutj
kdt <1 for all k > 0g (19)

Let fFtg be an increasing family of �-algebras such that Ft � F . Let fWt : t 2 [0; T ]g be a standard Brownian

motion such that Wt is an R
j -valued random variable. Assume that W is adapted to fFtg. Let

X = fx 2 X : x non-anticipative with respect to fFtgg (20)

U = fu 2 U : u non-anticipative with respect to fFtgg (21)

For every u 2 U , let x 2 X be the solution of the stochastic di�erential equation

dxt = A(t)xtdt+B(t)utdt+ C(t)dWt; x0 � N(�;�0) (22)

with A(t); B(t) as in (2) and C(t) an Rn�j -valued continuous function. We assume that x0 and fWtg are

mutually independent. Let

Y = f(x; u) 2 X � U : dxt = A(t)xtdt+B(t)utdt; x0 = 0g (23)

and z = (�z; 0) 2 X � U where �z is the solution of the stochastic di�erential equation

d�zt = A(t)�ztdt+ C(t)dWt; �z0 � N(�;�0) (24)

Then z + Y is an a�ne subspace of X � U , and is the set of solutions of (22). De�ne the functionals

fi : X � U ! R, i = 0; � � � ; N by

fi(x; u) = E

"
1

2

Z T

0

[x0tQi(t)xt + u0tRi(t)ut] dt+
1

2
x0THixT +

Z T

0

[a0i(t)xt + b0i(t)ut] dt+ h0ixT

#
(25)

where Qi(t); Ri(t); ai(t); bi(t) are the same as in (4). The full information LQG problem subject to IQ

constraints is 8>>>><
>>>>:

f0(x; u)! min

fi(x; u) � ci; i = 1; � � � ; N

(x; u) 2 z + Y

(26)

Analogous to Assumption 2.1, we make the following assumption:

Assumption 3.1 There exists (x; u) 2 X � U which is feasible for (26).

The following result for the existance of an optimal solution (x�; u�) for (26) follows from Assumption (3.1).

It can be proved in exactly the same manner as Theorem 2.1.

Theorem 3.1 Suppose that Assumption 3.1 holds. Then there exists a unique optimal solution (x�; u�) of

(26).
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Let � = (x; u). We de�ne, as in the deterministic case, the Lagrangian L(�; �) by (8) and g(�; �) by (7) where

fi(�) is now given my (25). We have the following result:

Proposition 3.1 For every � � 0, there exists a unique solution �(�) = (x(�); u(�)) for the problem8<
:

min� g(�; �)

� 2 z + Y

The optimal control u(�) is

ut(�) = �R�1(t; �) [B0(t)P (t; �)xt +B0(t)d(t; �) + b(t; �)] (27)

and x(�) is the solution of (22) with u = u(�). The optimal cost is

g(�(�); �) =
1

2
�0 P (0; �) � + d0(0; �) � +

1

2
p(0; �) +

1

2

Z T

0

tr fC 0(t)P (t; �)C(t)g dt (28)

Proof: Suppose that � � 0 is �xed. Let Xt = � fxs : s 2 [0; t]g and

V = fu 2 U : ut is measurable with respect to Xtg

Then the optimal control for the problem8>>>><
>>>>:

min(x;u) g((x; u); �)

(x; u) satis�es (22)

u 2 V

is given by (27). In [2, Corollary 4.1, pp 163] it is also shown that (27) is also optimal over the class u 2 U

and the result follows immediately.

To solve (26) we need the following assumption:

Assumption 3.2 For every �i � 0, i = 1; � � � ; N (not all equal to zero), there exists (x; u) 2 z+Y such that

NX
i=1

�i(fi(x; u)� ci) < 0

Under Assumption 3.2, we have the following result:

Theorem 3.2 Let g(�(�); �) be given by (28). Then there exists a �� � 0 which is optimal for the problem8>>>><
>>>>:

max� fg(�(�); �) � �0cg

subject to: (13)� (15)

� � 0

(29)

Furthermore, the optimal control for (26) is

u�t = �R�1(t; ��) [B0(t)P (t; ��)xt +B0(t)d(t; ��) + b(t; ��)] (30)
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Proof: This is an immediate consequence of the Lagrange Duality Theorem [7, Theorem 1, pp 224] which

is true under Assumption 3.2.

Unlike the unconstrained [9] and the linearly constrained [5, 6] cases, certainty equivalence does not hold

in the full-information LQG problem subject to IQ constraints because the optimization problems (12)-(16)

and (29) do not generally have the same optimal solution. This is due to the dependence of �� (and hence

the solution of the control problem) on the intensity of the channel noise, as expressed by C(t). In the

unconstrained case, it is shown by Wohnam [9] that dependence of the control problem on the intensity of the

channel noise will generally occur when the cost functional is not quadratic. On the issue of calculating ��,

the problem (29) (as in the deterministic case (12)-(16)) is an optimal parameter selection problem. This is

a �nite dimensional optimization problems over � 2 RN and can be solved using gradient-type optimization

algorithms so long as the gradient of the cost functional g(�(�); �)� �0c as given in (29), with respect to the

parameter � can be calculated.

4 Partial observation stochastic case

The following assumptions are made in addition to the ones for the full observation case in Section 3. Let F (t)

and G(t) be continuous matrix valued valued functions of t 2 [0; T ] such that F (t) 2 Rp�n and G(t) 2 Rp�k .

Let fVt : t 2 [0; T ]g be a standard Brownian motion such that Vt is an R
k -valued random variable for every

t 2 [0; T ]. We assume that x0, fVtg and fWtg are mutually independent. Consider the partially observed

linear system

dxt = A(t)xtdt+B(t)utdt+ C(t)dWt; x0 � N(�;�0) (31)

dyt = F (t)xtdt+G(t) dVt; y0 = 0 (32)

The class of feasible controls for the system (31) is de�ned as in [2, 9] for the unconstrained partially observed

LQG problem: let (Cp[0; T ]; k � k) be the Banach space of continuous Rp -valued functions on [0; T ] with the

sup norm k � k de�ned by

kgk = sup
t2[0;T ]

jg(t)j; g 2 Cp[0; T ]

where j � j is the Euclidean norm on Rp . For every t 2 [0; T ], de�ne the operator �t : C
p[0; T ]! Cp[0; T ] by

(�t g)(s) =

(
g(s); s 2 [0; t]

g(t); s 2 [t; T ]

Let 	 be the set of functions  : [0; T ]� Cp[0; T ]! R
m which satisfy the following properties:

1. For every  2 	, there exists K 2 R such that j (t; g)� (t; h)j � K kg�hk for every g; h 2 C
p[0; T ]

and t 2 [0; T ]. (Uniform Lipschitz condition).

2.  (�; �) is Borel measurable.

3.  (t; 0) is bounded.

The class of feasible controls is the set

�U = fu 2 U : there exists  2 	 with ut =  (t; �ty) for every t 2 [0; T ]; y given by (32)g (33)
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where U us given by (19). Let fi(x; u) be de�ned as in (25). The partially observed LQG optimal control

problem subject to IQ constraints can be de�ned as follows:8>><
>>:

min f0(x; u)

fi(x; u) � ci; i = 1; � � � ; N

(x; u) satis�es (31); u 2 �U

(34)

As with the full observation case, we need the following assumptions:

Assumption 4.1 There exists (x; u) such that u 2 �U , x satis�es (31) and fi(x; u) � ci for i = 1; � � � ; N .

Assumption 4.2 For every �i � 0, i = 1; � � � ; N (not all zero), there exists (x; u) satisfying u 2 �U and (31)

such that

NX
i=1

�i(fi(x; u)� ci) < 0

Using standard techniques, we can transform the partial observation problem (34) into a full observation

problem of the form (26). To summarize this, we need the following basic results from Kalman �ltering

theory. For every u 2 U let Gut = �fys : s 2 [0; t]g be the �-�eld generated by the output y of (31)-(32) when

the input of (31) is u. Let G0
t correspond to the case when u = 0. The following result is proven in [2].

Lemma 4.1 If ut is G
0
t -measurable and G0

t = Gut , then the conditional distribution of xt given G
u
t is Gaussian

with mean x̂t = E[xtjG
u
t ] and covariance �(t) where

dx̂t = A(t)x̂tdt+B(t)utdt��(t)F (t) (G(t)G0(t))
�1
d�t; x̂0 = � (35)

_� = �A+A0���F 0 (GG0)
�1
F�+ CC 0; �(0) = �0 (36)

and the innovations process � is given by d�t = dyt � F (t)x̂tdt = G(t)dŵt where ŵ is a Brownian motion

adapted to fG0
t g and satis�es

E [�t] = 0; E[�t �
0
t] =

Z t

0

G(s)G0(s) ds; E [�tx̂
0
t] = 0:

Furthermore the optimal state estimate, and the optimal state estimate error are orthogonal; that is

E[(xt � x̂t) x̂
0
t] = 0

In particular, when u 2 �U , the conditions of Lemma 4.1 are satis�ed. Using the results in Lemma 4.1, it is

easy to show that

fi(x; u) = fi(x̂; u) +
1

2

Z T

0

trfQi(t)�(t)gdt+
1

2
tr fHi�(T )g (37)

Denote

ĉi = ci �
1

2

Z T

0

trfQi(t) �(t)gdt�
1

2
tr fHi�(T )g (38)

It follows that the partially observed LQG optimal control problem subject to IQ constraints is equivalent to

the following full observation problem:8>><
>>:

f0(x̂; u)! min

fi(x̂; u) � ĉi; i = 1; � � � ; N

(x̂; u) satis�es (35); u 2 �U

(39)

We are now in the position to prove the following generalization of the Separation theorem.
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Theorem 4.1 (Quasi-Separation Theorem) Let g(�̂(�); �) be given by (41). Then there exists a �� � 0

which is optimal for the problem: 8>><
>>:

max�fg(�̂(�); �) � �0ĉg

Subject to: (13)� (15)

� � 0

(40)

where g(�̂(�); �) is given by

g(�̂(�); �) =
1

2
�0P (0; �)� + d0(0; �)� +

1

2
p(0; �) +

1

2

Z T

0

tr f�0(t)P (t; �);�(t)g dt (41)

with

�(t) = �(t)F (t)(G(t)G0(t))�1G(t)

Furthermore the optimal control for (34) exists and is given by

u�t = �R�1(t; ��) [B0(t)P (t; ��)x̂t +B0(t)d(t; ��) + b(t; ��)] (42)

where x̂t is the solution of (35) with ut given by (42).

Proof: It is shown in [2, Lemma 11.3, pp 191] that if u 2 �U , then the conditions of Lemma 4.1 are satis�ed;

that is u is non-anticipative with respect to fG0
t g and G

0
t = Gut . Consider the full observation problem8>><

>>:
f0(x̂; u)! min

fi(x̂; u) � ĉi; i = 1; � � � ; N

(x̂; u) satis�es (35); ut G
0
t {measurable

(43)

Then (43) is exactly of the form (26). Moreover, the class of feasible controls for (43) contains the set �U . By

Assumption 4.1, the problem (43) satis�es the conditions of Theorem 3.2, so there exists a unique optimal

state-control pair (x�; u�) for (43).

For every � � 0, we can de�ne the functional g(x̂; u; �) as in (7) with fi(x̂; u) given by (25). Under

Assumption 4.2, the conditions for Theorem 3.2 are satis�ed for (43) and the optimal parameter selection

problem associated with the problem (43) is given by (40). Moreover, the optimal control u� for (43) is

given by (42) where �� is the optimal solution of (40). Since u� 2 �U , it follows from �U � fu 2 U :

u non-anticipative with respect to G0
t g that u

� is optimal for (39) and hence, optimal for (34).

The reader should note the following. First, certainty equivalence does not hold. This is no surprise since

certainty equivalence does not hold in the full observation case because the optimal control is dependent on

the intensity of the channel noise. As can be seen in (41), channel noise intensity as given by C(t) and G(t)

e�ect the solution of the control problem in the partial observation case. As stated earlier, it is shown in [9]

that dependence of the control problem on the channel noise intensity in the unconstrained case generally

occurs when the cost functional is not quadratic.

A second, more important observation is that the Separation Theorem does not hold in the sense of [9].

To see this, the reader should observe (38), (41) and (40). From these equations, it is clear that the solution

�� of (40) is dependent on the error covariance �(t) associated with the �ltering problem (35)-(36). Thus

the problems of �ltering and control are not separate. However, when solving (40) the dependence of ��
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(and hence the solution of the control problem) on �(t) adds no complication. Since �(t) is independent

of �, it needs to be calculated only once, and the optimization problem (40) may be solved with no further

re-calculation of �(t) (and hence, with no further reference to the �ltering problem). It is in this sense

that the control and �ltering problems are separate, and hence our naming Theorem 4.1 a Quasi-Separation

Theorem.

5 Optimal parameter selection problems and a separation theorem

for gradient calculations

In view of Theorems 2.2, 3.2 and 4.1, the optimal control for the deterministic, the full observation and the

partial observation LQG problems with IQ constraints is obtained by solving the �nite dimensional optimiza-

tion problems (12)-(16), (29) and (40) respectively. In the literature, these �nite dimensional optimization

problems are known as optimal parameter selection problems, and the interested reader may refer to [8] for

more details. Optimal parameter selection problems can be solved as mathematical programming problems

(using e�cient gradient-type optimization algorithms) so long as the value of the cost functional and gradient

of the cost functional can be calculated for any given �. In this section, we derive the gradient of the cost

functional for the problems (12)-(16), (29) and (40).

In the optimal parameter selection problem for the deterministic LQ case, a key part of calculating the

gradient of the cost functional is solving an certain unconstrained LQ optimal control problem - this is proven

in [4]. In the optimal parameter selection problems for the full observation and partial observation problems,

we show that a similar result holds; that is, a key step in calculating the gradient of the cost functional is

solving an unconstrained full observation and partial observation LQG problem respectively. By virtue of

the Separation theorem for unconstrained LQG, it follows that there is a Separation theorem associated with

calculating the gradient.

We shall calculate the gradient of the optimal parameter selection problems (12)-(16), (29) and (40)

by working with a general optimization problem with quadratic cost and quadratic constraints. The LQG

problems as stated in (5) and (26) are special cases of problems of this form and the partially observed LQG

problem is solved by transforming it into a problem of this type (namely, a full observation problem). The

general problem which we shall work with can be stated as follows: Let X be a Hilbert space with inner

producth�; �i and 
 a closed subspace of X . Let Qi : X ! X , i = 0; � � � ; N be symmetric operators such

that Q0 > 0 and Qi � 0 for i = 1; � � � ; N . Let ai 2 X for i = 1; � � � ; N . The general quadratic optimization

problem is 8>><
>>:

f0(x)! min

fi(x) � ci; i = 1; � � � ; N

x 2 


(44)

where fi : X ! R are the linear-quadratic cost functionals

fi(x) =
1

2
hQix; xi+ hai; xi (45)

The optimal parameter selection problems (12)-(16), (29) and (40) correspond to the dual problem of (44)

with fi(x) given by (45). We shall derive the gradient of the cost functional of the optimal parameter selection

10



problems by examining the dual problem associated with (44). The dual problem associated with (44) is an

optimization problem over � 2 RN and may be stated as follows:8>><
>>:

J(�) = 1
2 hQ(�) � x; xi + ha(�); xi ! max

Q(�) � x+ a(�) 2 X?

x 2 X; � � 0

(46)

It should be noted that for every � 2 RN , � � 0, there is a unique x(�) 2 X satisfying the constraint

Q(�) � x+ a(�) 2 X?

and that x(�) is the optimal solution of the following optimization problem over x 2 
(
1
2 hQ(�) � x; xi+ ha(�); xi ! min

x 2 

(47)

Moreover, x(�) is a smooth function of � � 0. The optimal parameter selection problems (12)-(16), (29) and

(40) correspond to the dual problem (46). The following theorem gives the gradient dJ(�)
d�

where J(�) is as

stated in (46).

Theorem 5.1 For every � 2 RN , � � 0 the gradient of J(�) with respect to � is

dJ(�)

d�
=

�
dJ(�)

d�1
; � � � ;

dJ(�)

d�N

�0

dJ(�)

d�i
= fi(x(�)) � ci (48)

where x(�) is the unique x 2 X which satis�es the constraint Q(�) �x+a(�) 2 X? and fi(�) is given by (45).

Proof: By the chain rule

dJ(�)

d�i
=

@J(�)

@�i
+
@J(�)

@x(�)
�
@x(�)

@�i

From (46), we obtain

@J(�)

@x(�)
= Q(�) � x(�) + a(�) 2 X?

On the other hand, x(�) 2 X for every � � 0 and hence

@x(�)

@�i
2 X

It follows that for every � � 0

@J(�)

@x(�)
�
@x(�)

@�i
= 0

The result follows from the fact that

@J(�)

@�i
=

1

2
hQi � x(�); x(�)i + hai; x(�)i � ci = fi(x(�)) � ci

11



Thus, for every � � 0, the gradient of J(�) is obtained in the following way. First, we solve the unconstrained

optimization problem (47) over x 2 
 and obtain the optimal solution x(�). Once x(�) has been obtained,

the components of dJ(�)
d�

are obtained by evaluating the constraint functionals fi(x) � ci at x(�). Since the

cost functionals of the optimal parameter selection problems (12)-(16), (29) and (40) correspond to the cost

functional J(�) of a dual problem of the form (46), we obtain the following result from Theorem 5.1.

Theorem 5.2 Let � 2 RN , � � 0 and J(�) = g(�(�); �)��0c where g(�(�); �) is given by (11). The gradient

of the cost functional J(�) evaluated at � is

dJ(�)

d�
=

�
@J(�)

@�1
; � � � ;

@J(�)

@�N

�

@J(�)

@�j
=

1

2

Z T

0

[�0Qj � + �0Rj �] dt+
1

2
�0(T )Hj �(T ) +

Z T

0

�
a0j � + b0j �

�
dt+ h0p(T )�(T )� cj (49)

where �(t) is the solution of the equation

_�(t) = A(t)�(t) +B(t) �(t); �(0) = � (50)

with �(t) given by

�(t) = �R�1(�; t) [B0(t)P (t)�(t) +B0(t) d(t) + b(�; t)] (51)

As stated before, the problem of calculating the gradient of J(�) is equivalent to solving an unconstrained

LQ optiimal control problem, and evaluating the value of the constraints with this optimal control. This can

be clearly seen from Theorem 5.1.

The optimal parameter selection problem (29) is the dual problem of the full observation problems (26).

By Theorem 5.1, the gradient of the cost functionals of (29) and (40) is given as follows.

Theorem 5.3 Let � 2 RN , � � 0 be given. Then the cost functional of the problem (29) is of the form

J(�) =
1

2
�0P (0; �)� + d0(0; �)� +

1

2
p(0; �) +

1

2

Z T

0

tr fC 0(t)P (t; �); C(t)g dt� �0c (52)

The gradient of J(�) evaluated at � is

dJ(�)

d�
=

�
@J(�)

@�1
; � � � ;

@J(�)

@�N

�

@J(�)

@�j
= E

"
1

2

Z T

0

[�0Qj � + �0Rj �] dt+
1

2
�0(T )Hj �(T ) +

Z T

0

�
a0j � + b0j �

�
dt+ h0p(T )�(T )

#
� cj (53)

where

d�t = A(t)�tdt+B(t)�tdt+ CtdWt; x0 � N(�;�0) (54)

with �t given by

�t = �R�1(�; t) [B0(t)P (t)�t +B0(t) d(t) + b(�; t)] (55)

12



As in the deterministic case, the problem of calculating the gradient is equivalent to solving an unconstrained

full observation LQG control problem, and evaluating the constraints with this optimal control.

The partially observed problem (34) is solved by transforming it into the full observation problem (43). By

Theorem 5.1, the gradient of the cost functional of the optimal parameter selection problem (40) is obtained

by solving an unconstrained, partially observed LQG problem. For this reason, there is a Separation theorem

for calculating the gradient.

Theorem 5.4 (Gradient Separation Theorem) Let � 2 R
N , � � 0 be given. Then the cost functional

of the problem (40) is

J(�) =
1

2
�0P (0; �)� + d0(0; �)� +

1

2
p(0; �) +

1

2

Z T

0

tr f�0(t)P (t; �);�(t)g dt� �0c (56)

where �(t) = �(t)F (t)(G(t)G0(t))�1G(t). The gradient of J(�) evaluated at � is

dJ(�)

d�
=

�
@J(�)

@�1
; � � � ;

@J(�)

@�N

�

@J(�)

@�j
= E

"
1

2

Z T

0

h
�̂0Qj �̂ + �0Rj �

i
dt+

1

2
�̂0T Hj �̂T +

Z T

0

h
a0j �̂ + b0j �

i
dt+ h0p(T ) �̂T

#
� cj (57)

where

d�̂t = A(t)�̂tdt+B(t)�tdt��(t)F (t) (G(t)G0(t))�1 d�t; x0 = � (58)

�t = �R�1(�; t)
h
B0(t)P (t) �̂t +B0(t) d(t) + b(�; t)

i
(59)

� is the innovations process given by d�t = dyt � F (t)�̂tdt and y is the solution of the stochastic di�erential

equations

d�t = A(t)�tdt+B(t)�tdt+ C(t)dWt; x0 � N(�;�0) (60)

dyt = F (t)�tdt+G(t) dVt; y0 = 0 (61)

where W and V are standard Brownian motions which satisfy the conditions stated in Section 4.

For computational purposes, the following expression for the gradient is the most useful. As observed in

Theorem 4.1, when calculating the optimal control for the partially observed case, the problems of `control'

and `�ltering' are not independent but rather, the `control' problem (namely, the optimal parameter selection

problem (40)) depends on the solution �(t) of the �ltering Riccati equation. This dependence on �(t) can

be seen in the expression for the gradient of the cost functional of (40) which is stated in Theorem 5.5. Once

again however, once �(t) has been determined, the problem of calculating the gradient can be carried out

independently of the `�ltering' problem and hence, the control problem can be solved independently of the

�ltering problem.

Theorem 5.5 Let K(t) = 0 for the optimal parameter selection problem (12)-(16), K(t) = C(t) for (29) and

K(t) = �(t)H(t)(G(t)G0(t))�1F (t) for (40). Let � > 0 be given. Then the gradient of the cost functional

J(�) evaluated at � for (12)-(16), (29) and (40) is

dJ(�)

d�
=

�
@J(�)

@�1
; � � � ;

@J(�)

@�N

�
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@J(�)

@�j
=

1

2

Z T

0

[�0Qj � + �0Rj �] dt+
1

2
�0(T )Hj �(T ) +

Z T

0

�
a0j � + b0j �

�
dt+ h0p(T )�(T )� cj

+
1

2

Z T

0

tr
��
PBR�1(�)Rj R

�1(�)B0P +Qj
�
�K

	
dt+

1

2
tr f�K(T ) �Hjg (62)

where �(t) is the solution of the costate equation

_�(t) = A(t)�(t) +B(t) �(t); �(0) = � (63)

with �(t) given by

�(t) = �R�1(�; t) [B0(t)P (t)�(t) +B0(t) d(t) + b(�; t)] (64)

�K(t) is the solution of

_�K =
�
A�BR�1(�)B0P

�
�K +�K

�
A�BR�1(�)B0P

�0
+KK 0; �K(0) = 0 (65)

and P (t), d(t) are the solutions of the di�erential equations (13)-(14).

6 Conclusion

We have studied the LQ and LQG optimal control problems subject to IQ constraints. We have shown that

the classic Separation Theorem result of Wohnam does not hold, but a generalization of this result which we

call a Quasi-Separation Theorem is true. We show that the optimal control is determined by solving a �nite

dimensional optimization problem, and derive the gradient of its cost functional so that e�cient algorithms

for �nite dimensional optimization problems can be used to calculate the optimal solution. We show that the

problem of calculating the gradient is equivalent to solving an unconstrained LQG problem, and a Separation

theorem for this gradient calculation (which we call a Gradient Separation Theorem) is proven. Since repeated

calculations of the gradient are needed when implementing these optimization algorithms, the optimal control

is calculated by solving a sequence of unconstrained LQG problems.
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