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Abstract

A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of

insect-like wings in hovering flight. The approach allows accurate estimation of aerody-

namic forces from geometry and kinematic information alone and provides for the first time

quantitative information on the relative contribution of induced and profile drag associated

with lift production for insect-like wings in hover. The main adaptation to the existing lifting

line theory is the use of an equivalent angle of attack, which enables capture of the steady

non-linear aerodynamics at high angles of attack. A simple methodology to include non-

ideal induced effects due to wake periodicity and effective actuator disc area within the lift-

ing line theory is included in the model. Low Reynolds number effects as well as the edge

velocity correction required to account for different wing planform shapes are incorporated

through appropriate modification of the wing section lift curve slope. The model has been

successfully validated against measurements from revolving wing experiments and high

order computational fluid dynamics simulations. Model predicted mean lift to weight ratio

results have an average error of 4% compared to values from computational fluid dynamics

for eight different insect cases. Application of an unmodified linear lifting line approach

leads on average to a 60% overestimation in the mean lift force required for weight support,

with most of the discrepancy due to use of linear aerodynamics. It is shown that on average

for the eight insects considered, the induced drag contributes 22% of the total drag based

on the mean cycle values and 29% of the total drag based on the mid half-stroke values.

Introduction

The classical lifting line theory (LLT), developed by Prandtl a century ago provided the first sat-

isfactory analytical treatment for the evaluation of the aerodynamics of a finite wing [1–6]. The

LLT laid the foundation for understanding the aerodynamics of flight, and is still widely used

today to provide accurate predictions of the lift and induced drag for 3d wings [6]. The solu-

tions delivered by the LLT are closed form and they are many orders of magnitude faster to

evaluate compared to higher order computational methods; they are also able to provide deep

insight into how different wing parameters affect the aerodynamic performance [6].

PLOSONE | DOI:10.1371/journal.pone.0134972 August 7, 2015 1 / 18

OPEN ACCESS

Citation: Nabawy MRA, Crowthe WJ (2015) A

Quasi-Steady Lifting Line Theory for Insect-Like

Hovering Flight. PLoS ONE 10(8): e0134972.

doi:10.1371/journal.pone.0134972

Editor: Sharon Swartz, Brown University, UNITED

STATES

Received: April 12, 2015

Accepted: July 15, 2015

Published: August 7, 2015

Copyright: © 2015 Nabawy, Crowthe. This is an

open access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors received no specific funding

for this work.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0134972&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The physical foundation of the LLT is based on Prandtl's hypothesis that the lift of a finite

wing is reduced compared to the lift of an infinite wing due to the change of the local flow

direction induced by the free vortices in the wake. The Kutta-Joukowski theorem can then be

applied at each wing section, which is assumed to behave as a 2d wing at a modified angle of

attack referred to as the effective angle of attack. This concept led Prandtl to his well-known lin-

ear equation governing the circulation on a finite lifting surface, which will be formally intro-

duced later in this work in section ‘LLT fundamental equations’. Because the obtained

governing equation is of an integro-differential type, there exists no unique mathematical pro-

cedure to solve it, and throughout the past century different mathematical methods have been

proposed to handle the problem [7]. The most well-known solution methodology is that pre-

sented by Glauert [8] who provided a solution in the form of an infinite Fourier sine series with

the series coefficients obtained from the collocation method.

Whilst the LLT is usually used for the aerodynamic modelling of high aspect ratio, planar,

fixed wings in steady flows, the long reach of Prandtl's insight is demonstrated through the var-

ious adaptations presented over the years that have enabled much broader applicability of his

original model [9]. With few adaptations, the LLT has been successfully used to predict the

aerodynamics of a wide variety of lifting surfaces under a wide variety of flow conditions. Jones

[10] proposed a simple correction for the LLT which he showed could bring the lifting line

result into close agreement with the lifting surface result over an extended range of wing aspect

ratio, hence improving accuracy of the LLT for low aspect ratio wings. Phillips and Snyder [9]

extended the lifting line formulation so that it can be used for non-planar wings with arbitrary

camber, sweep and dihedral. Sclavounos [11] developed an unsteady lifting line treatment for

wings of large aspect ratio undergoing time-harmonic oscillations where he showed in the

zero-frequency limit that it reduces to the Prandtl's lifting line theory, whilst for high frequen-

cies it tends to the two-dimensional strip theory. Mehrle [12] extended Multhopp's quadrature

method to the calculation of the circulation of cyclic periodic lifting systems, e.g. for wings

operating in swirling flow. Anderson et al. [13,14] proposed a numerical iterative lifting line

treatment that uses look-up tables of the sectional lift as a function of effective angle of attack

for the use within flight conditions such as spins and high angles of attack manoeuvres.

The LLT has also been adopted for the evaluation of the aerodynamics of wings prescribing

rotary and flapping motions. Conlisk [15] discussed the implementation of the LLT for rotary

wings in hover, and highlighted the importance of accounting for the effect of the linear veloc-

ity variation along the blade on the bound circulation distribution. Leishman (see chapter 14 in

[16]) provided a generic formulation of the LLT for rotary wing motions; whereas, Johnson

(see chapter 10 in [17]) discussed the importance of adopting corrections to the LLT to handle

specific rotary wing aerodynamic phenomenon such as wake periodicity.

Lifting line formulations very similar to that of fixed wings have been used in [18,19] for the

mathematical modelling of the avian flight power curve. Philips et al. [20] presented a LLT for

forward flapping flight in which some unsteady flow effects were accounted for through the

use of a 3d model of the vortex wake to evaluate the unsteadiness to a first order. For a review

of lifting line models for flapping wings in forward flight, the reader is referred to [21].

For hovering flapping flight, two significant contributions have been presented. The first is

by Sane [22] who proposed a semi-empirical lifting line blade model for hovering insects to

investigate the mean induced flow over their bodies. However, the model relies on experimen-

tal data; hence, measurements are still required as inputs to the calculation. The second contri-

bution is by Ansari et al. [23] who reviewed the use of lifting line blade theory based on the

Glauert solution [8] in the context of insect-like flapping wings: a general description of the

model was provided and some results for the variation of the mean lift with flapping frequency

and wing shape were presented. However, their model relies on a linear aerodynamic
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representation which would significantly over-estimate the lift and induced drag at high angles

of attack where insects are known to operate. Additionally, other relevant aerodynamic phe-

nomena such as wake periodicity are not included.

Within the last two decades, there has been an increased interest in studying insect flight,

particularly in hover. Most of the studies in this field have been either experimental or numeri-

cal with relatively few analytical contributions. The most widely used analytical class of models

for the prediction of hovering insects aerodynamics are the so-called quasi-steady models such

as those developed in [24–27]. These models assume equivalence of the instantaneous aerody-

namic forces on a flapping wing with the forces generated on the same wing moving steadily at

the same instantaneous velocity and angle of attack [28]. However, most of the available mod-

els as in [24–26] relied on experimental data to define the flapping translational force coeffi-

cients which are the primary contributor to the generated forces. Thus the applicability of such

models is limited to a few test cases for which experimental data are available [29].

The aim of the present work is to provide a convenient theoretical treatment for evaluating

the aerodynamics of insect-like wings in the translational phase of the flapping cycle. This

work builds on the foundation laid by the authors in their previous contributions [29,30]

which establishes a compact transparent treatment for the quasi-steady aerodynamics of hov-

ering. The contribution of the present work lies in the novel reformulation of the LLT for appli-

cation to estimating the translational forces for hovering wings and the subsequent insight that

this brings to the flow physics. In particular, the modelling approach allows unique insight into

the relative contribution of induced and profile drag for flapping wings; something that is cur-

rently missing in the available literature. Whilst the present contribution only considers quasi-

steady effects, there is a logical path to include rotational and added mass effects as model

extensions in the future that would enable capturing aerodynamic time history effects.

Method

Basic assumptions

The lifting line theory assumes a fluid that is incompressible and inviscid. Compressibility

effects are negligible for application areas of interest. With regard to viscous effects, recent

experimental measurements [31] have demonstrated that insect-like flapping wing aerody-

namics depends weakly on Reynolds number, and numerical studies [32] demonstrated that

the flows are well modelled by the inviscid Euler equations. Nevertheless, and following the

general practice within the LLT, the Reynolds number effect is taken into account in the two

dimensional properties of the wing section represented through the section lift curve slope.

The wing is assumed to be an infinitesimally thin and un-cambered rigid flat plate with zero

spanwise twist and zero sweep. Wing twist about a spanwise axis can be included as an alter-

ation to the wing geometric angle of attack.

The lifting line theory is valid as long as the Kutta condition is satisfied, and in general this

will be the case if there is an absence of classical wing stall [6]. For the current problem, the for-

mation of a leading-edge vortex (LEV) on the wing top surface prevents classical wing stall

[33,34,29]. The LEV is stable in the sense that it does not shed as the wing motion progresses,

and allows the flow over the upper surface of the wing to separate at the leading edge but subse-

quently reattach upstream of the trailing edge [34]. The Kutta condition is therefore established

at the trailing edge at angles of attack beyond which classical stall would occur for wings where

no LEV is present [34,33,29].

Other secondary aerodynamic effects from wing pronation and supination as well as the

wing-wing interactions (clap-and-fling) are not included in the current model. Thus the
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current modelling treatment is consistent with the well known ‘revolving wing’ concept

[31,35–39] which captures the quasi-steady aerodynamics between stroke reversals.

LLT fundamental equations

The wing is modelled as a bound vortex of strength Γ(r) at the aerodynamic centre. The goal is

to determine Γ(r) as a function of the wing geometric properties. The Kutta-Joukowski theo-

rem is used to obtain the lift per unit span [8,16]:

dLðrÞ ¼ rVðrÞGðrÞdr ¼
1

2
rðVðrÞÞ

2
cðrÞdrCla;2d ag � aiðrÞ

� �

; ð1Þ

where ρ is the air density, V(r) is the sectional flow speed along the wing length, r is wing radial

position measured from the wing root, c is the chord, Clα,2d is the 2d-aerofoil lift curve slope, αg is

the wing geometric angle of attack and αi is the induced angle of attack. Thus Γ(r)is obtained as:

GðrÞ ¼
1

2
cðrÞCla;2d VðrÞag � wðrÞ

� �

; ð2Þ

where w(r) is the induced downwash velocity distribution along the wing length determined by

[4,8]:

wð^rÞ ¼
1

4p

ðR

�R

dG

dr

dr
^
r � r

; ð3Þ

where
^
r is the wing station at which the downwash is calculated, and r is the location of vortices

responsible for the downwash.

Eq 2 represents Prandtl's fundamental lifting line equation. In order to apply it to insect-like

wings in hover, we rewrite it as:

GðrÞ ¼
1

2
cðrÞCla;2d;ef ðVðrÞaeq � wef ðrÞÞ: ð4Þ

The above equation represents the basis for the developed lifting line theory for hovering

wings which, in the present work, will be referred to as LLThw. Three main adaptations are

introduced in Eq 4. These correct for (1) non-linear aerodynamics of the lift curve, (2) non-

ideal induced downwash effects, and (3) planform effects on the 2d lift curve slope. Each of

these adaptations is now considered in detail.

Adapting the LLT for non-linear aerodynamics

The primary adaptation we make to the classical LLT is the introduction of the concept equiva-

lent angle of attack to account for non-linearity in the wing lift curve. This equivalent angle,

αeq, is defined as the geometric angle of attack within the linear aerodynamic representation that

will provide the same lift coefficient of the 3d wing within a non-linear aerodynamic representa-

tion. The original LLT formulation assumes a linear lift curve for the wing; i.e. the 3d wing lift

coefficient, CL, is proportional to the geometric angle of attack:

CL / ag : ð5Þ

However, for an insect-like wing in hover, the lift coefficient increases to a maximum at a

geometric angle of attack of 45 degrees and then decreases back to zero at a 90 degrees angle of

attack. Previous studies [25,26,29,40,41] have shown that this behaviour can be adequately
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represented by the trigonometric relationship:

CL / sinagcosag : ð6Þ

Experiments on revolving and flapping wings [31,35–38,40] show that despite its simplicity

the function sin αg cos αg provides an excellent representation of the variation of the measured

steady lift coefficient with geometric angle of attack. The physical foundation of the sin αg cos

αg variation is based on the assumption that pressure forces dominate over skin friction forces

for this type of flow, and the magnitude of the normal force coefficient is proportional to sin

αg; for more details on the physical foundations of Eq 6, the reader is referred to references

[40,29,35]. By comparison of Eqs 5 and 6, we derive an equivalent angle of attack expression as:

aeq ¼ Cag
ag ; ð7Þ

where

Cag
¼ sinagcosag=ag : ð8Þ

Fig 1 shows the correction term, Cag
, and the equivalent angle of attack, αeq, variations

against the geometric angle attack. The maximum lift coefficient at a 45 degrees geometric

angle of attack is achieved with a 29 degrees equivalent geometric angle of attack within the

linear aerodynamics representation. At small angles of attack (αg � 15°), the equivalent angle

of attack is almost equal to the geometric angle of attack meaning that the LLThw converges

to the original LLT at low angles of attack. On the other hand, at very high angles of attack

(αg ! 90°) the equivalent angle of attack reduces back towards zero as required by basic geo-

metric considerations.

By applying the above adaptation within the LLT expressions, the quasi-steady non-linear

lift curve behaviour essential to the insect-like flapping wing problem is well captured. An

important aspect of this proposed technique is that no alterations to the fundamental LLT

equations are required, and the underlying physics of the LLT is well preserved. Whilst the con-

cept of the equivalent angle of attack is quite simple and appears as an obvious approach to

handle the problem, it has to our knowledge not been attempted before either within the con-

text of hovering insect-like wing problem or within any other non-linear aerodynamic treat-

ment of a lifting surface. The equivalent angle of attack approach has some similarity with

other techniques for implementing nonlinear aerodynamics for post stall applications such as

Fig 1. The equivalent angle of attack concept. Variation of (a) the correction term, and (b) the equivalent angle attack against the geometric angle of
attack.

doi:10.1371/journal.pone.0134972.g001
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‘decambering approach’, for example described in [42], however these approaches typically

require an iterative solution procedure. The present method does not require iteration because

there is a single continuous function (Eq 6) that defines the overall lift coefficient variation of

the wing as a function of angle of attack up to 90 degrees that can be easily inverted. This allows

the original nonlinear problem to be transformed into an equivalent linear LLT problem. For

more general cases with complex post stall aerodynamics and more arbitrary lifting surface

arrangement no such convenience is available and it is necessary to iterate a solution.

The proposed adaptation has some similarities with the well known Prandtl-Glauert com-

pressibility transformation [14] which allows solution of compressible flow problems using

incompressible-flow calculation methods. The proposed LLT transformation allows solution of

non-linear aerodynamic problems using linear aerodynamic calculation methods by applying

linear aerodynamic methodologies to non-linear aerodynamic cases. We believe the proposed

technique also opens the door for solution of other 3d lifting surface problems with non-linear

aerodynamic behaviour.

Adapting the LLT for non-ideal induced downwash effects

The second adaptation applied here is to account for non-ideal but physical effects that influ-

ence the downwash magnitude of the wing, including wake periodicity and effective flapping

disk area. These effects are absent for fixed wings but must be considered for flapping wings

[16,30,43,44]. To provide a simple modelling procedure for these effects, consider the actuator

disk theory expression for the induced velocity magnitude in hover:

w ¼ kind

ffiffiffiffiffiffiffiffiffiffiffiffiffi

L

2rSd;ef

s

; ð9Þ

where kind is the well known k-factor to account for the non-uniformity in the downwash and

is already accounted for in the lifting line formulation. However, there are other effects associ-

ated with flapping flight which are directly related to the downwash and need to be included in

the lifting line formulation. These effects can be best explained through their effect on the effec-

tive disk area, Sd,ef. For flapping flight, the disk area, Sd,flap, is defined as [44]:

Sd;flap ¼ 2�R2; ð10Þ

where ϕ is the amplitude of the flapping stroke angle and R is the wing length from root to tip;

however, to obtain an expression for Sd,ef, a further modification is required as:

Sd;ef ¼ 2�R2

ef : ð11Þ

The correction of R to Ref accounts for the aerodynamic phenomena of wing tip losses due

to discreteness and periodicity in the wake [16,17,44,45]. By quantifying the flow structure

around a hovering model fruit fly wing using digital particle image velocimetry, Birch et al.

[46] showed that experimental circulation falls to zero at around 85% of R. Sane [22] discussed

this loss of lift near the tip and attributed it to tip losses due to wake periodicity.

Now, by simple factorisation [16], the downwash expression (Eq 9) can be written as:

w ¼ kind

ffiffiffiffiffiffiffiffiffiffiffiffiffi

L

2rSd;ef

s

¼ kind

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L

2rpR2ð2�=pÞB2

s

¼ kindkperkflap

ffiffiffiffiffiffiffiffiffiffiffiffiffi

L

2rpR2

s

; ð12Þ
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where,

kper ¼
1

B
¼

R

Ref

; ð13Þ

kflap ¼

ffiffiffiffiffiffi
p

2�

r

: ð14Þ

Therefore, the overall downwash magnitude is increased due to the additional factor kper
kflap compared to the case with no assumed wake periodicity effects and with the wing sweep-

ing the whole circular disk area, i.e. R = Ref and 2ϕ = π. Thus, from this simple momentum the-

ory analysis, it can be seen that in the presence of these additional non-ideal effects a flapping

wing has an overall induced velocity increased by the factor kper kflap. We now develop the

effective downwash definition in Eq 4 to account for these effects:

wef ð
^
rÞ ¼

kperkflap

4p

ðR

�R

dG

dr

dr
^
r � r

: ð15Þ

In a previous contribution by the authors [30], numerical evaluations of the kper and the

kflap parameters were presented for eight insect species. It was found that the value of kper is

clustered around 1.1; therefore without losing generality, this value will be used throughout

this study. On the other hand, the value of kflap varies considerably between different insects

according to their flapping angle amplitude and thus insect specific values must be used.

Correcting the 2d aerofoil lift curve slope

The final amendment to the LLT presented here is based on a well known correction to the 2d

aerofoil lift curve slope originally proposed by Jones and usually referred to as the Jones edge-

velocity correction [10,47,48]. Jones incorporated his correction into the 2d aerofoil lift curve

slope leading to the concept of the effective 2d lift curve slope [48]:

Cla;2d;ef ¼
Cla;2d

E
; ð16Þ

where E is the Jones correction evaluated as the ratio of the wing semi-perimeter to the wing

length. Thus, the effective lift curve slope is a characteristic of the wing planform as well as the

wing section [48]. This correction is most pronounced for wings with low aspect ratios, and as

discussed in the introduction Jones showed that by applying his correction the LLT becomes

more capable of capturing low aspect ratio effects.

Following Ellington [49], we define the wing chord distribution through a beta function

representation, which provides a compact analytical description of the wing planform based

on the wing length, the mean chord and the non-dimensional radial location of the wing cen-

tre of area:

cðrÞ ¼ �c
r̂p�1ð1� r̂Þ

q�1

ð1

0

r̂p�1ð1� r̂Þ
q�1

dr̂

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

with r̂ ¼
r

R
; ð17Þ
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where the parameters are chosen as:

p ¼ r̂
1

r̂
1
ð1� r̂

1
Þ

r̂2
2
� r̂2

1

� 1

� �

; q ¼ p
ð1� r̂

1
Þ

r̂
1

; r̂
2
¼ 0:929ðr̂

1
Þ
0:732

; ð18Þ

and r̂
1
and r̂

2
are the non-dimensional radii of first and second moments of area respectively.

Insect wings typically have aspect ratios ranging from 2.5 to 6 [49,50], thus for the low aspect

ratio cases the Jones correction is relevant. Fig 2 shows the variation of the Jones correction,

E, for different combinations of the wing aspect ratio (AR ¼ R=�c) and non-dimensional area

centroid location (r̂
1
).

The remaining unknown in Eq 16 is the 2d aerofoil lift curve slope, Clα,2d. For a flat plate at

typical insect Reynolds numbers, experimental evidence suggests that Clα,2d is slightly less than

the theoretical value of 2π and takes a value of 0.09 deg-1 = 5.16 rad-1 [51–53]; thus this value

will be used in this work.

Solution methodology

Having introduced the essential adaptations to the LLT, we now solve Eq 4 using the well-

known Glauert method [8,23]. First, the wing spanwise location is substituted with [8,47]:

r ¼ �Rcosy; ð19Þ

where θ is a generic parameter used to define position along the wing. Given the symmetry of

the problem, only one side of the wing is considered and thus θ varies from 0 to π/2. The circu-

lation, Γ(r), is then expressed as a sine Fourier series as [8,47]:

GðrÞ ¼ 4RVðrÞ
X1

m¼1

amsinmy; ð20Þ

where, for a hovering wing, the velocity along the wing length is given by the linear variation:

VðrÞ ¼ _�r ¼ � _�Rcosy ¼ �Vtipcosy: ð21Þ

Fig 2. The edge correction. Variation of the Jones edge correction, E, for different combinations of wing
aspect ratio and area centroid location. The wing planform is represented through the beta formulation (Eqs
17 and 18) for r̂

1
values from 0.4 to 0.6 which is representative of the range found in nature. In this illustration,

the wing is symmetric about the mid-chord.

doi:10.1371/journal.pone.0134972.g002
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Substituting Eq 20 into Eq 15 and performing integration using the Glauert integrals [54,23]

leads to an expression for the effective downwash as a function of the radial position:

wef ðrÞ ¼ �kperkflapVtip

X1

m¼1

mam
cosysinmy

siny
þ amcosmy

� �

: ð22Þ

The αm coefficients in the above equation can be obtained using the well-known Glauert

approach by equating Eqs 4 and 20 leading to:

mef sinagcosag

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

aeq

sinycosy ¼
X1

m¼1

amsinycosysinmyþ mef kperkflap
X1

m¼1

ðamsinycosmyþmamcosysinmyÞ; ð23Þ

where

mef ¼
cðrÞCla;2d;ef

8R
: ð24Þ

In the above expressions, only the odd terms ofm are considered due to problem symmetry.

The series is then truncated to a finite series and the αm coefficients are obtained by solving the

set of simultaneous linear equations obtained from satisfying Eq 23 at a convenient number of

wing stations equal to the number of terms in the series. Finally, the lift and induced drag forces

can be obtained from:

L ¼ 2

ðR

0

rVðrÞGðrÞdr; ð25Þ

Di ¼ 2

ðR

0

rwef ðrÞGðrÞdr: ð26Þ

Thus, the lift and induced drag coefficients are obtained as:

CL ¼
2L

rV2

tipr̂
2

2
ð2R�cÞ

; ð27Þ

CDi
¼

2Di

rV2

tipr̂
2

2
ð2R�cÞ

: ð28Þ

Note that in the above equations, the lift and induced drag forces are non-dimensionalised

using the dynamic pressure at the wing radius of the second moment of wing area.

Results and Discussion

Comparison with revolving wing experimental measurements

The revolving wing experiment is a well-known measurement technique employed for insect

wing aerodynamic characterisation [31,35–40]. The wing is rotated in the fashion of a simple

propeller blade to simulate a continuous down (or up) stroke that excludes the effects that

occur at stroke reversal such as wing flipping and wing-wing interactions [37]. In this section,

the developed LLThw is compared to available experimental measurements from revolving

wing experiments. Because there are no measurements available for induced drag, only lift
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coefficient data will be compared here. Although revolving wing experiments have been con-

ducted for different species, the wings used in each case are in close morphological similarity.

Thus, the available data does not allow a full validation of the LLThw against a wide range of

planforms. In what follows we compare the LLThw to three sets of available experimental data

for an insect, a bird and a hummingbird.

Usherwood and Ellington [35] provided steady lift coefficient measurements against the

geometric angle of attack using a hawkmoth model wing. Later, Usherwood [37] provided sim-

ilar measurements for pigeon wings at higher Reynolds number. Recently, Kruyt et al. [39] pro-

vided measurements for hummingbird wings. Note that the hummingbird case is based on

measuring a real wing; thus, wing compliance is not fully controlled especially at very high

angles of attack [39] and thus the geometric angle of attack has significant uncertainty. Never-

theless, this test case remains useful for comparison against the developed LLThw especially in

the normal operation range of angles of attack (i.e αg < 45°). The morphological parameters of

these three wings are provided in Table 1; these parameters were used as inputs within the

LLThw to calculate the lift coefficient variation with the geometric angle of attack and results

are compared in Fig 3. Within the calculation of the three cases, the value of kper was set to 1.1

whereas by definition the kflap for a revolving wing is unity.

The results shown in Fig 3 show a good agreement with the experimental measurements in

both form and amplitude for the three cases considered. Note that the shape of variation of the

lift coefficient with angle of attack is a consequence of the proposed definition of the equivalent

angle of attack (see Fig 1b). Of more relevance is the good agreement in the amplitudes of the

lift coefficient over the whole first quadrant of angle of attack.

Now the LLThw is used to evaluate the maximum lift coefficient amplitude (CL at αg = 45°)

for revolving wings within a range of aspect ratios and chord distributions similar to real insect

Table 1. Morphological parameters of revolving wings.

Wing AR r^
2

r^
1
(Eq 18)

Hawkmoth [35] 2.83 0.511 0.44

Pigeon [37] 3.21 0.512 0.443

Hummingbird [39] 4.06 0.499 0.43

doi:10.1371/journal.pone.0134972.t001

Fig 3. Comparison of lift results with revolving wing experimental measurements. Lift coefficient variation with geometric angle of attack; results
evaluated using the LLThw are compared to available experimental measurements for (a) hawkmoth, experimental data digitised from Fig 6B of [35], (b)
pigeon, experimental data digitised from Fig 3A of [37] and (c) hummingbird, experimental data digitised from Fig 6A of [39]; for this case, experimental data
beyond 45° are affected by the wing compliance [39].

doi:10.1371/journal.pone.0134972.g003
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wings, Fig 4. As expected, the value of the maximum lift coefficient increases as the aspect ratio

increases; however, this result must be considered with some caution as an increase in the wing

aspect ratio also reduces the chord with respect to the LEV size [55]. Thus, the lift coefficient

amplitude increase will stop at some critical point (whose prediction is beyond the capability of

the current model) when the LEV size to chord ratio approaches the vortex attachment limit

and abrupt stall occurs. Another important result from Fig 4 is that the maximum lift coeffi-

cient value decreases as the wing area centroid is shifted towards the tip, despite the fact that

having more area towards the tip produces a greater lift force, everything else being equal.

Thus, whilst a higher lift force is achieved by having more area towards the tip, a higher lift

coefficient is achieved in hovering flight by having more wing area towards the root.

Application of the LLThw to insect wings in symmetric normal hovering
flight

In this section, the LLThw is verified against the computational fluid dynamics (CFD) results

from Sun and Du [56] that provide comprehensive simulations for a variety of wing shapes

operating at different conditions. In their simulations Sun and Du used a horizontal stroke

plane, symmetrical half-strokes and a sinusoidal-like variation of flapping angle, Fig 5. The

geometric angle of attack was prescribed such that it takes a constant value, αg,mid, along a half-

stroke and then performs a smooth variation around stoke reversal similar to that shown in Fig

5. Because the flapping cycle half-strokes are symmetrical, only the variation within the down-

stroke is shown. Note that the symmetry of the half-strokes also implies that the net mean

forces due to rotational and added mass effects are zero [24,29,40,41,57], and only forces due to

wing translation contribute to the net mean force production. Table 2 shows the mass, wing

geometrical data and motion kinematic data of eight hovering insects that were collected by

Sun and Du [56] from the most relevant study of each insect.

The main output of Sun and Du simulations [56] are the calculated values of the mid half-

stroke geometric angle of attack, αg,mid that would provide weight support (supplied in

Table 3). Here we use their αg,mid values to calculate the mean lift force. Table 4 presents the

mean lift to weight ratio obtained from the current lifting line theory for the different levels of

adaptation employed. The purpose of showing the results for different adaptations is to

Fig 4. Revolving wingmaximum lift coefficient variation. Contours of lift coefficient amplitude against
wing aspect ratio and wing area centroid location. The range of values for the aspect ratio and area centroid
location were chosen to represent realistic limits for insect wings. In this illustration the value of kper is set to
1.1 whereas kflap is unity.

doi:10.1371/journal.pone.0134972.g004
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demonstrate the transparency of the current framework and provide a deeper insight into how

these adaptations affect the solution, thus providing more fundamental understanding of the

physics of the problem. For example, results are most sensitive to the inclusion of E for wings

of lower aspect ratios such as for the hawkmoth case. Also, the kflap value becomes a significant

effect when the flapping stroke angle is relatively low as in the hoverfly case; whereas for a case

such as the ladybird where the wings scan all the possible area, this effect is negligible. How-

ever, the most significant adaption is the inclusion of the non-linear lift curve, which accounts

Fig 5. Flapping angle and angle of attack variations in time. Kinematics variation similar to those
employed by Sun and Du CFD simulations. Owing to the symmetry of half-strokes, only the down-stroke
period is shown. TDC is the cycle top dead centre, BDC is the cycle bottom dead centre and Mid denotes the
mid half-stroke.

doi:10.1371/journal.pone.0134972.g005

Table 2. Simulation input data: mass, wing geometry and kinematic parameters for eight hovering insects. Insects ordered by increasing angle of
attack.

Insect mass (mg) R (mm) c (mm) r^
1

f (Hz) ϕmax (deg)

Honey bee (HB) 101.9 9.8 3.08 0.5 197 65.5

Dronefly (DF) 68.4 11.4 3.19 0.48 157 54.5

Bumble bee (BB) 175 13.2 4.02 0.49 155 58

Hoverfly (HF) 27.3 9.3 2.2 0.52 160 45

Cranefly (CF) 11.4 12.7 2.38 0.56 45.5 61.5

Hawkmoth (HM) 1648 51.9 18.26 0.46 26.3 60.5

Ladybird (LB) 34.4 11.2 3.23 0.47 54 88.5

Fruit fly (FF) 0.72 2.02 0.67 0.55 254 75

doi:10.1371/journal.pone.0134972.t002
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for more than half of the overestimation in the average mean lift to weight ratio. This correc-

tion is most significant for the ladybird and the fruit fly, which have higher operating αg,mid val-

ues and thus non-linear effects are more pronounced.

It can be seen from the results shown in Table 4 that without including any of the adapta-

tions, the original LLT will always overestimate the lift produced with an average error of +60%

for the eight insects. On the other hand, by applying the proposed adaptations, the developed

LLThw formulation is able to predict the mean lift to weight ratio with an average error of 4%

compared to the higher order CFD simulations, Fig 6a.

The mean lift to weight ratios obtained from the current model confirm that it is not neces-

sary to account for unsteadiness due to the Wagner effect (indeed, most insect wing aerody-

namics predictive models have neglected the Wagner effect, but see models of [57–59]). Sane

[34] has tackled this point comprehensively, and using the available experimental evidence he

has discussed the lack of influence of the Wagner effect compared to other unsteady effects

such as rotational and added mass effects. Nevertheless, Taha et al. [57] showed that incorpo-

rating unsteady treatments allows better capture of the force time history near stroke reversals.

Thus including an unsteady treatment for the quasi-steady models of rotational effects may

improve their predictive capabilities for asymmetrical half-strokes where rotational effects can

be used for control and manoeuvrability [35,57].

The total drag comprises the induced drag and profile drag containing the effects of skin

friction and pressure drag of the wings. Experiments on insect-like wings in simulated hovering

flight showed that the skin friction component is negligible, especially at the relatively higher

Reynolds numbers (O(103) or higher) [31,35–37]. This is consistent with the prevalence of

pressure forces over viscous forces at high angles of attack where most insects operate [34].

Thus, with the assumption of zero tangential friction forces, the total drag coefficient can be

Table 4. Mean lift to weight ratio calculated from the LLThw for different adaptations.

Insect Linear aero Nonlinear aero Nonlinear aero Nonlinear aero Nonlinear aero
kper excluded kper excluded kper included kper included kper included
kflap excluded kflap excluded kflap excluded kflap included kflap included
E excluded E excluded E excluded E excluded E included

HB 1.53 1.34 1.29 1.20 1.11

DF 1.72 1.48 1.43 1.29 1.20

BB 1.54 1.30 1.25 1.14 1.05

HF 1.44 1.20 1.16 1.01 0.96

CF 1.71 1.40 1.36 1.27 1.22

HM 1.44 1.16 1.11 1.02 0.92

LB 1.64 1.09 1.05 1.04 0.96

FF 1.72 1.07 1.02 0.98 0.90

Average ± s.d. 1.6 ± 0.12 1.26 ± 0.15 1.21 ± 0.15 1.12 ± 0.12 1.04 ± 0.12

doi:10.1371/journal.pone.0134972.t004

Table 3. Summary of the main aerodynamic results from Sun and Du CFD simulations.

Insect HB DF BB HF CF HM LB FF

αg,mid (deg) 25 26 28 29 30 32 43 44

�L=W 1 1 1 1 1 1 1 1

�P=mass (W.kg-1) 41 32 42 27 16 33 28 30

doi:10.1371/journal.pone.0134972.t003

Lifting Line Theory for Hovering Flight

PLOS ONE | DOI:10.1371/journal.pone.0134972 August 7, 2015 13 / 18



estimated for an infinitesimally thin flat plat wing using [29,35,38]:

CD ¼ CLtanag ; ð29Þ

where CL is the wing lift coefficient which can be obtained from the developed LLThw. Note

that Eq 29 is based on the ‘normal resultant force’model and for more details the reader is

referred to any of references [29], [35] or [40]. Despite its simplicity, Eq 29 has been shown to

provide effective estimates for the total drag for insect-like flight [25,29,35,40]. The specific

aerodynamic power expenditure for the eight insects based on Eq 29 is shown in Fig 6b, and a

good agreement is observed compared to the CFD results. This validates the appropriateness of

Eq 29 as a model for the total drag.

Predictions of the induced drag can be made directly from the developed LLThw, and

Table 5 provides explicit analytical results of the ratio of the induced drag to the total drag.

Both the mid half-stroke value as well as the mean flapping cycle value are provided for the

induced to total drag ratio in Table 5. In this demonstration we find it more convenient to cal-

culate the mid half-stroke geometric angle of attack, αg,mid that would provide weight support

based on the developed LLThw. These αg,mid values are then used to evaluate the aerodynamic

quantities in Table 5. Note that for the cases of the fruit fly and the ladybird operation at 45°

geometric angle of attack leads to a slightly sub-unity value of the weight support ratio for the

given kinematics and wing morphology parameters in Table 2. However, an alteration of the

ϕmax value by a few degrees can correct for this if required.

Fig 6. Lift and aerodynamic power evaluation. Comparison of the aerodynamic performance of eight hovering insects from the developed LLThw against
CFD results from Sun & Du; (a) lift to weight ratio and (b) specific aerodynamic power.

doi:10.1371/journal.pone.0134972.g006

Table 5. Aerodynamic characteristics calculated from the current LLThw. Insects re-ordered by increasing angle of attack obtained from the LLThw.

Insect αg,mid (deg) L=W CLjag;mid
CDi

jag;mid
CDjag;mid

CL

CD
jag;mid

C
3=2

L

CD
jag;mid

CDi

CD
jag;mid

CDi

CD

DF 20.5 1 0.89 0.12 0.33 2.67 2.52 0.35 0.24

HB 22 1 0.90 0.13 0.36 2.48 2.35 0.36 0.25

CF 22.5 1 1.07 0.14 0.44 2.41 2.50 0.31 0.22

BB 26 1 1.02 0.17 0.50 2.04 2.06 0.34 0.25

HF 31 1 1.19 0.22 0.72 1.66 1.82 0.31 0.24

HM 38 1 1.22 0.25 0.95 1.28 1.41 0.26 0.21

LB 45 0.961 1.47 0.26 1.47 1.00 1.21 0.17 0.14

FF 45 0.902 1.20 0.27 1.20 1.00 1.10 0.22 0.185

doi:10.1371/journal.pone.0134972.t005
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On average for the eight insects, the induced drag is shown to contribute 22% of the total

drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke val-

ues (Note that the mean cycle values are directly related to the assumed motion kinematic pro-

files, Fig 5). For insects operating with high mid half-stroke angles of attack (such as the

ladybird and the fruit fly) this ratio decreases below 20% for the mean cycle values which is

consistent with the expected prevalence of profile drag as the angle of attack increases.

The results in Table 5 show that the ratio of induced to profile component is overestimated

when employing Ellington's approach [45], Fig 7. Ellington analysed some hovering insects

including the ladybird, cranefly, hoverfly, dronefly, honey bee and bumble bee based on mea-

sured kinematics and low order methods for evaluating the aerodynamic power, Fig 7b. Based

on an average for the considered insects, the ratio of the induced power to the total aerody-

namic power was around 0.5. However, the induced power prediction in [45] was based on the

Rankine-Froude estimate multiplied by the induced power factor value which had an average

value around 1.15 for the considered insects, a value that was shown to be underestimating the

induced power factor of normal hovering flyers [30]. Furthermore, the profile power was evalu-

ated based on a low order expression of the profile drag coefficient,CDpro
¼ 7Re�1=2, an expres-

sion based on flow past a cylinder [60]. Whilst this expression was shown to be working at low

angles of attack, it becomes unreasonable at high angles of attack.

The obtained drag results confirm that for better aerodynamic efficiency, wings should

operate at lower geometric angles of attack. This can be confirmed from the two important

aerodynamic performance indices: glide number, CL / CD and the power factor C
3=2
L =CD[31]

whose values generally decrease within the insects operation range as the mid half-stroke geo-

metric angle of attack increases. Whilst these indices are affected by other parameters and/or

variables such as those defining the wing morphology and kinematics, it is clear that the geo-

metric angle of attack value is the parameter that has the greatest influence. The values

obtained for these indices are consistent with those obtained from experimental measurements

of insect-like hovering wings [31], which are very low compared to fixed wing figures mainly

due to the much higher drag associated with the flapping mode of flight.

Conclusions

A novel lifting line formulation, LLThw, has been proposed for the quasi-steady aerodynamic

evaluation of insect-like wings in hovering flight. The developed modelling capability provides

Fig 7. The induced drag contribution in insects hovering flight. Demonstration of (a) the ratio of the induced drag to total drag based on the LLThw, and
(b) the ratio of the induced power to the total aerodynamic power based on Ellington's calculations.

doi:10.1371/journal.pone.0134972.g007
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a framework to adapt the original LLT for hovering flight and opens the door for simplified yet

accurate modelling of 3d lifting surfaces at different operating conditions. The fully theoretical

framework allows accurate estimation of the aerodynamics of insect-like wings from geometry

and kinematic information alone, as well as providing deeper understanding of the associated

aerodynamics in terms of the induced and profile drag associated with the lift production.

The main adaptation proposed is the introduction of the concept of the equivalent angle of

attack, which enables the linear aerodynamic LLT formulation to capture the steady non-linear

aerodynamics of wings at high angles of attack using a simple analytical correction term. Addi-

tionally, a simplified methodology to include a number of non-ideal induced effects within the

lifting line theory has been presented. These non-ideal effects are necessary to correctly repre-

sent the flapping wing physics, including wake periodicity effects due to discreteness in the

wake as well as the effective actuator disk area effect. Finally, low Reynolds number effects as

well as the well-known edge velocity correction that improves the LLT performance for various

wing planform shapes have been incorporated within the 2d lift curve slope value.

The developed LLThw has been validated against available measurements from revolving

wing experiments for hawkmoth, pigeon and hummingbird wings, and shows very good agree-

ment with respect to both the shape of variation of the lift coefficient with incidence as well as

the magnitude. Comparison of the results obtained from the LLThw and higher order CFD sim-

ulations shows that the developed methodology can be judged as a powerful predictive tool for

the preliminary evaluation of insect wing aerodynamic performance. The mean lift to weight

ratio results have an average error of 4% compared to available CFD results for eight insect

cases. The developed model has been used to assess the relative impact of the proposed adapta-

tions on the LLT for the investigated insects. Excluding these adaptations leads on average to a

60% over estimation in the mean lift force required for weight support, and that most of this

discrepancy is due to the non-linear lift curve effect. The developed model also provides

explicit evaluation of the induced drag component of insect wings. It is shown that on average

for the eight insects considered, the induced drag contributes 22% of the total drag based on

the mean cycle values and 29% of the total drag based on the mid half-stroke values.
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