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Abstract In this paper, we present feature/detail preserving
models for color image smoothing and segmentation using
the Hamiltonian quaternion framework. First, we introduce
a novel quaternionic Gabor filter (QGF) which can combine
the color channels and the orientations in the image plane.
We show that these filters are optimally localized both in the
spatial and frequency domains and provide a good approx-
imation to quaternionic quadrature filters. Using the QGFs,
we extract the local orientation information in the color im-
ages. Second, in order to model this derived orientation in-
formation, we propose continuous mixtures of appropriate
exponential basis functions and derive analytic expressions
for these models. These analytic expressions take the form
of spatially varying kernels which, when convolved with a
color image or the signed distance function of an evolving
contour (placed in the color image), yield a detail preserving
smoothing and segmentation, respectively. Several examples
on widely used image databases are shown to depict the per-
formance of our algorithms.
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1 Introduction

Color conveys essential information that can be employed in
many vision tasks including but not limited to object recog-
nition, tracking, segmentation, registration etc. With signif-
icant advances in computing power and memory over the
past two decades, color image processing has attracted much
interest in the recent past. In this area, color image denois-
ing and segmentation are still elusive challenges. Due to the
multichannel nature of the color images, the key issue is
how to couple the information contained in the given color
(e.g. red, green and blue) channels. Considering each indi-
vidual channel of a color image as a separate monochrome
image, the early approaches often involved component-wise
application of the traditional gray level techniques on each
channel separately. However, this approach fails to capture
the inherent correlation between the components and results
in color artifacts or blending. To avoid this, color image
processing should be performed in a more coherent man-
ner. In order to restore color and other vector-valued im-
ages, Blomgren and Chan (1998) proposed to minimize a
measure of Color Total Variation which is similar to a chan-
nel by channel Total Variation diffusion, but weighted by
a coupling term. To retrieve the local geometry of vector-
valued images, Weickert proposed to extend his coherence
enhancing diffusion using a common diffusion tensor for all
image channels (Weickert 1997). Later, Kimmel et al. intro-
duced a diffusion PDE called Beltrami flow (Kimmel et al.
2000) which involves the minimization of the area of the
surface representing the vector-valued image with respect to
the surface metric. In Tang et al. (2001), authors extended
their direction diffusion framework to smoothing only the
chromaticity channel of color images, and combined it with
the scalar anisotropic diffusion applied to the brightness
channel of the color image. In Brook et al. (2003) and Bar
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et al. (2007), several extensions of Mumford-Shah func-
tional have been proposed based on a geometric model of
images as manifolds, for variational restoration and edge de-
tection in color images. More recently, Tschumperlé intro-
duced an image regularization PDE which takes the curva-
ture constraints into account, and applied it to multi-valued
images (Tschumperlé 2006). The non-local (NL) means al-
gorithm of Buades et al. (2005) is considered to be the state-
of-the-art in color image denoising. Briefly, NL-means fil-
ters are spatially varying filters that replace each pixel value
by a non-local average taken over the whole image or in
a predefined neighborhood. For more on other multichannel
image restoration methods, we refer the reader to Galatsanos
et al. (2005) and Lukac et al. (2005).

A vast amount of research has been performed on im-
age segmentation during the past three decades; variational
(Mumford and Shah 1985; Paragios et al. 2005), statisti-
cal (Geman and Geman 1984; Zhu and Yuille 1996; Cre-
mers et al. 2007), curve evolution based (Kass et al. 1988;
Caselles et al. 1993, 1997; Malladi et al. 1995; Kichenas-
samy et al. 1995; Tsai et al. 2001; Rousson and Paragios
2008), graph-theory based (Boykov et al. 1999; Schoene-
mann and Cremers 2009) techniques are only some exam-
ples. On the other hand, color image segmentation is a rel-
atively nascent area in computer vision. The literature on
color image segmentation is not as extensive as that on gray-
valued image segmentation. Some published methods di-
rectly apply the existing gray level segmentation methods
to each channel of a color image and then combine them
in some way to obtain a final segmentation result. In the
color snakes model (Sapiro 1997), Sapiro extended the geo-
desic active contour model to the color images based on the
idea of evolving the contour with a coupling term based on
the eigenvalues of the Riemannian metric of the underly-
ing manifold. Chan et al. extend the Chan-Vese algorithm
for scalar-valued images to the vector-valued case (Chan
et al. 2000). In their work, in addition to the Mumford-
Shah functional over the length of the contour, the mini-
mization involves the sum of the fitting error over each color
component. Assuming no correlation between feature chan-
nels, Brox et al. propose an energy minimization frame-
work where the energy functional is the sum of the condi-
tional probabilities of the computed features of an image:
color channels, optical flow components and texture chan-
nels (Brox et al. 2003). In Felzenszwalb and Huttenlocher
(2004), color images are handled as three separate mono-
chrome images. In Arbeláez and Cohen (2006), an exten-
sion of the Voronoi tessellation to pseudo-metric spaces is
applied to color images, where Euclidean distance in Lab
color space is used to compute the color differences. Bertelli
et al. (2008) present a variational framework based on pair-
wise pixel similarities; they use L2 distances in the Lab color
space without any coupling between the channels. In Co-
maniciu and Meer (2002), a mode detection and clustering

approach employing the mean shift procedure is presented
in the joint spatial-range domain with a Euclidean metric.

In this paper, we adopt a quaternion framework since it
offers the scope to process color images holistically, rather
than as separate color space components, and thereby han-
dles the coupling between the color channels naturally.
Moreover, the trichromatic theory of the human color vi-
sion suggests vector mathematics as a natural tool to ana-
lyze color images. For a detailed discussion and motivation
on the quaternion representation of color images, we refer
the reader to Ell and Sangwine (2007) and Moxey et al.
(2003). The key innovation of our work here is a unified
approach to color image processing using (i) a novel quater-
nion Gabor filter (QGF) to extract the local orientation, and
(ii) continuous mixtures on the unit sphere to model the de-
rived orientation for developing spatially varying smoothing
and segmentation kernels.

A major turning point in the field of mathematics, specif-
ically, in algebra, was the birth of the noncommutative al-
gebra via Hamilton’s discovery of quaternions in 1843.
This discovery was the precursor to new kinds of alge-
braic structures and has had an impact in various areas of
mathematics and physics, including group theory, topology,
quantum mechanics etc. In the past few decades, quater-
nions have been employed in computer graphics (Shoemake
1985), navigation systems (Kuipers 2002) and coding the-
ory (Sethuraman et al. 2003). In computer graphics, quater-
nion representation of orientations facilitated computation-
ally efficient and mathematically robust (such as avoiding
the gimbal lock in Euler angle representation) applications.
In image processing, quaternions have been used to repre-
sent color images (Pei and Cheng 1996; Sangwine 1996).
An image segmentation method that employs quaternionic
extension of PCA with the quaternion representation of
color has been presented in Shi and Funt (2007). Hui et al.
(2006) used standard Gabor filters on color images repre-
sented using reduced biquaternions to perform image seg-
mentation. Quaternionic representation of color, together
with the extension of the Fourier transform to hypercom-
plex numbers, has led to applications in color sensitive fil-
tering (Sangwine and Ell 2000a), edge detection (Ell and
Sangwine 2007; Sangwine 1998) and cross correlation of
color images (Moxey et al. 2003). The very first definition
of a hypercomplex Fourier transform was by Delsuc (1988)
in nuclear magnetic resonance. Later, different definitions
for the quaternionic Fourier transform (QFT) have been in-
troduced in Ell (1993) and Bülow and Sommer (1997a) in-
dependently. Based on their definition of QFT, Bülow and
Sommer generalized the concept of analytic signal to two
dimensions and introduced quaternionic Gabor filters for
use with scalar images (Bülow and Sommer 1997b). They
extended the Gabor filter by using two quaternion basis i

and j to replace the single complex number i in the def-
inition of the complex Gabor filter. However, they did not
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consider an application to color images since their defini-
tion of QFT associates the imaginary units i and j to the
local orientations in the image plane, which has no relation-
ship to the color channels in a color image. In Sangwine and
Ell (2000b), an alternative definition for QFT was proposed,
which utilizes simple formulae for the Fourier transform of
complex-valued signals that can be computed efficiently. We
follow this alternative QFT to introduce a novel definition
for the Quaternionic Gabor Filters which can be employed
to extract features from color images without conflicting in-
terpretations being assigned to the hypercomplex units. We
further test QGFs for the optimality with respect to the two-
dimensional uncertainty principle. Another contribution of
this paper is the formulation of continuous mixture models
which incorporate the local orientation, derived using QGFs,
into the smoothing and segmentation kernels.

Continuous mixture models have been presented in var-
ious contexts (Jian and Vemuri 2007a, 2007b; Jian et al.
2007; Subakan et al. 2007; Subakan and Vemuri 2008).
In this paper, we propose continuous mixtures to model
the local orientation information extracted via the proposed
QGFs. We introduce two such models and derive closed
form solutions for the continuous mixture integrals, which
are later employed in developing convolution kernels for
feature/detail preserving restoration and segmentation of
color images. The proposed spatially-varying kernels do not
use any prior information, and yet yield high quality results.

The rest of this paper is organized as follows: In Sect. 2,
we briefly describe the quaternion algebra and quaternion
Fourier transform, and then present a novel definition of the
QGFs. In Sect. 3, we introduce a continuous mixture model
for quantifying the derived orientation information to per-
form color image smoothing. In Sect. 4, we propose another
continuous mixture model on the derived orientation infor-
mation for use in segmentation. Section 5 contains the ex-
perimental results along with a quantitative evaluation de-
picting the merits of the proposed approaches, while a sum-
mary and an outlook for future research in Sect. 6 conclude
the paper.

2 Local Orientation Analysis Using QGFs

Before we delve into the details of this section, a few words
on the mathematical notation used in this paper. Throughout
the paper, we will use boldface lowercase letters to denote
the vectors. Matrices will be denoted by boldface uppercase
letters. The ith component of a vector w is written as wi ,
where as {Ŵi}Ni=1 denotes the ith Ŵ matrix in a mixture of
size N . I v(·) denotes the vth component of a vector-valued
function I (·).

2.1 Quaternions

In this section, we present background material on quater-
nions and the associated algebra which will be used in de-
veloping the local orientation analysis using QGFs.

Higher dimensional complex numbers are called hyper-

complex and defined as

q = q0 +
N

∑

k=1

ikqk, qk ∈ R, (1)

where ik is orthonormal to il for k �= l in an N + 1 dimen-
sional space. The Hamiltonian quaternions form a unitary
R-algebra; the basic algebraic form for a quaternion q ∈ H

is:

q0 + q1i + q2j + q3k, (2)

where q0, q1, q2, q3 ∈ R, the field of real numbers, and i, j ,
k are three imaginary numbers. H can be regarded as a 4-di-
mensional vector space over R with the natural definition
of addition and scalar multiplication. The set {1, i, j, k} is a
natural basis for this vector space. H is made into a ring by
the usual distributive law together with the following multi-
plication rules:

i2 = j2 = −1, ij = −ji = k. (3)

If we denote the scalar and vector parts of a quaternion
q by Sq = q0 and V q = q1i + q2j + q3k respectively, the
product of two quaternions q and p can be written as

qp = SqSp − V q · Vp + SqVp + SpV q + V q × Vp, (4)

where the · and × indicate the vector dot and cross products
respectively. The conjugate of a quaternion, denoted by ∗,
simply negates the vector part, q∗ = q0 − q1i − q2j − q3k.
The norm of a quaternion q is ‖q‖ = √

qq∗ = √
q∗q =

√

q2
0 + q2

1 + q2
2 + q2

3 . A quaternion with unit norm is called

unit quaternion. Hamilton called a quaternion with zero
scalar part a pure quaternion. We can give an inner prod-
uct structure to H if we define:

〈q,p〉 = Sqp∗. (5)

Using the inner product, the angle α between two quater-
nions can be defined as:

cosα = Sqp∗

‖q‖‖p‖ (6)

and

d(q,p) = 2 cos−1(S(qp∗)
)

(7)
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is the length of the shortest geodesic between two unit
quaternions q and p. It can also be called the angle of ro-

tation metric for quaternions. Any quaternion can be written
in polar form

q = ‖q‖eθμ = ‖q‖(cos θ + μ sin θ), (8)

where μ is a unit pure quaternion.
Quaternion representation of color image pixels has been

proposed independently in Pei and Cheng (1996) and Sang-
wine (1996). They encode the color value of each pixel in
a pure quaternion. For example, a pixel value at a location
(n,m) in an RGB image can be given as a quaternion-valued
function f (n,m) = R(n,m)i+G(n,m)j +B(n,m)k where
R, G and B denote the red, green and blue components
of each pixel respectively. This 3-component vector rep-
resentation yields a system which has well-defined and
well-behaved mathematical operations to apply to color im-
ages holistically. An elaborate discussion and motivation
for the application of such hypercomplex algebras in signal
processing is given in Alfsmann et al. (2007).

2.2 Quaternionic Gabor Filters

In order to develop complex Gabor filters in higher-dimen-
sions, we first need to analyze the corresponding generaliza-
tion of the Fourier transform. The very first definition of a
hypercomplex Fourier transform was due to Delsuc (1988).
Later, Ell (1993) and Bülow (1997a) independently intro-
duced the quaternion Fourier transform, respectively as fol-
lows:

H(jw,kv) =
∫ ∞

−∞

∫ ∞

−∞
e−jwth(t, τ )e−kvτ dt dτ, (9)

F(u, v) =
∫

R2
e−i2πuxf (x, y)e−j2πvy dx dy. (10)

In Sangwine and Ell (2000b), another definition for QFT
was proposed with the motivation of using a simple gener-
alization of the standard complex operational formulae for
convolution in color images:

F [u,v] = 1√
MN

M−1
∑

m=0

N−1
∑

n=0

e−μ2π(mv/M+nu/N)f (n,m),

(11)

where μ is a unit pure quaternion. In the rest of this pa-
per, we will follow this above definition. For color images
in RGB space, μ is chosen as 1√

3
(i + j + k). Note that

both the luminance and the chromaticity information is still
preserved; this is still a full color image processing, not a
processing of the corresponding gray scale image. The trans-
form operation intrinsically handles the coupling between
color channels. First we prove the modulation theorem for
the continuous QFT.

Theorem 1 (Modulation theorem for QFT) Let f (x, y)

be a quaternion-valued signal, FH(u, v) be its quaternion

Fourier transform, and h(x, y) = f (x, y)eμ2π(u0x+v0y).
Then, QFT{h(x, y)} = FH(u − u0, v − v0).

Proof

QFT
{

f (x, y)
}

=
∫

R2
f (x, y)e−μ2π(ux+vy) dx =: FH(u, v),

QFT
{

h(x, y)
}

=
∫

R2
f (x, y)eμ2π(u0x+v0y)e−μ2π(ux+vy) dx

= FH(u − u0, v − v0). �

In the following, we introduce a novel quaternionic Ga-
bor filter.

Definition 1 (Quaternionic Gabor filter) The impulse re-
sponse of a quaternionic Gabor filter is a Gaussian modu-
lated with the basis functions of the QFT:

GH(x;u, σ,λ,α) = g(x′, y′) exp
(

μ2π(u0x + v0y)
)

, (12)

where g(x, y) = N exp(− x2+λy2

2σ 2 ) with N being the normal-
ization constant, λ being the aspect ratio

[

x′

y′

]

=
[

cosα sinα

− sinα cosα

][

x

y

]

.

The center frequency of the QGF is given by
√

u2
0 + v2

0

and its orientation is α = arctan(v0/u0). Figure 1 depicts a
quaternionic Gabor filter with orientation π/4 for illustra-
tion purposes.

Let us consider the QFT of an isotropic Gaussian in 2D.
QFT of an anisotropic Gaussian can be evaluated similarly

QFT
{

g(x, y)
}

= N

∫

R2
e
− x2+y2

2σ2 e−μ2π(ux+vy) dx

= N

∫

R

(∫

R

e−(x+2πμuσ 2)/2σ 2
dx

)

× e
− y2

2σ2 eμ22π2σ 2u2
e−μ2πvy dy

= N2

∫

R

e
− y2

2σ2 e−2π2σ 2u2
e−μ2πvy dy. (13)

After some algebraic manipulations, we obtain

QFT{g(x, y)} = ce−2π2σ 2(u2+v2), i.e. an un-normalized
Gaussian in (u, v)-space, with c being a constant. Hence,
using the QFT of a Gaussian together with the modulation
theorem for QFT, we can conclude that quaternionic Gabor
filters shown above are shifted Gaussian functions in the
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Fig. 1 (Color online) Quaternionic Gabor filter (size of the filter mask is 128 × 128) with an orientation of π/4: (a) the scalar part of the filter, (b)
a component of the vector part of the filter, (c) 2D view of the scalar part

Fig. 2 (Color online)
Application of the QGF in
Fig. 1 to the image in (a) (from
Berkeley Data Set—Martin
et al. 2001): (b) the magnitude
response, (c)–(f) the scalar, i, j ,
and k parts of the filter response,
respectively

quaternionic frequency domain, i.e. if

f (x) = e
− x2

2σx2 − y2

2σy2
eμ2π(u0x+v0y), (14)

then the QFT of f is:

FH(u) = e−2π2σ 2
x (u−u0)

2−2π2σ 2
y (v−v0)

2
. (15)

For an application of a QGF, consider the Fig. 2. If we
apply the QGF in Fig. 1 to an image, then we obtain high re-
sponses wherever there are π/4 oriented features. Figure 2b

illustrates the magnitude response of such a horizontally ori-
ented QGF convolved with an image in quaternion form.
Quaternion convolution is equivalently performed by using
QFT. Note that all the calculations follow the rules of the
quaternion algebra. In this paper, we use the QFT to carry
out the convolution operation.

In analogy to Gabor filters, we consider the quaternionic
analytic signal which has been defined in Bülow and Som-
mer (1997b) to work with QGFs. For positive frequencies
u0 and v0, the main amount of the Gabor filter’s energy in
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(15) is in the upper right quadrant. Hence, QGFs provide

approximation to quaternionic analytic signal. In order to

show that QGFs are optimally localized in both quaternionic

spatial and frequency domains simultaneously, we will sim-

ply extend the definition of the uncertainties for quaternion-

valued functions which has also been done in Bülow (1999).

The spatial and frequency uncertainties Δx and Δu of a

quaternion-valued signal f can be given as:

(Δx)2 =
∫

R2 f (x, y)f ∗(x, y)x2 dx dy
∫

R2 f (x, y)f ∗(x, y)dx dy
,

(Δu)2 =
∫

R2 FH(u, v)F ∗
H
(u, v)u2 dudv

∫

R2 FH(u, v)F ∗
H
(u, v)dudv

.

(16)

The uncertainties of the QGF given in (14) can be eval-
uated using the above definitions and their analogs for Δy

and Δv to be

Δx = σx√
2
, Δy = σy√

2
,

Δu = 1

2
√

2σxπ
, Δv = 1

2
√

2σyπ
.

(17)

Thus, QGFs are shown to achieve the minimum product of
uncertainties defined in Daugman (1985)

ΔxΔyΔuΔv = 1/16π2. (18)

In Fig. 3, we show the scalar and vector parts of the sum
responses obtained from an application of 13 oriented QGFs

Fig. 3 (Color online) Image of Barbara is quaternion-convolved with QGFs of different orientations. (a) Color image, (b) sum of the magnitude
responses, (c)–(f) scalar, i, j , k parts of the sum of the QGF responses respectively, (g)–(i) GB, RB, RG images respectively
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Fig. 4 (Color online) Application of a quaternionic Gabor filter bank
across equal luminance: (a) a synthetic color image where the object
and the background are of equal luminance, (b) luminance channel,
(c) a grayscale version of (a), (d) the sum of the magnitude responses
of 10 QGFs applied to the color image in (a)

to the image of Barbara. We convolve the quaternion rep-
resentation of the color image with each quaternion-valued
filter, and then illustrate the sum over each hypercomplex
unit. Note that the convolution involves quaternion multi-
plication. Color transitions in the coupled channels GB, RB
and RG show themselves in the components of the vector
part of the QGF responses.

In general, in an image, it is possible to have a color
contrast without having a luminance contrast. In a black-
and-white version of such an image, the two different col-
ored objects appear blended into a single one. In Fig. 4,
we demonstrate that the proposed quaternionic Gabor fil-
ters can extract the local orientation information from a con-
stant luminance image as well. Figure 4a shows a synthetic
color image where all pixels have the same luminance value,
but the chromaticity inside the object differs from the chro-
maticity outside. The luminance channel shows that all pix-
els have the same value (see Fig. 4b). We applied 10 QGFs to
the quaternion representation of this color image. The sum
of the magnitude responses of 10 QGFs is shown in Fig. 4d.
Although a black-and-white version (Fig. 4c) of the input
image is a uniform gray without any changes in orientation,
the proposed QGFs successfully derive the orientation infor-
mation in the color version, showing that they are well suited
for analyzing color images and the result is not a grayscale
image processing.

The unit pure quaternion direction μ in QGF can be cho-
sen arbitrarily. We have chosen μ = 1√

3
(i + j + k), an ob-

vious choice for RGB color images, as it corresponds to
the luminance direction on the RGB space. This choice al-
lows treating each color channel equivalently. However, this
choice does not mean that the proposed quaternion frame-
work is processing the sum of the RGB values. Also note
that the convolution between a QGF and a quaternion repre-
sentation of a color image is performed following the rules
of quaternion algebra. At each pixel, the quaternion-valued
filter is multiplied with the color direction of that pixel
through a quaternion product. Hence, QGF handles the cou-
pling between the channels while, at the same time, process-
ing all information in a color image. Figure 5a shows a color
image where (R + G + B)/3 is the same for all pixels. As
shown in Fig. 5c, the proposed framework can accurately
extract the orientation information.

Fig. 5 (Color online) (a) A synthetic color image where (R +
G + B)/3 is the same everywhere. (b) (R + G + B)/3 values for each
pixel. (c) The sum of the magnitude responses of the QGFs applied to
the color image in (a)

Note that both the image in Fig. 4 and the image in Fig. 5
cannot be segmented or denoised using a gray-level image
processing technique because the objects in the color im-
ages do not appear in their gray-valued versions. However,
our color image processing framework can detect objects in
such images, yielding accurate segmentation and smoothing
in the later steps, and this framework is not sensitive to equal
luminance.

In the following sections, we present possible ways
for modeling the orientation information derived using the
QGFs proposed above. We develop two continuous mixture
models: in one case, we introduce a model for the compo-
nents of the quaternion-valued responses, and employ it in
color image smoothing, and in the other case we model the
magnitude responses to perform detail preserving color im-
age segmentation.

3 A Continuous Mixture on the Orientation Space

In the previous section, we introduced the QGFs to extract
the local orientation information in a color image. The re-
sulting responses over a sphere of directions are modeled in
this section in a probabilistic framework. We postulate that
at each lattice point there is an underlying probability mea-
sure induced on the unit circle. An appropriate choice for
the basis functions is exp(cos(θ − α)), where α is the orien-
tation of the QGF, and θ is a random variable on the circle.
The proposed continuous mixture model is given by,

Gv
H
(x; ·, α) =

∫

S1
ecos(θ−α) dF, (19)

where dF = f (θ)dθ denotes the underlying probability
measure with respect to the uniform distribution dθ on S

1.
Gv

H
, v = i, j, k denote the i, j and k components of the vec-

tor part in the quaternion-valued response, respectively. We
only model the components of the vector part. Scalar part
of the filter response can be regarded as a smoothed second
derivative of the initial image, and can be used for edge de-
tection.

In order to avoid an ill-posed inverse problem which re-
quires recovering a distribution defined on the circle given
the measurements Gv

H
(x; ·, α), we impose a mixture of von
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Mises distributions on θ as a prior. The von Mises distrib-
utions have a significant role in statistical inference on the
circle, analogous to that of the normal distributions on the
line. For statistical purposes, any von Mises distribution can
be approximated by a normal distribution wrapped around
the circumference of the circle of unit radius. θ is distrib-
uted as fM(θ;β,κ) if it has the von Mises density given
by,

1

2π I0(κ)
eκ cos(θ−β) dθ, (20)

where β and κ are the mean direction and the concentration
parameter, respectively. I0 is the modified Bessel function
of the first kind and zeroth order (Mardia and Jupp 2000).

This distribution is unimodal and symmetric about θ = β .
κ determines the degree of the clustering around the mode;
the larger the value of κ , the greater the clustering around
the mode. In order to handle orientational heterogeneity we
need a multimodal distribution. Therefore, we choose the
prior to be a discrete mixture of von Mises distributions:

dF =
N

∑

n=1

wn

1

2π I0(κn)
eκn cos(θ−βn) dθ. (21)

Substituting this measure into (19), we obtain our model
given by:

Gv
H
(x; ·, α)

=
∫

S1

N
∑

n=1

wn

1

2π I0(κn)
eκn cos(θ−βn)ecos(θ−α) dθ. (22)

However, note that this is still a continuous mixture
model. N here corresponds to the resolution of the dis-
cretization of the circle; it does not correspond to the number
of modes (peaks) characterizing the local geometry or the
number of dominant local orientations. We observed that the
kernel of the von Mises distribution can be utilized to derive
a closed form solution for the continuous mixture integral,
leading to:

Gv
H
(x; ·, α)

=
N

∑

n=1

wn

I0(
√

κ2
n + 1 + 2κn cos(βn − α))

I0(κn)
. (23)

We can formulate the computation of this analytic form
as the solution to a constrained linear system Aw = y, where
w is constrained to be non-negative, A is an M × N matrix
with

Amn = I0(
√

κ2
n + 1 + 2κn cos(βn − αm))

I0(κn)
, (24)

w = {wn}Nn=1, and y = {Gv
H
(x; ·, αm)}Mm=1 contains the mea-

surements obtained via an application of M QGFs to the
image, is the unknown weight vector. We solve for the non-
negative weights in the mixture using a sparse deconvolution
technique, the non-negative least squares (NNLS) minimiza-
tion (Lawson and Hanson 1974) which yields an accurate
and sparse solution for:

min‖Aw − y‖2 subject to w ≥ 0. (25)

A sparse solution is what is expected at each image lat-
tice point since local image geometry does not have a large
number of edges meeting at a junction. Once w is estimated
for the given data at each lattice point, we can construct the
convolution kernel for color image smoothing. The update
equation for image channel I v , v = R,G,B is given as fol-
lows:

I v
t+1(x) = I v

t (x) ∗ Qv(x),

Qv(x) =
N

∑

n=1

wv
n

I0(
√

κ2
n + 1 + 2κn cos(βn − α))

I0(κn)
, (26)

where Qv(x) is the convolution kernel on the right-hand side
of (23) for the corresponding Gv

H
(·), wv is the weight vector

obtained from (25) using the corresponding Gv
H
(·) measure-

ments, βn is the mean direction of the nth component in the
mixture of von Mises distributions, which is obtained by the
tessellation of the unit circle, and the orientation α is the
angle that the coordinate vector x makes with the x-axis.
M different orientations are employed in a neighborhood of
size

√
M ×

√
M , which yields a kernel of size

√
M ×

√
M .

This formulation yields a spatially varying convolution ker-
nel since the w vector depends on location; it is estimated
at each lattice point x in an image. Moreover, the weights w
and hence the convolution kernel is different for each color
channel I v . Note that this framework (named as QGvM–
Quaternionic Gabor filters with von Mises density) handles
the coupling between the color channels through the appli-
cation of quaternionic Gabor filters to the quaternion rep-
resentation of the color image, even though the final step
involves component-wise convolutions of the computed ker-
nels.

4 A Continuous Mixture on the Unit Quaternion Space

In the previous section, we model the local orientation infor-
mation in a color image using a continuous mixture model
on the unit circle. In this section, we present a model for
the magnitude responses on the unit quaternion space. This
choice is motivated by the fact that in order to achieve
segmentation using an active contour type framework, one
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needs to either apply the active contour to some scalar func-
tion derived from the input RGB data or represent the data
as an image graph, which in this case is a 5 dimensional
surface (x, y,R(x, y),G(x, y),B(x, y)) and would be com-
putationally expensive. If a channel by channel approach is
resorted to, then the segmentations from each channel would
have to be somehow combined in a meaningful way to yield
a single segmentation, a challenging and hard problem. In
this paper, we choose derive the scalar function from the
full quaternion representation using the normalized magni-
tude and then use the space of unit quaternions to construct a
continuous mixture model to represent it and solve this inte-
gral in closed form for an appropriately chosen prior distri-
bution on this space. This framework is powerful and allows
one to capture the complicated local geometries present in
the image data and incorporate them into spatially varying
segmentation kernels. We postulate that at each lattice point
there is an underlying probability measure induced on the
manifold of the unit quaternions.

The space of unit quaternions

S
3 =

{

q ∈ H | ‖q‖ = 1
}

(27)

is the 3-sphere in H, it forms a group under multipli-
cation and preserves the hermitian inner product. An ap-
propriate choice for the kernel functions is therefore
exp(− cos(d(q,p))), where d(q,p) = 2 cos−1(S(q∗p)) is
the length of the geodesic between quaternions q and p, as
given in (7). Thus the proposed model is given by,
∥

∥GH(x; ·, α)
∥

∥/Gmax
H

=
∫

S3
f (q)e− cos(d(q,pα)) dq, (28)

where dF := f (q)dq denotes the underlying probability
measure with respect to the uniform distribution dq on S

3.
pα is the unit quaternion with angle α, which is the orienta-
tion of the QGF with respect to the axis μ = 1√

3
(i + j + k).

Gmax
H

is the maximal magnitude response among all re-
sponses at an image location. In order to avoid an ill-posed
inverse problem which requires recovering a distribution de-
fined on the manifold of unit quaternions given the measure-
ments GH(x; ·, α), we impose a mixture of Bingham distri-
butions on q as a prior. Manifold of the unit quaternions
double-covers SO(3). Double-coverage can be interpreted
as antipodal-symmetry; thus, Bingham distribution is a nat-
ural choice for quaternion priors. For statistical purposes,
Bingham distribution is characterized as the hyperspherical
analogue of the n-variate normal distribution; essentially it
can be obtained by the “intersection” of a zero-mean normal
density with the unit sphere in R

n. Let q be a 4-dimensional
random unsigned unit direction. q is distributed as BL,A if it
has the Bingham density (Prentice 1986) given by,

1F 1(1/2,2,L)−1 exp
{

tr LAqqT
A

T
}

dq, (29)

where A is a 4 × 4 rotation matrix, L is a diagonal matrix
with concentration values (which determine the amount of
clustering around the mean direction) and 1F 1 is a confluent
hypergeometric function of matrix argument as defined in
Herz (1955).

Here, we make a useful observation which helps deriving
an analytic solution for the proposed continuous model: Us-
ing the relationship between S

3 and SO(3), Prentice (1986)
has shown that q has a Bingham density if and only if the
corresponding rotation matrix, Q, in SO(3) has a matrix
Fisher distribution. A random 3×3 rotation matrix Q is said
to have a matrix Fisher distribution FF if it has the following
pdf:

0F 1
(

3/2;FF
T /4

)−1
exp

{

tr F
T

Q
}

dQ. (30)

F is a 3 × 3 parameter matrix which encapsulates the con-
centration values and orientations, 0F 1 is a hypergeomet-
ric function of matrix argument and can be evaluated using
zonal polynomials. By using the distance on the manifold
SO(3), the proposed model can be equivalently written in
SO(3) instead of S

3 as:

∥

∥GH(x; ·,Pα)
∥

∥/Gmax
H

=
∫

SO(3)

e− tr Pα
T

Q−1
2 dF, (31)

where Pα is the rotation matrix corresponding to the unit
quaternion with the angle being the orientation α of the QGF
and the axis being μ = 1√

3
(i + j + k).

dF =
N

∑

i=1

wi0F 1
(

3/2;FiF
T
i /4

)−1
etr F

T
i Q dQ (32)

is a discrete mixture of matrix Fisher densities over the ro-
tation matrix Q with respect to the uniform distribution on
SO(3). We choose to change the prior to this mixture of ma-
trix Fisher densities since the matrix Fisher density is uni-
modal and will not be able to handle orientational hetero-
geneity. Once again, the model in (31) is still a continuous
mixture model. N here corresponds to the resolution of the
SO(3) discretization and not the number of dominant lo-
cal orientations. We observed that the kernel of the matrix
Fisher distribution can be utilized to derive a closed form
solution for the right-hand side, leading to:

N
∑

i=1

wi
0F 1(

3
2 ; 1

4 [Fi − Pα

2 ][Fi − Pα

2 ]T )

0F 1(3/2;FiF
T
i /4)

. (33)

In order to compute this analytic form, we can write it
as the solution to a linear system Aw = y (as in Sect. 3),
where y = {‖GH(x; ·, αj )‖}Mj=1/Gmax

H
contains the normal-

ized measurements obtained via an application of M QGFs
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Fig. 6 (Color online)
Convolution kernels on a color

image. Numerical values of the
convolution kernels for three
locations with different
orientational heterogeneity are
shown in the figure together
with a visual illustration

to the color image, A is an M × N matrix with

Aji = 0F 1(
3
2 ; 1

4 [Fi − Pj

2 ][Fi − Pj

2 ]
T
)

0F 1(3/2;FiF
T
i /4)

(34)

and w = (wi) is the unknown weight vector. The weights
in the mixture can be solved using a sparse deconvolution
technique, a non-negative least squares (NNLS) minimiza-
tion which yields an accurate and sparse solution. Once w
is estimated for the given data at each lattice point, we can
construct the convolution kernel for color image segmenta-
tion. Figure 6 illustrates the 3 × 3 convolution kernels for
different locations in a real image. We represent an evolv-
ing curve C (in a curve evolution framework) by the zero
level set of a Lipschitz continuous function φ : Ω → R. So,
C = {(x, y) ∈ Ω: φ(x, y) = 0}. We choose φ to be nega-
tive inside C and positive outside. C is evolved using the
following update equation:

φt+1(x) = φt (x) ∗ K(x), (35)

where K(x) is the convolution kernel obtained from (33) by
setting the matrix P to the rotation matrix corresponding to
the angle that the coordinate vector x makes with the x-axis.
Note that this formulation (named as QGmF–Quaternionic
Gabors with matrix Fisher density) yields a spatially varying
convolution kernel since the w vector is estimated at each
lattice point in an image.

5 Experiments and Comparisons

5.1 Experiments on Color Image Smoothing

In this section, we evaluate the performance of the QGvM
framework with applications on color image denoising and

inpainting. We compare our denoising results with four
prominent techniques: Weickert’s coherence enhancing dif-
fusion (CED) for color images (Weickert 1997), the Bel-
trami flow proposed by Kimmel et al. (2000), the curvature
preserving regularization (CPR) proposed by Tschumperlé
(2006) and the NL-means algorithm Buades et al. (2005)
which is considered to be the state-of-the-art in denoising
techniques. In the denoising experiments, for each algorithm
the outputs that have the highest PSNR values are shown.
Parameters of each method were chosen so as to reach its
best PSNR value. We compute the PSNR on the RGB chan-
nels of the color image. We also report the PSNR values on
the luminance channel of the YCbCr representation of the
RGB image, since the human eye is more sensitive to the
luma information in a color image. PSNR for RGB domain
is defined as:

PSNR = 10 log10
2552

MSE
(36)

MSE = 1

3|Ω|
∑

x∈Ω

∑

v=R,G,B

(

I v
0 (x) − Î v(x)

)2
,

where Ω is the image domain of |Ω| pixels, I0 is the noise-
free ideal image, and Î is its estimate obtained from the
denoising method. PSNR for the luminance channel is the
same except the MSE is the sum over the squared value dif-
ferences of the luminance channel, divided by |Ω|.

In all of our experiments, we use the same number of
measurements for our model; i.e. the size of the quaternion
Gabor filter bank, M, is 21 for all experiments. N, the reso-
lution of the discretization of the unit circle for the mixing
density, is set to 81. Hence, the size of matrix A is 21 × 81,
and the unknown of this under-determined system, which is
the weight vector w, is an 81-dimensional vector. Note that
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Table 1 The PSNRs of the denoised color images for different algorithms

Image PSNR method CED Beltrami CPR NLM Ours Noisy image

Butterfly Luminance 26.45 27.37 25.14 28.4 28.2 22.32

RGB 24.48 24.84 23.11 26.07 26.33 17.71

Parrots Luminance 29.01 28.95 28.91 32.62 30.03 22.30

RGB 26.95 26.85 26.75 29.5 27.70 17.62

Mandrill Luminance 25.18 25.33 25.43 26.56 27.20 21.63

RGB 22.53 22.52 22.27 24.26 23.51 19.28

Clown Luminance 27.79 28.74 30.12 28.54 31.5 22.92

RGB 25.45 26.28 27.25 26.02 27.68 18.37

Barbara Luminance 27.81 29.35 30.83 31.56 31.4 22.33

RGB 24.50 25.20 25.10 25.5 25.30 17.59

Horses Luminance 27.7 28.04 28.17 28.56 29.21 21.83

RGB 26.04 26.32 26.29 26.5 27.73 20.20

Peppers Luminance 31.0 30.57 30.65 31.74 32.47 22.04

RGB 27.95 27.08 27.20 27.8 28.28 20.06

this size does not correspond to the expected number of dif-
ferent orientations at a pixel. The concentration parameter κ

is the same for all distributions in the mixture of von Mises
distributions. We experimented with different values of κ

and in the following experiments, a value of 8, which gives
a relatively sharp mode in a von Mises distribution, yields
the best PSNR values. In denoising experiments, the origi-
nal images are corrupted by additive white-Gaussian noise,
having a high standard deviation (σ = 35). For a quanti-
tative evaluation of our approach, we present the highest
PSNR values obtained using the above mentioned methods
in Table 1. In all the cases, our unsupervised and adaptive
method produces either the best PSNR values or compara-
ble PSNR values to those from NL-means. On a PC with
2.00 GHz CPU and 2 GB RAM, each of our experiments in
the following data set runs in about 3 mins. Overall, in the
experiments reported in Table 1, our method performs best
in 4 out of the 7 cases and is competitive to NL-means in
the remaining cases. Also, it is computationally more attrac-
tive than NL-means which takes several hours of processing
time on the images used in this paper. Moreover, our fil-
ters are very well suited for a GPU implementation due to
their local nature. We should however note that attempts to
make the NL-means algorithm faster is an active area of re-
search.

In Fig. 7, we illustrate the potential of our approach
with a butterfly image corrupted by additive white-Gaussian
noise, having a high standard deviation (Fig. 7a, σ = 35).
Our method preserves significant geometric features and the
original color contrasts without producing undesirable arti-
facts (see Fig. 7f). However, both in Figs. 7b and 7c, we
notice the color artifacts in flat regions, which look like arti-
ficial texture effects. Coherence enhancing diffusion creates
fiber effects on the background. Curvature preserving regu-

larization performs better, however it creates a color bleed-
ing around the edges of the wings (see zoomed-in view in
Fig. 7d). Both visually and in terms of PSNR, our method
outperforms the competing methods. NL-means however is
quite competitive with our method but due to its global na-
ture, is computationally very slow and takes several hours
and is not competitive with respect to ours in this con-
text.

In inpainting, we compare our results with the direct ap-
plication of the curvature preserving PDE as proposed by
Tschumperlé in Tschumperlé (2006), where the regions to
be inpainted are removed by the user using a rough mask.
To fill-in the missing image regions, we apply the iterative
convolution of our spatially-varying kernel on the regions to
inpaint, without using any texture synthesis or reconstruc-
tion technique as a post-processing step. The coefficients
of the spatially varying kernel are estimated as in the case
of any image without such an occluded region. The esti-
mated kernels are then applied iteratively without any fur-
ther changes to the estimated kernels. We illustrate how our
technique can be used to remove objects from digital pho-
tographs along with the comparisons. In Fig. 8, we would
like to remove the net from the image, and in Fig. 9, we
would like to take the cage out and fill-in the missing parts.
In both experiments, our method generates a better result.
Note that the fish net is still noticeable in Fig. 8b, similarly
the cage in Fig. 9b. In addition, parrot’s toe is over-diffused
by the curvature preserving regularization, whereas our re-
sult looks visually more appealing.

5.2 Experiments on Color Image Segmentation

In this section, we present several experimental results of
our color image segmentation approach QGmF and quanti-
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Fig. 7 (Color online) (a) Noisy image with a Gaussian noise of standard deviation 35. Denoised images using (b) the coherence enhancing
diffusion, (c) the Beltrami flow, (d) the curvature preserving regularization, (e) the non-local means and (f) our method

Fig. 8 (Color online) Inpainting a fish net in a color image using (b) curvature preserving regularization, (c) our method

Fig. 9 (Color online) Inpainting a cage in (a) a color image (courtesy of Tschumperlé 2008), with curvature preserving regularization (b), and
with our method (c)

tatively compare its performance with a state-of-the-art tech-
nique in segmentation: the mean shift algorithm presented
in Comaniciu and Meer (2002). We compare with this al-
gorithm since it presents a tool for feature-space analysis,
and it is publicly available. In this quantitative evaluation,

we show the segmentations that yield the highest F -measure
value for each algorithm, and present the numerical results
in Table 2.

In Fig. 10, we show segmentation results obtained by
various recent methods. Our model yields a segmentation
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Fig. 10 (Color online) (a) Original image. (b) Final distance function obtained by QGmF method. (c) Regions extracted by the QGmF method.
Results obtained from (d) the QGmF method with a low threshold value of 0.01. (e) The QGmF method with a threshold value of 0.02. (f) A human
segmentation (from the ground truth in the Berkeley Segmentation Data Set Martin et al. 2001). (g) The mean shift algorithm. (h) The cue
integration method in Brox et al. (2003) using only Gabor features. (i) The cue integration method in Brox et al. (2003) using the texture features
obtained by structure tensor and the color channels. (j) The ultrametric contour map algorithm in Arbeláez and Cohen (2006)
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significantly close to the ground truth manual segmenta-
tion in the Berkeley database. The zoomed-in views both in
Figs. 10d and 10e show the detailed segmentation of the fur
under the chin. Also, most of the other methods fail to cap-
ture the tail accurately; although Fig. 10i has almost all of
the tail segmented, many junctions, edges are not preserved
in the segmentation.

In the QGmF, we can adjust the level of details/features,
which reveal themselves in the output of the QGF applied
to the color images. To do this, we introduce a threshold
parameter on the magnitude of the filter responses. A rel-
atively low threshold results in a segmentation capturing
the low contrast details in small scales. Figure 11c illus-
trates such an example where the threshold is set to 0.005.
Mean shift algorithm achieves a successful result as shown
in Fig. 11b. However, uniform regions are not consistently
preserved, e.g.the sky is mis-segmented; the boundaries di-
vide the regions which are actually composed of connected
components, as can be seen between the clouds. Moreover,
the crowd on parade is mis-segmented with the ground.

Table 2 F1-measure (or Dice’s coefficient) values for segmented im-
ages

Image QGmF MeanShift

Astronauts 0.74 0.56

Starfish 0.81 0.52

Parade 0.76 0.65

Buffalo 0.86 0.67

Tiger 0.83 0.64

Figure 11d shows a better segmentation using our QGmF
method (note that the man riding the horse and the crowd
are clearly segmented, also note the accurate localization of
the boundary between the barricade and the pavement). Fig-
ure 11e shows the pixels correctly labeled as belonging to
the segmentation boundary by the QGmF.

Another visual comparison is provided in Fig. 12. Since
the mode detection calculations in the mean shift algorithm
are determined by global bandwidth parameters, the algo-
rithm tends to miss small-scale details in some places or
over-segment the uniform regions (see the small areas on
the starfish which are mis-segmented as being a part of the
outer region in Fig. 12b). On the other hand, QGmF main-
tains coherence within textured regions while preserving
the small scale details around the boundaries as shown in
Fig. 12d. Once again, a low threshold value results in over-
segmentation (see Fig. 12c).

In Fig. 13b, note the regions which have almost equal lu-
minance but different chromaticity. Both Figs. 13c and 13d
are over-segmented; however, Fig. 13e shows a high quality
result which is very close to the ground truth manual seg-
mentation (see Figs. 13e and 13a). In Fig. 14b, the mean
shift segmentation algorithm mis-segments the heads of the
astronauts, and the boundaries of the astronaut on the left
are missed. As visually evident, QGmF performs better than
the competing methods.

In order to have a quantitative evaluation of our approach,
we present the highest F1-measure (or Dice’s Coefficient)
scores of our method and the competing method for the
above images, as shown in Table 2. Furthermore, in Fig. 15

Fig. 11 (Color online) (a) Segmentation performed by a human subject (from the ground truth in the Berkeley Segmentation Data Set, Martin
et al. 2001). (b) Segmentation result of the mean shift algorithm. (c) Segmentation result of the QGmF method with a low threshold value of 0.005.
(d) Segmentation result of the QGmF method with a threshold value of 0.02. (e) True positives (TP) map of (d) with respect to (a)

Fig. 12 (Color online) (a) Human segmentation (from the ground truth in the Berkeley Segmentation Data Set). (b) Output of the mean shift
algorithm. (c) Output of the QGmF method with a threshold of 0.005. (d) Output of the QGmF method with a threshold of 0.025
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Fig. 13 (Color online) (a) Human segmentation (from the ground truth data). (b) Luminance channel of the color image. (c) Output of the QGmF
method for the color image (QGF threshold = 0.005). (d) Output of the mean shift segmentation. (e) Output of the QGmF method (QGF threshold
= 0.025)

Fig. 14 (Color online) (a) Manual segmentation (from the ground truth in Berkeley Segmentation Data Set). (b) Output of the mean shift seg-
mentation. (c) Output of the QGmF method

Fig. 15 (Color online) F -measure plots for the mean shift segmen-
tation algorithm and the QGmF convolution-based kernel method on
100 color images from the Berkeley Segmentation Data Set. For the
QGmF, x-axis shows the variations of the threshold parameter for QGF
responses, arranged in ascending order from left to right, while y-axis
shows the corresponding F -measure value. The threshold for QGF
varies within [0.005,0.05]. For the mean shift segmentation algorithm,
the corresponding values for the space bandwidth parameter (hs ) are
shown in the plot, points along each curve correspond to the variations
of the range bandwidth parameter (hr ) in [4,20]

we present a sensitivity analysis using the F1-measures on
100 color images (including the images above) drawn from
the Berkeley Segmentation Data Set (Martin et al. 2001).
F1-measure, commonly known as the F -measure, is the
evenly weighted harmonic mean of the precision and re-

call scores. Precision and recall are preferred as measures
of the segmentation quality because they are sensitive to
under and over-segmentation. The human segmentations
from the Berkeley Segmentation Data Set were used as the
ground truth in the evaluation. Since there are multiple hu-
man segmentations per image, we compute the F -measure
scores against each of these segmentations and then take
the average. The boundaries between two segmentations are
matched by examining a neighborhood within a radius of
ǫ = 2. In these experiments, the obtained segmentations are
reasonable from the human being perception.

In the QGmF, we tested the effect of the threshold para-
meter (for values in [0.005,0.05]) on the QGF responses.
For the mean shift segmentation algorithm, we tested the
effect of the kernel bandwidth parameters: hs , space band-
width; and hr , range bandwidth. They determine the reso-
lution of the mode selection and the clustering. We tested
for 3 different hs values in [7,10,20]. In each curve for the
mean shift algorithm, x-axis shows the variations of the hr

values in [4,20] arranged in ascending order from left to
right. Experimentation showed that the F -measure scores
change significantly with respect to the bandwidth parame-
ters in mean shift segmentation algorithm, making it diffi-
cult to choose the range of the parameters which can provide
good results. In the QGmF, we observed that a low threshold
value for QGF results in over-segmentation which is charac-
terized in the curves by low F -measure, whereas any level of
detail for segmentation can be achieved by tuning the thresh-
old parameter. We notice that the scores of the QGmF are
higher than the competing method.
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6 Conclusion

In this paper, we presented quaternion-based frameworks
for feature/detail preserving restoration and segmentation in
color images. The main idea is to capture the complicated
local geometry contained at a lattice point, and then to in-
corporate this information into spatially varying convolution
filters. We first introduced a novel quaternionic Gabor fil-
ter to extract the local orientation information while appre-
ciating the vectorial nature of a color image. We explored
different continuous mixture models in order to convey the
derived quaternion-valued orientation information to color
smoothing and segmentation. One of the proposed models
represents each component of the quaternion-valued QGF
responses using a continuous mixture model on the orienta-
tion space, which is the unit circle. The other quantifies the
magnitude data of the QGF responses via a continuous mix-
ture of hypercomplex exponential basis functions on the unit
quaternion space. Deriving analytic solutions for these inte-
grals, we developed spatially varying convolution kernels.
Our methods do not use any prior information. We qualita-
tively and quantitatively validated that our frameworks de-
liver superior or competitive (with respect to the non-local
means in the denoising case) performance in comparison to
competing state-of-the-art methods.

The proposed methods handle the coupling between the
channels through the application of QGFs to the quaternion
representation of color images. This process also integrates
the color information and the texture information. In seg-
mentation, the active contour evolution is controlled by this
unified information. Similarly, in the denoising task, image
channels do not evolve independently because the orien-
tation space and the color components are linked through
the QGFs. For color image smoothing, we envision that
the update equation of the smoothing process can be mod-
ified to perform a quaternion-convolution of color image
with a quaternion-valued kernel. Another possible research
direction involves exploring the ways to model the full
quaternion-valued QGF response using quaternion-valued
basis functions together with the distributions on the unit
quaternion space. This may be accompanied with exten-
sions of the sparse deconvolution techniques to hypercom-
plex systems. Our future research will entail the search for
such formulations to discover new and valuable tools for
color image processing.

Acknowledgements Authors like to express their thanks to, Ajit Ra-
jwade for helping with some of the experiments reported here and Dr.
Angelos Barmpoutis for his help in revising the manuscript. Some of
the color image data was taken from the Computer Vision text book by
Jain, Kasturi and Schunk and the rest was taken from the UC Berkeley
image data base.

Appendix

In this appendix we provide the matrix version of the quater-
nion Fourier transform in (11) in order to show the ex-
plicit interactions between the red, green and blue chan-
nels (R,G,B) in a color image represented in the quater-
nion from. Given a field of quaternions f (n,m) = Sn,m +
Rn,mi + Gn,mj + Bn,mk, its QFT (11) is given by

⎛

⎜

⎜

⎝

Su,v

Ru,v

Gu,v

Bu,v

⎞

⎟

⎟

⎠

= 1√
3MN

M−1
∑

m=0

N−1
∑

n=0

A

⎛

⎜

⎜

⎝
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Gn,m

Bn,m

⎞

⎟

⎟

⎠

(37)

where

A =

⎛

⎜

⎝

√
(3) cos(φ) − sin(φ) − sin(φ) − sin(φ)

sin(φ)
√

(3) cos(φ) − sin(φ) sin(φ)

sin(φ) sin(φ)
√

(3) cos(φ) − sin(φ)

sin(φ) − sin(φ) sin(φ)
√

(3) cos(φ)

⎞

⎟

⎠

and φ = −2π(mv/M + nu/N). We should note that (37)
was derived from (11) by using quaternion multiplication as
presented in Sect. 2.1.
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