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Abstract

Modern nodal methods are currently available which can accurately and eificiently

solve the static and transient neutron diffusion equations. Most of the methods,

however, are limited to two energy groups for practical appfication. The objective

of this research is the development of a static and transient, multidimensional nodal

method which allows more than two energy groups and uses a non-linear iterative

method for efficient solution of the nodal equations.

For both the static and transient methods, finite-difference equations which are

corrected by the use of discontinuity factors are derived. The discontinuity factors are

computed from a polynomial nodal method using a non-linear iteration technique.

The polynomial nodal method is based upon a quartic approximation and utilizes

a quadratic transverse-leakage approximation. The solution of the time-dependent

equations is performed by the use of a quasi-static method in which the node-averaged

fluxes are factored into shape and amplitude functions. Since the shape function

generally changes more slowly than the amplitude function it can be computed less

frequently, providing a substantial computational savings. The amplitude function is

obtained by solving point kinetics equations for which the parameters are determined

by precise mathemati,'_d expressions based on the nodal model.

The application of the quasi-static polynomial method to several benchmark prob-

lems demonstrates that the accuracy is consistent with that of other nodal methods.

The use of the quasi-static method is shown to substantially reduce the computation

time over the traditional fully-implicit time-integration method. Problems involv-

ing thermal-hydraulic feedback are accurately, and efficiently, solved by performing

several reactivity/thermal-hydraulic updates per shape calculation.

Thesis Supervisor:: Allan F. Henry

Title: Professor, Department of Nuclear Engineering
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Chapter 1

INTRODUCTION AND BACKGROUND

1.1 Overview

The design _._ndoperation of nuclear reactors requires detailed and accurate knowl-

edge of the spatial and temporal behavior of the core power distribution and neutron

interaction rates for all possible core conditions and configurations. This not only

includes the intended operational conditions but many hypothetical accident scenar-

ios. Since experime_ttal analysis is impractical because of cost and safety concerns,

we must rely on calculation£ methods.

The traditional method for reactor core calculations is few-group diffusion theory

using finite-difference solution techniques. In the application of this method there is

a natural subdivision of effort which occurs: obtaining the few-group constants versus

solving the multidimensional finite-difference equations. In a typical application, the

few-group constants are first obtained by using a simple representation of the spatial

dependence in such a manner that a single fuel assembly may be considered. The

neutron energy spectrum, however, is represented in considerable detail and is used to

collapse the required parameters to a small number of energy groups (typically four

or less). Once these parameters are obtained, a fine-mesh finite-difference calculation

can be performed and the power distribution and reaction rates can be evaluated.

In the early days of reactor design these two tasks each represented considerable

effort and contributed significant errors to the results. The methods of obtaining

the few-group constants did not have the flexibility to give parameters which could

exactly reproduce reaction rates. Thus, ad hoc corrections were sometimes required

to obtain acceptable results. The difficulty with the finite-difference method is not

that acceptable accuracy cannot be obtained, but that the calculation effort required

13



is quite large for multidimensional and transient calculations (a three.dimensional

calculation, for example, may require several million finite-difference mesh points).

Fortunately, research over the last 15 years has lead to significant advances in

both areas. The difficulties in obtaining the few-group constants have been solved by

introducing additional group parameters which are determined with the other few-

group constants from the spectrum calculation. Generalized Equivalence Theory IS-l]

is an example of one method which has been successfully applied to reactor calcula-

tions. The calculational expense in performing multidimensional analysis has been

significantly reduced by the development of nodal methods. Modern nodal methods

provide the accuracy of fine-mesh finite-difference methods while using large, homoge-

nous Itodes. The calculation effort, measured in terms of computer execution time, is

two orders of magnitude lower for nodal methods when compared to finite-difference

calculations of the same accuracy.

This thesis research is primarily concerned with the development of an advanced

nodal method which can be efficiently used for transient reactor analysis. Special

properties of the Generalized Equivalence Theory, however, will be exploited to ac-

complish this task.

1.2 Background

Modern nodal methods which provide accurate solutions to the static and transient

multidimensional diffusion equations have been in existence for 15 years. The major

distinction of "modern" nodal methods is that mathematically systematic, rather

than empirical, formulations are used to obtain the inter-node coupfing. As a result,

modern nodal methods converge to the exact solution of tim diffusion equation as the

mesh spacings are reduced.

The inter-node coupling equations of these methods are typically obtained by in-

tegration of the neutron diffusion equation over the directions transverse to each coor-

dinate axis. This results in the reduction of the multidimensional equation into a set

of coupled one-dimensional equations. The methods by which these one-dimensional

equations are solved represent the different classes of nodal methods. One approach

14



i
is to solve these one-climensional equations analytically [S-2, L-l]. This method has

proven to be highly successful, but because of its cmnplicated nature, is limited to two

energy groups for practical application. Another approach is to approximate the solu-

tion of the one-dimensional equations by a law order polynomial IF.l, L-2, S-3]. The

polynomial approximation leads to simpler expressions but maintains accuracy that

is comparable to that of the analytic methods. As a result of these simple polynomial

expressions, there are no practical restrictions on the number of energy groups.

One recent development in nodal methods is in the manner in which the nodal

equations are solved, Smith [S-4] has introduced an efficient non.linear iteration

method in which Generalized Equivalence Theory is used to force the finite.difference

method to match a more accurate nodal model. Applications of this method to the

static [S.4] and transient Analytic Nodal Method [H-1], as well as static polynomial

methods [S-3, S-7, Z-l], have been performed.

Many of the nodal methods that have been developed have been applied to the

transient as well as the static diffusion equation. A wide variety of temporal solution

methods have been applied. The QUANDRY computer code, based on the Analytic

Nodal Method, uses a simple linear difference method to approximate the time deriva-

tives [S-2]. The polynomial based code IQSBOX, uses a similar fully.implicit time

difference but with a frequency transform technique [H-2] to reduce the truncation

error. An alternating direction explicit-implicit technique has been employed in the

QUABOX/CUBBOX code [L-2]. All of these methods provide accurate results if suf-

ficiently small time steps are taken. A decrease in time step, however, can lead to a

significant increase in computational effort since a full spatial calculation is required

at each time step.

Ttle number of spatial calculations that must be performed can be reduced by the

use of flux factorization methods. In these methods the space-time dependent neutron

flux is expressed as the product of a space and energy dependent shape function and

a space and energy independent amplitude function. Under many circumstances the

shape function varies more slowly in time than the amplitude function. Therefore,

accurate results may be obtained by using a larger time step for the shape calcu-
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lations than for the amplitude calculations. These methods are called quasi.static

schemes since tile shape function may be approximated using essentiaUy a static cal-

culation [H-3]. Very few transients, however, can be treated accurately using shapes

obtained from static, criticality calculations

A more accurate _tpproach is to use a time-dependent equation to perform the

shape calculations iO.1]. In this procedure, the flux factorization is substituted into

the time-dependent neutron diffusion equation resulting in expressions for the shape

and amplitude functions. A large time step is employed for the solution of the shape

function while a small time step is used for the solution of the amplitude function.

Although transient equations are used for both the shape and amplitude computation,

the method is still referred to as a quasi-static method.

The quasi.static method was first applied to the finite.difference diffusion equa.

tions and resulted in a large reduction of computation time over more direct treat-

ments. More recently, Taiwo [T.I] and Kao {tq.t] have applied the quasi-static pro-

cedure to the Analytic Nodal Method. Again, a significant reduction in computation

time resulted.

1.3 Research Objectives

The objective of this research is the development of an efficient polynomial nodal

method for the solution of the multidimensional, few-group, static anti transient neu-

tron diffusion equations. The polynomial method will allow a variable order approx.

imation ranging from quadratic to quartic as well as the finite-difference method,

The non.linear procedure discussed above will be implemented for both static and

t_'ansient calculations to reduce storage requirements, increase efficiency, and add

flexibility to the method. No restrictions will be placed on the number or structure

of the energy groups and up-scattering in energy will be permitted. Steady.state and

time-dependent extraneous neutron sources will also be modelled.

The actual development of the static method closely follows that of Zerkle [Z-l].

The solution method of the nodal equations, has been modified to increase the colnpu.

rational elficiency. This method maintains the accurttcy which Zerkle demonstrated

t6



because the fundamental equations are unchanged,

The quasi-static method will be ttsed to solve the titue-dependent probletu, As

discussed in the previous section, the efficiency of the quasi-static tnethod has been

demonstrated for both finite-difference and nodal methods, The objective of this

application is to show the etHciency of the quasi-sttttic method in combination with

the non.linear iteration procedure. The quasi.static method also adds to the flexibility

of this nodal method by allowing varying levels of sophistication of the time-dependent

solution procedures ranging from point kinetics to full space-time treatment.

Finally, two different thermal.hydraulics models will be incorporated to allow

feedback effects to be analyzed, One model is very simple but captures the proper

betlavior of the reactor. The other thermal-hydraulics model, however, is quite sophis-

ticated including subcoo!ed boiling, two.phase flow, and a two.node fuel conduction

model. Again, the flexibility of the nodal method is increased by allowing different

levels of sophistication in the thermal hydraulic modelling of the reactor system.

1.4 Thesis Organization

In Chapter 2 the complete mathematical derivation of the static polynomial

method is presented. First _t corrected finite.difference method which incorporates

_,quivalence parameters is developed along with rigorous mathematical definitions of

those equivalence parameters. Then, a polynomial nodal method is derived and the

non-linear iteration procedure is introduced.

In Chapter 3 a similar derivation of the corrected finite-difference anti polynomial

methods for the transient neutron diffusion equation. The quasi.static method is

introduced and complete specification of the required point kinetics parameters is

given, 'rite thermal.hydraulics and cross section feedback models are also discussed.

'['he numerical properties and solution methods for the static and trttnsient equa.

tions are presented in Chapter ,t, The nodal method is then used to solve several

static and transient problems with the results being presented in Cht_pter 5,

Finally, ('hapter t} presents a summary and conclusions of this research. Recom-

mendations for further research are also m_de.
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Chapter 2

DERIVATION OF THE STATIC NODAL

EQUATIONS

2.1 Introduction

In this chapter tile static nodal equations will be derived from the few-group

diffusion equations. First, corrected finite.difference equations are obtained which are

rigorous in tile sense that they can reproduce the results of _my reference calculation

if appropriate equivalence parameters are supplied, Next, a polynomial nodal method

which will produce accurate results for assembly sized nodes will be introduced, The

complete nodal method is obtained when the corrected finite-difference equations are

forced to match the polynomial nodal method,

2.2 Notation and the Nodal Balance Equation

The starting point for our derivation is the few-group, steady-state diffusion equa-

tions in Pl form ili-4]

V J_(r) _ \" v x,' +- .t_(r)_(r) =.... \_l_../_,(r) + _._,(r) 4)_,(r)+ %(r), (2,In)
g'=l

Jg(r) = _--Dg(r)V%(r) 9 1 '_ .= ,.,..,G. (2.1b)

Where

J_(r) = net neutron current in group 9 (cm 2_t),

_(r) = scalar neutron flux in group .q (cm-_s _'t ),

,\ -= ret_ctor eigenvalue,

v,
-,t.(r) = macroscopic total cross section for group 9 (cm -t),

18



\_ = fission spectrum for group .q,

V_
v.:.,!_(r) = mean number of neutrons emitted per fission tittles the

macroscopic fission cross section for grou v g (Ctli _| ),

.-,_,tr) = macroscopic transfer cross section from group g' to ,q (ctn t),

qg(rt = extraneous neutron source in group y (ctu 3s"t),

D_tr) = diffusion coet_cient for group g (cm),

(; = total nutnber of energy groups.

Note that this equation ellcotnpasses both eigenvalue and source probletns, When

eigenvalue problems are considered, the source, qo(r), is zero attd when source prob-

letns are considered, the eigenvalue, .\, is either unity or a value which forces the

system to be sttbcritical.

Equations /'2.1a) anti (2.1b) are obtained by integrating the continut)us.energy

diffusion equation over discrete energy groups. The group parameters (cross se_:.

tions and diffusion coefHcients) are obtained by a spectrum.weighted average over

the energy group. Recall that few.group cross sections use a pre.determined spec.

trum while a ntulti.group approttch uses an arbitrary spectrum {I4.4], As their nantes

suggest, few.group calculations typically require a smaller number of energy groups

than mtdti.group calculations, In general it is impossible to obtain group t'onstants

which can exactly replicate the solution to tile Boltzmann transport equation, Later

in the derivation more parameters will be introduced to overconte this difficulty,

Three.dintensional (art .stan geometry will be used for the nodal method to avoid

complexity arid allow ntodelling tff a wide variety of reactor systems, Note th_tt

polynomitd nodal methods for other geometries are currently heing developed at

M,I,T, B-I, S.5, I).1], In this derivation a generalized coordinate system will be

used in which the coordinates are represented by _l, t,, and to, The spatial domain of

the reactor is divided into a regular rectangular array of right parallelepipeds c,onsist.

ing of nuclearly honlogenous materials and with grid indices defined by tit, t,,., and
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tim where

I tl == l, ') [ )I = ,t',y,=

l,m,)_= j = t, ') ,I _,_._t )*¢1)

') ,, ld Iv * t,., Vk = I,.,, , •

The node (i, j, k)is defined by

Y _ iYt,Yt+ti,

' t
-. (i i =t,- .Tt_ + I],

The node widths are

t
htl _ llt¢ ! -- Ill_ 1l = ,P,,_t t..

,.nd the node vohttue is

1''J)' _ h_,l).'_h,,j'

In Cartesian geometry Eq. ('2.1a) att(l ('2.lb) are

0 0
0 ,]g.(a" y,:)_- ,l_)_(.eV,:) _ ,/_,( x, y, .: ) + Etg(_ y, -)e_)(.t. y,-)=_._ , _ , _ , . , .

(2,2a)

..., \_,V,._ltj, l,r,_/,=) k ._0,{x,y,: ¢/)_,(X,y,=) *- qglx, y, :.),
I/f _ l

0

,/_t,(_',,_,=) = ......O_(,e,y,:.)Ott'l)_(_',y,=), tL= x,y,:, (')'))')

The tirst step in the derivation ()f the nodal tnethod is to integrate E(I, ('2,2a)over the

volume ()f n()de (i,./, t;,) and then divide hy I ''JJ' to obtain the nodal I)(d¢tn('e_,q)mtao))

1 ,/'J )]h- ....-,.(" ) [J;;(:' ) .... ("
¢;
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where

,:,_,J-: ,t;r 4y ,l:.%l.r it, : ) ('>.'1)
' I ) '

'-f,"'li""f""cl_/k = -- d_ d.tt ,t : q_ix, y, : _, i'2.5)

/ /°.".1. _ 1 """dr ,tu, ,I_,,(u, p, u,), _,_: It i2,fi)
J_u (u)_ h[,_h,' -,,.. .,,,.

1Lt _ I1, l_

and the cross sections represent averages over the node. Despite the fact that this

equr, tion has been obtained without approximation, it is incomplete since it relates

several unknown quantities° namely the node.averaged fluxes antl surface.averaged net

currents. This represents seven unknowns for each uode and energy group. 'l'lwre°

ft)re, we faust pr()vide six a(hlitioual relations between the uode.averaged tluxes ,uld

the surface.averaged currents to ,)brain a c_ml)lete system _)fequations. '['hese ad.

ditioual equations are called coupling cquatw,s. Two different approaches will be

considered br obtaining the coupling equations: a corrected fiuite-difference method

and a polynomial uodal method.

2.3 Corrected Finite-Difference Coupling Equations

()he method uf _)btaining the additiunal required relations is tt, e finite.ditfereuce

al)pr(Jxi|natiun, We begin by integr_tting the sect)rid Pt equ,fliou, Lq, (2,2b), .ver the

node and dividing by the u-de v,luzne

l]b.'t J

,-g_(u)= ....... -- dr, dw e_(u, v, u,), u =x,y,:, ')h:"h,'_,,lu .,_,., _.,. (.,7)
. ,_ [.l, ul_L],

We can u.w approxin_at, the _leriwtive iu this equatiou as a simple difference as

follows
,hlmn ._ ,_,,n,_l,, _"

J,,.. (_l) :_ ....... (2,8)
" " _ I_(,/'_a '

21



:* Node Surface ....

1_1 l

Int e 'ac,e

I'F "t+

Ill _ i 1i N1,1_1

Figure 2 1' Diagram showing the the surface anti node labeling ton_entims

Where tile surface-averaged ttux is defined by

* e t /m._utd _t' indicates the positive side .f the tat _rlace an shown in Figure ') 1.

Note that this differencing is also eq,ivaleat to assuming that the flux in the node

varies linearly from the node surface, where is has the value _,,,_'""(,i'_), to the node

cezlter, where it has the value gt,.,, A similar procedure can be performed for the

adjacent node to ,_btain another relation for net current at the interface

'these equations, however, are only acc_rate for s._all ,_eah spacings and ,'a,_ lead

to large errors when entire assemblies are ttsed as nodes. For [,WRs, itt fact, finite.

difference tnethods typically require about o|te mesh per fuel pin to obtaia spatially.

¢onvergetl results.

This ditticulty is .vercome hy the introduction of correction factors which force

Eqs. !2.8) and (2.10t to be brmally ,,xact [11-.51. This procedure is performed hy

mttltiplying the surface.averaged ttuxes in Eqs. (2.8) and t2.10) hy correction factors
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to give the true surface.averaged llux _tt that interface

_,.,_ fd,.,i ,.,n- t '%,,(.i) :: '_ i_t)

(2,11)

Since the correction factors, flm,, and C-t,,.,,• ,,... _,,. . are _enerally tlot e(tttal, the surface.

averaged fluxes appearin_ in Eqs, ('2.1,1)avid (2.10) must be discontinuo.s, For this

reaso., these correctim_ factors are called &scoutmulty _tletors, l.serti.g the correc.

tion given in Eq, (2,i 1) into the Eqs,(2,8) and (2,10) results in the foliowi.g equations,

which, whe. 11setlwith reference values for the net currents a.d fluxes, also serve as

deli.ilions for the ciiscontinuity factors

,tpIra" ,:}'_"t J,. _ ¢1,..

/""1 Dd""

(2.1a)
¢.mn* .... ¢|. l,mtl ._I_l,rn.

t,_ 1/.2

The _,o.text iu which we have introdu(.ed the discontinuity factors is for the col

rectio. ,)f the spatial difference errors, '['hmr .rt_ma[ purpome in General Equlval _.ce

Theury, however, was to correct for errors made in treating lleteroKeneous regions

ks haviui a homoao.ous compositio|l (S.l , Ftlrther,they can be used to correct for

the diff.sion theory _l)proximatio. and fur errors i. obtainin_ diffusioncoellicients,

Throutthout the resuai.der of the corrected t'lvtit"e.difl'erencederivation we shall treat

thesedisco.ti||uity factors as l)ei.a c|)rrect|o|is for all errors (Sl)_tial, homoaenizatio.,

a.d diil'u_io, theory),

N()w wecan ol_taiu the iinal r_.h_ti-usu_v_ssaryi. ,d)talnlnK'' a complete _et uf u(.la[

e(l.aiiou,, By lisinK the COlttll|ultyt )n(llti.|| _iveu in Eq,(.) II) we Call eliminate the

st|rface _verage(l fluxes from I/hl. ('J,l'2)t,:).l)t_in the folh)winK expressio||reiati.g the

surfttce.averaKeduet curre.t to tl_e node._veraKed fluxes



This corrected finite.difference coupling equation has tttree important properties,

First, tile equation is forma|ly exact since the discontinuity factors correct for the

deflciencieA of Eqs, t2,8) _11di2,10), Secott(i, tile discontinuity factors in tile coupling

equation appear as a ratio. Titus, in the application of the method we need not store

the factors individually but a8 ratios, Finally, if the ratios of the diRcontinuity fwtctors

at the interfaces are unity, we obtain the tnem|t.¢entered finite.difference equations,

Sinfihtr manipulations of the equations can be performed for the node interface

ut,t It) obtain the following coupling equation

Substituting Eq,, t2,1a)_nd (2,14)into the nodal Imlance equation, Eq, (2,3), rettults

in a nodM equation which has title finite-difference form

1
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This equation can be written more contpactly using matrix notation to collt,.pse all of

the spatial dependence

l V" F_, + E_¢0,_,, + qg ('_ 1(_)

where

Nu .= A seven.stripe 3 r ._ X matrix containing the coupling terms for group y.,

the total cross section and the in.group scattering terms,

¢b_ = A column vector of length N containing the fluxes for grmtp .q,

_a' := A diagonal N , N matrix containing {v't'""}

, . ,,'_lmn },Fu_, = A diagonal ,", N matri× containing {x_,.,.,/¢

q_ -_ A column vector of length ,V containing the extraneous source terms,

N = The total tlumber of nodes = I .: J, K.

An even more compact form is obtained by collapsing this equt_tion into the following

super, matrix equation
I

A_ = ._M¢ _ q, (2.1"/')

where

A :_ An NG • .V(/matrix conttdning {N_w .....Ew},

'I) = A vector of length A'G of the fluxes, coi{,_},

M _ All N(; • N(; matrix containing {F_a,_,

q :_ A vector _Jflength N(; representing the extraneous source, col{qg}.

e' 'eThese tnatrix forths will be useful ill exalnining tile hum rtcal propertt s and solution

tnethocls for the static problems in ('hapter 4,

"' B 1 y (onch..a, 1 oun¢ ar t' 'ions

The s_me boundary conditions which are used by Zerkle [Z. Ii will be applied. Tile

boundttry conditions are represented by the following equation



where

¢'-""i u ) = Surface-averaged flux at boundary,/)t/U ' !

,1_,, (it,) = Surface.averaged current at boundary,

u, = External boundary,

= Unit vector in the positive direction of the coordinate axis.

fi = Unit normal vector of external ho,_ndary,

r"" - Boundary condition factor having the following values:

tilt1

F_u:_ = 0 zero flux

F vrtt't ._ .1
_._: - .. zero incotning current

[',mn_u. = ,x_ zero curren!
4 tn

a_._ ......." + ------ albedo where (t:j

The expression for the current at the external surfaces required in Eq,(2,3) is obtained

by combining Eqs, (2,12) and (2.18) to eliminate the surface.averaged fluxes. The

resulting expressions for a lower and an upper surface are given by

rr,-,, h_ 1_',]_-(,, ) - _ t_ _ ._t.,.' / t_,.', ' t.,. (2 19)

an(],

rr,.. j,._ ]-'
/_ -.,_---_--. .=t,,_, (') ,)n)

J_"(u,) = / P'"" 2D_'"" % ' """
k _ _u* 9

respectively.

2.3.2 Evaluation of the Discontinuity Factors

The discontinuity factors used in this method can be obtain,'d from any reference

solution by treating Eq. (2.13) as a defining relation for the ratios of the discontinuity

factors about an interface, By rearranging this equation we obtain the following

e q u itt io n
h_

/_ trt tl 4- "_t,4 ltrm/ U

#'l.-l,mn "_l 2DI,,,,_%u _ q
'_"+'-"- -_" ...... _-- .......--- - .......... (2,'2t )

h_-t
--. . u jmnl
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At the lower boundary, Eq. (2.19) can be rearranged to give

(
_ + , (2.22)

, ,,,- k Jg'_"(u_) 2D _mn

and at the upper boundary, manipulating Eq. (2.20) gives

Fg,_...2.+ _-g h_ (2.23)
triton -- ]rnnl zl _ 2 lmn "Jou+ "ou _, sl Dg

Note that when a zero flux boundary condition is applied, F_ n is zero but the ratio

Fo_,_/(t,_,_o__may not be. By introducing the discontinuity factor we simply apply

different boundary conditions which result in the correct leakage at the boundaries.

2.4 Polynomial Coupling Equations

As previously mentioned, the ncdal coupling equations obtained by the finite-

difference approximation are not accurate for assembly-sized nodes. In this section we

shall obtain more accurate coupling relations by assuming that the flux can be repre-

sented by quartic polynomials. We begin our derivation of these higher-order relations

by applying the transverse-integration procedure. Our goal in applying this procedure

is to reduce the three-dimensional equation, Eq. (2.2a), to three one-dimensional

equations. This is reasonable since it is generally easier to solve one-dimensional

equations than three-dimensional equations. As will be seen, these one-dimensional

equations will be coupled by leakage terms and will require an approximation for

practical solution.

2.4.1 The Transverse-Integration Procedure

Three coupled, one-dimensional equations are obtained by integrating the neutron

diffusion equations in the directions transverse to the direction of interest. This is

accomplished by operating on Eq. (2.2a) with

dv dw.
rn n

ho .,.. .,o.
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Thus, we can obtain a one-dimensional equation in the direction u by integrating

Eqs. (2.2a) and (2.2b) over a node in directions t, and w. The result is

_lmn_mnz _ _lmrt _lrnn] mn

gl=l

(2.24a)

-

_Direr,d mr,
J;:'_(u) = g duCg_, (u), u = x,y,z, u E [ul,ul+,] (2.24b)

where

mn 1 fv'+t / w'+tCgu (u ) - dv dw Cg(u, v, w),I1% I%
hld h to ,Ore " tt_n

J_u (u) = dv dw Jg(u, z,, w),r12 n
h o h W 'Jo,aa ,ton

S,_, (u) - Lr_,"(u) + Lgm_"(u),
to

mn i /wn+lL,o (u)=_ dw [Jg,,(u, vm+,,w)- J,o(u,v,,,,w)],m 12
hidh w ,,,,,,,

mn i /vm+lL.,,. (u) - dv [Jgw(u,v, w12+_)- Jgw(u, v,w.)].

The transversely-integrated equations (2.24a) and (2.24b) can be combined to

obtain a system of ordinary, second-order, inhomogenous differential equations with

constant coefficients. If these equations are solved analytically we obtain the Analytic

Nodal Method developed by Smith [S-2]. The resulting solution, however, is rather

complicated and for practical application is Limited to two energy groups.

An alternate approach is to assume that the transversely-integrated fluxes have a

polynomial form and to apply a weighted residual procedure to determine the poly-

nomial coefficients [F-l]. If the transversely-integrated flux can be adequately repre-

sented by a low order polynomial, relatively simple expressions result. Furthermore,

since the equations for each energy group can be treated individually, generalization

to more energy groups is straightforward. For these reasons, the polynomial expan-
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sic,n procedure along with a weighted residual procedure for determining the higher

order expansion coefficients has been adopted.

2.4.2 The Polynomial Expansion

The trans.¢ersely-integrated flux is approximated by a truncated polynomial

P

rntt

,=x%upjp _ ht" ), ue [ut, ut+l]. (2.25)

Previous applications of polynomial methods [F-l] have shown that at least a fourth-

order polynomial is required to obtain acceptable results for fight water reactor ap-

plications. Further approximations, yet to be discussed, limit the accuracy such that

using polynomials higher than fourth-order is not warranted. Thus, in this method

we shall use a quartic polynomial approximation. For this case t,te basis functions

are defined by IF-l, Z-l]

.f0(_) = I, (2.26a)

1

f,(_) = _ - _, (2.26b)

1

f2(_) = 3__ - 3_ + _, (2.26c)

1

f3(_) = _(1 - _)(_ - _), (2.26d)

f4(_) = _(1 - _)(_ - _ + i ). (2.26e)

These polynomials have been chosen such that

fp(_) d_ = . (2.27)
0 p = t,2,3,4

In addition, the higher order basis functions are required to satisfy

fp(0) = fp(1)- 0, p = 3,4. (2.28)
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Figure 2-2: Diagram showing the orientation of the two-node problem,

This constraint on the higher order expansion filnctions is convenient since it leads

to expressions which relate the first three expansion coeffcients only to the node

averaged and surface.averaged fluxes, not the higher-order expansion coeffcients,

Using the polynomial expression for the transversely.integrated flux, we can evaltt.

ate several key quantities in terms of these quartic polynomial expansion coeffcients:

_)lmn _ .iron .....g "o_o, ('2.'_u-)

_,_ 1 = %t,0 + _ gut + _a_,,=, ('2,'2!}b)

_,n.{ ttZ+) _tin. 1 /ran 1 t,.._,_, = uauo - _aouI + _%,,_, (2,'2!h'}

Dlmn [ iron q_imn

- ')",_.=..... _ -('_,,4] , (...."")Ja,, ("t) = h_ 2a,,,3 5

2,4,3 The Two-Node Problem

The determination of the expansion coefficients is made by solving the twn.node

problem shown in Figure 2-2 [ti-6}, Our goal in solving this two.node prohlf,tn is

the determination of the surface.averaged current at the interface of the two nodes ill

terms of the node-averaged tluxes, This will result in a more accurate coupling relation

than the finite-difference coupling expression (Eq, (2,13) with unity disconlinuity
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factor ration),

For this two.node problent we have tlve unkttown expansion coefficients for each

node attd energy group, As Eq, (2,29a) shows, the first expansion coefficient is the

node-averaged flux, leaving four unknown expansion coetllcients for each node altd

group, Thus, eight equations are required for each energy group to completely specify

the polynomial approximation in the two nodes, The equations which will be ttsed

are:

L, A nodal balance equation for each node, (2)

2, Continuity of current at the interface, (I)

3, "Dibcontinuity" of flux at the interface, 11)

4, Two weighted residual equations for each node, 14)

The numbers in parenthesis indicate the number of equations to be obtained front

each condition,

2,4 4 The Weighted Residual Procedure

Two equations for each node in the two.node problem are provided by using a

weighted residual procedure. Since the truncated polynomial cannot match the exact

solution of the transversely-integrated diffusion equation we require it to satisfy this

equation in a weighted-integral sense. The weight functions can he chosen t_rbitrarily,

but two different methods are typically used: Galerken weighting, where the poly-

nomials are weighted by themselves: and moments weighting, where polynomials of

increasing order are used successively as weight functions. Previous applications of

polynomial nodal methods have shown that moments weighting is superior {F-l!.

We begin the weighted residual procedure by multiplying Eq. (2.24a) by a weight

function tv_,(u) and integrate over the node. The resulting equation is

Wp(u ), d_'."( u ) ¢. S.L. .2 _m,,._l,.. + ._,... .t,..
(h_)_ (_"'_' "g''P -g"P= -%"P (2.30)
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where the brackets indicate inner products as in ttle following definitions

.._,,,,, (' .t,.,,) l f"'+' %,i ,,.._u , , ,d, l. _,_z,.,,r , (2,31a,

"1'"" I ,'Iron/ /, , ,

qt,,,,, """' )) (2.31c)gup _ ( wv{t4), u

&lid

'_' - D_"" L'''e b_a' - "ee' _e' "lg' ] ' (2.31d)

["or moments weighting, the weight functions ere given I)y

( )- a - _ll 1

.'t(") =/t(" .I) = hl, 2' (''""

After substitution of the polynomial approxiumtion into Eq. (2.31a)end performing

the necessary integrations, we find that the first and second flur momenta ere

d)lmn I (Ira. | ./,nn

"aul : 1_ I_.t _ -'-120"g"a, (2.33a)

,_t,.n 1 r t,. . l _t,..
g,,:l = _ 'g,,:z_ _"_,,,,I ' (2,33l))

In _zsimilar fashion, the first a.d second e.rrent.derivative moments ere obtained by

substituting tile polynotltial approxim_.tion into Eq. (2.24b) _nd evaluating the inner

l)roducts resulting in

tot(_,), d_ -_" (_') - '? (h_) =",,,3 ('2.34a)

(w,(,,), '_ ,,.,,,(,,)) . r_''""
-- : _ _l,n. '

du'u,, _(hl,)_"a,.4 (2,34b/

The evaluation of the tranat,er,_e./eakavenzomen_srequires more information since

we do llOtknow how thetransverseleakagevarieswithinthenode intheu.direction.
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*rile most common and accurate manner of treatin_ lhis spatial dependence is the

quadr_ttic transverse.leakage apl_roxinlation B-21, Ira, this approxinlation, tile u.

directed transverse leakage is expanded in a quadratl,' polynomial which preserves

the node-averaged transverse leakages in the node of interest and its two neighbors

in the ..direction, This polynomial, however, is used only for the central node. The

quadratic transverse leakage has the form

" ltu '_ilu ' _,'_ gu '° llu

where the u.direction node.averaged transverse leakage fi,r node (1, m. n)is given by

= ..-1 /u_,, _"'""(r,) ,lu (2,36)

and thequadraticpolynomiMsare

(,,-i:_,,) (u - ,,,)'

' _' hl, ¢"' hl,/ '

The coefficientsofthesepolynomialsareobtainedl_yrequiringthequadratictopre.

_ tC,andserw. the leakage in the tl_ree adjacent nodes. The resulting ¢oeit|cients, a,,,, ,_

c'*,,_,depend only on the node widths, The conlplete specilications of these coetH-

cients and the transverse.leakage moments are given in Appendix A, The resulting

evaluation of the transverse.leakage moments is

(2.37a)

17u_ :'-" _ Cul " itu ..... Cut Cut 1'" gu ( ul _llu ,ran

The remaining term in Eq. (2.30) that must t)e evaluated is the extraneous neutron
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source moment ct'"",l_,,_,_ince we hltve assUlll_d thai the source is homogentms, within

the uode, the source moments are zero

q+,.,, (",3a)

The two required weighted residual equations are obtained by substitution of

Eqs, (2,33at and (2.34a) into !2,30) atttl Eqs, (2,33b) and 12,3,1bi into 12.30) tu give

(h,,) _,a,.,,
,,_,-;,++±v't,,--..(,,P,""",,,,L""'"'+ " = +D_.,,r,*,,+,' i:+.mJ,_+'#_mI

.. _+,.,,r t,.. 1 , t,.,,1 ....,, , _s,_,,,,, ,_,

_,,,,,,,++._,..+t,<,,,,,,,L,,+,,,,.+_,,,,,+,j+= n,+,--,,'+_" i...._m,_' "++ J+1

Before t'ontinuing, a discussion of lhe errors introduced by the quadratic leakage
t

approximation, F.q, (2,35), attd the choice of the fourth.order polynomial is pertinent,

The error introduced by the quadratic leakage approximation is expected to be of the

same order as a third.order polynomial approximation for the transversely.integrated

flux since the leakages are related to the net currents which are in turn related to

the spatial derivative of the flux, Hence, t tte leakages for a third order polynomial

approximation have a quadratic form, Since the leakages are typically smaller than

the net currents, errors in the leakages should be smaller and less significant than

the errors in the net currents. Therefore, the use of a quartic polynomial approxi-

mation seems to be a reasonable combination with the quadratic transverse.leakage

approximation.

Empirical evidence also supports this choice. A convergence analysis of a two.

dimensional, homogenous, bare core problem performed by Zerkle [Z-I] shows that

the spatial discretization errors in k+tr(i.e. A)is O(h 4) for both the cubic and quartic

nodal methods. A subsequent tree-dimensional analysis, however, indicates that in

the absence of the transverse.leakage approximation the quartic approximation has

a truncation error of O(h a) while the cubic polynomial error remains O(h4). The

comparison of the one.dimensional to the two-dimensional results indicates that the
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quadrnlic trnnsw, rse.letLkt_ge t_pproximt_tion mu,l introduce tu_ error of O(h 4) and,

forthi,_model problem,ismore _i_ni(ie_nlthn, the errorintrodueedILvthequ_rtic

polytmmia]approximntion.

The expansionfor1hetwo.nodeprohlemIreseightunknown expansioneoellicients

perRroup.1"hecomplete_etofequ_tion_for_,Riveninterfacei_:

i.A nodalb_lanceequationfornodt,I -_I:

|:idi_ 1,,.,_ " t_:t.m. 2 I tan. _i t,,_. | ,.. ,l _l,m,i

12.40i

l'hi_isan allernateformofthenod_[Ira[anterepresentedby Eq.{2.:|)and i_

,_btained by using the weight function _,'0 -.: 1 in Eq, (2.30),

2, The first moment equation for node 1 .....1:

1"¢,_ t

:l, The second _mment equation for node i .... 1:

' ,, = .......... '_u_ , (.,'12)

.t, A nodal balance equation fi_rnode 1:

5. The first moment equation for node 1:

7)a I,.. . :1_l,.n ( ,4 t
I_iflm I _11



6, The second moment equation fop node I:

1 t,.. I _u 1 . i 2
+.... --t '_,,',_,l' _ '¢,41 Di_,, _,,a,

t/

7. Discontinuity in flttx at the node interface:

¢ JI t(2,il)

.,_ l ri,_. ..

Note that the discontinuity fat'tors which occur it| this equation, ft,,o1,,,,.su.and ft'''¢_,,.,

are different from thote introduced into the finite difference equationt, ,g_,

and f"" As for the finite difference equations, these discontinuity factors

can b_ used t. correct for spatial, homogenization and diffuaioii theory errors.

Since the quartic polynomial al proxmlatlon leads to small spatial errors their

' q | _ I ,_rill

primary purpose is to provide homogenization correct|on. (,enerally, f_,,

and fl..,, will he ¢Olllttant throughout tile entire calculation-I/U '

8. ('ontinuity of the net current at the node interface:

D 1,--l,,nn

...T.L___ ( 1o!,,,,,, ,, l - I,,.,, I t.,I,,.,, 1 I-1,,.,, )

(2..17)

D_ ( _,,,,,, ,,_,,,,. 1 ,..,,.,. i....

_O'Fhe_e equations represent a 8(;' 8(."/coupled system of equatl nI which wouhl be

very time consuming to solve, _speci_|ly for a large uumher of et_ergy groups. With

further manipulation, however, we can sitnplify the solution procedure. Note that

the nodal balance equation and the second tuou_ent equation for each node involve,

only the even expansion coetticients and are not coupled to the other node. Thus,

by solving the nodal balance _,quation, Eq. (2.,t3) for ..t_. and substituting into the

second moment equation, Eq, (2,46), we can obtain _'_u:'_""and %_,_"_'""with one (; ,. ¢;
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_i)lutii,n, Next. lhe c,)iliiiluity ci_ndition_, Eq_, t2,4ill and (2.,|7), ciin i_e used el)

t)btiiiit ,ts_i,ii""" field 'ttm"_i-till trrttili of ,ti_,,tl''_ and ,iz''*'_,a,These expressions citn then

be st|bstittited itll|i tile first Iii¢)ttt_til ,,quati.na, E is, ( 41) and ii 1,|), l_, .bittin

'i_" 'i"' it lm'_ bets, t Jle A(i ( " "l_.l .tt eilitatilili [ill .1 l,m. T ,_ ' +, (, • lirohletil ¢ilti !i_ re Itl_ eil" tl#itt and tu_ ' -

•" ,i.* ,i., l.rotilrills lirr in'terfac.,to Olle It • (7 ttlld illPte itt i ill

This iohitiUli liiethod differs ftljiii iliiit iileil ivy _etkle !it Zerkle's iiieih_t(l,

the .t,.. tilltl .,tin. expln!ion coeirielit.1 tire written in ternil of the surfAce.iivtriiled"tlul "_iI

itllxeli usiri I Eitt, (,)i,,)ill,).,,. &lid l ').,'ti:i").,,,, &lid lllrftice.liveraled currents utiii l, i2,21til ) _iiil

(2,2!iet, Tile ct)liiiiltiit)' coiitlili tim Are theft apliiied reAtiltill I ill an extlresiion for

the liet i_ilrrenl at the illiterate, Thi, eqlititiOli ttlil) irivolvet the leakalo_for the two

rteilhbilriill iiiiile_ which _re tliiniii_tell tisin! the nodal h_l_nCetqu_iiiin0 Tile illidal

t ' i'liietii_lii ltilted till ,lilt soliition llitthod titit tieeii [i:iil!ld 1o re(ll ire Ill!ire iierlitiolii

thtlt rite ttieth(_!l develolitd here sinCe it reqilii*et Ihe use of lllOl'e irifornilti¢ln frOlli

e 'the. prtviout it _rtiiioii,i
[
i

The cOtili[ili ! rel_tion_ for the pol)'llitiiti_l liodltl litethoi| Ire liililply the suffice,

ttv_rtlleil lieiot*urr_iit _xiirel,iOlil liVeli ill Eltl, i_,-i_.) lilid (2,liiei, liecitiile lie their

' t ' II'Oliilih{lt _fl nittlire, llt_y ciiilnot ti_ e_liiy t,Olilbilie I with the nodal bttittliCe eqllt.

lion to ot_t_in _ _i_ille iiolhil eitiilitiOli, ill in the corrected finite._iffere_f'e nlethod,

Piirther, ._iliC_ the eXltilliiliotl _'_etl|¢ielitl llepelid ripen the liolll.lverit!eil ttuxes, the

_Vlt_lil. _f....eqlititiolia which iliiili tie sol'v_d i_ quite larle, ili¢llidtri t the iioll_l titllilliCe

eqiitlli!ili, the lli)lyli(ilUiiil coutilili ! _qutiiioil_ livid itie expliiiliiiil l'_etti_ieili eqiilitii)lll,

The s(ihiiion tlro('_lliire il _iinplii|ed liy the ti_o of &It itertitive procedure,

.,4,li

' ' e " t'The t:loti!idtiry C_)liditkll/! _ppli_dlo tile l)Ol)'ll(liiiili| #qiilitl()lil tir_ ii lileil r_lillt ,io!i

i-if'those applied to tile finite,difference equlltionl, gq,12,1a), and are liven by

(7

<_'"" ) _:<i, n_ l.l_. #l_,,,.,), (2.4S)!lu ( !It _ kili,ui--i/,ll /
iltml
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_tlb_lituti,_ the polyntmlial expanni+mapproximalions .f the _,rface.avera_ed fl.x

and cttrret_t re_tllts in f.ll.win! e_l..ti.n _1 t it_ I.w,.,r _tlrfare

_] ,,,m..
[

!2.,1_))

_l|dat the.ppersurfKce

,"""st" ' "° q","" ++'''°
#_mI

(2,,50)

The+e eqllatio,, Are ¢ottlhined with tile other expatt+io. ,:oemcient eqtlatio.+ given in

_e,+ll,m _,I+', t. -bran the complete +el of eq.alio.+ for nodes at the bo..darie+,

N,,ir thal if lhe ,,Ir+d!ail+.nal+'lement+.f r,,-,
.... • ,++++_+t_re +ere. we, ohtahi the' _al.e fOlPllt

m+in l_g, _,I_!, Thi+ general f.rm .f b..ndar.v condition ca!1 be .led to mmlel

reile_'tor+le_dil;K Io a _+i+.iAcant red.cite, i. the .umber oI' unknow.+. For ext_1.ple,

all inl|nite rPltP,,t.r in two +.erK.vKr..t)+ inobted.ed by _lmilllltile following val.es IP+l i

lt+m ++ I_1 ;

I+ l_ +l

l|,u :+?+i)

I""" I+_ lh++q , ++
_++ + ++

whet,_ l)+ i+ th+ gro. I) ;1 retieetor diff.+ion eoetticient and L+ i, the group +1reltector

diil*u_io, lenllth I_ De] .+++),

3,5 The Non.LII|OIP Iteration Procedure

ilather _hasl_+olvingall of tile l)oly.omial .odal eq.ation, a. a complete set, we

t'_n _se _ ._m.li.ear iteration proced.re which we,e+tir,t propo,ed by Smith !S.4], The

meth.d tak.+_ a(ivantage of the property _)f the _.orrected t|.ite+dilrerence scheme ill

which any r,.ft+r+,n_'esohltion can he exacti._,, reprod.ced if appropriate (li,contin.ity

factors are pr-vidPd, A flow diagram .f the no..li.ear iteration scheme is presented

in Figare _+:_, llegi.ni.l!i with an i.itial gaess for tile discontinuity factor ratios, the
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Figure '2.:1: A flow 4iagrttm of the non.linear itertttion procedure for the static prob-
lelll,
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corrected finite difference relations can be used to compute the node.averaged fluxes,

These fluxes are then used in the polynomial equations to compute tile expansion

coefficients attd, hence the net currents at the interface, From these polynomial

net currents attd the corrected finite.difference fluxes, discontinuity factor ratios tllay

be computed, These discontinuity factors are used in the corrected f|nite.difl_rence

equations and the process is repeated until the node.averaged fluxes converge. The

uniqueness of the solution of the nodal equations guarantees that, if this tnethod

converges, it will converge to the solution of the polynomial nodal equations.

This tnethod has several advantages over solving all of the polynomial nodal equa-

tions together, First, a significant reduction in storage is obtained since none of the

expansion coemcients and polynomial coupling terms are needed during the corrected

finite.difference calculation. Also, since the finite.difference equations involve only tile

nodal fluxes, no iterations are necessary for the currents and expansion coefficients

during the global flux solution procedure. Finally, if the solution can be obtained in a

relatively smaU number of discontinuity factor iterations, a reduction in computation

time will result because of the decrease in the number of times the currents must be

calculated,

2.6 Summary

In this chapter the derivation of the static nodal method was presented. Starting

with the space-dependent, few.group diffusion equations we obtained an equation

which represented a neutron balance over an arbitrary node. Since this equation

related several unknown quantities, additional equations were required. One method

for obtaining the additional relations is a polynomial nodal method. However, since

the set of global equations resulting front the application of this polynomial method

is quite complicated, a non.linear iteration procedure was introduced in which the

polynomial method is used locally to obtain correction factors for the finite-difference-

like equations. The global calculation of the node-averaged fluxes is then performed

by the solution of these corrected finite-difference equations.

In Chapter 3 the polynomial nodal method will be extended to time dependent
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problems and a time-integration method will be presented, Numerical methods and

considerations for the solution of the static and transient nodal equations are given

in Chapter 4. Applications of the static and transient methods are presented in

Chapter 5.
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Chapter 3

DERIVATION OF THE TRANSIENT NODAL

EQUATIONS

3.1 Introduction

In Chapter 2 the details of the static nodal method were outlined. A similar pro-

cedure will be presented in this chapter for the transient method. First, the corrected

finite-difference formulation will be presented. Applying the finite-difference approx-

imation to the time-dependent neutron diffusion equation and the introduction of

discontinuity factors results is a system of first-order ordinary differential equations.

A temporal differencing scheme will be presented to advance the solution in time,

The the polynomial method will be applied to give equations for the expansion co-

efficients and polynomial currents to compute the discontinuity factor ratios. These
!
I

discontinuity factors ratios are generally time dependent and will be updated using

the same non-linear iteration procedure applied for the static solution.

This chapter also presents the application of the quasi-static method. In this

method we assume that the node-averaged fluxes are the product of a space and

energy dependent shape function and a space and energy independent amplitude

function. Since the shape function generally varies slowly in time, large time steps

can be employed in its solution and it can be computed less frequently than the

amplitude function.
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3.2 Notation

The derivation begins with the time-dependent, few-group diffusion equations in

P1 form

1 0

--_-_g(r,t) = -V. Jg(r,t)- _tg(r,t)¢g(r,t)Uo

G

D

__, yagAaca(r,t) + qg(r,t), g = 1,2,... ,G,
d= 1

Jg(r, t) = - Dg( r, t )VCg( r, t ), (3.1b)

0 a

-_cd(r,t) = 3a_ vZ/¢(r,t)¢¢(r,t)- Aaca(r,t),
_'=i (3,1c)

d= 1,2,...,D.

Where inadditiontothetermsdefinedforthestaticequationsinChapter2,

ca = density of delayed neutron precursors in family d (cm-3),

_:pg = prompt fission spectrum for group g,

_d_ = fission spectrum for precursor family d, group 9,

J\d = decay constant for delayed neutron precursor fanfily d (s -1 ),

3a = fractional yield of delayed neutrons in family d,
D

d = total fractional yield of delayed neutrons,/3 = _ Aa,
d=l

vg = neutron speed for group g (cm s -1),

G = total number of energy groups,

D = total number of delayed precursor families.

In a manner similar to the derivation of the static nodal balance equations, we

obtain the time-dependent nodal balance equations by integrating Eqs. (3.1a) and

43

I



(3.1c) over an arbitrary node (i,j, k) and dividing by the nodal volume to obtain

,,,or', - hS . o.,x,.tl - q j;_(y,+,.t)-._;_(y_.t)

1 ,j 'J t ) "-'tg t
h; J q,(:_+l,t)- ,1_,(:_,, - t)@_(t) (3.2a)

C; D

+Z[,.,,,s'i,".(_._+_"'..,,,.ct_]<_ctt+_ .<,,._,,_:,"lt!+,i7_i,1
gt:l d_l

G
= ,.,.,tu,(t)_h_(t).--,\a_._Jk(t). (3.2b)

g'=l

As inthestaticcase,thefluxesand crosssectionsrepresentaveragesoverthenode.

Inaddition,thenode-_tveragedprecursorconcentrationisdefinedby

,. f.,+,.= z ,t!l ca(z,9,:). (3.3)

SinceEq, (3.2a)relatesseveralunknown quantities(thenode-averagedfluxesand

face-averagedcurrents)additionalcouplingequationsarerequired.

3.3 The Time-Dependent, Corrected Finite.DifferenceEquation_

The derivation of the time.dependent finite-difference coupling equations is ex-

actly the same as for the static case since no time derivatives appear in the second

P1 equation, Eq. (3.1b). Applying the finite-difference approximation and introduc.

ing discontinuity factors results in the following expression for the surface-averaged

current at the node interface tit

-1

[hA'. ,''"It/ h'.-'_ _£..!u- + --
J_u"(ut't) - 12Dtm"(t) ,_,,+ ,t) (t)

¢1-!,mat ,) F}I- l,mn
t. I_ "d4" O

(3,4)

( v""'t) ;i>''"(''-' -'-','"(t)× _i-_,,,,,,ii'-_ t)-% ) ,Jiu+ _t
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Note that the discontinuity factor ratios are now time varying. A sitnilar expression for

the surface.averaged current can be derived for the ,t_l interface. These expressions

can be substituted into the time-dependent nodal balance equation and written in

matrix form as

d _; G

Ye-l-_@_(t) = - Ng(t)@e(t)+. ,.., (1 --d)Fp,ue,(t)@y,(t)+ \-"z..,_ee'(t)(/)_'(t)
t/':l tt'=l

,J'#_ (3.5_1
D

+ _ '\dCdg(t)* q(t), g = I,..,9 ,., ,G
d=l

d c;

d_c_o(t) = d_ F,_._0,(t)O_(t ) - ,\dCdg(_), d = 1,2,..., D. (3.5b)
_;e=l

In addition to the vectors and matrices defined for the static corrected finite.difference

equations we now define

Vg = An N x N diagonal matrix of the group speeds, {vg},

An N:, N diagonal matrix of {X,ovE_)_k,},Fmo,

A column vector of length N of {X,0c_JJ'},Cdg

An N× N diagonal matrix of { _:,t#_,;E_}.Fa,go,

Theseequationscan be writteninsuper.matrixformas

D

V _` d,it ,l_(t) = [Mp(t )- L(t )] O(t ) + _ ,\,tc,t(t ) + q(t), (3.6a)

d

d_cd(t) = M_(tjO(t)- ,\dCd(t), d = 1,2,..,,D, (3.6b)

Where inadditiontothetermsdefinedforthestaticexpression,

V .._An NG _ NG diagonalmatrixofthegroupspeeds,{V_},

L = An NG _ NG matrix of {Ngbatr - _g_,(t)},

Mp _---.An NG _ NG matrix of prompt fission production terms, {Fp,_0,},

Md = An NG _. NG matrix of delayed fission production terms, {gd,og,},

Cd = A colullln vector of length NG of the spectrum.weighted

precursor densities, {Cd0},
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Equations (3.6a) anti (3.6b) represent a system of c_rdinary differential equations

which is a semi-discrete representation of the neutron diffusion equation,

3.4 The Time.Dependent Polynomial Nodal Equations

When the polynomial nodal method is applied 1o tile transient diffusion equations,

the expansion coettlcients become time dependent. The same procedure is used to

determine the expansion coefficients as in the static case. First, the transverse inte-

gration procedure is used to obtain one-dimensional equations. Integrating equation

(3.1a) in directions t, and u, results in the following one-dimensional equation for the

u.direction for node (l,m,n)

0 ,.,. ") ,-"" vl'""'t),%,, (u t }_,:,_,, (., t) : - "-'0.1_" (u, t ) - ..,,y , -'"" .

G

[ _,m,, v,,rn,l ] .fi,.n,+Z (l --d)\pal/./g, (t) + "tltl' (t) v'g,u,tt, t') 3.u,=_, " ( 7a}

D

d:=l

G

0 .,,,,, t) = &F_.uv'_'"",t "" ,"" t),O_C.a._u, "I_' _ )¢¢.(u,t)- Aac,_.(u,
_,=1 (3,7b)

d= 1,2,...,D.

The lime derivatives in these equations present a difficulty, They require the equations

to be differenced in time and past values of the expansion coefficients to be saved

from one time step to the next, Also, the transverse.integration procedure has lead

us to equations for the precursor densities which vary spatially in the u-direction.

Simplification is obtained if we introduce dynamic frequencies defined by the following

expressions

Jm., 1 0 ,i/.._I
tt)- a,,"',(ut)0--7""".u,t), (3.8)'-gU
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and

,t,.,,, 1 0 .,,,,

,_,,,( u,t )Ot'_'t"(u. t ). (3.9)

Note that within a given node these frequencies vary neither spatially nor direction.

ally. A method of estimating these frequencies is given ill Chapter 4. Tile introduction

of tile "omega" into tile precursor equation allows us to solve for tile transversely.

integrated precursor densities in terms of the transversely-integrated fluxes

G

= )%,. (u t), u
,_,_.(u,t) (..,_ (t) + "\d)g,=l "/r _ ' , '

This equation can now be substituted into tile transversely.integrated flux equation

to obtain

(;

_g,,,, (u.t)+ t (u,t) =_ (t (t) + t) %,,(u,t), "tt_ _ "rtlu L ¢ )tJ_/e' "a¢' _'
_e=l

(3.1.1)
D

- q"" t) + %(t), g = 1,2,...,G,+ Z t) ,. (.,
d=I

where we have introduced an effective total cross section, _tmn_t) and an effective_tg I

-_""(t), defined byfission spectrum, -xa

,ltnnl

_l""(t)=__""(t)+ _g ,t)
Pg

_'-lran

v._ (t) - (1- ,,3)_,,g+ _ ..,_,,¢
_,_ , t ) + ,\ad=l

As a result of introducing the dynamic frequencies we now have an equation which

closely resembles the transversely-integrated equation for the static case, Eq. (2.24a).

Therefore, the static equations for the expansion coefficient may be applied with

these modified terms and with the cross sections being functions of time. In addition,

the non.linear iterative update of the discontinuity factor ratios remains unchanged.

Once the expansion coefficients are obtained, the polynomial current expressions,

Eqs, (2.29d) and (2.29e), are applied and the discontinuity factors are computed. This
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procedure gives the time.dependent discontinuity factors required for the corrected

finite.difference equations,

3,5 Time.Integration of the Corrected Finite-Difference Equation

The derivations of tile previous sections have resulted in spatially discretized, time.

dependent ordinary differential equations. In addition, the introduction of dynamic

frequency terms into the transversely.integrated equations has eliminated tile time

derivatives from the polynomial nodal equations, The only remaining time deriva.

tires appear in the corrected finite-difference equations, The method that will be

used to solve the time.dependent, corrected finite.difference equations will be direct

integration of tile precursor equation arid theta.differencing of the flux equation.

The tittle domain is represented by discrete points at which we desire the solution

t = tO, tl_ t2, "'

and the time intervals are defined as

Atn E tn+l - t,.

i

i

First, consider the precursor equation, Eq. (3.6b). We can directly integrate this

equation from t,, to t,,+_ to obtain

cdl.+l ) = e _,X.,c_ _') + e _'_at" [t_+_ e_it-t")M_(t )¢(t)dt,
et

(3.1'2)

d = l, ') , D.

The superscript represents the time at which the quantities are evaluated, for exa.tnple

Cd_'t+t) = Cd(l_n+t),

Now we assutne that Md(t)q)(t) varies in a linear fashion across the time step. With
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this assumption the integral in Eq, (3,12t can |)e evaluated to give

,/

¢ d( "_"I ) h i. ) _ , -d ( '_" )_I)("* l ) -,- ' _ _I)(")":= ka,d _ "'d ' (3,13)

where

kl, d _ C'>_dAta,

I - e " Lt_t,,
kLd _ l - )

,\eAt.
I - e" ._,,rat,

ka,d _ e" _,dat...
,\eAt.

' eIf lhe entire integrand of Eq, (3,12) were assumed 1o vary hn ariy, we would situ-

ply be approximating the integral by the trapezoidal rule, which has second.()tder

global truncation error, The direct integration procedur_ is more accurate because

of the inclusion of the exponential in the integrand, 'the truncation error, however,

is still second order, Note that in computer applications kt,a) k_,a) and ka,a should be

evaluated using Taylor aeries expansions to avoid round.off errors for small At.,

Now we are prepared to difference the tlux .quatmn The there method IV.I]

mixes the old and new values on the right.hand side of Eq, (3,6a) resulting in

' {.... l ° q-)" _0 [M(,,,L).°.L(.+i) ¢)(,,.I). _ ade,/,,,,) +
_t,, t"')) d= t

(3.14)

I ° 1M(,,, L_,,) ,I)(,,) ._ A,_c_)(,,)+qt,)_-(I ....0) .._p ....... ._

The vahte ,)f O can be chosen to give the standard time-differencing schemes:

O = 0 Forward Difference (or Fully Explicit },

0 = .L Trapezoidal Rule(or ('rank.Nicholson)2

0 = 1 Backward Difference (or Fully Implicit),

More consideration of the choice of tOwill be given in ('hapter 4.

The value of the precursor densities at lhe new time step appears in Eq,(3,14).

This term may be eliminated by using the result of the direct integration of the precur-

sor equation. Thus, substituting Eq. (3.13} into (3,14) and subsequent rearranging,
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we obtain the followin_ equation f,,r the tluxes

, ]}

O

Z i_+I _I*II +ii_". _dii. #!I - kt,aJic,+'.++eq_ ++-it+-alqt
dml

*{ + _ '+With the al,propriate definitttms we can wrtte thiA equation in the following super

tuatrix form

A"'t+O !'*'t* ..,._At'*_, i:l,161

EquationI;l,IllIshow_thatfor.+whtituestep Itinatrixinvert,lionmust I).l)erformed

to uhtain the umle.averKged ttuxes at the new time _tep. For large probleut,, iterati,.,_

* f +tnetht_ds will be requ|re I, The s.lution procedure is discussed in Chapter ,t,

8.6 The Quasi-static Method

The ternporM differencing scheme outlined in the previous Aection gives accurate

resultt_ only when the time step, At.,, is smitll, Since each tilne _tep requiren It matrix

inversion, this leads to substantial Colnputittional effort, One nlethod for reducing the

alttOt|tlt t_f work required i, t,+ faetnr the l|uxinto a shape function and an amplitude

function, artill tile deriv_.tion of the point kinetics equlttions [H-4], The shape function

i, defined for Pitch node ttttd enerly+group, while the aluplitttde function i_ a AI)Itee

and energy independetlt quantity. It has beelt eutpirically observed that the shape

function varies more slowly thtul the antplitude function. Thus, the shape calculation

can be performed less frequently than the amplitude function calculation.

The subdivision of the time steps fur the quasi.sta, tic method is presented in

Figure 3.1, The shape function is cOtUl)Uted using the largest time step, At,,, while

the point kinetics parameters are updated with A stnMler time step, Atj,, to reflect

ch&nges in reactor coulpositions and conditions, The fittest tittle division, At., is used

to obtain an accurate solution of the amplitude function equ0.tiont,
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Quasi.Statlc Method Time Steps

......... __ f

At,, _ Shape Function Time Step

_t. _ reactivity CalculAtion Time Step

_t I, :_ Anlplitude Function '['ime Step

Figure 3.1: DiagrAm showing the ,.bdivisio, of the tinle ,teps ill the quAsi.,tatic
method.

t ftl I i i3,6,1 The :A!!lpl]t,de t; lncllon Eql!_t!on

' eIn order to ttpply the quKst.ststic method, an equation must be deriv d f{,r the

') • 't4shape functi(n a.d the amplitude function. We bes;i, by factoring the node.a_ raged

tl U XeS

_tt) _ Slt)'r(t), (',;,17)

where the _ml)lil.de fuuctio, is detiued hy

T(t) :_wtV ;@(t), {:l,is)

Note 1hat a. arl)ilrary, timeoindependent weight function, w, has been intr,)(iuce,I,

We Call now substitute the factorizntio. (3,17)into the tiule.dependellt .odal equao

ti.n, Eq, l',1,6_), and inultiply by the weight fuilctioiz t{D.bt;ti.

wtV l_,. S
,It {tjTlt) ::wr !Mplt) ....Llt)lSlt)Tlt)

I:l, ll!)
D

i* _._ ,X,/wTc_lt) t w'rqlt),
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i. the deri,,'ation _t' ttw equ_tio, lbr tile amplit.de f..ctio, we .h_il m_ke ._e .f the

followin! fnct

"r(t) _. wry i,_tt)_.- (wt'V tSitl) Tit),

Thu., the ntu_pe f.nction t.aintains _ consta.t normalization, An _ ren.lt of this

normalization, the time derivative term can t)e written an

wry 'sit)'rit = .... ;ii ' , l!

The alttpiitude function equKtion i_ then obtained by _dding a.d ,ubtrKcting the

tertn wr _-,_.tiv'L_Mdft )) S(t}._ from the right hand ._ideof Eq, (:t.l_)) a.d by dividing by

wl"M(t )S(t )where M(ti in tile totJtl It'nnmtt*,q)eratc,r

di!

e'rile ren.lting _quat|ott for tile amplitude f..ctio, i.

- wTM(t)S(t) _7'(t)

o w_re,_(t ) wr q(t)

,_."'_ w rM(t)Sit ) _ .... ""

With someulanipulation, this equation can he written a_

/3

d _,(t ) ,_(t )7'(t) , \,_( ,_(t) + q(t), (3,23)
,it T(t) A(t) ,_'-"_

where

wr !M(t) L(t)! S(t)
.... - ,I..la)pitt ..... , 1' '),
w TM( t)S(ti

/9

w Td,_M,d t )S(t ) d(t ) _-__ d,dt ) (3,24b )
,_ 1
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wTV ...._S(t)

A(t_ _ wrMit)Stt) (,t.24ct

wrqttt

wT¢'d(t)

Equation _3.23)is sitnply the point kinetics equation and Eqs, (3,24a), (3.2,ib) and

{3.24c i ate the reactivity, effective delayed neutron fractions and prompt neutron life

time, respectively. We now have precise, mathematical definitions for all of the point

kinetics parameters as functions of the variables and operators of the nodtd tnodel.

The precursor equation can be handled in a sitniltLr manner. Substituting the flux

factorization, inultiplying by all arbitrary weight function, and using the definition8

above, we obtain

d rid(t)
--dtC'J(t) = S(t) T(t) _ .\aC',dt), d = 1,'_,,,,,, , D, (3,25)

An equation for the shape function results front substitution of the factorization

13,17i into Eq. 13.fia)

V t ,I 0
_lSttlT'lti):_ Mlt} ......LltltS(tlT(t),_ _.._..\_c,dtl*qlt), i3,26t

d=|

.A.fter_xpan(ling the tillle derivative and dividing by the amplitude function we obtain

V't_S_tj= Mlti .....L(t) V,. t ! ,t ca(t) q(t) ,.,,,7,(t---_)d_Tlt) S(t)+ _,\d _ -----. (,_.z,)_== 'r( t ) T(t )

Note that the an!plitude fuiiction is still present in this equation. Thus, the calculation

of the shape function at a given time requires that we know the amplitude function

at that time.

Alternatively, we can solve the time dependent nodal equations, Eq. (3.6a)for

node.averaged fluxes and apply the normalization, Eq. (3.20), to obtain the shape
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function. The major advantage of using this latter procedure is that the amplitude

function need not be known toobtaitt tile shape function, Therefore, we can compute

the tinal shape functionand use linear lnterlmlatiou to obtain intermediate shapes,

Kao ii£-1! has shown that this leads to a significant increase tit the accuracy {if the

quasi.static method for large time steps,

The quasi.static method which we are applying is actually known as the the

lmpt'oeed Quast. _'" "' _ , i....ratio Method iO. 1 K. l i, The disti!_._tishin_ feature of the improved

_Squasi.static method t that the time deriw.tlve in the _hape function equation is

approximated by a time.differencing method and in not neglected as itt the traditional

quasi-static method, Ott and ,Meneley iO. Ii have demonstrated that the quasi.static

method in sufficiently accurate for fast reactors, but not for thermal reactors, They

further showed that the improved quasi.static method provides good results for both

types of reactors.

3,6,3 f'hoice of Weight F'unctioa

Recall that an arbitrary weight function was introduced into the amplitude func-

tion and the definitions of the point kinetics parameters. Although an.,,'weight func.

tion may be used, careful selection will lead to a weight function which yields more

accurate reactivity values when the shape function is not exact. This becomes more

apparent when we consider the perturbation formula for reactivity, S_zppose that all

the cross sections and the shape function are perturbed from their initial steady-state

values

Ltt)= L,_ _bL{t),

MIt} ==Mo _ _M{tl, {3.28)

Sit} :: S0 + _S{t).
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Substituting these perturbations into the reactivity expression (3.24a) gives

w T[Mo - Lo] So + w T [SM(t) - 5L(t)] So

+w T [Mo - Lo] 5S(t)+ WT [SM(t)- 5L(t)] 5S(t)

p(t) = wTMoSo + wT_M(t)S ° + wTMo_S(t ) + wT6M(t)_S(t) . (3.29)

Since we assume that the reactor is initially at steady-state, the first term in the

numerator of Eq. (3.29) is zero. Further, we can neglect the second order terms in

the numerator and the denominator since they are small. Also, the second term in the

denominator can be neglected in comparison with the first term in the denominator.

The resulting perturbation formula for reactivity is

w T [SM(t)- 5L(t)] So + w T [Lo + Mo] 5S(t)
p(t) _ (3.30)

wWMoS0 + w Tt_M(t )So

From this equation we can see that, unless first order errors are to be incurred, the

calculation of reactivity requires us to know the perturbation in the shape function,

5S(t). From a perturbation theory point of view we would like to compute the reac-

tivity using only the steady-state solution. Thus, we must choose a non-trivial weight

function such that

W T [Mo - Lo] 5S(t)= 0. (3.31)

Transposing this equation gives

5sW(t) [M0 - Lo]ww = 0. (3.32)

Therefore, if we are to avoid first order errors in reactivity, we must choose the weight

function such that

[M0 - Lo]T w = O. (3.33)

Thus the desired weight function is simply the adjoint of the static nodal equations.

Note, however, that the loss operator L0 contains the unperturbed discontinuity fac-

tors obtained from the forward calculation. The evaluation of 5L(t) during a transient

requires that we know both the perturbations in cross sections due to feedback or op-
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erator actions and the changes in discontinuity factors resulting from changes in the

flux shape. For standard applications of first order perturbation theory, these latter

changes will not be known.

While this situation may represent a problem for perturbation theory, it is not

serious for the quasi-static method, since the shape function is being updated peri-

odicaUy. In fact, since any weight function can be used if the exact shape function is

known, using the adjoint which will make the first order variations in shape function

vanish from the reactivity expression is not essential. Using the adjoint as a weight

function is most beneficial when applied to transients involving instantaneous changes

in cross sections.

3.7 Thermal-Hydraulic and Feedback Models

The realistic and accurate analysis of a nuclear reactor core requires the con-
i

sideration of thermal-hydraulic feedback effects. Two different methods have been

incorporated to allow flexibility in thermal-hydraulic modelling.

3.7.1 The WIGL Model

In the previous investigations of finite-difference and nodal methods with thermal-

hydraulic feedback the WIGL [V-1] lumped heat capacity model was used to provide

a reasonable representation of the core thermal-hydraulic behavior. As a result, many

reactor problems with thermal-hydraulics based on the WIGL model have been an-

alyzed [S-2, J-2]. Comparison of results for these problems, therefore, requires the

implementation of this model.

The primary quantities of interest in the WIGL model are the average fuel tem-

perature and the average coolant temperature within a node. The following equations

for these temperatures are obtained by performing a time-dependent energy balance
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over a node assuming that no boiling occurs

k_
(3.345)

+ - + (q'")

Td;'k = 2T: j'k-1 - rd"_'k-l, (3,34c)

where

_)jk = average fuel temperature in node (i,j,k)(K)

_jk = average coolant temperature in node (i,j,k)(K)

_jk = inlet (bottom) coolant temperature of node (i,j,k) (K)

t = time (s)

p! = fuel density (g/cm 3)

pc = coolant density (g/cm 3)

C! = specific heat of the fuel (erg/g K)

Cc = specific heat of the coolant (erg/g K)

r = fraction of fission power deposited directly into the coolant

(q,,,)ijk = volumetric energy generation rate in node (i,j,k)(erg/cm 3)

I_Ok = volume of coolant in node (i,j,k) (cm a)

Vy _ = volume of fuel in node(i,j,k)(cm 3)

AH = total heat transfer area/coolant volume within a node (cm -t)

h0 = convective heat transfer coef. at initial flow rate (erg/s cm 2 K)

W0 = initial total coolant mass flow rate (g/s)

W = total coolant mass flow rate (g/s)

W: _k = coolant mass flow rate in node (i,j,k)(g/s)

= energy required to raise the temperature of a unit volume of

coolant one temperature unit (erg/cm 3 K).

Note that C-G-S units have been retained to maintain consistency with earlier

!mplementations. For steady-state calculations the time derivatives in Eqs. (3.34a)

and (3.34b) are set to zero. Transient applications use a fully.implicit time integration
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method with the same time step thai is used for the neutronic calculations,

3,7,2 T_ke_C_br_l-IPM Model

A more comprehensive thermal-hydraulics model has recently been developed at

M,I,T, by Cabral [(I-1] and implemented in the IPM ('ode, Aviles (A.1] combined this

model with a traasient nodal method to investigate the spatially.dependent dilzital

control of reactors, Because of the complicated nature of this thermal.hydraulics

model, only a summary of the key features will be presented, A complete description

can be found in references C-1 and A-t,

The fuel model uses a two.node control volume approach to model conduction

accurately, Variations in fuel conductivity and gap conductance from thermal effects,

fuel relocation, and cracking are accommodated, The fluid model uses one channel

per assembly and does not allow cross flow, Subcooled nucleate boiling and two.phase

flow models are included. The reactor core is assumed to be at constant pressure,L

The subroutines required for the implementation of this method were extracted

from Aviles' POPSICLE code [A-I!,

3.7.3 Cross Section Feedback

For the purposes of this investigation, the cross section feedback from the thermal.

hydraulics behavior will be accomplished by assutning that all tuacrosct_pic cross

sections (and inverse diffusion coefficients)are linear functions of the node averaged

fuel temperature, coolant temperature and coolant density

..o,.. : ,,,:o t,o)
(3,3,_)

+ (

where 7S/o,T_.0and p:0 represent the reference conditions. The linear functional de-

pendence can, in general, accurately represent the actual cross sections over limited

ranges of the temperatures and densities. For the purposes of this investigation this
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linear assumption will be sutt_cient. Actual design calculations, however, may require

that Eq, t3,35) be replaced by table look-up or polynomial fitting procedures to obtain

a tnore accurate cross section representation.

8.8 Transient Control Mechanisms

Before the transient is initiated, the reactor is assumed to be at steady.state. The

steady.state condition is typically obtained by dividing t/Elg by k,rr for eigenvahte

problems or by solving the static source equations for extraneous source problems, In

order to initiate a transient, a perturbation in the reactor conditions is required, This

perturbation can be the result of control rod motions, extraneous source changes, or

thermal-hydraulic changes.

Nodal methods model control rod motions as spatially uniform changes in the

tnacroscoplccrosssections,"ritesimplestmethod ofobtainingthesecrosssectionsis

bya volume.weightedaverageoftheroddedand unroddednodalcrosssections,Since

theneutronfluxwithinthenode isnotspatiallyflat,thisprocedurewillintroduce

modellingerror,Theseerrorsresultina cusp.likebehaviorofthefluxversustime

asthecontrolrodmoves througha node,An elaboratecorrectionschemewas devel.

oped and incorporatedintoQUANDRY toreducetheerrorcausedby thiscusping

effect i,l. 1!.

In order to reduce the cusping effect, a simple correction model has been developed.

If we knew the average flux in the rodded and unrodded portions of the node we could

ttux weight the corresponding rodded and unrodded cross sections to obtain a new

homogenized nodal cross section

l.r!r.i.rle_,l, ..,. _v_v_r

_ (J,J6)I, p

where superscripts r _nd fir represent the rodded rLnd unrodded portions of the node,

respectively, The nodal method, however, computes just the average flux of the entire

node, not of the two regions in which we are interested, In the c_se of a strongly

absorbing rod, the neutron flux makes a very sharp change at the rod tip, and varies
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more slowly away from the tip. Based on this observation we can approxinlate the

flUX in tile unrodded portion of tile node as being the Average of the node.averaged

flux of the partially rodded node and its lower neighbor. Likewise, the flux in the

rodded portion can be approximated as the average of the flux in the partially rodded

node attd its upper neighbor. This results in

d,_"-- "'_ ''_ ' hJ,-i , (3.37a)

anti

,t,' hr.,.,_,J,.hj,..t,_/'j'+lI,',-g (3,:17b)

Equations (3,37a)and (3.37b)are substituted into Eq. (3.36) to obtain flux-weighted

nodal cross sections. Despite of the simplicity ,f this method, it has been found to

perform as well as more elaborate models. This will be demonstrated in Chapter .5.

Another method by which tile state of the reactor can be perturbed is through

a change in the extraneous neutron source. The addition or removal of neutron

sources changes the neutron population present in the core, and therefore, initiates a

transient.

Finally, changes in the thermal.hydraulic conditions of the core can induce a

transient through the cross section feedback. Two primary mechanisms are permitted

by tile thermal hydraulics models: changes in the coolant inlet.temperature; and

changes in the core flow rate.

3.0 Summary

In this chapter the derivation of the transient nodal method was presented. The

derivation began by demonstrating that the spatial dependence can be treated in the

same manner as for the static equations. First, the time.dependent corrected finite-

difference equations were obtained, Next, the transient polynomial nodal equations

were derived. By introducing dynamic frequencies, the time derivatives in the nodal

equations were eliminated and the similarity with the static nodal equations was

demonstrated. As a result of the similarity with the static equations, the same non-
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linear iterative solution procedure t'an be used to solve the nodal equations,

Next, the time-differencing schemes were presented, 'File theta method was ap.

plied to obtain equations which can be used to advance the nodal fluxes in time, 'I'he

quasi.static method was then introduced to provide accurate results when large tinte

steps are used, Equations for the amplitude and shape functions, which result from

the application of the quasi.static method, were obtained.

Finally, two thermal.hydraulic feedback models and the transient control mecha-

nisms were discussed. A method of reducing the cusping errors caused by the treat-

meat of partially rodded nodes was presented,

The numerical solution methods for the static and transient equations are given in

Chapter 4, The nodal method will then be applied to several problems in Chapter ,5

to evaluate the accuracy and efficiency of the method,
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Chapter 4

STATIC AND TRANSIENT NUMERICAL SOLUTION

METHODS

4,1 Introduction

The derivation of the static equations was presented in ('hapter 2 and the deriva.

lion of the transient equations was presented in ('hapter 3. A non-linear iteration

procedure was introduced in which the node.averaged fluxes are computed using

tinite.difference.!ike equations that are continuously updated with a more accurate

polynomial nodal method. In this chapter, the detailed methods of solving the col

rected finite-difference equations are given.

First. the numerical properties of the static equations are considered. The solution

methods for eigenvalue problems, criticality searches, and fixed source problems are

presented. Next tile transient equations are examined. The solution method for the

flux and shape function along with the point kinetics equations are presented.

4.2 Static Solution Methods

The static equations for which a solution is sought are Eq. (2,15) along with the

polynomial nodal Eqs, (2,,t0} through (2,47), These two sets of equations are cou.

pied through the application of the discontinuity factors, A general solution method

for these equations involving a non-linear iteration scheme wa_ outlined in Chap.

ter 2, However, the method of solving the corrected finite-difference equations was

sot specified, These methods and the iteration optimizations are addressed in this

section.
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4,2.1 Numerical Pr_,perties

l_ecall that thf, corrected finite difference equation in matrix form is

A(q_,_\)'l_ _=_Mq', q, ('2,17)

where the dependence of the matrix A on the node.averaged fluxes and the eigenvalue

has been explicitly indicated, This equation shows the non.linearity of the nodal

method caused by of the introduction of the discontinuity factors, Recall that if

all the discontinuity factors are unity, Eq, {2,17)reduces to the mesh-centered finite

difference neutron diffusion equations and the non.linearity vanishes,

["oreigenvalue problems, the source term is zero resulting in tile following equation

l

A('_,,\),l_= ._M'['. (4.I

Ingeneral,A can onlybe guaranteedtobe realand irreducible.Becauseofthein.

troduction of the discontinuity tactors, we cttn no longer be certain of the diagonal

dominance or symmetry of this matrix, However, if the discontinuity factors intro.

duced for tlomogenization are unity, then the discontinuity factors used to correct the

finite.difference equations approach unity as the node size becomes infinitely small,

In this limit, ,)tar nodal method reduces to tile finite-difference form of the diffusion

etlt,ati{,n and A will have the bllowing properties iV.2]:

1, A is real.

2, the diagonal elements of A are positive,

3. the off-diagonal elemeltts of A are non.positive,

4. A is diagonally dominant,

5. A is irreducible,

A matrix which t_as these properties is called an S.matrix and its inverse, A °l, exists
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and hasrillpositiveriementsiN-ll.Therefore,Eq.(41) may be writtenas

I

,i,= _R,l,. it2)

where

R_A aM,

Since M is a non.symmetric matrix with non.negative diagonM elements, Pt is a

non.symntetric, non.negative matrix,

4,2,2 Discontinuity Factor Iterations
..........................._ : " _:-:_L.L_'" ::................

The lop iteration level in the non.linear iteration scheme consists of the dilcon.

tinuity factor updatintt, In this iteration the corrected finite.difference equations are

solved for tile node.averaged fluxes, which requires two additional levels of iteration as

discussed below, Then, using these fluxes, the polynomial expansion coemcients are

computed and the surface.averaged net.currents are evaluated, The t_et currents and

fluxes are then used to compute the discontinuity factors requited by the corrected

finite-difference equations, We then return to the solution of the finite.difference.like

equations anti repeat th_ process until convergence is achieved,

No theory exists which can be used to determine the convergence conditions of

this iterative process. The fact that the equations are rigorously derived guarantees

that if the method converges, it must converge to the solution of the polynomial nodM

equations, Applications of this process have shown that the method converge quite

rapidly, typically requiring between 5 and 1(?iterations for LWRs with assembly.sized

nodes.

The order in wttich tile solution process is carried out is theoretically important.

By having the top iteration level he the discontinuity factor updating, all discontinuity

factors are constant during the solution of the corrected finite.difference equations, In

addition, cross section updating in response to changing thermal.hydraulic conditions

is performed with the discontinuity factor updates. As a result, the non-linearity

is eliminated front the corrected finite.difference solution thereby allowing standard
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ttutuericM 111etiiod__nd _'onverKetl_e _nMy._es t, be _pplie_i.

,) ,!

'File ,.iution of Eq, i,l,2) wlth'It _,,'eseek is Ills ,me witi_ tlle l_ri¢est _iKe.vMue,

Tl_is ,olulion L'_. l)e f,,,d .si._ thr power method :_N.I!, which c_. l)e writte, as

i

i (w, ¢,e,,_,,)

where p is the iteration number and w is a weight|nit vector. Ae¢ordinK to the Perron.

Frobettiu, theoretn, flit irreducible ttln,trix he.vtn_ tton.nega lye elements (lush as the

matrix R) has r_unique, positive eiKenvMue greater in ms, alLude than the tnodulus

of _ny .ther eigettva!lte of the matrix, tTsing this theorem _nd the properties t,_[the R

matrix $1 e. in Section ,i,2,1, it is possible to show that the power method outlined

in Eqa, (4,3a) _nd (.t,:!b) converges to the htrgett eigenvaiue and its ¢orrelponding

unique pomitive elg _nvector iN. l I,

The tteieetiott of the weightinK vector is arbitrary, but does affect tile t'()nvergence,

. ('¢One COlllmOn _h )1 e is to _et tile eletllelttS of w to uttity sut'h that the inner prodttets

in Fq,(t,3t)) perform_ tdttlt)le still|at&tiers of t lte elettlent! of Olp*|) _nd Ot_'_.Anottter

t, hoit'e for the weiKhtitllt t)r i_ for w a
..... v.c, to I,e ve,,tor ,,f {,,_'} ,ueh sitar inner

products peril)rill _ttlltlnt&tjOlltt over the fissJott _ource, tilt represents a triers physiea[

.... t__|)pro_ch t:)fdet ernlinini the eigenvalue by takinK the ratio of the neutron produc loft

ill tile _:ttrrent "gelter_tion" tt) tile previous "generation", where a "generation" now

re|)re_etlt_ _tn iter_titm, Thit_ weiihting wetor choice Mso ha_ the benefit of only slain K

! t oinfornlatiolt its the fueled rettio. whit'h le_t|s to a tilers atilt)Is ttera _lOttprot'edure _,nd

possibly faster eo.verl_etlee,

A. _dternatP weiKhtittK veetor _,hoice ha_ed o. a initlinlization procedure is the

|lay|sigh quotient IS-8], [n thit_ method the weighting vector is chose, to be tile tile

t ettux l,)r tit_,ion ,_)ur('et vet't()r from the i)revi,)t|s iteration, [ he eigenvalue valculated



wilh lhi_ method c.. t_e _how. t,, r..w,r_e two time_ f_ter th.n the powf.r melhod

Whilr, tile WPIRh|iI1K vP_'l(lr d_)P,_ hRvP _ll ill|pacl _)I1 |he r_te of converlil;elice o1"the

power lnethod, the a_ylnptotic co.'.'Pr_e.ce rtlte i_ prilnarily deter.lined })y tile r_,tio

.f tile moduli of the tw. I_rKe._!f,i_e,v_l,e.q

,t :_ _ !4.,1)

wh_.re \o _.d ._ are the _ixen'.'.l.e_ with the I_r_e_t _nd senmd l_rxe_t mod.li.

reH_e_:tiw,ly, Thi_ r_ti_ i_ c_lh.d _he dom_...er r.tm _nd for mo_t problem_ of in|ere,t,

i_ ..o ,'io_e to tinily th_t the' pow_.rme|hod ,'o.ver=e_ wry _lowly,One_r_'eler_tion

m,.tt_,-I wi_i_'l_i_ i_arti_'.i_rly w,.il _.l|,.d for nodal |nethod_ i, Wiel_ndt'_ fr_'|ion_l

tlPrh11.1| ,,r .iKenv_l._' _hiflil_l W.2. l. Wiel_ndt', mHhod we IIiOVPi_ imrtio, of

the rtKht-h,_.d _id_ of Eq. _4,1) t. the left.hand _id,. _. follow_

where

1 1 l

A _ _\'

l'h.._.nwl._. _hif|, V, i_ _rbitr_ril:' _.lected but _ _ubj_'ct to c_r|_i, r_._trielion_

Eqt=_tion_4,,_t)rel)l'_'sent_.n _'iK_.nv_l_iei_rohleni which ¢'mnbe ._olw,d t,y the imwer

m_,_h,)dre_tlJt,il|gili|h,'followi._Wqtll*,ti_Jlll_,

(w,,l,,,,,,)
' W, _J)i_!

,V_*_' -_ .... , (4.fie

'['he m_trix inversion i.dic_t_d in Eq, (4,6_) is .su_lly performed .wi,_ _n inner
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iteration procedure and is strongly affected by the eigenvalue shifting procedure,

'['he ' v _ w '.elgen ector of this ei_envMue probleni hith is associated with the i_r_est

eiRenvnine, A, is identicM t. tile eiKenvector associated with the largest eigenvMue of

_W 2'the unshifted equations " i, The dominance ratio of the new eigenvahte probletn

is _iven by
1 1

d S

,\t A'

If ,\' is chosen such that its modulus exceeds .\o, the dominance ratio, d', is less

than unity arid less than the unshifted duminance ratio, d, Choosing ,V to be the

convertted stixtic eigenvaiue ,\o gives a dominance ratio of zero but makes the coe_cient

matrix of Eq, i4.5! _in_ular. ('hoosin_ the eigenvalue shift to be infinite results in

the unnccelerated power method of Eqs, 14,3a) and i4,3b),

In general, we will want the eigenvahte shift to chanle durin$ the the problem to

ensure optimum performance and to reflect discontinuity factor changes, A common

procedure is to let the eigenvalue shift be the current estimate of the eilsenv_lue plus iI

an ixrbitrary positive constant

,V = .\Ivl. _A, 14,8 )

This pc,siti,_'_.,lit'set will ensure that the power method will converge to the correct

eigenvnlue and ei_enwctor while preventinlt singularity of the coefficient mt_trix, Re.

' 1 ,V "e .Lti I that liiiist ex(,ed ,\n f_)rthe power ulethi!d to converge to the proper eigenvtdue,

If _\_P_is ti l.w esiiinate of ,\o during tile solution procedure and 6,\ is sniall, ¢onver-

l!ence to the rorrect eigenvalue ilia)' not be obtained, This ditculty can !elierilll)' tie

avoided by perforniin! ix few inititxl unliccelerntrd iterations to obtain ix reasonable

guess fi,r ,\0,

The _hift parameter, b.\, must be carefully chosen to ensure that the solution

procedure is optilllal, Theft, are two coinlleting factors whicti iilUII be considered.

First, the convergence rate of the outer iteration procedure is niaxiniized when the

shift factor is small. Second, the convergence rate of the inner iteration procedure,

which is required to update the eigenvector, is nlinimized when the shift factor is
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small(recallthattheeoefH_:ienlmatrixbr_'omessingularas .\'......\0).Thus, some

acceptable, intermediate value for _.\ t.us! be obtained. Several optimization studies

have been performed S.2, Z-L and for LWt{s optimal values of the shift factor range

from 0.02 to 0.05.

As can be seen from Eq. (4..'$) the eigenvalue shifting procedure results in a coef.

flcient matrix which closely resembles a problem with strong up.scattering since M

is ge,erally a full n:atrix. Thus, the implementation of Wielandt's method generally

requires that all energy groups be solved simultaneously. Sutton, however, has de.

veloped a modified method which allows a group.wise solution procedure to be used

!S.!Ji. In Sutton's method a matrix of "spectrum ratios" defined by

As,_ .__:_[¢_I] _. ¢_, (.i._)

is introduced. Using this definition, the shifted eigenvalue problem, Eq. (4..5), can be

written using the group matrix equations of Section 2.3 as

N, _'-'l\-,Fii,Ai,i ¢,I_ -"%",..,Fit,e,.,_:_ Ili,,¢,e. (4.10)
$'=1 Ai,ml #'ul

it'lllll

Applyinilthepower method toEq,(,I.I0)resultsinthefollowingequations

_-.Fii,Ail,1 . :k,_ .i.i_,__o._ _ai_,.,,,i_,i,14.1is)

i'!J¢

.... \"' "t i
.li(tl+i' 1i Aip)' - ' (4 lib)

3.(_,,'l i+V

- Aill+it -'*.V' (4,Iic)

Note thatthespectrummatrixA_,iisupdatedateachouteriteration.Suttonhas

silown that this group.wise Wieiandt procedure ronverges in nearly the same number

of iterations as the simultaneous group solutiotl procedure. This call be attributed to
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the quick convergence of the spectrum ratios _bg,/qbg.

4.2.4 Inner Iterations

[ l x-,_ Fgg,Ag,g] must be inverted forAt each outer iteration the matrix Ng - Xv,-.,g,=l

each energy group. Since this matrix may be quite large, iterative methods are best

suited. The method that will be used is the cyclic Chebyshev semi.iterative (CCSI)

method IV-2, H-6]. The CCSI method is a variant of the successive over-relaxation

(SOR) method in which the relaxation parameter is changed during the iterations

resulting in better average rates of convergence than SOR.

During the inner iterations we are solving equations of the form Au = b for each

energy group, where

1 a

A-N_ pl _%-_F ,ACp_- gg g,g, (4.12a)
.-e_

1 a G

b_= z + (4.12b)
g, 1= gt:I

g_g

u ----¢_). (4.12c)

In the CCSI method we partition the mesh into a red/black checkerboard pattern

such that the matrix A and the vectors u and b can be written as

DR HB
A---

HR DB

b-- ,

bB

[1 -- .

UB

69



Using these definitions, the matrix equation which is to be solved becomes

DR HB un bn
= . _4.13)

HR DB uB bB

If we define the following submatricies

FR - -D_IHR,

FB - -D_IHB,

Cn -- D_lbR,

cB - D_lbB,

Equation (4.13) can be written as

I -FR ua = cn . (4,14)
-FB I uo cB

Applying the Jacobi iterative method to Eq. (4.14) gives

u('+l) = Bu(') + c,

where r is the iteration index and B is the Jacobi iteration matrix defined by

0 FR
B-

FB 0

The CCSI method is obtained by applying Chebyshev acceleration to the red/black

partitioned Jacobi method giving the following equations

°_+"=4"+''(_.u_;'+,.) . (_-4 "+'')°_', (4,_)

u_+`):_'+')(FBu_+')+cB)+(1-_v_"+'))u_'. (4.15b)
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The initial relaxation parameters are given by

_) = i
1 - ½p2'

and for subsequent iterations by

w(R_+1) i= .................r>l
1 ! ,_2,.,__)'

-- 4 P" _B

_(B_+ll 1= r>l.
I 2 (_+I) '

I- _p w a

AsymptoticaUy, the two relaxationparameters become the same as the relaxation

factorofSOR

2 _z__) ¢,.,,_') (4.16)

1 - V/(1 - p2)

The relaxation parameters depend upon the spectral radius of the Jacobi iteration

matrix, p. The significance of the spectral radius in iterative methods is that the error

is asymptotically reduced by a factor proportional to p in each iteration. Thus, if the

spectral radius is close to unity, a large number of iterations will be required.

The spectral radius may be estimated by performing a series of Gauss-Seidel

iterations (W_R') = w(B_) = 1) and computing

(b(_+t) )
2 __ _g -

Any consistent vector norm may be used, but the L2 norm has been found to perform

well. This method is essentially the power method with the eigenvector being the error

vector (approximated by ¢(_+1) _ ¢(,)) and the eigenvalue being the spectral radius"rg

This procedure for calculating the spectral radius, however, converges slowly when

the spectral radius is close to unity. A method by which the spectral radius can be

computed in fewer iterations is to apply a constant value for w(R_) = w(B") = ¢Zowhich

is less than the asymptotic value, wb, and use Eq. (4.17) to estimate the resulting
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spectral radius which will be labeled (t_) I"l. The Jacobi spectral radius is related to

"2 I
(pg)l. by the following expression [W-2]

1(pg =

The value of _0 can be estimated from past experience with problems of a similar

nature to the one being solved. For LWRs a value of _0 "- 1.4 is recommended.

Generally, it is not necessary to completely converge the flux vector in each set of

inner iterations since the fission source terms are from the previous outer iteration,

The approach that will be taken is to perform a fixed number of inner iterations per

outer to achieve some desired error reduction. If the error reduction, e, is defined to be

the ratio of the vector norm of the error in the node-averaged fluxes after n iterations

to the vector norm of the error in the average fluxes prior to the first iteration, it can

be shown that [V-2]
- 1)"

e> l+(wb- 1)2"' (4,19)

where wb is the asymptotic relaxation factor defined in Eq. (4.16}. Thus, the number

of inner iterations to be performed for each energy group, ng, is given by

log 1 1
"e- _- log/e/2)

ng = log ((wt,)g- 1) _ log ((w_,)g- 1)' (4.20)

where (wb)g is the asymptotic relaxation factor for energy group g. A parametric

analysis performed by Smith [S-21 has found error reduction values in the range 0.1

to 0.4 provide acceptable results.

4.2.5 General Iterative Strategy

The following algorithm is proposed for the solution of the static equations:

1. An initial flat guess is made for the flux distribution and one unaccelerated

outer iteration is performed. Subsequent outer iterations are performed with

a constant shift which is known to be larger than the converged eigenvalue.
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A value of 1.5 has been found to be effective for problems with a converged

eigenvalue near 1.0. The inner iterations _tre performed using the Gauss-Seidel

method. These outer iterations proceed until the eigenvalue reaches a coarse

convergence(,-, 10-2 )

'2,, Next the eigenvalue shift is applied

,\' = ,\(P) + 6A,

where 6,\ is typically 0.02 - 0.05 for LWRs. Inner iterations are then performed

to compute the spectral radius. These iterations continue until

(p )c,I(pg I< e2

is satisfied or until a pre-specified number of iterations is reached. A value

of 10-2 to 10-3 for _ and maximum number of iteration of 10-20 should be

sufficient.

3. Now the iterative procedure with full acceleration may be performed. The

iterations proceed until

[A!'+t_ - < _3,
A,,)

maximum over { 'P' ' }
-- Pref < _4,

all nodes p_,f

where Pi represents the power in node i. An eigenvalue convergence of 10-_

and a power convergence of 10 -4 - 10 -s is generally sufficient.

This procedure has been used to solve several static problems. The results of some

of these calculations are given in Chapter 5.

73



4,2.6 ('riticalit_' Search Problems

Another type of static problem which is tyt)ically eqicountered in reactor core

calculations is the criticality search. An example of such an application is an operating

PWR where the boron concentration is changed to offset reactivity changes from fuel

depletion. We shall assume that the cross sectional dependence upon tile boron

concentration can be represented homogeneously throughout the core, Furthermore,

we shall assume that this cross section dependence can be represented as a linear

function

,.,,_g =._,_g_c0)+ --._c }(c-co), (4.21)

where c represents the boron concentration having a reference value of co. In a

criticality search, we simply adjust the boron concentration during the discontinu.

ity factor iterations until the eigenvalue becomes unity, Assuming a linear relation

between the eigenvalue and the boron concentration, the new concentration at each

iteration may be estimated from

cCp+,)= c(P)- c¢p-II (I - ,\¢P)) + cIp_ (4.22)_(p) _ ,\(p- xt

Note that the linear relation between the boron concentration and the cross sections

in Eq. (4.21) may be easily replaced by a higher order formula or a table look-up

procedure when the data are available.

4,2,7 .S0urccproblems

The outer-inner iteration procedure outlined above can also be used for the effl.

cient solution of source problems, The problem which we want to solve is written in

Eq, (2,16)in matrix energy group form

' G

-_ (2.16)

gl_:g
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By settingtheei_zenvalueshift,A',and tileeigenvalue,A,to unity,the Wielandt

schemecanbe usedtomove thefissiontermsovertotlleleft.handside

G G

N_ - _ Fyg,Ag,g, _bg = \-".__..:g_g,_y, -,-qg, (4.23)
g':=l g0- i

giSg

The outeriterationsareusedtoupdatethespectrumratiosA#,#whiletheinneriter.

ationsperformtheinversionofthecoefficientmatrix,The resultingouteriterations

may be expressedas

¢;-1, : Ng -_ _#o,,_,,,/ , _ _ :E,,,¢;" . q, , (4,24}
gl:l gl= l

g'_g

where p is the outer iteration index. The inner iterations are the same as for the

eigenvalue problem but with an additional source term.

4.2.8 .x,!athematical Adjoint Problems

The application of the quasi-static method discussed in Chapter 3 requires the

computation of the mathematical adjoint defined by Eq. (3.33). This equation repre.

sents an eigenvalue problem which can be solved using the same iteration procedure

as described above for the forward eigenvalue problem. The discontinuity factors in

this adjoint calculation, however, are held constant and are equal to the discontinuity

factors from the solution of the forward problem. Therefore, no discontinuity factor

updating is required. The transposition of the matrices is accomplished as follows:

1. The scattering matrix is transposed in energy.

2. The coupling matrix is transposed in energy and the discontinuity factors are

transposed about the node interfaces.

3. {vZ/g} is swapped with {Xg} and both quantities are transposed in energy.

Since down.scatter in energy is dominant aILd the transposition of the scattering

matrix reverses the direction of scatter, the energy groups are solved starting with
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group G' and proceeding though group 1, the opposite order of the forward problem,

The initial guess for the eigenvalue and adjoint flux vector is that of tile forward

problem. Since the adjoint problem has tile same eigenvalue as the forward problem,

the eigenvalue shift can be held constant throughout the solution, Applications have

shown, however, that the eigenvalue shift factor must be larger for adjoint l_rol_lems

than for the forward solutions, typically/i.\ = 0,,5 to 1,,5,

4,3 Transient Solution Methods

Nov,' that the numerical properties and solution methods for the static equations

have been discussed, we may focus on the transient equations. In Chapter 3 the

transient, corrected finite-difference equations were developed and time.differenced

using the theta method. The polynomial equations were also obtained and the use

of the non.linear iteration procedure was discussed, In this section the properties

and solution method of the transient, corrected finite.,difference equations will be

examined. In addition, the solution of the point kinetics equations required for the

application of the quasi-static method is discussed,

4,3.1 _Numerical Properties

After applying the nodal approximations, a system of spatially discretized, time.

dependent ordinary differential equations was obtained, Eqs, (3.6a) and (3.6b), The

properties of the spatial discretization remain the same as the properties presented

for the static equations in Section 4.'2.i. The properties of the semi.discrete equations

and the time integration method remain to be discussed.

In order for a space.time solution scheme to be useful it must be stable, The issue

of stability is the major determining factor in the choice of # which was introduced in

Eq. (3.14). Recall that # = 0 is the forward difference method, 0 = _ is the trapezoidal

rule (or the Crank-Nicholson Method) o.nd 6 = 1 is the backward difference method.

It can be shown that the thet_ method is unconditionally stable only for values of

o> ½[L.31.

For values of 0 less than ½, restrictions on the time step size are required to ensure
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st_tbility. Typicp.lly, these restrictions liiui! the lime _tep 1_ be, on the same sraie as

the fastest varying quantitie_ in the systenl of equations. The _stem' in whi_,h we

are solving, tiowe_'er,rIt a s quatltilies which have va."_tly' different time ,'onslants, The

behavior of the neutron flux can have time constants on the order of 1/(t,gE_g) which

may be smaller than 10_ _econds for fast neutrons !S.10]. The delayed neutron pre-

cursors, on the other hand, have decay constants r_tnging from hundredths of seconds

to several seconds, Such systems of differential equations which hitve widely varying

time scales such as this are said to be stiff. With the conditionally stable methods

we are forced to follow all short.lived transient modes of the neutron behavior, even

if they are not of interest. This translates to the requirement of using a prohibitively

small time step.

'therefore, we are left to consider only v_.lues of tO_ ½, Without other considera.

tions, tO= ½ (the Crat,k.Nicholson method)is the best choice because it is the most

accurate, The Crank.Nicholson method, however, exhibits _ slowly decaying oscilla-

tory behavior for stiff systems if moderettely large time steps are used. Therefore, the

most appropriate value for general use is tO= 1, the b_ckward.difference method.

4.1i.'2 !terative Solution of the Transient Equ_tti0ns

In Ch_tpter 3 the system of time difference equations was written in a super.matrix

form repeated here for convenience

A_""t_ I"+tl = sl''_, (3.16)

This form shows that a large linear system must be solved. A two.level outer-inner

iteration approt_ch will be used for the solution of this equation. The outer iterations

will be responsible for the solution of the energy group structure while the inner

iterations will solve the spatially-differenced equations. This method is similar to that

of the static calculation, except that the outer itert_tions are not used to compute an

eigenv_lue.

The spatial equations which must be inverted in each time step have a structure
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which is identicM to that of the matrix inverted in each latter iteration of the. _tnti,•

calculation, Therefore, the same cyclic Chebyghev ,enli-iterative procedure ._'d f-r

the static inner iterations may be applied, Each Metof inner iterations proceeds ..til

some user specified error reduction is achieved. The number of iterations, howew.r, is

not determined a priori using the method of Section ,1,2.,t _ince _ignificanl variati,,ns

in convergence rates occur during the calculation,

The outer iterations aline use ('hebyshev.accelerated iterative method_. For t w.

energy groups the equations have a cyclic nature such that CCSI may be used° as fi)r

the inner iterations, For more than two energy groups, however, the iteration i.atrix

looses its cyclic properties requiring that the normal, rather than cyclic, ('hebyshev

method !V*2} be used. The .uter iterations are performed until some .ser ._l)ecil|ed

convergence rate is achieved,

The Chebyshev procedures require the knowledge of the Jacobi spectral radii,

ITnlike the static calculation, the Jacobi spectral radius |nust be re-estimated during

the transient calculation because of variations in .tateriai properties, time step sizes

and the state of the reactor, This is especially true of the spectral radius of the

outer iteration matrix. In order to facilitate these changing conditions the transient

proble.t is split into tithe domains in which the tithe step size remains _,ons_nnt,

The procedure outlined in Section ,1,2,4 is used to estimate the spectral radii at tit,.

beginning of each time domain,

For very large time steps the Chebyshev tnethod used for the outer iterations

results in slow convergence because the spectral radius is very close to .nity, For

this reason, a direct inversion method for the energy group solution has also h¢.¢..

' I ' ' "C "'incorporated into the l_ her lteratton procedure, in two group appil atlons, the direct

solution of the group equations has proven to be more efficient,

4,3,3 Frequency Estimation

In the derivation of the time-dependent polynomial nodal equations in Section 3,4

dynamic frequencies were introduced to eliminate the time derivatives, The freque.-
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t'ie_ _t time _tep. nre _Aumed to he _iw, n I)y tt_e followin_ expressions

,,,, 1 In 14.25a1

,, '

t t, i, t4,2 b!
° (,?),,-,,j

Under mostcircumstancesthesefrequenciesplayonly_ mir,orrolr,However,inI_:!;e

reflectorregions,theestimationofthefrequenciesusinRtheabovet.quation_may i_,itd

toinstabilities,Thisoccursbecausethefluxesinthesereflectorre_ionsarereiatively

stnall attd umy vary signiflcitntly throughout the transient calculation, in order to

avoid this problem the change of the dynamic frequencies front one time step to the

next should be limited. TypicMly, It limitation on the maximum change of 25 s"tis

sufficient.

f , t ,
"'o' ' Point Ktnettcs E....._......:, quattons4,3,4 _ tution o the**,:_0 -- ...... _ ___

The application of the quasi.static method the point kinetics equations, Eqs, {3,23 )

and (3,25), must be solved, The precursor equations are solved using direct integra.

tion Itnd the amplitude equation is solved using the theta method, the s_me methods

wtu'ch are used for the slmtiailv, dependent equittmns,' The result of the direct inte.

gration procedure for the precursor equrdion, assuming that all of the point kinetics

parameters are time dependent, is

)_p+ l I ,_tp)
(,_,.¢t_._ k ,,,tp_ L, . _'a ,r,(p+i)

- t,a'..,_ +, '_2,a_- ....ka,a,XdAt_";'_ ' T(l'_' (4,2B)

where tile values of kt,a, k:,,_ anti ka,a are the same Its for the spatiaLly.dependent

precursor equations in Set tton 3.,"_and V indicates the point kinetics time step, Theta
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differenciuKof the amplitude _quatiou girl's

t4,27t

/ _' - ': -_7'_p_ _\,,c'__'_
+11 O) [ AIv_ _ " ',|_1

Substitution of Eq, (4,26) into (4,27) attd subsequent tnanipulation give. the following

equation which can be used to advance the atnplitude function in time

{ [ o }_ I At;, (1 _ _}(ptv_ ....,_._). CV' ^,+,,_,t j (4,.S}' Ale,+1, ,_,,_

D

+ Ah, _ (! + 0(ks,,++.+1)) ,ar"_'_+ Oq{t,+LJ(1++O)q{_,
dal

The same considerations in the cl_oiceof the theta presented for tile spatially depen.

dent equations also apply, Thus, the general recommended v_lue is 8 = 1.

Since the time step size required for accurate solution of the amplitude function

inky vary significantly throughout a tr_,nsient calculation, _n adaptive procedure is

used, *l'he most straightforward adaptive technique is step doubling [P.2], In this

tnetllod each time step is perfornled twice: once with a tittle step of ASpresulting in an

amplitude of TIp*tl and again with two steps of Atp/2 giving ?_v.t_, The truncation

error, t, can then be estimated using the following relationiD.2 }

q'qP+ 1) ,Tq,t* | )

_ _ /" _ , (4,29)
2'" ....1

where

1 0_2 e=½,

If the truncation error is smaller than some user specified vMue, eus,r, then the next
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time_tepi_e_tim_trdu_inK

_ttSel'

Ifthetruncationerror,however,islarierthmn_,,i.rlhenEq.(,I.30)isused!oestimate

a timestepwhichisusedtorepeatthec,urrenttimestep,A reasonablevalueoff...r

isintherangeofI0-4to I0_m.

4.:3.,5 Gcnertd Tr_ts_tL CMculatio.nM_Pro_ced_e

The transient solution procedure discussed _.bove _nd in Chapter 3 are outlined

in Figure 4.1, Before the transient calculation is performed, the initiM ste_dy._tate

conditions of the rettctor are obtained, The weiKht function is ot_tained by _olving

the ttdjoint equlttions. During the trttnsient cMcul&tion, the shape function is first

computed using a l_rse time step, &t,,, usin$ the thermal.hydraulic conditions at

the beginning of the time step {the shape function is relatively insensitive to the

thermal.hydr_u|ic conditions). We then adopt smaller time steps, &tj, and, startin$

at t,, make cross section adjustments required by control rod motions. The point

kinetics parameters are then computed using Eqs. (3.24tt) through (3.24d), The

straps function and discontinuity factors used in the calculation of the point kinetics

parameters are obtMned by a linear interpolation of the v_,lues at t, and t,_.t. The

ttmplitude function _nd effective precursor densities are then obtMned by solving

the point kinetics equation using the adaptive time stepping procedure. Finally, the

thermal.hydraulic cMcul_tion is performed using nodal powers computed front the

node.averaged fluxes which are evaluated as the product of the interpol_tted shape

function and the atuplitude function. The re_ctivity/thermKl.hydrauiic .qtept are

repeated until time t,.t is re_ched,

For transient8 involving feedback, severM reactivity/thernml.hydr_ulics time stept

are typically required per shape computation, The reactivity/thermal.hydraulics time

step size i_ primarily limited by the tandem nature in which the neutronic and ther-

ma,l hydrttulic equationt_ _,re solved, When feedback i_ not involved, however, only
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ve for the ShapeFunctionumin
the Non.Linear IterationProcedure

Uilnl the AdaptiveProcedure

| C_cuJ,.onu.m8Nodal | ............................._:

L, Powers fromCorrecledFluxes J

Compute PRcursor Densities ..................................-.. .....- , ...............

' ' tFigure ,t.l: Flow (lingratn of the quasi.static trnnslen solutio, procedure,
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one reactivity/thermal-hydraulic time Step is required per shape computation (i.e.

At_ = At.).

4.4 Summary

In this chapter the complete specification of the solution procedures for the static

and transient equations were presented. The static equations are solved using a outer-

inner iteration procedure. The power method, accelerated by Wielandt's fractional

iteration, is used for the outer iterations and the cyclic Chebyshev semi-iterative

method is apphed to perform the inner iterations. A discussion of the solution pro-

cedures for other types of static problems was also presented.

The transient equations are solved using the quasi-static method in which the

shape function calculation also employs an outer-iteration procedure. In both levels

of iteration Chebyshev _ccelerated methods are used, but, for a small number of

energy groups, a direct solution method for the outer iterations is applied. Finally,

an adaptive procedure for solving the point kinetics equations was presented and the

complete transient solution procedure was outlined
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Chapter 5

APPLICATION OF THE TRANSIENT NODAL

METHOD

5.1 Introduction

In Chapter 2 and Chapter 3 the static and transient nodal methods were derived.

Solution methods for both cases were presented in Chapter 4. In this chapter, the

methods will be applied to several transient problems to determine the efficiency

and accuracy of the nodal method. Static results will be presented only as initial

condition data since the results of other problems are virtually identical to the results

of Zerkle [Z-1] which are based upon a similar polynomial method. The improvement

in efficiency from the alternate expansion coefficient solution procedure, however, will

be demonstrated.

Three of the problems which will be solved are widely-used benchmark problems

for transient nodal calculations. Since the reactors modelled by these benchmarks

are generally very simple in nature, the results of two additional problems based on

a more realistic reactor configuration are presented. Note that many other static

and transient problems have been analyzed to ensure the functionality of all options

presented by this method.

5.2 Forward to Transient Problems

Before the discussion of the computational results, a few essential items remain

to be discussed.
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,5.2.1 Computer Code

The static and transient methods presented in Chapter 2 and Chapter 3 along

with the solution procedures of Chapter 4 are incorporated into a computer code

which has been named CONQUEST/COde for Nodal QUasi-Static Theory). This

computer code solves two- and three-dimensional, few-group, static and transient

problems with and without extraneous neutron sources.

CONQUEST is written in standard FORTRAN 77, except, for a few system de-

pendent routines which return the system time and date. These references to system

dependent routines are isolated and may be easily replaced or disabled without any

impact on the actual code execution. CONQU'EST has been compiled and executed

without difficulty on the following machines:

IBM PC (80386 processor)

DEC VS3100

IBM RS/6000-320

Cray XMP 4i6

All computations are performed in single precision in order to minimize execution

times and storage requirements.

When using CONQUEST, problems may be solved with either a polynomial

method or a mesh-center finite-difference method. The polynomial method allows

a quadratic, cubic or quartic approximation. Non-uniform mesh spacings and irregu-

lar geometries (jagged boundaries) are allowed as well as a diagonal symmetry option.

There is no limit on the number or structure (including up-scattering) of the neutron

energy groups. The code allows the use of homogenization parameters consisting of

cross sections and discontinuity factors.

The implementation of the quasi-static method allows the user to specify when

shape updates are to be performed and the number of reactivity and thermal-hydraulic

calculations per shape update. The adaptive procedure used to solve the point kinetics

equations provides an accurate solution without any user input. A point kinetics

option, in which no shape updates are performed, is also available.
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5.2.2 Transverse-Leaka_je Approximations

In Chapter 2 the use of the quadratic transverse leakage approximation was dis-

cussed. In this approximation the transverse leakage is expanded as a quadratic

polynomial which preserves the node-averaged transverse leakage in the three adja-

cent nodes. This does not present a problem for nodes in the reactor interior or at

boundaries of symmetry. However, nodes at the reactor surface do not have the third

adjacent node required to perform the quadratic leakage expansion. Therefore, the

transverse-leakage expansion for nodes on the reactor surface is performed using the

three nodes which are closest to the surface. This approximation gives good results

for problems with relatively thin reflectors or fuel-bearing compositions on the surface

of the reactor.

For problems with large reflectors, a quadratic transverse.leakage approximation

in the core and a flat transverse leakage in the reflector has been found to give good

results. The reason for this is that the leakages deep within the reflector tend to be

small and only have small effect on the core power distribution. In fact, approximating

the transverse leakage in large reflectors as a quadratic polynomial has resulted in

stability problems which are not present when the flat approximation is used.

5.2.3 Power Distribution Errors

The solutions to problems presented in this chapter are compared to reference

solutions. The normalized power densities of the reference solutions and the errors

in the CONQUEST solutions are presented in Appendix C. However, for purposes

of summarizing these results, tables containing the maximum and average node and

assembly errors in the normalized power densities are presented in this chapter. The

maximum error in the node power density is defined to be

= maximum over { tP' - Pref' }_max -- all nodes p, 'ref

where P' represents the power density in node i and P_,t represents the reference

power density in node i. The average error in the nodal power density is defined to
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be

1 ipi t
= V" - Pr,r 1/},

W _ t
core i Pref

where i'iisthevolumeofnodei and P_oreisthetotalvolumeofthereactorcore.All

power densitiesarenormalizedsuchthatthemean reactorpower densityisunity,

Inthestaticcalculations,theconvergencecriteriaon thenodalpowerof10-5has

beenusedforall2-D calculationsand 10-4forall3-D calculations.Foralltransient

calculationsconvergenceintheaveragechangeinnodalpowerof10-3 hasbeenused

(exceptforthe3-D LRA problemwhere 10-4 was usedtoreduceinstabilities).

5.2.4 Executign Times

The execution times of computer codes are commonly used to compare their rela-

tive performance. Direct comparisons of execution times, however, are often difficult

because the calculation speed of different computer systems vary widely. In order to

establish rough comparisons between computers the LINPACK benchmark [D-3Iis

commonly used. This benchmark measures the single and double precision floating-

point performance of a computer system, in terms of millions of floating-point opera-

tions per second (MFLOPS) by solving a linear system of equations of order 100 using

the LINPACK LU decomposition routines. The LINPACK benchmark is intended to

represent the typical computational mix found in many engineering calculations. The

LINPACK MFLOPS ratings given in Table 5.1 are used in this chapter for compar-

isons of execution times.

All CONQUEST calculations have been performed on a DEC VAXstation 3100

M38 in single precision. Therefore, for the purpose of comparison, all execution times

have been converted to single precision DEC VS3100 M38 execution times by using the

ratios of the LINPACK MFLOPS ratings. The conversion between quarter.core and

eighth-core symmetries has been performed by using the ratio of the number of nodes

in each symmetry. The resulting execution times should be considered approximate,

but should be sufficient to determine whether large differences in execution times

exist.
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Table 5.1: LINPACK MFLOPS ratings of several computer systems used for the com-

parison of execution times,

ComPuter Systen, - ..... Preclsi0n MFLOPS .....

CDC-CYBER 176"'(D.3) .....................................s .... 4.6

IBM 370/195 [e-3] S 3,3

SG! 4D/310 (1 proc) 25 MHz [Z-I] D 2.8

CDC CYBER 175 [D-3] S 2,4

IBM 370/168 [D-3] S 1,2

IBM 360/91 [S.2] S --- 1.2

AMDAHL 470 V/6 [D-3] S 1.1
DEC VS3100 M38 S 0,78

cDC 7600 .[D-3] S ............0..,48

5.3 The 2-D TWIGL Seed-Blanket Reactor Problems

This problem was proposed by Hageman and Yasinsky [H-7] and solutions were

originally obtained using the finite-difference code TWIGL. This benchmark is a two.

dimensional 1nodel of a 160 cm square, unreflected seed-blanket reactor using two

neutron energy groups and one delayed precursor group. A complete description of

this problem is given in Appendix B. Two different transients are initiated by a step

and ramp perturbation of the corner seed assembb'. The small size of this transient

problem allows a study of different calculation procedures.

5.3.1 Tile Static Solution

The static solution to this problem was obtained with two different mesh spacings
i

to investigate the spacial convergence of the quartic polynomial approximation. The I

mesh structures are denoted as "coarse" and "fine" and are defined as follows:

Region Coarse Mesh Fine Mesh

0<:x,y_<24cm 12 cm 8cm

24 <_x,y<_ 56cm 16 cm 8cm

56 <:x,y_< 80cm 12 cm 8cm
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Table 5.2: A summary of the CONQUEST static results for the 2-D TWIGL seed.

blanket test problem.

__ ......: , , , ,,,m....................... ,........

Mesh

.......C0rse .... Fine= '
_-Nodes(l_}8 core) ......2}..................................45 ....

D.F. Updates" 10 11
Outer Iterations 22 25

Eigenvalue b 0.91312 0.91320

emax (%) +0.46 +0,04

_(%) 0.2,5 0.01

, cpv Ti,me¢ (,secl)i.'................. ' ....i;2 3'6..........

'_Maximum of 3 outer its. per discontinuity factor update

SReference Eigenvalue: 0.91321
cDEC VS3100 M38

i The static results for these two mesh structures are presented in Table 5.2. The
,

reference for the calculation is a QUANDRY calculation using the fine mesh which

is nearly spatially converged [S.2]. The errors in the eigenvalue and power densities

for the coarse mesh are quite small. Thus, the coarse mesh will be used for all

subsequent transient analyses. This problem was also solved with and earlier version

of CONQUEST based on the alternate expansion coefficient solution procedure of

Zerkle [Z.1]. For the coarse mesh calculation, 22 discontinuity factor updates were

required nearly doubling the required execution time.

The nature of the polynomial approximations can be more directly examined by

plotting the transversely-integrated fluxes and currents for the coarse mesh. The

group 2, x-direction, transversely.integrated fluxes are shown in Figure 5-1 and cur-

rents in Figures 5-2, 5-,'], and 5-4 for the quadratic, cubic, and quartic approximations,

respectively. These values are for the first row of nodes 0 <_y <_ 12 cm (referred to

as the 3 = 1 nodes). The reference curve in these figures was obtained by using

an x.direction mesh spacing of 3 cm while maintaining the coarse mesh structure in

the y-direction. The flux profiles show that, in general, the lower order polynomials

do not have the flexibility required to closely follow the correct shape. The quartic
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Figure 5-1: The group 2, x-direction transversely.integrated' fluxes (j = 1) for the
TWIGL problem.
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Figure 5-2: The group 2, x-direction, quadratic transversely.integrated currents (j -
1) for the TWIGL problem.
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Figure ,5.4: The group 2, x.direction, qu_.rtic transversely.integrated currents (j = L)
for the TWIGL problem.

91



'Fable 5,3: Reactor power vs. time for the 2.D TWIGL step transient problem.

..... --_ .... .....-.... '_..... _................'Sha':_e Update Step, At. "

o.o .......LO00.....................Z,O00..... ....i.00o ........i:0 6o....
 .oo5  .ooo 2,000 2.040

0.2 2.078 2.078 2.078 2.004

0.3 2.095 2,095 2.094 2.088

0,4 2.1i3 2.112 2.113 2.113

0.5 2.1;10 2.130 2.131 2.138
..................... ' ." :, ,,,, , ......... .......... - .... ,, : - ,, , ...... _...... :,_ ,_,.:....... ,,,, 'r'rr...... _"

CPU Time" 5.9 3.3 1.9 1.0

"DEC VS3100 M38

polynomial° however, can provide enough flexibility to match the correct shape. Note

that in the relatively fiat region 20 < x < 60 cm that the cubic and quartic fluxes

oscillate about the reference flux in such a manner that accurate node.averaged fluxes

are obtained.

The net current plots demonstrate the increased accuracy in the leakages of the

higher order approximations. Figure 5-2, shows that the quadratic approximation for

the flux gives a linear approximation for the currents and leads to significant errors at

the nodal interfaces. The quartic approximation, on the other hand, closely matches

the relatively large currents at the nodal interfaces. If accurate nodal leakages are

obtain, the nodal reaction rates and the power densities will be accurate.

5.3.2 The Step Transient

Tile first of the two TWIGL transient problems is a step transient in which tile

thermal absorption cross section in the corner seed assembly is reduced by 2.3 % in

an instantaneous fashion, The results are presented in Table .5.3 for several different

shape-update steps. As this table shows, there is an initial prompt.jump after which

the power rises relatively slowly. The actual shape change in this calculation, however,

is small, as indicated by the accuracy of the one shape-update calculation.
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Table 5.4: Reactor power vs, time for the 2-D TWIGL step transient problem with

various number of steps per discontinuity factor update,

........... N.mborofT me
Time (s) _ 1_ -- --_......2 ...... 5 10 None

h r ' 'I0 : ....... i , O00 ........ t , O00 ........... t, 6b 0 _ ...... I ,6--00 ' ........ = ....... i--, 000 .......

2,0o0 2.060 2.0 5 2.077 2. ,t3
0.2 2.078 2,078 2.078 2,083 2.101
0,3 2.095 2,095 2.095 2.097 2.181

0,4 2.112 2.112 2.i13 2.113 2,201

0.5 2.130 2,130 2,131 2.131 2,220
.... "" _t ,r, i _ ,| ..........:..............................................

CFiOTime_ (sec) 9,5 7.0 5.9 5,4 4.9,,,u_: - ,.:.r_,......... _n, - ' ...... ' ......... ,J ...... .... ' ......

"DEC VS3100 M38

'n 'In these calculations the discontt utty factors were updated at every shape.update

time step. If tile flux shape changes slowly, however, the discontinuity factors will

also change slowly and it may not be necessary to update the discontinuity factors

at every time step. A parameter study with several time steps per t_hape update

is presented in Table 5,4. Tile data in this table show that several time steps may

QS 0be taken between dl contmutty factor updates. This can be partially attributed to

the small shape changes in this problem, Note that the last column in this table

represents a transient calculation which is performed using finite.difference which is

corrected with the initial static discontinuity factors, The relatively large error in

this calculation indicates that constant discontinuity factors a.re not sufficient and

discontinuity factor updates must be performed to reflect the changes in the flux

shape,

The choice of the weight function was also examined for this transient. Table 5.5

shows point kinetics and quasi.static power and reactivity versus time for calculations

performed with adjoint and unity weighting. The point kinetics method results in ac.

curate results for this transient only if the adjoins flux is used for the weight function.

The quasi.static method, however, obtains reasonable answers for both adjoint and

unity weighting. Note, however, that the adjoins weight function gives a better initial
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Table 5,5: Reactor power and reactivity vs. time for the TWIGL step problem G)r

point Kinetic (PK)and quasi.static (QS)niethods with adjoint anti unity

weighting.

PI( Adjoint PK [tnity QS Adjoint
Tinle p_)wer_-Re-act/-- power ReaCt, Power React'

(S) ×:l0 s x 10a × i0 a _ 103

0,0 1.000 3,7874 1.000 2,6708 1.000 _3.78_4 1.000 2,(1708 -
' 8 ' ¢q0.1 2.033 J.7 74 1.559 2.0108 2.0tilt 3,8406 2.045 3.0180

0.2 2,050 3,7874 1,565 2.{i708 2.078 3,8254 2.07,i 3,8212

0.3 2.067 3.7874 1,573 2,6708 2.094 3.8241 2.074 3,8022

0.4 2.084 3.7874 1,580 2,{]708 2.113 3,8275 2,105 3,8314

_0:5 2,100 3.787,1 1.587 2.6708 2,130 3,8266 2.129 3.8,113

estimate of the reactivity. Front this analysis we see that the use of tile adj()int as a

weight function is not as important for the quasi.static method as for point kinetics

since tile shape function is periodically updated,

A comparison of tile results with two other nodal codes QUANDRY [S.2] and

2DTD [A-3] is presented along with execution times ill Table 5,6, This table shows

'ethat CONQ[TEST gives answers whl h are just as accurate as other nodal tneth_Jds

with comparable execution tittles, Note that tile execution tittles have been atljust,,d

to approximate equivalent values for quarter-core calculations on a DEC! VS3100 M3S.

The quasi-static method gives a significant reduction in computation tithe t)y allowin_

nltlch larger shape.update steps.

5.3.3 T]!e Ratpp-Er an_sien t:

In this transient the perturbation consists of a 2,3 % linear decrease in the thermal

absorption cross section of the corner seed assembly over 0.2 seconds, For the small

time step calculation (5 nts), a study of the discontinuity factor update frequency is

presented in Table 5.7. The results are very similar to the step transient. For this

transient the discontinuity factors change slowly enough that they only need to be

updated every 5 to 10 time steps. In addition, the calculation was performed usitt_

t 'the point kinetics and qtasl.static methods with adjoins and unity weighting. The
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' b ,,,.Fa le 5 , '_ '. ,O, Reactor power vs, time for the D TWIGL step transient for several nodal
codes {At,, = 10 ms },

°2DTD QUiNDRY ....CONQ(YEST Re¢.

(aec_t .... fA,3] !S.2] {S.21.... i..::1/t,1-;: L Ir .j '_ " , .... k iJ_; . ._ :__ : .t

0 1,000 1,000 .....t.000 1,000
0,1 2,051 2,064 2,060 2,06!

0,2 2,068 2,076 2.078 2,078

0,3 2,085 2,095 2.095 2.095

0,4 2.102 2.112 2,112 2.113

0,5 2.119 2,130 '2.130 2.131

CPU.......Time"_ (sect ! 8,2...... 6.3 ............ -59-, ...... --
.............. i IIi i[1111 i i .... I WL ......... 2m -- .... ;---- 7 7 : 7 1:.

"DEC VS3100 M38

Table 5,7: Reactor power vs, time for the TWIGL ramp problem with various number

of steps per discontinuity factor update iAt. = ,5ms),

......-....... _ _...................... Number0tTime Steps per D.F, t!,date .........
Time (see) ...........i 2 ................ 5' -_- ..........- i0 ....... None

..... 0oo ......... oo ........
iiiiii i "7 L .......... $2L _ r I I[l|ll -- - _ L|III!rlI.-_ I

0 1, L.000 : 1,0 1,000 1.000

0.1 1,309 1.310 1,31i 1,313 1.323

0,2 1,961 1,962 1.966 1,973 2.026

0,3 2.074 2.074 2.074 2,074 'd,157

0.4 ') ') '_.,091 2,091 ..,091 .,,091 2,177

0,5 2,109 '.).109 2.109 2,109 2,196

'P U-Tinle" ( sec) i8,7 14.7 11,9 10,3 .8
---_ _' , _._u,r'=,_, _ ,,, .,, _- __ ...... r.z,t...L Imll _____-_ _ _ ..........

"DEC VS3100 M38
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Table 5,8: Reactor power and reactivity vs. time for tile TWI(;L ramp problem for

point kinetics (PK) and quasi.static (QS) methods with adjoins and unity

weighting,

....... PK Adjoins Pit tinity
Time Po-wer React. P0wel _ React,

10a _ 10a _ 10a :,_10a

.......010......t:O0-O...."-0.0::..... t.O00-0,0..................l.O00
O,1 1.311 i.89 , t 204 1.3354 1.314 1.9031 1,322 1.9268

0,2 1.939 3,7874 1,531 2.6709 1.978 3,8623 1,997 3,8826
m . _ ,0,3 2, 4i 3.i814 1 56,5 2.6108 .,071 3.8277 2 077 3,8347

0,4 2.0{13 3.7874 1.571 '_ " 91..,6_08 2.091 3,8243 2.084 3,81 "

0,5 2,080 " " " '_ 2. '3,18_4 1.5i9 2,6708 _09 ',,. 3.8264 107 3,8332

results of these calculations are presented in Table 5,8, Again, tile adjoins weight

function is very important for the point kinetics but not as important for the quasi.

static method. Note that unlike the step transient, an initial estimate of the reactivity

is not required because of the ramp nature of the transient.

Various time steps were used to solve this problem with discontinuity factor up.

dates being performed ever), time step, The results are presented in Table ,5,_, As

for the step transient, accurate results can be obtained with 0,I second shape.update

time steps.

The results of the calculations are presented in Table 5,10 along with those of

other nodal methods. The polynomial nodal method, without the use of the quasi.

static method, gice_ accurate results with competitive execution times, The quasi.

static znethod, in CONQUEST as well as in other nodM codes, leads to a significant

reduction in execution time without degradation of accuracy,

5,4 The _I.D LMW Operational Transient

T}_e 3-D LMW (Langenbuch.Maurer.Werner) LWR transient problem [L.2, S.2}

is a highly simplified LWR described in Appendix B. The reactor is modeUed with

two neutron energy groups and six precursor groups, The transient involves the
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'Fable 5.9: Reactor power vs. time for the TWIGL ramp problem for various shape-

update time steps.

........ Shape Update Step, At, (sec)

Time (s) ' 0.005 .....0.05 0.1 0.5
0.0 1.000 ....1.00'0 1.000 1.000

0.1 1.309 1.319 1.314 1.376

0.2 1.961 1.972 1.978 1.958

0.3 2.074 2.073 2.077 2.076

0.4 2.091 '2.091 2.091 2.100

0.5 '2.109 '2.109 '2.109 2.125
- , ................

(_}PUTime" (sec) 18.7 3.7 '2.1 1.1
.... -

_DEC, VS3100 M38

Table .5.10: Reactor power vs. time for the '2-D TWIGL ramp transient for several

nodal codes (At, = ,5ms).

....Time [ 2DTD QUANDRY CONQUEST Ref.

[A-a] [S-21 IS.2]..... , ,,,, ...............

0 1.000 1.000 1.000 1.000

0.1 1.305 1.305 1.311 1.307

0.2 1.951 1.954 1.966 1.957

0.3 2.064 2.074 2.074 2.074

0.4 2.081 2.092 2.091 2.096

0.5 '2.098 '2.109 '2.109 2.109

(,pu (rime _ (se¢:) 1625 1"8.0............ 18'::t --

_DEC VS3100 M38
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Table5.11: A summary of the CONQUEST static results for the3-D LMW problem
without feedback.

..........

Node Size

'20× 20 10x i0 5 ×5 .....

x20 cm xl0 cm xl0 cm

Nodes(i/8 Core) ')00.... 1480 5800 '

D.F. Updates 10 8 15
Outer Iterations 23 24 49

Eigenvalue 0.999655 0.999677 0.999672

_m.x(node,%) - 1.20 +0.16 ref.

g(node,%) 0.29 0.02 ref.

em,,(asseInbly,%) -0.68 -0.05 ref.

g(assembly,% ) 0.15 0.01 ref.
.............. _ .....

CPU Time _ (sec) ] i5.8 84.9 637...........

_DEC VS3100 M38
I

withdrawal of a bank of four partially-inserted control rods and the subsequent in-

sertion of a bank of five control rods. These complicated control rod motions lead

to significant shape changes and large cusping effects and are a good test for the

quasi-static method. This problem has been solved both with and without thermal-

hydraulic feedback.

5.4.1 Tile 3-D LMW Problem Without Feedback

The static calculation required for the initial conditions was performed with three

different node spacings and eighth-core symmetry. The results are summarized in

Table 5.11 and the norInalized assembly power density comparison is presented in

Appendix C. The reference for the calculation is a CONQUEST calculation with

5 cm radial meshes and 10 cm axial Ineshes. The maximum error in the assembly-

sized inesh occurs in a low power node on tile core/reflector interface.

A comparison of the CONQUEST and QUANDRY calculation is given in Ta-

ble 5.12. Note that the reference for each calculation is a spatially converged, fine

mesh calculation performed with each corresponding code. This comparison shows
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Table 5.12: A comparison of the ('ONQUEST and QUANDRY3-D LMW static cal-
culations without feedback.

.......... CONQUEST QUANDRY

[s-21
Outer I(erations ....... 23 ' 17

Eigenvalue 0.999655 0,99974

em_=(node,%) - 1.20 +0.98

emax( assem bly,% ) -0.68 +0.28

_(assembly,%) 0.15 O.12

-cPU Time _ (see) 15.8............. 17.2b .....
........

=DEC VS3100 M38

bActual computation time: 11.2 see., IBM 370/168

that the polynomial nodal method gives accuracy which is comparable to the analytic

nodal method with similar calculation times.

The transient calculation was performed using 20 cm nodes in all directions and

eighth-core symmetry. Quasi-static calculations were performed with I/4 second,

1 second, and 5 second shape update and reactivity calculation time steps. In the

1/4 second and 1 second cases the discontinuity factors were updated every four

steps and in the 5 second case, every step. The cusping correction presented in

Section 3.8 was used in all calculations. The results of these calculations are presented

numerically in Table .'5.13and graphically in Figures 5-5 and 5-6. These results show

that excellent agreement in power den._ity and reactivity is obtained with all time

steps. The execution speed for the largest time step case is nearly a factor of 9 times

quicker than the reference calculation resulting in a faster than real time calculation.

In order to investigate the local accuracy of the quasi-static method, a comparison

of the nodal power densities was performed. A summary of the comparison is given in

Table 5.14. The maximum errors in the nodal power densities occur in nodes in which

the control rods are moving. This error in nodes in which rods are moving can be

expected since, for the At,, = 5 see calculation, the rod completely traverses the node

between shape updates. The remaining nodes have very small errors as indicated by

the small node-averaged, assembly.maximum, and assembly averaged errors.
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Table 5.13: Mean power density (W/cm a) vs. time for the 3-D LMW problem without

feedback and different shape-update time steps.

.............................. Time Step Size, At,,

Time 5sec _ 1 sec - 1/4 sec_
o.o 150.o .... 1_6,0 _5o.o
5.0 169.4 (+0.1%) 169.2 (0.0%) 169,2

lO.O 201.8 (0,0%) 201.6 (-0.1%) 201.8

20.0 258.9 (-0.2%) 259.7 (+0.2%) 259.3

30.0 207.9 (+0.0%) 207.9 (+0.0%) 207.8

40.0 122.8 (+0.4%) 122,6 (+0.3%) 122.3

50,0 76.3 (+0.7%) 75.9 (+0.1%) 75.8

60.0 58.2 ( 0.0%) 58.2 ( 0,0%) 58.2

CP U Thne b (sec) .............50 .... 115. 434.
...........................

"Reference
bDEC VS3100 M38

Table 5.14: A comparison of the node and assembly errors in the normalized power
densities.

............ , ...............

......._t,, 1 sec _t, ,5 see

Node Error" Assembly Error' Node Error AssemblY Error

"['ime max/avg max/avg max/avg max/avg

o:o ..........o:o/o.o%.... o.o/o,o % ' o.o/o.o% o.o/o.o%
5.0 +0.8/0.2 % +0.3/0.1% +2.5/0.2 % +0.4/0.1%

10.0 +1.2/0.1% 9+0.,./0.0 % +2.9/0.2 % +0,8/0.1%

20.0 -1.0/0.1% -0.1/0.0 % +3.4/0.2 % -0.4/0.1%

30.0 -I.3/0.1% -0.2/0.0 % +3.9/0.3 % -0.7/0.1%

40.0 +1.3/0.1% -0.1/0.0 % -3.3/0.2 % --0.8/0.1%

50.0 +0.2/0.0 % -0,1/0.0 % --3.0/0.2 % -0.4/0.1%

60.0 +0.,t/0.1% +0.1/0.0 % +-0,6/0.0 % +-0.1/0.0 %
.................

_Reference: Quasi-static calculation with At, = 1/4 see
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Figure ,5-6: Reactivity vs, time for the 3-D LMW problem without feedback.

101



Table 5.15: A comparison of the mean power density (W/cm a) for solutions of the
3-D LMW Test Problem without feedback for several nodal codes.

Time QUABOX CUBBOX QUANDRY ('.ONQ[{EST -Rei', a

(sec) {L-21 :L-21 [S-2]
_-0.0 ....150.0 15610 150.0 150,0 ........150,0

5.0 168.7(-0,4%) 168.8(-0.4%) 169.1(-0.2%) 169,2(-0,1%) 169.4

10.0 200.2(-0.9%) 201.1(-0.5%) 202.0(0.0%) 20i,8(-0.1%) 202.0

- ,,59 3(0.5%) 260.590.0 260.5(0,0%) 260,0(-0.2%) 262.2(+0.6%) ') . -

30.0 213.6(+1..8%)211.3(+0.7%)'210.8(+0.4%) 207.8(-1.0%) 209.9

40.0 127.5(+-2.9%) 125.5(+1.3%) 123.0(-0.7%) 122.3(-1,3%) 123.9

50.0 78,6(+2.7%) 77.1(+0.8%) 75.7(-1..0%) 75.8(- 0.9%) 76.5

60.0 60.3(+2,9%) 58.9(+0.5%) .57.9(-1.2%) ,58.2(-0.7%) ,58,6
..... ..............................

"Richardson extrapolation of CUBBOX results ]S-'2]

A comparison of the calculational results with QUABOX [L-2], CUBBOX [L-2],

and QUANDRY [S-2] is presented in Table 5.15. The QUABOX and CUBBOX solu-

tions use a time step of 1/8 second. The QUANDRY solution employs a 10 cm axial

mesh (to nlinimize cusping effects) and a time step of 1/4 second. The CONQUEST

solution is a quasi-static calculation with 1/4 second time steps. The reference has

been obtained by a Richardson extrapolation of CUBBOX solutions but is not con-

sidered to be more accurate than one percent [S-2], This comparison indicates that

the CONQUEST, QUANDRY, and CUBBOX solutions have a maximunl error in

mean power density of about 1% while the QUABOX solution has a maximum error

of nearly 3 %. The ex¢:ution times are available only for a calculation with a time

step of 1 second. The calculation times for CONQUEST, QUANDRY, QUABOX,

CUBBOX are 11,5, 86, 108, and 69 seconds, respectively. Note that the execution

time reported for ('ONQUEST is for a quasi-static calculation which contains consid.

erable time for reactivity calculation and point kinetics solution with a shape.update

at every time step. An additional, fully.implicit calculation without the quasi.static

option was performed resulting in an execution time of 83 seconds. This indicates

that roughly 2.5 % of the calculation time is devoted to the quasi-static option.

The mean power density and reactivity versus time for calculations with and
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without the cusping correction using 1/4 second time steps are given in Figures 5-7

and 5-S. The volume-averaging of the cross sections results in an over-prediction of

the rod's "worth" as the rod traverses the node, As a result, the reactivity and the

power are under-predicted. This leads to a maximum error in the mean power density

of about -,5 %, The calculation employing the cusping correction, however, displays

no discernible cusping effects, even in the reactivity which is generally very sensitive

to the control rod cusping.

The 3-D LMW problem results indicate that the quasi-static polynomial method

can provide accurate results using large node spacings and shape.update ti," : steps,

The impact of thermal-hydraulic feedback will be examined next,

5.,1.2 The 3-D LMW Problem with Thermal.Hydraulic Feedback

The 3.D LMW problem has been combined with WIGL thermal-hydraulic pa-

rameters which are representative of an operating PWR [S-2] and are given with the

problem description in Appendix B. An examination of the steady-state calculation,

the transient calculation, and the control rod cusping effects will be presented.

The static calculations were performed with the same node spacings as for the

problem without feedback and the results are summarized in Table 5.16 (the assem.

i bly power densities are given in Appendix C). The reference is the CONQUEST

calculation with .5 cm radial mesh and 10 cm axial mesh. Note that CONQUEST

requires nearly the same number of discontinuity factor updates and outer iterations

as the non.feedback problem. The nodal anti assembly errors are also nearly the

same as the non-feedback problem, Calculation of the fuel and coolant temperatures

increases the calculation time by 20 to 30 %

The transient calculations were performed using three different shape.update

steps: 1,"4 second, 1 second, and 5 seconds with one, two, and five reactivity/thermal.

hydraulic updates per shape upd_tte, respectively. In addition, the discontinuity fac_

tors were updated every 4 time steps for the 1/4 second and 1 second time step

calculation and every time step for the 5 second time step calculation. The results

of the calculations are presented in Table 5.17 and Figures 5.9 and 5.10. As for the
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Figure 5-7: Power density vs. time for the 3-D LMW problem without feedback

demonstrating the cusping correction.
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Figure 5-,'+: Rettctivity vs. time for the 3-D LM",Vproblem without feedback demon-

strating the cusping correction.
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Ttd)le 5.16: A summary of tile CONQUEST static results for the 3-D LMW l)roblem
with feedback,

................... Nocle-Size ........
...... ,..........

20 x 20 10× 10 5x'5'

× 20 cm :_10 cm :_10 cm

Nodes t[/8 Core) 2'(}0.... 1480 _,5800.....

D.F. Updates 8 9 15
Outer Iterations 24 28 48

Eigenvalue 0.983420 0.983194 0.983166

_m,,x(node,%) -1.24 +0.18 ref.

f( no de, % ) 0.33 0.03 ref.

em,,x(assembly,% ) --0,6 i -0.07 ref.

g(assembly,%) 0.15 0.0i ref. I
CPI; Time" (see) .... [8.9 _132.8........ 888,

"DE(' VS3100 M38

Table 5.17: Total power vs, time for the 3-D LMW problem with feedback and dif-

ferent shape-update time steps,

...... -- ....... _u,, ,L,,,,,,,,,, ,i,,,,, ......... • ......... ,, ,......... _

Time Step Size, At,,

Time 5 see......... ....... t see .......r......i/4 seca
0,0 184,8 184,8 184.8

5.0 192.5 (+0.3%) 192.0 (0.0%) 192,0

10.0 195.9 (+0.3%) 195,3 (0.0%) 195,2

20,0 192,8 (-0.1%) 192.9(0.0%) 192.9

30.1} 179,6 (-0.2%) t79.6 (-0.2%) 179.9

,t0.0 163.1 (-0.3,o) 1 3.3 ( 0.!%) 163,5

50,0 156,8 (+0,3%) 156,2 (-0,1%) t56,4

60.0 t55,8 (-0.1%) 155.9 (-0.1%) 156,0
.... , , ,,,,,

:(!P U Tinle b (see) 125. .........................................292. ............................7'111 ....

'_Reference
bDE(' VS3100 M38
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Figure 5-11: The 3-D LMW transient with feedback using ,5 second shape and

reactivity,/t, hermal.hydraulic steps.

non.feedback problem, excellent results have been obtained with all time steps. An

analysis of the nodal and assembly power densities shows that the largest errors are

isolate(i to nodes which contain moving rods while the error in the remaining nodes

is quite small.

Note that the reactivity/thermal.hydraulic calculations between the shape up-

dates are essential in obtaining accurate results, A calculation employing 5 second

shape and reactivity/thermal-hydraulic steps generates severe over.shoots in power,

as shown in Figure 5.11. This is caused by the tanclexxl sequence in which the neu-

tronic and thermal-hydraulic calculations are performed. The reactivity is computed

using cross sections from the previous thermal.hydraulics calculation. Thus, when

we are in a power increase, the temperatures are too low, giving a reactivity which

is too high. The power then increases rapidly resulting in a large increase in the

tempert_tures which, in turn, gives _ low value for the reactivity. The result is _n
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Table 5.18: 'I'ot_.l power vs. time for the 3.D I,MW problem with feedback, CON-

QUEST and QUANDRY solutions without cusping correction.

Time QtrANDRY-CONQiItEST
C'

(see) f,_-2] ..........
0,0 184,8 1.84,8

5,0 191.7 191.7

10.0 194.3 194.1

20.0 193.4 193,2

30.0 179,0 179.1

40,0 163,2 163.,t

50.0 156.3 156.3

60,0 156,0 155,9
..............

oscilla_ion about the reference power.

A compari.,,on of the calculations, using 1t/4 second time steps, with _.nd without

the cusping correction are presented in Figures 5.12 and 5-13. These figures show

that the cusping effects are much more significant than those in the non-feedback

calculation. The cusping correction shows only slight distortions when the rod leaves

one node and enters another. A comparison of the 1/4 second time step calcula-

tion without cusping correction between CONQUEST and QUANDRY is given in

Table ,5,18. The results are nearly identical, demonstrating that quartic polynomial

method h_.s _.ccurncy which is comparable to that of the Analytic NodaJ Method.

5.5 The LRA B WR Transient Problems

The LRA '2 D :'A-2] aud 3.D [A.3] benchmark problems represent a BWR with

two neutron energy groups, two delayed precursor families and Doppler feedback

with _tn adiabatic heatup model. The highly simplified BWR has a two-zone core

consisting of ;112 fuel assemblies (1,5 • 15 < 300 cm). The core is surrounded radially

and axially by a :10 cm water reflector. Several of the control blades, represented as

smeared absorbers in four ttdjacent assemblies, are withdrawn resulting in large local

flux perturbations.

108



LMW LWR TRANSIENT WZTI FEEDBACK

2OO

190

180
"" CuJping COEE.

........ No Cusp. Corr.

o'
170

160

w

150 -- | u
0 20 40 60

Time (moo)

Figure 5-12: Power density vs. time for the 3-D LMW problem with feedback demon-

strating the cusping correction.
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Figure ,5-13: Reactivity vs. time for the 3-D LMW problem with feedback, demon-

strating the cusping correction.
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Table 5.19: A summary of the 2-D LRA problem static results for 15 x 15 cm nodes
for several nodal codes,

..... CONQUEST QUAGMIRE QUANDRY

[Z-l] [S-2]
-outer Iterations "'22 24 '41

Eigenvalue _ 0.996329 0.996329 0.99641

em,,,(node,% ) + 1.36 + 1.41 -0.19

_(node,%) 0.40 0.42 0.07

CPU Time b (se'c) 4.3 " 8.4 ' 4.5d.............................

Reference: 0.99636
bDEC VS3100 M38

CActual execution time: 6.5 sec. SGI 4D/210 (D.P.), 1/4 core

dAcutal execution time: 2.7 sec. IBM 370/168

The transient is initiated from low power by the removal of an asymmetrically

placed control blade at a speed of 150 cm/s resulting in a super-prompt critical

configuration. The transient calculations are performed using quarter-core symmetry

so that four control blades are actually being removed from the entire core. This

transient is extremely difficult since the reactor power spans approximately 10 orders

of magnitude during the transient with largc spatial changes during the transient.

The complete problem specifications are given in Appendix B.

5.5.1 The 2-D LRA Problem

The 2-D LRA problem was solved using assembly-sized meshes, 15 × 15 cm, and

eighth-core symmetry. A summary of the static results are presented in Table 5.19

along with QUAGMIRE [Z-1] and QUANDRY [S-2] results. QUAGMIRE is a quartic

polynomial code developed by Zerkle [Z-1] which is based upon polynomial equations

which are similar to those of CONQUEST. The reference solution is a 16 node per

assembly calculation by Shober [A-3].

As expected, the CONQUEST and QUAGMIRE results are nearly identical with a

maximum nodal error of about 1.4 percent which is quite reasonable for such a severe

problem. The errors in the assembly power densities from QUANDRY, however, are
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significantly smaller than those of coNQUEST and QUAGMIRE. The (JONQLES_[

and QUANDRY execution times are comparable and are smaller than that of QUAG-

MIRE. The difference in execution times between CONQUEST and QUAGMIRE is

most likely the result of the different expansion coefficient, solution methods, as dis.

cussed in Chapter 2. A comparison of the normalized power distributions for several

different node spacings are given in Appendix C

I The transient problem was solved using the quasi-static method and fully-implicit

differencing schemes. The following three different temporal meshes were used:

92 Step 329 Step 1000 Step

Interval At_....a, Interval At__n, Interval At_._.a
0 < t < 0.8 100 ms 0 <.t < 0,8 25 ms 0 < t < 1.0 10 ms

0.8 <: t < 1.0 50 ms 0.8 <t <: 1,0 10 ms 1.0 < t < 1.3 I ms

1.0 <t < 1.4 10ms 1.0 <t < 1,3 3 ms 1.3 < t < 1.5 .5 ms

1.4 < t < 1.5 5 ms 1,3 <t < 1,45 1.5 ms 1.5 < t < 2.0 5 ms

1.5 _<t < 2.0 50 ms 1.45 <.t < 2.0 15 ms 2.0 < t_< 3.0 10 ms

2.0 <_t <_3.0 100 ms 2.0 <t < 3.0 15 ms

The 329 and 1000 step temporal meshes where chosen so that the calculations

would match published QUANDRY solutions [S-2]. The 92 step mesh was chosen to

test the quasi-static solution procedure. The results of three fully-implicit calculations

are presented in Table 5.20. A comparison of the 1000 step results indicate that

although there are large spatial changes in the flux distribution, several time steps

may be performed between discontinuity factor updates without causing significant

errors. The 329 step solution is relatively close to the 1000 step solution. The

normalized power densities and fuel temperatures for several times of interest are

given in Appendix C. In addition, the plots of the mean power density and fuel

temperature are given in Figures 5-14 and 5-15.

The quasi.static method was used to solved the 2-D LRA problem with 92 and 329

time steps. The results are shown in Table 5.21 along with a 92 step fully-implicit

calculation. The quasi-static method does lead to increased accuracy, but also to

increased execution time. The reason that the 92 step calculation does not lead to

a reduction in execution time is that as the time step size increases, more iterative
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work is required to compute the new shape function. Thus, the quasi-static method

does not provide a significant benefit for severe, super.prompt critical transients in

which small time steps are required for the calculation of the shape function. The

fully.implicit procedure is recommended for such transients. A comparison of tile

CONQUEST results with other nodal methods are presented in Table 5.22.

5.5.2 The 3-D LRA Problem

The 3-D LRA transientproblemismore severethanthe2-D problembecauseof

largerradialfluxtiltsand axialshifts.The staticcalculationsforthreedifferentmesh

sizesaregiveninTable5.23where thesmallestnode sizeisusedasthereference(a

comparisonofthepowerdistributionsaregiveninAppendixC).A comparisonofthe

staticcalculationresultsofseveralnodalcodesisgiveninTable5,24,

Thistransientproblemhas proventobe verydifficultbecauseofstabilityprob-

i lems. There are two causes of the instabilities in this calculation. The first problem

occurs at the external boundaries where the fluxes and currents are very small be-

cause of the large reflector. The difficulty occurs because the discontinuity factors

which are to be computed at the surface involve the ratio of the surface current to

the surface fluxes, which are both small. Round.off effects cause these discontinuity

factors to become absurd or result in an attempt to divide by a zero node.averaged

flux. This di_culty has been overcome by simply setting the surface discontinuity

factors to unity.

The other difficulty is that the corrected finite-difference equations for the reflector

nodes may not be diagonaUy dominant because of the values of the discontinuity factor

ratios. Simply setting the discontinuity factor ratios in the reflector region to unity

resulted in rather large errors in the core power distribution because the control blade

which has been removed from the core is near the reflector. Alternate procedures for

ensuring the diagonal dominance of the corrected finite-difference equations are rather

difficult to obtain.

By careful selection of the frequency of the discontinuity factor updating and a

relatively tight convergence criterion (10-4), a transient solution was obtained using
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, . |1 z' ' ¸' .'Fable 5.2()' A summary of the ('ONQ ES't results for '_-D LRA transient using fully-

implicit time differencing.

Number of time steps 329 329 1000 1000 Ref._

Time steps per D F. update 4 1 10;t < 1.4 i --
' 4; t > 1,4

,, .................. _............. ,,, ,,,, ,. ii,

Time to first peak (si 1,,129 1'429 1,438 1,438 1,,136

Power at first peak (W/cm 3) 5623 5598 5505 5490 5411

Power at second peak (W/era a) 807 804 798 791 784
Power at t = 3.0 s 99,5 99.3 99.1 98.6 96,2

Average fuel temperature
at t = 3,0 s Ill3 1113 1107 1104 1087

Peak fuel temperature
at t = 3,0 s 3042 30,t2 3023 3014 2!)48

(;PI! Timeb :iSe(:) ....................................163. 324 . 3,9.'" ........................811 7030,

"Shober's fine temporal and spatial mesh calculation [A.31
bDEC VS3100 M38

'Fable 5,21' A summary of the CONQIrEST results for '2.D LRA transient using the
quasi.static method,

Number0t;_time steps .......... 92a....... 92 -329 .........i(efl b

Time,s,teps per D.F. update ,, 1 1 4 --
_'Time to first peak (s) i'370' l'4g0 t,43S.....11436

Power at first peak (W/cm a) 5439 ,5589 5515 5411

Power at second peak (W/cm a) 743 802 80,1 784
Power at t = 3,0 s 97,5 99,2 98,9 96,2

Average fuel temperature
at t = 3,0 s 1154 11'21 1108 1087

Peak fuel temperature
at t = 3,0 s 3142 3074 3034 2948

::(_Pir Time _,'(sec) ..................... _ ....152: ..........186, 209, ..............7030,'...........
...........

'_Fully.implicit calculation, for comparison

t'Shober's fine temporal and spatial mesh calculation [A-3]
"DE(' VS310() _:38
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Figure 5-14: Power vs. time for the 2.D LRA transient l)roblem,
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'Fable 5.23: A summary of the C()N(_UEST 3-D LRA problem static results.

15 _, i5 7,5 , 7.5 5" 5

25(15) t,m ×12,5(7.5) em _12.5(7,5) cm

Nodes ( 1 $ (ore) 1056 8096 17952

D.F. (Tpdates 7 8 9
Outer [terations 21 34 ,| 1

Eigenvalue 0,996361 0,996391 0,996368
" ,,-0 ref,emax(node, i0) _-1.37 +0 '_

_(node,% ) 0.40 0.0,t tef,

tm.x(assetubly,%) !-1.17 _0,19 ref,

g{assembly,% ) 0,22 0,03 ref,

CP(' 'I'ime _ (see) 70, :.... 762. 1988.

"D I!:(, \'$3100 M3S

Table 5,2.1: A comparison the coarse mesh 3.D LRA problem static results.

.......... ...... (,()NQI_ES_, Q[iAGM"iRE l Q"V'ANDRV +
_v it

!z.tl (s.21
Outer Iterations ._')1 ')')... 35

. ,('q ........ ,Eigen value 0 9!1(i361 11a_t),lt)v 0 996,1,t

¢max( l|Otle,"* ' ",_) 1,37 ,,_L.(i2 --0.,18
_(t_ode,':_ t 0.40 0.45 0,08

CPlr Time" (secl 70, 311.¢

"I)E(' VS310(} M38
nActual exectttioa tithe: 15,t,7 set'. S(;[ ,tD/210 (D,P,), 1/,1 or}re

"Acutal execution tithe: Is,7 see, IBM 370/168
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the fo|h)wing 410 timesteps

e v
0 • t _ 0 5 ,_r,_, 1118

I.),5".tr,:I),6 Illms
0,6 t.i 0,7 2.5 Ins

0,_ _ t_ I)._ 1..5 xns

0,8 ": t -0.95 1,0 ms

0.95:_+t % 1.0 2,5 his
1.0 ":t,: 2.0 20 ms

2.0 _ t<: 3.0 25 ms
..... _.

Plots of the power and fuel temperature verses time are presented in Figures 5.!6

and 5_17 and assemt_ly-averaged' power densities, planar power densities, and temper.

atures at several tilnes of interest are given in Appendix ('.

A ctm_parison of the transient results ,ff several nodal codes is presented in 'l'a.

hie 5.25, Note that the Ql'ANDRYcalculation employed a very coarse mesh with

. C • |' " " '30 30 cm nodes. A static calculation performed with . ()NQ ESI using 30 (,_u

nodes resulted in large errors indicating that assembly-sized m_des may be the limit

for which the quartic polynomial approximation gives accurate results, Hence, the

quartic polynomial methods may not be well suited fi)r such applications ms super

nodal methods !G-t] which uses four assemblies per node.

5.0 The PWR Operational Transient

"['he previous benchmark problems which have t)een analyzed, while g_od tests,

represent relatively simple reactor Inotlels. In order to determine the accuracy of the

polynomial method, and the elticiency of the quasi.static method a more realistic

application is desired, The I*",Vlt operational transient discussed in this section was

introduced by Jacqmin id.21 fi)r analysis of a initial synthesi_ method. The reactor

is representative ot'a Westinghouse 1000 _IW, pressurized water reactor. The core

contains 193 fuel assemblies with dimensions of 21.5!tl , 21.591 , 360 era, The

radial reflector is explicitly modelled and the axial reflector is represented by infinite.

reflector albedo boundary conditions. The thermal-hydraulic feedback is performed

using the WI(;L znotlel discussed in ('hapter ,i. The complete description of the

reactor model is _iven in Appendix B,
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The reactor is imttally critical at :20 "'_, nominal power. Control rod banks (!

and D are partially inserted into the core, Static calculations were performed to

determine tile initial eigenvalue and power distribution using eighth-core synlmetry.

('ONQIrEST calculations were performed with the following node spacings:

. ,} c)(oarse. 1._!110 • .1 t, ...... _,11 20 cm

Fine: 10.7!t55 . 10.7955 - 10 ctn

' , . ,,|Ill t5 l0 t:ltt. 3,t_1,_ , 5 ,Very Fine r_ t",.. , -"

A sumtnary of the static results are presented in Table 5,26 along with a coarse

mesh calculation performed with QtTANDRY,From the progression of cMculations,

thf, tnaxinlttm error in the power of the finest mesh, which is considered the refer.

ence solution, is _,xpecled to less than 0,1%, The largest errors in the coarse mesh

calculation .ccur at nodes neighboring the reflector and are slightly larger than the

errors which occurred in the previous benchmark prolflems, The average error, 0,69

%, indicntes that the errors in most nodes, however, are quite small, The lower error

in the QIrANDRY calculation, 1,4 %, can be attributed to a more accurate solution

in the large radial reflector, The t( NQ ._,,.. execution time is roughly half that of

QITANDRywhich ind'ct ates the ,.fliciency of the non.linear tterattc, n scheme,

The transient is initiated by the rett.Jval of control rod h_nks C & D at a constant

speed of '2 ctns 4, As shown in leigure ,5.18, rod brink (' rea,ches the top of the core

at t it0 seconds while rod bank D ctmtinues its motion, All rod motion ceases at

t,_:_ 120 seconds leaving rod bank I) partiaUy inserted, The transient is followed until

t IS0 seconds when the reactor has nearly reached a new steady.state condition, A

reference calculati,m was performed with ¢'(.... ' " "' t ')N(dL_ESI lstng l/'l second shape.update

.... "_ second shape updates for 120 "2t L 180 secot|dssteps forO, t, !20 secondsattd lj. ....

and required approximately 177 lninutes of ¢'plr tilne. Additional cMculationm using

doubled times steps we,re performed with both ('ONQIrEST ,,nd QUANDRY. In the

('ONQIrEST cMculation the hs_untinuity factors were updated every time step and

required 64 minutes ,ff ('Plr time. The QIrANDIIY calculation employed its quasi-

static .ption id-3! and matrix updates were performed every other time step. The
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Table 5.26: A sumnlary of the results of the static cn.lcul_tion for the PWR Opera-
t iona_ Transient.

Computer Code (_NqiiES-ri _ (!ONQi'F[ST

Nodes (1/8 ((re) _10 ,_10 6156 23976

D.F. Updates -- .q 11 7
Outer Iterations 28 27 47 55

Eigenvalue 1.04551 1.04548 1.04523 1.04514

_rnhx(node,% ) - 1,4 -3.1 -0.,t ref.

_(node,% ) 0.5 0,7 0.1 ref.

tm,,x(assembly. %) -- 1.2 - 2.1 -0.3 ref.

_1assembly, % ) 0.4 0.6 0,1 ref.

...............('P 1' Time"...................( set") '- =1...........................8 l, S::;.{i,':......... .........796, • "'c40-.tl. --

"DE(' ' "\ $310t) AI:_S

!

QUANDRY calculation required 95 minutes of ('PU time. Plots of total power and

reactivity versus time for these three calculations are presented in Figures 5-19 and

5.20. The power versus time curves for all calculations lie virtually on top of one

another indicating that the solutions are temporaUy converged. The reactivity plots

are also very close with the differences being caused by cusping erects,

In order to show t.he etficiency and accuracy of the quasi.static method, a CON.

QIrEST calculation was performed with shape.update steps of 5 seconds and reactiv-

ity, thermal hydraulic steps of 1 second. The power and reactivity versus time curves

are presented in Figures 5.21 and 5-2'12. Exalnixlation of the reactivity versus time

shows close agreement over most of the transient. Perturbations occur when shape

updates are performed when a control rod is at a nodal interface. This is possibly

related to the cusping correction or is a consequence of the large temporal mesh. The

effect of these perturbations on the power versus time curve, however, are quincesmall.

A fully implicit calculation with equivalent accuracy requires time steps of less than

1/2 second, Hence, the quasi.static option allows a ten.fold increase in shape-update

tixne step.
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Figure 5-19: Power vs. time for the PWR operational transient demonstrating the

temporal convergence of the solution.
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Figure 5-20: Reactivity vs. time for the PWR operational transient demonstrating

the temporal convergence of the solution.
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Figure 5-21: Power vs. time for the PWR operational transient, large time-step quasi-
static solution.
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Figure 5-22: Reactivity vs. time for the PWR operational transient, large time-step
quasi-static solution.
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5.7 The PWR Coolant Inlet-Temperature Transient

Jacqmin [J-2] also introduced a transient problem which is driven by changing

thermal-hydraulic conditions of the reactor. The reactor model is the same as previ-

ously used for the PWR operational transient. The reactor is initially in a steady-

state, critical condition at nominal power of 3338 MWth, All control rod banks are

fully withdrawn except rod.bank D which is partially inserted (as in Figure 5-18 for

t :_>120 s). A transient is initiated thermally by a two.second exponential decrease

in the coolant inlet temperature, from 555 K to 535 K, followed by an exponential

increase to 555 K. The exact form of the perturbation is

Tinlet(t) = Tinlet(O)exp(--t/rl) + Tinlet(0) (1 -exp(-t/r2)), (5.1)

where rt = 2.0 see. and r2 = 2.206 see.

This transient is a good test of the neutron/thermal-hydraulic coupling since it

is driven by the changing thermal-hydraulic conditions of the reactor. The initial

critical condition of the reactor was determined for th,_ coarse mesh nodalization

using CONQUEST and QUANDRY. A summary of the calculations is presented in

Table .5.27. The CONQUEST and QUANDRY nodal l_owers are compared with the

QUANDRY calculation being the reference even though it :,s not spatially converged,

The errors in the power distributions are expected to be similar to those of the initial

static conditions of the PWR operational transient. A comparison of the QUANDRY

and CONQUEST power distributions are presented in Appendix C

A reference calculation for the transient was performed with CONQUEST

1/16 second shape-update time steps and required 52.1 minutes of computation time.

Discontinuity factor updates were performed every tree step to ensure an accurate

solution. Additional calculations were performed with doubled time steps (1/8 sec-

ond) with CONQUEST and QUANDRY. The CONQUEST calculation had discon-

tinuity factor updates performed every time step and required 22.6 minutes. In the

QUANDRY calculation, matrix updates were performed every other time step and

the calculation required 27.2 minutes. All calculations used a convergence criterion
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"Fable 5.27: A summary of the CONQUEST and QUANDItY static calculations for

the PWR coolant inlet-tentperature problem.

.... (+ONQUEST ....QUANDRY

D'P' Update+ .................... 9 ......'+ ........-- ......
Outer [terations 25 28

Eigenvalue 1.048269 1.048223

em,Lx(node,% ) -2,2 ref.

_(node, %) 0.64 ref.

_,m,x(assem bly,%) - 1.6 ref.

....._(assam bly, % ) .... 0.43 ref.
CPU Time" (see! - ....85.- !94'..................

_DEC VS3100 M38

of10-3 Plotsoftotalpower and reactivityversustittleforthesethreecalculations

are presented in Figures 5-23 and 5-24. The fact that these curves lie virtually on top

of one another indicate that the 1/16 second time step is temporally converged.

This transient problem was also solved using 1 second shape-update time steps

with reactivity/thermal.hydraulic steps of 1/8 and 1/2 seconds (requiring 9.6 and 7.3

minutes, respectively). The power and reactivity plots are shown with the reference

calculation in Figures 5.25 and 5.26. Since this transient does not involve control rod

motions the flux shape changes very slowly. Thus, the calculation with 1/8 second

reactivity/thermal.hydraulic steps closely matctles the reference. The 1/2 second

reactivity/thermal.hydraulic step calculation, however, has significant error in power

and reactivity. This occurs because the transient is driven by the changing thermal

hydraulic conditions of the core. The 1/2 second update of the thermal.hydraulic

conditions is not sufficient for this relatively quick transient.

The quasi-static method is well suited for thermal transients such as this coolant

inlet-transient since the shape function is slowly varying. Since the effects of the

changing thermal-hydraulic conditions on reactivity, and therefore the amplitude

function, can be determined without computing the shape function, we obtain a

substantial reduction in computing time over the fully-implicit procedure. In fact, for
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this transient, a fiilly-ilupiicit ilieihod reqliired lhernial+hydraulic linie ,_ielis of ntlout

1/8 second to provided iic_'iirlite rr'.,liiiis ev_ii thouKh ltie ilti× shape cliaiiKe,,l slowly,

b.8 Summary

In this chapter ihe quasi.staiic ll(llynoluial nfJdal iuettlod was applied lo several

benchnlark problems and the restilts compared to reference solutions, lit additloli, two

addi _lonal PWIt probienis were itnal,,'zedto deterniino itle accuracy _lf the niethtiii for

more realistic liroblenll. The results deniolistrate that the polynoinial tipproxiniation

yields results which tire ms accurate as established nodal tilettlods. In general tile

execution tiinem for fu|ly.inip_cit _'alculations were sligtitly shorter than those of the

Analytic Nodal Method, When the quasi.static method is used with larite tinle.step_

li significant reduction in coniputation tithe ililiy be _btained, Tile LItA probleni

results demonstrated that the quasi.static ziiethod does not provide luuch heneflt for

super.proinpt critical transients because of the large changes in the flux sllape,

The analysis of tile TWIGL benchlnark problein demonstrated that the disconti.

nutty factors need not be updated every time step if the flux shape does not chan!le

significantly throughout the transient, Also, the use of the adjoint as ti weitlht func.

tion ftir quasi.static calculations was _hown to lie less inipiJrlanl than its use fi_r

point kinetics calculations because the shape function is updated periodically, The

:i.l/ LMW henchillark showed the effectiveness of the quasi-static inettlod for prob.

lenis with and without thermal.hydraulic feedback, In addition, the simple control.

rod cusping correction scheme was shown to be very effective lind the nature of the

lhernial.hydraulic/neutronics coupling was studied,

In additiott to the problenis presented in this chapter, several additional problems

were analyzed, Ttiis includes hoinogenous 4 and 7 group problems for which the

analytic solutions could be obtained. Also, Cabral's thermal-hydraulic lnodel was

validated by tile used of test problenls given in reference IA-I!, All results closely

matched the reference solutiotls.
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('haIL_ter(_

$UMMARY_ CONCLUSIONS AND

RECOMMENDATIONS

0.1 Overview of the Investigation

The .hje_'tiveoftilinthe_imwas tiledevelopmentofa qua.i_stati_"nodalmrthod

f,,rtiler'tlicieutsolutiouoftime*depeudeul,multidialenwioual,few.groupfleuvro1_dif.

tt=lStL_lte_tuati,_llS, rhe method pla¢'esn,_ restriction ,in tile uumber or stru¢'tttre c_f

,Ollergygroups,*rheuodaliuethodalso)=u,)dehtilepresenceoftilue.v_ryiuznetltroll

sours'caand iu¢'ludestwo differenttherulal.hydr.uli¢"models,

[u ('hapter 2, tt rigor_us set of static equatious having the finite.dift'erenc'e form

was derived. Siuce the tiuite.differeu_'e approximation is accurate only for small mesh

sl)ac'iugs, dis_'ontinuity factors were iutrodltced leading to a set of equatious which

are formally exact. The discontinuity fac'tors are ,'omputed during the calculaliou

using nc_n_lill_,ariteration Slt_'h that the e,)rrected fillite.dill'erence schetlle matches the

s,,lutlon ,,fn polyuoltlial uodal method, which providws accurate results fi_rlarge mesh

spacings. "rhe i_olyuoiuie,l method is t_f variable ,_rder allowing quadratic through

quartic ;tpproxinlatiollS. The expansioll _'oefticieuts c_fthe polyuoll=ials are ,_btaitted

fro=n c,_==tinuityand weighted residual _:ottditiotts,

lt_ ('l_apter ;I, the transient uodal _'quatious were derived aud the details of tile

quasi.static Ixtethot{ were presented. First, the trausieut fittite.difference equatio_ls

whic'h are eorrec'te_l with diseoutinuity fa_'tors were ¢_htained. The polynomial tlodal

method was then applied aud, by the it_troduction of prontpt and delayed frequeu-

_'ies, a form identical to the static' equations was .brained. Next, the quasi.static

P,pproximati_)n was applied to the nodal equations by factoring the flux iztto sh_q)e
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and amplitudefunctions,The results,)ftlzederivationwere preciseniathenaaticM

equattot_, for tile point killetic_ paralneter, ill terms _,f the ,q)erator_ _t" thr, nodal

luet hod,

The nutnerical properties and soiutioll metilo(Is fi}r tile static and trltllSient e(|uao

tions were presellted ill (_'hapter _|, First, tile properties of the _tatic .qllatiolls were

discus_ted &nd inetho(ls t)f solving ei_envalue, golirce, criticality and adjoins |)rot)lenls

were e,'(&lnined, Considerations ill tile selection of the Shell required .), the tillte

integration of the spatla||)'.dependent transient equations were presented, '['he so!u.

lionnietho(hlforthetransiente,luation_weredevelopedtohr.similartotheaolution

Inetho(t_ used for tile static equations so thM the nots.linear iteration Jchetlie ii|a_'he

easily applied, Finally, an adaptive procedure for the solution _)f tile point kinetic_

f.tlllatimts was pre_ente¢l,

A p!)hcations of t he qui_si.At at it" I_olynunlial liter itod, elll tl(}(lie(| in t he ('0 N _ i TE_T

{,'(ilia, w_,re deln()llStrated ill ('hapter r), The stati(, and trttnsient teaults for three

benrhluark prot_lemsI_nd two additional PWR problelntl were presented, Tile accu.

racy tff tile polynonlial nodal llletllod was fou|id to be conshltent with establisiled

nodal methods having comparable execution tittles. The application of the quasi.

statit' method, tlowever0 resulted in substantially reduced execution times for most

I)rot)letlls, 'ri_e atialysis of tile LRA transient problelu _howed that tile quasi.static

tueth(),l ,lees uo! (_ft*erally a(lvatitage fi)r prompt super.critical ira}talents ill whicil

tilt ltux shape exhibits large, rapid ctlallges, Stability problems were encountered in

tile 3.D LRA trallsiellt prohleul,

e!,2 Conclusions

Tile al)pli('ati(,n ,)f tile lmlynomial nodal tnetht)d has lead to the h)llowiug gelleral

con c Iu si_)ns:

1. The quartic polynoulial uo(lal tnethod provides accurate results. The errors in

normalized l)Owt.rdistributions are comparable to those of other nodal tactile(Is.
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2,I'hetum.|ine_riterationscitemereducesthestoragerequirementsAnd leAd_to

eflicien| _oiutions, No di_culties were encotzntered ih generr,iizing the .on.

linear method t. trnnsient c_ieul_tion_, _t_bility probleuzs, however, were en_

countered in problems with l_rge reilertor,,

3, t'he t_l)plicatit)n of the quasi.static scheme sul)_tsntially reducea the computr_.

lion ti|nes of many problema when eompnred to the conventional spAce.time

neutronicm with fullyoimplieit proeedureA.

4, In problems involving thermal.hydraulic feedback the qua_i-Jtstic method al.

lows the effects of changing thermal.hydrAulic conditio.t to be incorporated

into ttw reactivity without h_ving to update the _hape function,

_, "['he quasi._tr_ti¢ method does not lead to _ _igniitcAnt reduction in eomputstio.

time for _evere lranlientJ in which tile _hape functi_m ch_.geA rapidly, In the

calculation of severe tranlietlta all increts_e ill the shr.pe update time step results

i. _.suhsttustial incresse in the iterative _olution time, The fully.implicit method

i_ reconl|nen(led for such transients,

6.a Recommendstion_ forFuture ReHarch

Several issues enc,mnt_,red through tile ,',torte ,,f this inveAtig_tion remain unre.

_)lvt.d _nd are therefore re('O|ltntended a_ l)os_ible reset, rob _r,._,

t_,;I,1

The iter_tive method used fi)r the inner iteration_ _)fthe static _nd transient nodal

||wlh_)(l_ i_ the cyclic ('heby_hev s_t|li.itert_tive method {('('Si), '['h_ c_)nvergence ,:ff

the ('('St method can be guaranteed if tile coett|eient m_trix i= diagonally domintmt,

l:tec_use (,i'the intro_lucti_)n (_fdiscontinuity ftu:tors i.to the flnite.dHt'erence eqUl_tions,

however, the di_gont_l domin_.ce caunot t)e guaranteed.

eIn an attentpt t() f,)rce the corrected tinite.(l|fl'er,nce equstions to be (l_agonally

dominant, Aragone_ and Ahnert [A-4I have proposed the used of modified diffu.
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(_,:|,'2

'I'h_' l)olyu(,_nial n,)dal u_th,)(l ,'ml),.lied iu ('ONqI!EST ('au haudl_,any nunfl)_,r

or stru('ture of _n_rgy groul)s, The henchmarking of the method, however, involved

only t wu.group proi)l_ms _nd hoinog_uous ,t and 7 groups problems. The analy,i_ of

problems involving mor_ than two energy groups would prove interesting,
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li,3,3

lii itie ttltlllicitti!lii f_f lti_ iliiti_i.iililif" liiriti_ll! i_ ilt!_hlt,lii_l ilivolviii! thrriiilll.

hyflrlliilii _feedtllick ii wlt_ f_liliil iiilii lti_ lhetiiiill.hylltiiulil • t'iili(litioiiM _f ihe t!,llci_Jr

iliiilt _e lililittleii llilifr f/_ilUr'iiil )' llltin ihr, _liilill, fliilctioii ll! /eilt_¢t i'liillltt_i iii ilia'

renrli_ii) ', Fi_r coniliiic_i_il iheriiilil.ti_'itrltulit • ili_.l_l_ ihi_ liiii) _ required ,,liihllttllli_i

cilililiiiiAiiiln iilile, Meit-_dn _f ilrcltlitllilil the liiefiii_l.tiyiltiliiii_' e!lUtllilili_, pt,rhllit_

by the lt_l, _!f "feedtiiick ciielttciellis", _tiitlihi h_ iiiwliii!_i_l,

_,3,,t

lii lliitli)' .1' ihe trilnl_ii,ili i'illculiiiii!li_ it wil_ lliilllil ililii the ltliiclJiitlliiiii)' filq'i,_r_

olil), lieeil ill ile liiidllteil when piilliiticttlli ctiiilile_i in lii_ _titititil tltix stititlr i..i, llrPi,

The ille ill' ihe lir_,Ciillifiiitelt ili_cOlilililiity t'lici_ir_iwhich tire tlelil i'_llilttllii, tit ith,

t_iill, d lleriodii'tllly iinilil ti t!tlil_ !o(tk.iil i llr_iceitiire, Iliit)' ilii'retlie lhe l,iilliliillltiiiiliill

etttcit,,ltc)' lif itie lrilriii_,ili !_tllciilttiiiiil t_)'_liiilillltiiitl! lhe llec_i_lity lif litlilliiili t.
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Appendix A

THE QUADRATIC TRANSVERSE LEAKAGE

MOMENTS AND COEFFICIENTS

In this appendix the transverse-leakage coefficient and moments required by the

weighted residual equations will be derived. The transverse-leakage moments for

node (l.m,n)in the _l.direction are defined by

SIren _ ful+t SIren(g.p = _ wp(u)__u , _) du, (A I )
4U!

where wp(u) is the weight function. For moments weighting we use the first and

second order expansion functions given by

i

\ h_ -2' (A.2a)

()' ( )w2(u)=3 u-,Lt u-ut 1
• - 3 + (A,2b)

The transverse.leakage moments are determined by assuming that its shape in

the u-direction can be represented by a quadratic polynomial. The coefficients of the

polynomial are obtained by requiring the quadratic approximation to preserve the

transverse leakage in three adjacent nodes. Within the core interior, the quadratic

transverse leakage which is fitted to the three adjacent nodes is used only for the

central node. Nodes located on the reactor boundary, however, do not have nodes on

both sides requiring that _ biased quadratic fit be used. In addition, a fiat transverse-

leakage approximation may be used at the reactor surface.
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A°1 The Quadratic Transverse.Leakage Approximation

For the quadratic transverse.leakage ttpproximation we represent the transverse

leakage by

where the u.direction node.averaged transverse.leakage for node (l, m, n) is given by
ii

elm. I [ul* t :,ran,
-- j. or, (u ) du,

and the quadratic polynomials are

_" =% bu' /_-+%'k,_ ' (A,4b)

Substituting of the transverse.leakage n.pproximation, Eq, (A.3), into Eq.(A.l) and

performing the required integration gives the following equations for the transverse

leakage moments

,_,_,,,. 1 [ -t¢l-l''" _(b,], ;- + + - +c + _Lm._-g_,t = 1"2 (b_, .- % ,,_gu , b,,, cu, ,_,) g,,
(A.Sa)

+ Ol+l,mn]

+(b+,+ c,,,) . v, J,

S,..., 1 [ :I:,,_., - + r+ ,¢l,_n + c+,¢l+t,m,_] (A.Sb)_2 = _ c_, - (%, ,,, '_"_,, _I-_ '

The quadratic polynomial coefficients are obtained by requiring the transverse-

leekage approximation to preserve the average transverse leakages in each of three

1-1
adjacent nodes. This results in the following constraints being placed on p_,, (u) and

p_+'(,,):

I L;, ,-,h__""7-, V,,,(_J,h, = I,
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| /ul+t . |
,',,c P"' (_) du = O,

] /ut,a }_|

1
/"' ,z_l(u)du =0,- t ul

/_I; t ,, ,,, ._,

]. /ul+l i.l-- V,, (u) du = O,
hL,,,,,

I _"'+' _+t(,_) du = I.h121,,,+,P,,,

Integrating Eq. (A.3) over the three adjttcent nodes and applying the above constraints

gives the quadratic coefficients

hi h -'- hv )

at" = th., + h + ht,)(hm +-h)'

2h(2h + ht,)
b_,= -

(h.,-_- h + ht,)(h., + h)'

3h:

c_, = (hm +-h+'h t,)(hm+ hi'

h_h+

(h..+h+h,)(h+:h,,)'
2hi h., - h )

t,+,,= ............. __,
(h,,,_ t, +h p)(h + hp)

.Ih2
,+

c,., = (hm * tt + hp)(h _ hv)'

where

h,,, = h_- 1

h = h_,

hp , l+l: tl.u '

The transverse.leakage expansion coefficients are functions only of the reactor ge-

ometry. For equal.sized nodes, h,, = h = hp, the coefficients are consttmts given
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A.2 LHS-Biased Quadratic Transverse.Leakage Approximation

For nodes adjacent to the external reactor surface, Zerkle {Z.1] introduced a biased

quadratic transverse.leakage approximation. The transverse leakage in the u-direction

in node {l,m,n ), which is on the LHS reactor surface is given by

where

t+t , + f_,u- ul ,_. u- jut_,_,/,,i = ,,_,+ b,,,_ h'-7 + _''' hL J '
(A,7a)

._ (u) = a++ + b., + , (A.Tb)

Substituting the transverse.leakage approximation, Eq. (A.6), into gq.(A.1) attd per.

forming the required integration gives the following equations for the transverse leak-

age lllOlllents

qlrnn _._ [ 4 ,- _¢l+l,,nn + b.+ _ ,¢ ,++) qtmn

(A.Sa)

+(b:,++

SI,.,, 1 [(._ _;,t+l,,.,, c _ (._+ _0_,.,, e++ ¢l+a,_.]
g_,a = (;-'_t'",'" _" .....( _, + ,,, " g,, + ,,, _.g_ j. (A.Sb)

The quadratic polynomial coefficients are obtained by requiring the transverse.

leakage approximation, gq. (A.3), to preserve the average transverse leakages in each

of three nodes (/,re,n), (l + l,m,n), and (l + 2,re,n). This results in the following
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constraints being placed on p_,,.t(u) and 01_2.,,, ("):

.--.1 [ 'q*t l_t 0
hl,,,,,, P,,, lu),tu :

| ful.l ./+it---- v,,, _u) du = 1
hl+, ,,,,,.,

I. /ul,_ 3+I"-- v,,, (u ) d u = O,

-- p,,, u ) du - O,

--'- t-',,a tu) du =
hl,_ _,,,,,,

i [ul+_ t+2(Pu' u j du = l,
h_+2 ,,,,,_

[ntegrating Eq. (A.6) over the three adjacent nodes and applying the above constraints

gives the following quadratic coefficients

h [h(h + 4h;, + 2hop) + 3h;,(hp + hpp)+ h2pp]+

%' = - (h + hp + hpp)(h + hp)(hp + hm,)

2h [h(2h + 6hp + 3hop) + 3hp(hp + hm,)+ h_p]
b_+, - - .....,

( h + hp 4" hpp)( h + hp)( hp ._-hpp)

3h2(h + 2hp + hpp)

',t (h. + hp . hop)(h ,- hp)(hp -t- hpp)

++ _ h(h + hp)

au, .... ( h ± hp + hop)(hp + hpp)'

2h(2h + hp)
b _- + _ _

u, - (h + hp + hop){hp + hpp)'

3h 2

Cu' - (h + hp + hpp){h l, + hpp)'

where

h = h_,

hp = h_ 1,

hop = h l+2
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The transverse-leakage expansion coefficients are functions of only the react()r

geometry, For equM.sizecl nodes, h = h I, = bin,, the ( )eflt_tents are constants given

by
7 1

b,,__ = 3, but
1

A.3 RHS-Biased Quadratic Transverse-Leakage Approximation

Similarly, the transverse leakage in the u.direction in node (l,tn,,) which is on the

RttS reactor surface is given by

where

p,, (u) -- ,,u-,-_b_,- _ + e-- . .,,, _, hl' (A 10t))

Substituting the transverse-leakage approximation, Eq. (A,9), into Eq.(A,I ) anti per.

t'ornting the require(l integration gives the following equations for the transverse ieak-

n.ge lnollleIlts

r
= "- /*-tlulS'l"t"121.(b_", .¢-.c,,,)L_'t-_ut,,.,, _ (b_,, +-b,_,...._- Cue¢"ct. ) '-'_u

(A,tta)

+( bl.,.....+ '". ) ' _" 1'

_""'" 1 e,,,,¢_ii_"""( ,,......)..._,, .¢_, (A 1tb)'-'._u2 60 t'u_ t,t Cu_ ' '

The quadre, tic polynomial coetlicients are obtained by requiring the transverse-

leakage approximation, Eq. (A.3), to preserve the ;_verage transverse leakages in each

of three nodes (l,m,n), (l- 1,re,n), and (l- 2,re,n). This results in the following
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conslrainls being plRcedoil p:.il(. }__ I_ d _ _ _ ,, , L" _ _ I _

I /"t, I t)i,i_(tl ) dlt :_ tI,
hl, .,,,,

1 /'", ;-l(!,;, u),tu _ 1,

I f"'i' ; ,p,,_( u ) du :_-:i),

I_"_..,., _,,., (u) ,t. = O,

l [u, t ..--.-- ,% (ri du _:I),
hl;-l ,,_,,.,

I f""' /'_(u) d. _ ].

Integrating Eqs. (A,10a) and (A.ll)b)over tile three adjacent nodesarm apt)lyinKthe

above c)nstralnts gives the following quadratic coeflicientt

h [t,.,,.{t,,.,. ,. 3h,. _ h)+ t_.,(3h,._ '2h)]
:= {h,,,,,, ,. h,,,, h}(h,,, +-h }{h,,,,. +-h., )

2h.[a,.,.(/_,.,,,,3h,,)._:_h_ h_)]

3h2( ta,,,,. _-2h,,, t. h )

- )ih,.,.
h h m,.

ttl In ,

2h(h,. h

b,_, (hm,. +.h,,, _ h )(h,,,,,, + h,,,)

3h_....

where

h..,. _:_h_,F_,
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rr,n_ Prse.te_k_Ke r'xp_ll_ioll e_e|hClellt_ ttre [|lnctioll_ oi" on]v the rettcf.r

Keometry,For equal_ized node_,h,.,. ::.h., :- 1_,the ,'oellieieut, are COII_|_II|_KiVf_ll

by

_1.t !i ii

1
i_ _ ,_ _ [ _ _)

A,4 The Flat Tran.verse-Leakase Approximation

lu the fl_t transverse,lee,k_e _l)l)r(_xim_tion.the trsnsverse.le_ks_ein the.,

direction is_ssumedi_ be constant_u_de(lu_l Io i l_euod_°_ver_ed u_direetiontrout.

v_,r_eleakage

_ itl_ ' #U '

Substitutingoftheflattrsnsver_e.leak_Ke_pproxim_tionintoEq.(A.I)_nd perform-

inktherequiredintegrationreve_,l_thatfort}li__pproxiz1_ationthetransverse[e_,k_Ke

nlOlllelll_ &re zero

_'" ., (A 13)
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App_'ndix B

PROBLEM SPECIFICATIONS

B,l The TWIC;L 2.D Seed_Blanket Renctt_rKinetics Pr,,blem

B,2 The LMW LWR Trannient Problem

B,3 The LRA BWR Kinetics Benchmark Problem

B,4 'rite PWR TrKntient Ptoblemt
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B,| The TWIGL 2-D Seed.Blanket Renctor Kinetic. Problem

(_e,m|P! rv:
.__

Yt ¢111) [ _++

:J+= i)

/
_O " +- ........................... -............." .........+......... -++ "_

_4 ............ i11+ ........ t )itl

:| ')m

(l ........... '...... ' ..... ..... +4),

il 34 _11+ 80 X( +'li_)

14_



(umposttn)n (,roup,9 i -_ ,c

l l l,.l 0,0[ O.OOT 0,0!
'_= O,,i O,15 [),.'_

'2 1 L,4 (),01 0'007 O,Ol I

1'_ O,4 O,I,_ O,2

;_ t L,3 o,oos_i;00_ i)_-i=-=-t
,)

-_._-_a__:.....=....O,_J 0,0,_ O,O_l

\t = L,O

\;t:_0,0
t, = 2.43

t' t l ' iO_'t'lll/5

Delavt.d Neutron Data;

In composition 1,

Step: s" ....0,0035; t _ 0

_i"

Ramp: _'.,,,_(t)_ ..,,,_10111 0.11667t} t < 0.2
E,,_(O}{0,97666 } t ,-;,0,2
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B.2 The LMW LV/R Transient Problem

¢leometrv:

Quadrant of Reactor t!orizuntal Section

,t_( , lii )

110 ....-" .................. _ LJlII"-- 7-- ...... "< ........ _--i _, = 0

L___

L._2_TO

30
Rod _'o(,i up 2

0 10 30 50 70 90 110 X(¢ill )
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Reactor Vertical Section

Rod Group 2 Rod Group 1

_oo........, ,, _ ..............._,,,,.............
2 4 [ 2 2 4 2 4 2 2 [

4
............... ,,J

180

dz 2 ._--2 dx 2 2100 --_k_ '![:

69 "- "

Group 2

_ i i ill

20 ...........
4 4

X

Initial Rod Positions x Final Rod Positions
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Material Properties:

Composition Oroup,g Dg ,o l_'_lg E21_ag

(cm) (era -1) (cm -I) (cm -t)
1 i 1.423913' 0.01040206 0.'006477691 0_(}i755.5,_.........

2 0.356306 0.08766217 0,1127328

'2 i ' 1,423913.... 0.010952"06 0.006477691 010175555 .......

2 0.356306 0.08766217 0,1127328

3 ........ 1 1.425'611 0.01099'263' 0.007'50'3284 .....0:01717768

2 0.350574 0.09925634 0.1378004

3 ......... 1 1.63,1227 0.002'660573 0.'0 '0.02759693

2 0.264002 0.04936351 0.0
......................

\1 = 1.0

l,,=0.0
,)

v,, - _.25 × 10Tcm/s

v2 = 2.5 × 105cm/s
i

Delayed Neutron Data:

Family, d /3a Ad (s- 1)

i 0:000247 0".'0127

'2 0:0013845 0':'0317

......3 0.00122"2' 0.115

-_ 0.0026455 ....0.311

...... ._ ' 0.'000832 1.40

6 0.000169 3.8'7
.................

ldl = 1.0

\_ = 0.0, d = 1,2,... ,6

Energy Conversion Factor:

3,204 × 10-11J/fission
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Perturbation;

Rod Group 1 removed at 3.0 cm/s, 0 _ t _ 26.666 s

Rod Group 2 inserted at 3.0 cm/s, 7.5 <_t _ 47.5 s

WIGL Thermal-Hydraulic Parameters:

C1 = 2.46 × l0 s ergs/g/K

(.'¢ = 5.43 × 10T ergs/g/K

pl = 10.3 g/cm 3

Wo = 2,2 × l0 s g/s

ho - 2.71 × l0 T ergs/ctn2/s/K
.4h = 2.59 1/c,n
U = 9' 0B.:'.2 ",: 1 ergs/cm2/s/K

l'_/(t_ + i')) = 0.559
r = 0.0

OpeH

= 1.60 × 10z ergs/cm3/K
Pressure = 1.53 × 10z Pa

Coolant Inlet Temp, = 533 K

Initial Power = 184.8 MWth (quarter-core)

Macroscopic Cross Section Derivatives:

OE OE OE

Parameter, E Op-'-__ _ O_i,
-' +0.41 -8.0 × [0 -5 ....... "6.6 × i0 -8DI

D_ l +2.7 -1,3 :_ 10-3 -2.6 × 10-8

E,_ +2183'× 10-3 '+3'.O'x'lO "_ '+3.3"× 10-r

E,2 +1.4 × 10-2 -8.2 × 10-s -3.7 × 10-z
,,, ,, ,,, ....,, ,,, , , L , | ,,, , , ,' L'

vEf_ +0.0 +0.0 +0.0

_ vE12t +4.132 :< i0 -2 -2.017 × i0 -s -2.43 _<10-8

r,j .....j0.o ..... +o,o.... +o,o
E/2f +1.7 × i0 -2 -8.3 × i0 -s -1,0 × I0 -_

, , . , ¢ ' , , ,,,,. ,,,,

E21 -,-2.4 _'10 :'2 ..... -1.5 × 10-_ +8.5 × 10'-s
............ , , ,

'tZero for reflector materials (composition # 3)

po = 0.7961 g/cm 3

_'Io= 533 K
T_o= 533 K
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B.3 The LRA BWR KineticsBenchmark Problem

Geometr_

QuadrantofReactorHorizontalSection

y (cm)l Cg = 0
!

165

5
1:35 ..........

120 3
t ,,_,i ,r

105 ......i.............. r--n

d"-_ =0 2[ 2 i R o
! L..-J

75 ---- -------

1 3

0 15 75 10,5120 135 165 x (cm)

d_---tg= 0
dy
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Reactor Vertical Section. !j = {}

z (cm)
_ _ 0

..... , ............

360

5

330 _ ' ............

27O

240

't_---Ag"_ 0 _g = 0
d_

180 2 I 2 3 5

120

90

0 , _L,,,, • , _,,,t: L " , __.:

5

0 ............................ _ x (era)

0 15 75 105 135 165
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MateriM Proper,!:i_s:

.......... - .... _. _,._, ........ ...... ,_ _ ........

Conlpositi'0n Group,g I)_. ............_,.,._ vE/a _..21
(cm ) (era- x) (cm -i ) (cm- _)

...............i ........... x .... t.25s 'o,oosasa o,o646oa010z_33
2 0,211 0,1003 0,1091

2......-......: ....'i .........1.2_8o.oo7i81" 0',004609 0.02767
2 0,i902 0,07047 0.08675

.................................. L ........

3 .........................I 1,259 0,008002 0,004663 0,02617

2 0,201)I 0,08344 0,I02i

4 ...........1 1,259 0,00'8002...... 0,00466;3 0-_{)26i7-

2 0,2091 0,073324 0,1021

5 1 1.257 0,0006034 0.0 0.04,54

2 0,1592 0,01911 0,0

Axial buckling of l0 -4 for all compositions in 2.D problem.

\1 = 1.0

\2 =: 0.0
v =2.43

_'t = 3.0 :-, 10r cm/s

t,2 = 3.0 ><10s cm/s

Delayed Neutron Data:

Family, d /3d Ad (s- t )

1 0,00,54 0,00654
2...... o,0oi087 .......1,35'

................... - .

\al = 1,0

\a2 = 0.0, d = 1,2

AdiabaticFeedbackD,at_a;

a 0

a_ Z/#(r,t)4_(r,t)= _T(r,t)
g=l

...._(r,t)=E._(r,0) 1+_ vT(r,t)-

where

_ = 3.83.._10-11Kcm a

_,= '2.034. 10-3K -1/2

To= 300K
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Ei)cr_yConversion Factor:

\-"E!_(r,ti%(r.t)drPower= _ , ,_
,:o,,_=I

= a.204 - lO-ll,I/fission

Transient lni till ('onditions:

Mean power density at t = 0: 10-(_ W/cm a

Fuel temperature at t = 0: 300 K

['cr!ttrbation:

a.D: Control rod (R) removed downward at speed of 150 cm/s

2.D: Control Rod composition (R)is given hy

v _ 1-0.0606184 ,:t t <2.0s

E_(t)/,.,a210) = '[ 0.8787631 t > 2.0a
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B.4 The PWR Transient Problems

(;comet rv

Quadrant of the [((,actor, AssemI.)lv (Iilnensions 21.5!)I cm ')I "(• • . ,;),)i (,Ill. ill [!nrodded

t ) ) )- (t * , )Planes, (omposltmn #16 is Replaced by ()ml)OSition #'i

y(cm)l O_ =: 0
/

18,1,,) .......

I0 I0 I0 I0 1'2 13 13 13 13

" ....... ...................... ]:i ,

7 7 ,5 :) 11 I() 1'2 13 13

............... 1111 II I II Ill I I I II ,ITII A ......... [111

16 !) 1 ,"l 5 (1 11 L5 L3

(10_ 3 i 4 1 4 1 6 14 13
(Ix := 0 'l>t= [1

................. I] I I1[11,11 Z: I1[ " " : IIII]lrlJ:JJL_ II

16 ,t i 3 16 4 5 11 14

..... " ...... III I IIII [11 II II Illl[ll I I I I . _..

4 l ,t '2 :| I 8 5 1,1

1 1 l(i ,t 1 ,t l 5 1,t
..........................

4 1 ,i 1 ,1 l !1 7 14

'_ 1 ........... l I II II I1[ IIIII I Ill : : -'" _ LJ_ IIII I[ [ I II II I11} : II III u[ ....

16 .t l ,1 16 :i 16 7 1,1

183.5 x(cm)
0 (lO_ 11

dy
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('onirol liod Bank D &"(' Locations and React,Jr _,' rticM Se('''tton

y (cni)
/

183,,_ - - ......... - .......

< _]11111111 " " ]1 iii ..... ij _ illl)[

C
| I ]UI litit II Illlln71

................ |1111!|7.............. = in_urlln_l

Di D

c
--- 11ITIII [ _ -

n .........D *=....
0 _ _ x trint

0 183,5

z (tin) f illtiniie water reflector
300 ........................-- --- -

300 D D I C

240 } "-"
dt_ili I
,tl !

180 !
|

I
I

I
!

120 !

!_
I
I
I

60 -

{) ...... ................ ..................................._ l {Clli)
0 infinite water reflector 183,5
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,!. 0,001,184,_ 0.031 t

:1 0,001222 O,115

11,II(i0_32 l,,iO

'} ,,
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WI(;!, Thermnl.llrdrrttlli(' Pnrnm_,ters:

('! ')41! I0n errs._ l'_
('_ = ,_.43 li)_'er_s-'Ki(

If', _')') I0n

hr_ = 2.71 , l0 _ ,,r_i/t'm _ ._1(.
o,t_ = 2,'5._l_cm

r -_0,0

_ 1.80 • Ill t rrtl_/rm a K

('ool_.o.t Inlet 'l'_t_l). _-_.')33K

[t_itinl Power. 1_,t._ MW,n qttartero_-orel
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TR,XNSIEN'r _I: [_mlMotim_ +l+rlxnsientPerturbation

Rml ht,,nks('&:D areremove,lat+_,+,elocilvof'2_-m/s

z (cm )

-- F-c DJ D
,q60 +-_ .................... ,........ ...... ,, , ++

I i
¢ I

o

,..,// t ii .................

in _- : L__

is

240 _ aI
m i

L20

o

0 .......... ; l .... '"' ...... t (+Pc)I | 11 I | llltlll I _ I ..... • II | I I _I ]ll_- 11 _

() I+(I 1'20 1_0
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TRANSIENT t_:2: ('_ml_.nt: lnlet.Temperttture l'erturb_t_ion

"File co,:_ltmt inlet tempvrnture is vnried uecordint_ to

Tinle tlt):-_Tinle ttOlexpl t rl) ,-Finle lI(}){l _,'xp( ....t _r_})

where

_'1= 2.0 s
'} "}fir

Control rod positions are the sp.me ns for trtmsient _1 for t :2 120 s,
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Appendix C

SELECTED RESULTS OF PROBLEM ANALYSES

Figure C-l: 3-D LMW problem without feedback, comparison ofinitial static
solutions.

Figure C-2: 3-D LMW problem with feedback, comparison of initial static
solutions.

Figure C-3'. 2-D LRA problem without feedback, comparison of initial static
solutions.

Figure C-4: 3-D LMW problem transient problem, normalized power distri-

butions and fuel temperatures.

Figure C-5: 3-D LRA problem without feedback, comparison of initial static
solutions.

Figure C-6: 3-D LMW problem transient problem, normalized assembly

power distributions and fuel temperatures.

Figure C-7: PWR operational transient, comparison of initial static solu-
tions.

Figure C-8: PWR coolant inlet-temperature transient, comparison of initial

static solutions.
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3-D LMW Problem Without Feedback

Static Solution

Assembly Averaged Errors

. -- ,,,,

0.8592 0.4341

+0.04% -0.02%
+0.32% -0.68%

Reference 5 :<5 × 10 cm 1.1227 0.9800 0.6272

i0 × 0 × I0cm, Errors +0.02% +0.03% -0.01%
20 × _0 × 20 cm, Errors +0,18% +0.26% -0.09%

1.5897 1.3961 1.0833 0,7082
+0.00% +0.00% +0.01% -0.05%
+0.06% +0.07% +0.09% -0,48%

1,5544 1.6547 1.4402 0.9802 0.7267

q_---+0.00% +0.00% +0.00% +0.00% -0.05%
+0.1070 +0.06% +0.04% +0.05% -0.50%

L' ............. _

/ I
c_ (g

Maximum and Average Errors

Node ....Node ASsembly ........Assen{bly
Maximum Average Maximum Average

Error Error Error Error
,,,,,,,_ i _ , _ _,,:_ _

+0.16% +0.02% -0.05% +0.01%
-1,20% -;-0.29% -0.68% -0.15%

,,_

Figure C-l: 3-D LMW problem without feedback, comparison of initial static solu-
tions.
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3-D LMW Problem With Feedback

Static Solution

Assembly Averaged Errors
__ L

0,9087 0,4745
+0,06% -0,01%
+0.41% -0,61%

,l,f iii ± 1111

Reference5 :_5 _ I0cm 1,i128 1,0081 0,6709

I0× .0_ 10cm, Errors +0,02% +0,04% -0,01%
20 × ',_0x 20cm, Errors +0,18% +0.31% -0,05%

,11ii IIILIi ii JLJlLII ii i .... ....

1,4933 1,3505 1.0933 0,7461
-0.00% +0.00% +0.02% -0,06%
+0.03% +0,06% +0.10% -0,49%

1.4283 1,5383 1.3815 0,9842 0.7619

(_----0,00% -0.o1%-0.00% +0.00%-0.07%
+0,06% +0,03% +0.03% +0.04% -0,54%

ii i ,,, .....................

/ I

Maximum and Average Errors

' Node ' Node ' Assembly Assembly

Maximum Average Maximum Average
Error Error Error Error

+0.18 % +0.03 % -0.07% +0.01 %
--1.24 % _-0,33 % -0.61 _ +0,15%

.......................... -

Figure C-2: 3.D LMW problem with feedback, comparison of initial static solutions,
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2-D LRA Problem, Static Solution Comparison

Assembly Averaged Errors

1,8520 2,0510 1,6790 0,9716
-0,01%-0,02% 0,00%-O.O3%
+0.07% +0.O6% +0.05%-0.02%

+0,62% +0,56% -0,07%-0,82%
I IIITlll£_ '- _LIU Jill

Reference 0.8643 1,1520 1,3390 1,4220 0,9325
CONQUEST 15 x 15 cm, Errors -0.02% 0.00% +0,01% -0.05% -0,04%

CONQUEST 7.s x 7,5cm, Errors +0.01% +0.01% +0,01% -0.02% -0,07%
CONQUEST S x 5 cm, Errors +0,42% +0.01% -0.10% +0.01% -0,66%

: , , i,, ,,, ,,,,,, ,,,, .....

0.5524 0,_782 0.8432 1.0220 1.2210 0.8530

+0.01% 0.00% 4-0,02% +0.03% +0,01% -0,03%

+0.01% +0.01% +0,03% +0.02% +0.01% -0.10%
+0.42% +0.30% +0.05% !-0.11% -0.26% -0.81%

0.4240 0.4921 0.8181 0,7826 0.9667 1.1730 0,8268

+0.02% 0.00% +o.o1% +0.02% +o.o1% -0.02% -0.02%

+o.o1% -o.o1% 0.00% 0.00% -0.02% -0.04% -o.11%
+0.52% +0.44% +0.32% +0.06% -0.15% -0.36% -0,88%

................. , ..... _..........

0.3995 0,4067 0.4904 0.6705 0,9398 1.1510 1.2810 0.8672

+0.03% +0.03% +0.02% -0.01% +0,02% -0.01% +0.01% -0.01%
+0,02% +0,01% 0.00%-0.03% -0,03% -0.08% -0.03% -0.12%

+0.77% +0.54% +0.42% +0,45% +0,04% -0.21% -0.16% -0,83%
-- ]l I I Illlll' II _]L .

0'6122 0,4402 0,4130 0,5118 0.7902 1.3860 1.6610 1.4810 0.9242
,0.03% +0.06% +0.06% +0.05% +0.03% -0.04% 0.00% +0.01% 0.00%

-,-0.06% +0.03% +0.04% +0.03% -0.02% -0.03% -0.01% -0.04% -0.12%
[+1.36% +0.63% +0.52% +0.29% +0.11% +0.62% +0.53% -0.25% -0,88%

VI ....................

Maximum and Average Errors
Nods ...........Node A.sembly A.sembly

Maximum Average Maximum Average

Error.... ,Error, Error i Err_

-0,07 % +0,02 % -0.07 % +0.01%
+0.14 % +0,04 % +0,14 % _-0,02 %

+1,36 % +0,40 % +1.36 % +0,26 %

Figure C-3: 2-D LRA problem, comparison of initial static solutions.

168



_iii_i_i_ _i_ii _.i!_ _ li_ i_°

, . o 0 , , , , o

o _ _!-

!lii  ii i I
_I _ __" i

II II It II II i1 II II II I1 II II II II II II II II

169



il! ii ii i i

 l!II! iliiliiii

_ ,
, , , __

li tl II II II II II II II I! I! II II II el II ii tl

170



171



ii)i)ii i

-, iiIiii • iiiiiiii','

lll i 'i ) iilllllii
" ! illllli
,.,. __,_'_ , _

r4 c4

, _, II _t

tl Ii It il t! I! I! I| II ii l| m| II II II li II ii

172



i!lilili,ii!!!ii!i.
ililil!!i,ilil!!iii.

! ll!I!lil!i!li!lIXi

ii II II ii II U I| II II II II _ II II II II il ii

173



liliiiii!, i1111!i!i

L . iiiiiiiii,

;;i;;;;;; i  iii4ii

I| |1!

ti it I1 II tl II tl tt II it It II II !t tl ti tl 11

174



175



'S3-D LRA Problem, Static Solution Comparl on

Assembly Averaged Errors

_ ........

l,l!iiO _0497 I_6fAS O,g?l I

+o.es_ ,o_64_t .o.0i% .o.so%

|teferene, J . _. I|.S(?.S| em Paw,rs O,SS43 I.i||0 1.3at0 1.4|1! 0.t_l|0
?.S .__._i. |=.6(?.Siem [rrors ._0.0_% +0.01% ,0.01% +0.04% .0.0|%

1| • lit . |ltlil)em I_or| +0,40_ +0,0|_ .0,0t_ +0,11_ .O,lia_

O,tllf 0,@PI!4 0,0400 l,Ollt |Jill O,811t
+O,O0_ +O,Ol_ +0+01_ .0,00_ +0,0i% .0,_
4-0,@_!_ +0,13% .O,O0_ .0,14_ .O,_llt% .0,?4_

.... J__

0,4|43 0,4D_4 0,@1@4 O,?S30 OAJ@?I 1,1?|0 O,Ol@?
•0,01% .0,0|% .0,0|% .0,01% .O,O:Z_.O,O_I'P,.O,O0_

+0,31t% .0,3|% +OJ@% .0,0|% .O,llg_ -0,_14_ .0,S4%

u -........... I i is i..... . IIJB: : .......- ._ i "

o,_ggoo.4o?to.4oo?o,6To?o,g4o__._s_1_._s_ o,ss_

.o_,% .O,_S_ ,,o,:!7% _0,,t1'% .o,o4% .o,_% .o,17% .O,SO%

i i]11[ i i _L_ii ii _. iiiii iia!,,_ ,.... i__L_ [ ..... . _ I!I

o,olll I 0,440? 0,41a5 O.@t]3 0,1'908 1,311611 |,8@0? 1,4@1| 0.914_1
• O,Ol_ J.o,o@% ,0,03_ .0,03_ .0,0@% +0,00_ .0,01_ .O,O@_ .O,ll_

• |'|?'] J+0,39% _0,30_ _0,11% .0,00% +0,@1% +O,SI% .0,|7% .0,80%

_'-_ I _ .......................

Maximum and Average Errors
Node - Node - Assembly _slemb|_-

M_imttm Avers!ie Miximum Averslle

_o.:O % _o,04 % ,-0,19 % +0,03 %

Figure (,-5: 3-D LRA problem, comparzsonof initial static solutions.
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P_VR Operational Transient

Initial Static Solution

Assembly Averaged Errors

0.70s_01_230_
+0,20_-0._3_
+0.92%-_.78_
+0.73% -0.60%

oi_4_o 0.s005_,0o_i
+0.07% i-0,04% +0.15%
+o.3_%+o.or_+o.22_
-0.01% +0.42% +0.93%

CONQUES : Very Fine Mesh, Power 0.8905 0,8767 1,1182 ....1,1807 0.9598

CON(:_UEST Fine Mesh, Error +0.04% -0,08% !+0.19% -0.03% +0.20%
CONQ EST Coarse Mesh, Error +0.31% -0.15% +1.16% -0.07% +0.39%

QUA DRY Coarse Mesh, Error -0.24% -0.43% +0.44% +0.56% +0.92%

0.8841 018464 1'0653 1.1!06 1'4066 1'3392

+0,16%-0.12% +0.15%-0,13% +0.t3% -0.08%
+1.28%-0,38% +1.15% l-0,61% +0.86%-0.43%
-0.21% -0.96% +0.08% -0.39% +0.64% +0.82%

....0,83'36 0,8022 0.9192 0,8763......i'2223 1.34i8....1.2172
+0,1"c__,o -0.12% +0.15% -0.15% +0.10% -0.24% -0.25%

+1.01% -0.25% +1.04% -0.45% !+0.66% -1.07% -1.62%

-0.71% 1.16% -0.39% -0.71% +0.06% -0.07% +0.03%

I 0'5311 0.6922 0.88'09 ....0.7653 0,6885" 1.0i48 ......1.3370 1,2131

+0,07% -0.11% +0.18% -0,12% +0.01% -0.17% +0.01% -0.31%

_''- +0.39% +0.14% +0.92% +0.02% +0,13% !-0.!_0.36%-0.37% -2.10%-0.90% -1.01% -0.87% -0.73% -0,29% 19% -0.23% -0.34%

/

Maximum and _Average Errors

' Node ' N0-de .....Assembiy _ Assembly

,Maximum Average Maximtun Average
Error Error Error Error

...... . ' ._. 1 ......................

-0.44 % +0.14 % -0.31% +0.11%

-3.05 % +0.69 % -2.10 % +0.58%
-1.40% +0.53 % -1.16% +0.44%

Figure C-6: PWR operational transient, comparison of initial static solutions,
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PWR Coolant Inlet-Temperature Transient

Initial Static Solution

Assembly Averaged Errors
!H!iJ

0.8211 0,5942
0.8230 0.5876

.0.24% -I,12%

1.0028 0.8626 0,9362
!.0101 0.8595 0.9297

.0.73% -0.36% -0.70/%
-- I[IIIT --- iii ii " II[lffll[llllllF

QU DRY NormaUzed Power 0.9726 0.9722 1,0874 1.0319 0.8015
CONQ EST Normalized Power 0.9754 0,9730 1.0947 1.0258 0.7975

Difference .0.29% +0,08% +0.67%-0,59%-0.50%
, :,, ,, r ,__!_L""'

_,o_T50,90791.084t_.0234i.1963_.0992
1.02850.91021,09321.02101.1991_,0865

+1,09%.0.26% .0.78% -0.24% +0.23%-1.16%
.............. . i

1.0085 0.9143 1.0468 0,9874 1.1868 1.1715 1.0102
1.0202 0,9181 1.0578 0.9880 1.1936 1.1609 0.9948

+1,16% +0.42% +1,05% .0.06% +0,58% -0,90% -1,53%
Hi i ._ H Jn L i i

0.9773 0,9019 1,0214 0.9438 1.0993 1.1291 1.2314 1.0274

_--. 0.9890 0,9068 1,0333 0.9467 1.1076 1.1269 1,2311 1.0112
+1.20% +0.55% +1.16% +0.31% +0.76% -0.19% --0,03% -1.58%

......... j i , , ..... , i ii j j....

/

Maximum and Average Errors

Node Node Assembly Assembly
Maximcun Average Maximtun Average

Error Error Error Error
, . ,, ..,, .............. _,__L ___ _

-2,19% *-0,64 % -1.58 % +0.43 %

Figure C-7: PWR coolant inlet-temperature transient, comparison of initial static
solutions,
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