
A Query Language for Analyzing Networks

Anton Dries Siegfried Nijssen Luc De Raedt

K.U.Leuven, Celestijnenlaan 200A, Leuven, Belgium
{anton.dries,siegfried.nijssen,luc.deraedt}@cs.kuleuven.be

ABSTRACT
With more and more large networks becoming available,
mining and querying such networks are increasingly impor-
tant tasks which are not being supported by database models
and querying languages. This paper wants to alleviate this
situation by proposing a data model and a query language
for facilitating the analysis of networks. Key features in-
clude support for executing external tools on the networks,
flexible contexts on the network each resulting in a different
graph, primitives for querying subgraphs (including paths)
and transforming graphs. The data model provides for a
closure property, in which the output of every query can be
stored in the database and used for further querying.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data
Models

General Terms
Design, Theory

Keywords
Graph databases, Inductive databases, Data mining

1. INTRODUCTION
In many applications it is increasingly common to rep-

resent data as a large graph or network: examples include
social networks, bibliographic networks and biological net-
works. Modeling the data as graphs is convenient in these
applications as traditional graph-based concepts, such as
paths, cliques, node degrees, edge degrees, and so on, are
useful in their analysis. An increasing number of tools have
been developed that operate on graphs, such as algorithms
for finding cliques [21], important nodes [4, 18], important
connections [18], or methods for classifying [18] or clustering
nodes [12]. The main challenge in these applications is often

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

to analyze the network in order to discover new knowledge
and use that knowledge to improve the network.

Discovering new knowledge in databases (also known as
KDD) typically involves a process in which multiple oper-
ations are repeatedly performed on the data, and as new
insights are gained, the data is being transformed and ex-
tended. As one example consider a bibliographical network
with authors, papers, and citations such as that gathered by
Citeseer or Google Scholar. Important problems in such bib-
liographical networks include: entity resolution [3], which is
concerned with detecting which nodes (authors or papers)
refer to the same entity, and collective classification [18],
where the task is to categorize papers according to their
subject. This type of analysis typically requires one to call
multiple tools and to perform a lot of transformations on
the data. The key contribution of this paper is a new data
model and accompanying query language that is meant to
support such processes. This is in line with the work on in-
ductive databases, which provide an integration of databases
and data mining. Support for data mining can be realized by
extending database languages such as SQL with primitives
that integrate data mining deeply in the query language, cf.
M-SQL [10], MineRule [16], DMQL1 [7] and SiQL [20], or
by support for executing algorithms more as black boxes,
cf. SINDBAD [20] or Oracle’s Data Mining Extensions. All
these inductive database approaches are extensions of the
relational model (and often also of SQL). To the best of our
knowledge, there are no inductive database languages yet
that specifically target network data. It is also clear that for
networked data directly applying the relational model is not
an option. The reason is that the relational model does not
support any data structures or operations related to graphs
(such as subgraph matching or dealing with paths). In ad-
dition, the existing inductive database extensions typically
only operate on a single table in a relational database and
it is unclear how to apply this to networked data.

To deal with graphs, a number of graph databases, with
corresponding query languages, have already been proposed
[2]. These graph databases, however, lack some of the func-
tionality that is needed in an inductive database. Before
being able to apply a data mining algorithm on some data,
the data must be in the correct format and must contain the
relevant descriptors. Therefore, it is essential that an induc-
tive database supports pre-processing of the data it contains
and also accommodates multiple views on the same data-
base, allowing to treat the database different in one con-
text than in another. Our database model and language
naturally support this requirement by employing a uniform

representation of nodes and edges, which allows one to eas-
ily define different contexts on the network. Each context
corresponds to a particular subnetwork. Using our uniform
representation it becomes easy to, for instance, swap the
roles of the nodes and the edges or realize other kinds of
transformations. Our model also supports the closure prop-
erty as it is essential that the user be able to execute a tool
on the output of another tool. Therefore, each query starts
from a network and produces an output that can be con-
sidered part of a network as well. The database is also not
focused on one particular type of graph, but is able to work
with directed, undirected, weighted or unweighted graphs,
or hypergraphs and to easily switch between these models.

To deal with these challenges, we contribute a novel data
model in which the database can be considered one network,
that is, a large graph. We propose a query language, called
BiQL, based on the well-known SQL query language that
can be used to perform basic operations on the network to
support the manipulation and transformation of the net-
work. The language that we introduce provides the ability
to call external data mining tools in a way similar to com-
mercial systems (for instance, the Data Mining Extensions of
Oracle) or research systems (for instance, SINDBAD [20]).
It does not incorporate data mining primitives more deeply
as it is still unclear what these primitives should look like in
general, even in the case of a dataset consisting of a single
table in a relational database: for instance, MineRule [16]
and DMQL1 [7] focus on a small number of data mining
operations.

The outline of this paper is as follows. In Section 2 we
provide a set of queries that illustrate common queries in a
data analysis setting. In Section 3 we summarize the type
of functionality that is required to support these queries and
the functionality required for supporting data mining. We
provide a summary of a literature study which shows that
existing graph databases are lacking. In Section 4 we pro-
pose our data model, which includes a structural part, an
integrity part and a basic manipulation part. We study the
operational semantics and relationships of our model to the
relational model in Section 5. Extensions of the query lan-
guage are discussed in Section 6. In Section 7 we show that
we can indeed express the queries we wish to support. In
Section 8 we conclude.

2. EXAMPLE QUERIES
Typical applications in network analysis include biblio-

graphical and biological networks. In bibliographical net-
works one typically has entities such as Authors, Papers and
possibly Venues. Furthermore, there are relationships such
as an author having authored a paper, a paper citing an-
other paper, and a paper being published in a venue. Stan-
dard examples of databases in this domain include Citeseer,
DBLP and Google Scholar. Similarly, in biological networks,
there are entities such as Proteins, Tissues and Genes; re-
lationships of interest include proteins being expressed in
tissues, genes coding for proteins, and proteins interacting
with other proteins. The mining of such networks (and many
others, such as social networks and the Internet) is a chal-
lenging and important task. It also imposes new demands
on the underlying database model, which are well illustrated
by the following queries and operations, set in the context
of bibliographic datasets.

Figure 1: An incomplete citation graph, where the locations
in papers of citations are indicated; gray circles indicate clus-
ters of citations we wish to find.

Example 1. Can we define a co-authorship relation and
a citation relation, which states which authors cite each other?

The main feature of this query is that it adds additional
edges in the graph.

Example 2. Can we find occurrences of the following pat-
tern: author X cites author Y, which cites author X, possibly
indirectly?

In this query we are provided with a graph pattern, which
we wish to match with the data.

Example 3. Assume given a tool for computing quasi-
cliques in a graph (for instance [21]). Can we find quasi
cliques in the co-authorship graph?

This query applies an external tool on a graph extracted
from the database.

Example 4. Can we find the influence graph of a paper,
that is, the set of papers that have been influenced by a paper,
that is, the recursive closure of papers referencing the paper?

In this query we are provided with a complicated graph pat-
tern, which we wish to use to group related nodes together.

Example 5. Consider the following problem. In each pa-
per, multiple other papers are cited; each citation occurs at
a certain position (for instance, one paper is cited in the
introduction, while another is cited in the conclusions). It
is reasonable to assume that papers which are cited close to
each other, are related to each other. Can we cluster the
citations in every paper?

An example is given in Figure 1. One possible way to an-
swer this query is by using a graph clustering algorithm [12],
which clusters nodes in a graph. In this case we would like
to cluster the citations of every paper, and hence, we need
to treat the citations as nodes. To deal with this query we
need a uniform representation of nodes and edges, as this
provides the flexibility to specify what are considered to be
edges, and what are considered to be nodes.

3. REQUIREMENTS & RELATED WORK

3.1 Requirements and Design Choices
The main motivation and target application for our data

model and query language is supporting exploratory data
analysis on networked data. This results in the following
requirements and design choices.

Small is beautiful.
In line with the relational database model, we believe that

the data model should have the smallest possible number of
concepts and primitives necessary for the representation and
manipulation of the data. This property has to a large ex-
tent facilitated the development of the theory and the imple-
mentations of relational databases. This is a primary design
principle that we used throughout the development of our
data model.

As a consequence, we do not wish to introduce special
language constructs to deal with complicated types of net-
works (directed, undirected, labeled, hypergraphs, etc.) or
sets of graphs; we do not wish to treat attributes of edges
differently than attributes of nodes. When introducing a
novel type of graph, it should not be necessary to extend
the basic data types.

Uniform representation of nodes and edges.
The most immediate consequence of the former choice is

that we wish edges and nodes to be represented in a uniform
way. We will do this by representing both edges and nodes
as objects that are linked together by links that have no
specific semantics. A uniform representation however does
not only avoid having to introduce special syntax for differ-
ent types of graphs or attributes, it also allows one to easily
generate different views on a network. For instance, in a
bibliographic database, we may have objects such as papers,
authors and citations. In one context one could analyze the
co-author relationship, in which case the authors are viewed
as nodes and the papers as edges, while in another context,
one could be more interested in citation-analysis, in which
case the papers are the nodes and the citations the edges.
Another example in which this interchangeability is impor-
tant is given in Example 5 of the previous paragraph. The
power of the uniform representation is hence also that it en-
ables us to keep the underlying low-level network the same;
only the interpretation of this network differs.

Flexible Contexts.
In order to support the knowledge discovery process, the

user must be given the ability to extract different parts of
the network and to transform them into the particular data
format or graph model that the external data mining algo-
rithms needs. This explains why we introduce the notion
of contexts and classes. Contexts define the subgraphs of
interest that can be used by, for example, graph mining al-
gorithms or visualization tools. Contexts allow the user to
extract information and present it into, for example, a tradi-
tional edge-labeled graph by selecting which objects should
act as edges and which ones as nodes. Class definitions can
also be used to create hypergraphs, sets of graphs, directed
or undirected as well as other representations of the net-
work. Using contexts is beneficial because it allows us to
combine a general, application-independent underlying data
structure with the most natural, possibly specific graph rep-
resentations required for each application individually.

External calls.
While in, for example, relational databases there exists

a set of core primitives in which all database operations of
interest can be expressed, such a set of primitives is not
yet available for data mining. This is why we have chosen
to incorporate data mining by providing support for calling
external procedures. The inputs to these external tools can

be any type of network that, in principle, can be passed on
as a context to the external tool.

Closure property.
Not only the inputs to data analysis algorithms matter

but also the outputs. Therefore, it is essential that the re-
sult of any operation, query or external call can be used as
the starting point for further queries and operations. This
can be realized by enforcing a closure property which states
that the result of any operation or query generates infor-
mation that can be added to the database network (either
permanently or temporarily). The information created by
the query combined with the original database can there-
fore be queried again.

This closure property can be combined with contexts to
provide integration with data mining tools. We can for ex-
ample transform part of our network into a set of graphs
in which we want to look for frequent patterns [11]. The
results of the frequent pattern miner can then be added to
the database network and used in subsequent queries. By
integrating existing tools for graph mining and data min-
ing the system becomes a powerful inductive database for
information networks.

SQL-based.
To represent queries, a language is needed. There are

many possible languages that could be taken as starting
point, such as SQL, relational algebra or Datalog. Our ap-
proach is similar to that of the relational model: we aimed
for a data model on which multiple equivalent ways to rep-
resent queries can be envisioned. Therefore, we employ an
SQL-like language, but we will also show how to represent
queries in a small extension of Datalog. In the end, this
similarity to the relational model, both in the choice for a
data model with a small number of types, and in the range
of query languages feasible on top of it, should make the
model more convenient for the many users familiar with the
relational model.

Semi-structured data.
Data and information in many networks of interest comes

from a wide variety of sources and is often heterogeneous in
nature. Hence, it is impractical to require that the user for-
mally defines the database schema describing the structure
of the database. Our model therefore does not impose this
requirement but is based instead on a semi-structured data
model that supports working with heterogeneous data in a
flexible way.

3.2 Related work
A number of query languages for graph databases have

been proposed, many of which have been described in a
recent survey [2]. However, none of these languages was
designed for supporting knowledge discovery processes and
each language satisfies at most a few of the above mentioned
properties. For instance, GraphDB [5] and GOQL [19] are
based on an object-oriented approach, with provisions for
specific types of objects for use in networks such as nodes,
edges and paths. This corresponds to a more structured
data model that does not uniformly represent nodes and
edges. In addition, these languages target other applica-
tions: GraphDB has a strong focus on representing spatially
embedded networks such as highway systems or power lines,
while GOQL [19], which extends the Object Query Language

(OQL), is meant for querying and traversing paths in small
multimedia presentation graphs. Both languages devote a
lot of attention to querying and manipulating paths: for
example, GraphDB supports regular expressions and path
rewriting operations.

GraphQL [8] provides a query language that is based on
formal languages for strings. It provides an easy, yet power-
ful way of specifying graph patterns based on graph struc-
ture and node and edge attributes. In this model graphs are
the basic unit and graph specific optimizations for graph
structure queries are proposed. The main objective of this
language is to be general and to work well on both large
sets of small graphs as well as small sets of large graphs.
However, extending existing graphs is not possible in this
language; flexible contexts are not supported.

PQL [13] is an SQL-based query language focussed on
dealing with querying biological pathway data. It is mainly
focussed on finding paths in these graphs and it provides a
special path expression syntax to this end. The expressivity
of this language is, however, limited and it has no support
for complex graph operations.

GOOD [6] was one of the first systems that used graphs
as its underlying representation. Its main focus was on the
development of a database system that could be used in
a graphical interface. To this end it defines a graphical
transformation language, which provides limited support for
graph pattern queries. This system forms the basis of a large
group of other graph-oriented object data models such as
Gram [1] and GDM [9].

Hypernode [14] uses a representation based on hypern-
odes, which make it possible to embed graphs as nodes in
other graphs. This recursive nature makes them very well
suited for representing arbitrarily complex objects, for exam-
ple as underlying structure of an object database. However,
the data model is significantly different from a traditional
network structure, which makes it less suitable for modeling
information networks as encountered in data mining.

A similar, but slightly less powerful representation based
on hypergraphs is used in GROOVY [15]. This system is
primarily intended as an object-oriented data model using
hypergraphs as its formal model. It has no support for graph
specific queries and operations.

More recently, approaches based on XML and RDF such
as SPARQL [17], are being developed. They use a semi-
structured data model to query graph networks in heteroge-
nous web environments; support for creating new nodes and
flexible contexts is not provided.

While most of the systems discussed here use a graph-
based data model and are capable of representing complex
forms of information, none of them uses a uniform repre-
sentation of edges and nodes (and its resulting flexible con-
texts), nor supports integration of KDD tools.

4. DATA MODEL
Our data model consists of several parts: (1) the structural

part of the data model; (2) the manipulation part of the data
model; (3) the integrity part of the data model.

4.1 Data Structures
The main choice we have to make in our data model is

based on reconciling two requirements:

• representing a large number of graph and edge types;

• supporting graph theoretic concepts, such as paths or
subgraphs.

Addressing these requirements, the data structure that we
propose consists of the following components.

The object store, which contains all objects in a data-
base. Objects are uniquely identified by an object
identifier. Each object can contain an arbitrary list
of attribute-value pairs describing its features.

The link store, which contains directed links between ob-
jects. They can be represented as (ordered) pairs of
object identifiers, and do not have any attributes.

The domain store, which contains named sets of objects.
A domain name allows users to identify a set of objects.

The context store, which contains named sets of domain
names. A context name allows users to identify a set
of domains in a query. Each domain in a context is
given a name within that context. Hence, each context
consists of λ1 7→ λ2 pairs, where λ2 is a name occurring
in the domain store, and λ1 is the name given to this
domain within the context. Optionally a context is
assigned to a class (see Section 4.3).

The main design choice in this data structure is not to allow
attributes on links. This ensures that within our data model
links are very light and implicit. Between every pair of ob-
jects a link may or may not exist, but we do not specify how
links are stored. In our query language, a basic operation is
to check if a link exists between two objects.

Domains are used to group nodes of a certain type to-
gether, such as authors or papers in our example. Whereas
nodes do not have names that can be used in the query sys-
tem, domains have names that can be used. Domains are
grouped in contexts; domains can be in an arbitrary number
of contexts.

One may think of the objects as nodes in a graph, and
of the links as unlabeled binary edges between these nodes.
However, this raises the question how we represent edge la-
beled graphs or hypergraphs. This is clarified in the follow-
ing example.

Example 6 (Edge Labeled Graph). Assume given the
objects and links in Table 1, belonging to domains X and Y ,
together constituting the context G. Then we can visualize
context G as given in Figure 2. In this example, one may
think of nodes A, ..., E as authors, and as the edges express-
ing strengths of co-authorships.

Hence, the main choice that we have made is, in a sense,
that also edges are represented as objects. An edge object
is linked to the nodes it connects. Even though this may
not seem intuitive, or could seem a bloated representation,
the advantages of this choice outweigh the disadvantages
because:

• by treating both edges and nodes as objects, we obtain
simplicity and uniformity in dealing with attributes;

• it is straightforward to treat (hyper)edges as nodes (or
nodes as (hyper)edges);

• it is straightforward to link two edges, for instance,
when one wishes to express a similarity relationship
between two edges.

obj-id features
X1 {label=A, color=red}
X2 {label=B, color=yellow}
X3 {label=C, color=blue}
X4 {label=D, color=yellow}
X5 {label=E, color=red}
Y1 {weight=0.2}
Y2 {weight=0.5}
Y3 {weight=0.8}
Y4 {weight=0.2}
Y5 {weight=0.9}

(a) Object store

Y1 ↔ X1
Y1 ↔ X2
Y2 ↔ X1
Y2 ↔ X3
Y3 ↔ X2
Y3 ↔ X3
Y4 ↔ X3
Y4 ↔ X4
Y5 ↔ X3
Y5 ↔ X5

(b) Link store

name objects
X { X1, X2, X3, X4, X5 }
Y { Y1, Y2, Y3, Y4, Y5 }

(c) Domain store

name domains type
G { Nodes 7→ X, Edges 7→ Y} labeled graph

(d) Context store

Table 1: Example database

0.2 0.9

0.8

0.5

0.2A

D

E

B

C

Figure 2: A visualization of context G in the example data-
base in Table 1, where we use domain X as nodes and do-
main Y as edges.

This flexibility is further illustrated in the following ex-
ample.

Example 7 (Edge Labeled Graph Set). Assume given
in addition to the objects and links in Table 1 the objects and
links in Table 2, which are part of domain Z and are used
to define context S. Then we can visualize this context S as
given in Figure 3. In this example, both Z1 and Z2 can be
thought of as identifying subgraphs of graph G in Figure 2.

4.2 Data Manipulation
Now that we have a basic understanding of how the data is

organized in the database, we can focus on querying this in-
formation. In this paragraph we introduce the main compo-
nents of the BiQL query language, which allows for querying
using an SQL-like notation; we will show the relationship of
BiQL to the traditional relational model, including a more
detailed discussion of its operational semantics, in Section 5.

To store the result of a query as a set of domains, we
use the CREATE statement preceding the query. In general a
query looks like this.

CREATE <names of new domains> AS

SELECT <definitions of domains>

FROM <selection from domains>

WHERE <predicate on attributes of objects>

obj-id features
Z1 {name=part1}
Z2 {name=part2}
(a) Object store

name objects
Z { Z1, Z2 }

(b) Domain store

Z1 → X1
Z1 → X2
Z1 → X3
Z1 → Y1
Z1 → Y2
Z1 → Y3

Z2 → X2
Z2 → X3
Z2 → X4
Z2 → X5
Z2 → Y3
Z2 → Y4
Z2 → Y5

(c) Link store

name domains type
S { Nodes 7→ X, Edges 7→ Y, labeled graphset

Parts 7→ Z}
(d) Context store

Table 2: Example database; only elements additional to Ta-
ble 1 are listed.

0.8

0.2
0.5

0.2

0.9

0.8

B

A

C
D

E

B

C

part1 part2

Figure 3: The example database in Table 2 conceived as
graph set.

A query can be used to define multiple new domains at once
by listing multiple names and definitions in the CREATE and
SELECT statements, respectively. However in this paper we
will only focus on the basic case in which a query only creates
a single domain.

A simple example of such a query is this:

CREATE Y’ AS

SELECT E

FROM Y E

WHERE E.weight > 0.4

This statement creates a new domain Y’; the objects that
are inserted in this domain are obtained by letting a variable
E range over the objects in domain Y; those objects which
have a weight attribute with a value higher than 0.4 are
inserted.

For Y defined as in Table 1, the resulting domain contains
the following set of identifiers.

Y ′ = {Y 2, Y 3, Y 5}

We can define a new context using this domain, using the
following statement.

CREATE G’ AS INSTANCE labeled_graph

WITH X as Nodes, Y’ as Edges

Figure 4 illustrates this for the graphs from Figures 2 and
3.

Below we provide more extensive details for the FROM,
WHERE and SELECT parts of a query.

0.8

0.5

0.9

B

A

C

D

E

(a) labeled_graph
WITH X as Nodes,
Y’ as Edges

0.8

0.5

0.9

0.8

B

A

C

D

E

B

C

(b) labeled_graphset
WITH Z as Parts, X as
Nodes, Y’ as Edges

Figure 4: View on the database using the new table Y’.

4.2.1 WHERE statement
In the WHERE statement constraints are expressed based on

the features of the objects that the variables refer to. Our
language supports all basic constraints that SQL supports.
These are

• comparisons of attributes of an object with a constant;

• comparisons of attributes of two objects;

• compositions of basic atoms into formulas using ANDs
(“,”) and ORs.

There is, however, an important difference. As the data is
semi-structured, we do not have a fixed data schema. It is
hence possible that the value of an attribute is used that an
object does not possess. By default, we assume that such an
atom always evaluates to false. Furthermore, if the object
possesses multiple values for the same attribute, only one
must satisfy the constraint.

4.2.2 FROM statement
The most important part of the query is the FROM state-

ment. The main difference in our query language, compared
to the the FROM statement in SQL, is that we use path expres-
sions in the FROM statement to specify structural constraints
on the variables.

The general form of the simple FROM statement is as fol-
lows.

<from_statement> ::= FROM <path_defs>

<path_defs> ::= <path_def> "," <path_defs> |

<path_def>

<path_def> ::= DISTINCT(<path_defs>) |

<path_statement>

<path_statement> ::= <obj_statement>

{ ("--" | "->" | "<-" |

"-/" | "-/>" | "</-")

<obj_statement> }

<obj_statement> ::= <domain> [<variable>]

A simple example of a query, which can be applied on the
data in Table 1, is this:

CREATE Z’

SELECT P

FROM Z P -- Y E

WHERE E.weight >= 0.9

This statement creates a new domain Z’; those objects from
domain Z are inserted that are linked to objects in domain
Y with a weight higher than 0.9. In the example of Figure 3

we insert only Z2 in domain Z’; effectively, we insert only
those subgraphs which have an edge with weight at least
0.9.

In general the FROM statement consists of a list of path
expressions. A path expression consists of a series of domain
identifiers separated by the

-- or -> or <- or -/- or -/> or </-

operators, which represent the presence of links in any direc-
tion, the presence of links in a given direction, the absence
of links in any direction, or the absence of links in a given
direction, respectively.

We can think of a path expression as a path in which
the nodes are labeled with domains identifiers. When also
treating the data as a labeled graph, evaluation takes place
by searching for subgraphs homomorphic with the path.

In addition, path expressions can be enclosed in the DIS-

TINCT statement. In this case, subgraph isomorphism is em-
ployed instead of subgraph homomorphism.

If path expressions share variables, these variables are re-
quired to match to the same object in the data.

Figure 5: A simple graph pattern

Example 8. Consider the following FROM and WHERE state-
ment:

FROM DISTINCT(X N1 -- Y -- X N2 -- Y -- X N3,

X N2 -- Y -- X N4)

WHERE N1.color = red AND N2.color = blue

AND N3.color = yellow AND N4.color = black

One can visualize this path expression, together with the
WHERE statement, as the graph in Figure 5. Essentially,
the pattern consists of two path expressions, linked together
through a common node (N2). The pattern consists of 4
nodes and 3 edges, in which we have given variable names
to the nodes. We pose additional constraints on these nodes.
By the DISTINCT statement we enforce that no two nodes in
the pattern will be matched to the same node in the data.

As a final feature, given that domains are sets of ob-
jects, we assume that the standard set operations UNION,
INTERSECT, and MINUS can also be applied in the FROM part.
Hence, we can express the following query:

FROM (X UNION Y) N

which puts nodes and edges in one domain.

4.2.3 The SELECT statement
The SELECT statement expresses which variables in the

query are used to define a new domain. In our previous
examples, queries always returned subsets of objects of ex-
isting domains. However, it can often be useful to create
new objects. We illustrate this using the following query.

CREATE PatZ AS

SELECT <N1,E1,N2,E2,N3>

FROM X N1 -- Y E1 -- X N2 -- Y E2 -- X N3

WHERE N1.color = red

AND N2.color = blue

AND N3.color = yellow

The angle brackets (<...>) express a grouping operation; for
each combination of objects N1, E1, N2, E2, N3 for which the
path expression matches the data, a new object is created.
This object is by default only linked (in both directions) to
the objects referred to by N1, E1, N2, E2 and N3. Essentially,
each object in the result represents an occurrence of a given
subgraph in the data. The nodes and edges involved in this
occurrence can be recovered by considering the links between
the occurrence object and the nodes and edges in the data.

This new set of objects is useful, as we can think of each
object as representing a graph in a set. This is illustrated
in Figure 6.

0.8

0.5

0.9

0.8

0.2 0.9

B

A

C
E

B

CD

E

C

Figure 6: graphset WITH PatZ AS Parts, X AS Nodes, Y

AS Edges

By default, newly created objects have no attributes as-
signed to them. However, attributes can be assigned by
listing them in curly brackets ({...}), for example

SELECT <E>{E.*, weight: E.weight/2}

FROM Y E

WHERE E.weight > 0.4

which copies all the attributes from the original object but
replaces the weight attribute by its old value divided by two.

The same notation can be used to determine the links with
new objects. For instance, in the above example, we may
want to connect the new edges with the same nodes as the
old ones, and make the connection between the old and new
edge directed. This can be done by adding the statement
E -- * to the query, which tells the system to copy all of
E’s links to the new object (similar to E.* for attributes),
and the statement ->E, which tells the system to insert a
directed edge from the new object to the object E.

SELECT <E>{E.*, weight: E.weight/2, E -- *, -> E}

FROM Y E

WHERE E.weight > 0.4

4.3 Tool Integration
A main feature of our system is that it is capable of inter-

acting with external tools. These tools differ in the type of
input and output they require; some algorithms require di-
rected graphs, others undirected node-labeled hypergraphs,
or sets of these. We need a mechanism to exchange infor-
mation with algorithms, and ensure that data of the correct
type is provided to these algorithms. As pointed out, we rep-
resent these graph types in a uniform way, and use contexts
to group appropriate domains together. Our main mecha-
nism for ensuring that contexts satisfy the requirements of
particular graph types are classes and integrity constraints.
A basic example of a class is the following:

CLASS graph {

Nodes,

Edges

}

This defines a class with two domains, which are called Nodes

and Edges. A context is an instance of class graph if it
contains two domains under these aliases.

For each class, the database may support a number of
export and import file formats. This allows the database to
export a context representing a labeled graph in a format
that tools operating on labeled graphs support, or to export
a context representing a set of labeled graphs in a file format
that tools operating on sets of graphs support.

In many cases, a context should fulfill more complex con-
straints than just having domains with certain names. An
important aspect of classes is that they may include integrity
constraints, which we discuss now.

4.4 Data Integrity
Structural integrity constraints are often desired in our

data model. For instance, in traditional graphs an edge
object must have degree 2. In this section we propose a
mechanism for expressing constraints that domains should
fulfill. The strategy that we have chosen is to allow for
integrity constraints of the following kinds:

CONSTRAINT Domain1 SUBSET Domain2

CONSTRAINT Domain1 DISJOINT Domain2

CONSTRAINT Domain1 EQUAL Domain2

Here, the domains may be domains occurring in the data,
but may also be computed by queries expressed over these
domains. The constraint Domain1 DISJOINT Domain2, for
instance, requires that two domains do not have common
objects. Constraints can be part of classes, in which case
the constraints are expressed over domains in the class. An
example is provided below.

Example 9 (Labeled Graphset). A context represent-
ing a graph set must consist of three domains: Parts, Edges
and Nodes. Furthermore, if an edge is included in a part,
the nodes to which it connects must be in the same part. We
can express this by:

CLASS labeled_graphset {

Parts, Edges, Nodes,

CONSTRAINT Edges DISJOINT

SELECT E

FROM Nodes N--Edges E--Parts P,

Nodes N-/-Parts P

}

The query in this constraint selects all edges of which a node
is not linked to the same part as the edge is. This query
should not return edges.

When a context is created and declared to be an instance
of a class, all constraints specified for the class should be
satisfied, otherwise we assume that the instantiation fails.

Tools operate on and return instances of classes. Assume
that we have an algorithm that operates on edge labeled
graphs, and returns quasi-cliques as a set of subgraphs. We
can call this algorithm as follows to create a context C:

CREATE C AS INSTANCE QuasiCliques(G)

A context is passed as a parameter to the algorithm. The
ability to input and output contexts to external tools ensures
that these tools are integrated within the database system.

5. OPERATIONAL SEMANTICS & THE RE-
LATIONAL MODEL

Till now we have introduced our query language in an
informal manner. We lack the space to formalize the opera-
tional semantics of our language extensively here. However,
in this section we will provide the basic operational seman-
tics by showing how queries can be translated into a logical
representation. This will also clarify the relationship of our
model to the relational model, and will show that a small
extension to Datalog is sufficient to deal with the queries
posed in this language.

First, we can formalize the database as a set of Datalog
facts. This is straightforward:

• if an object O has attribute value V for attribute A,
we represent this using a fact attribute(O, V, A)

• if an object O1 has a link to object O2 we represent
this using a fact link(O1, O2)

• if an object O is included in domain d, we represent
this using a fact d(O)

We can distinguish two types of basic queries. The first has
a variable name in the SELECT:

CREATE domain name AS
SELECT Variable
FROM domain1 Variable1-- ... --

domainn Variablen

WHERE predicate1(...),...,predicatem(...)

It is straightforward to express this query in Datalog:

domain name(Variable) : −
domain1(Variable1), link(Variable1, Variable2)...,

domainn(Variablen), predicate1(...), ...,

predicatem(...)

Here the link constraint V ariablei--V ariablej is mapped
into a predicate link(Variablei, Variablej). Multiple path
expressions are transformed into multiple series of link pred-
icates. To deal with DISTINCT (V ariable1, ..., V ariablen)
requirements we can add atoms of the kind Variablei 6=
Variablej with 1 ≤ i < j ≤ n. More involved is a query in
which new objects are created:

CREATE table name AS
SELECT <Variable ′

1,...,Variable ′
k> {attr:value}

FROM domain1 Variable1-- ... --

domainn Variablen

WHERE predicate1(...),...,predicatem(...)

Here it is required that

{Variable′
1, ...,Variable′

k} ⊆ {Variable1, ...,Variablen}

The problem with this query is that it introduces a new ob-
ject, and hence, we need to introduce new object identifiers.
Datalog does not provide a mechanism for introducing new
object identifiers. We address this as follows. We assume
that we can use one function

id(domain name, Variable′
1, ..., Variable

′
k),

to construct a new identifier for a domain and a combination
of object identifiers. Then the above query can be translated
into the following queries in Prolog:

• to obtain new objects:

domain name(id(domain name, Variable′
1, ..., Variable

′
k)) : −

domain1(Variable1), ..., domainn(Variablen),

predicate1(...), ..., predicatem(...)

• to obtain the links to these objects:

link(id(domain name, X1, ..., Xk), Xi) : −
domain name(id(domain name, X1, ..., Xk))

for all 1 ≤ i ≤ k;

• to obtain the attributes:

attribute(id(domain name, X1, ..., Xk), attr, value) : −
domain name(id(domain name, X1, ..., Xk)).

To deal with function calls, we assume that the output
of the called algorithm is converted in appropriate Datalog
facts.

6. AN EXTENDED QUERY LANGUAGE
In Section 4.2 we gave a description of the basic syntax

of our query language. In this section we describe some
possible extensions to this query language that make it more
powerful: aggregates, aliases and regular expressions.

Aggregates.
Aggregate functions like count, sum, min, . . . can be used

to define new attribute values in the SELECT clause or act
as constraints in the WHERE clause. They are computed over
sets of objects. For example,

SELECT <N>{N.*, N -- *,

in-degree: count(E),

in-weight: avg(E.weight)}

FROM X N <- Y E

calculates for each node the in-degree (number of incoming
edges) and the average weight of these edges. The expression
<N> groups all occurrences of the graph pattern, such that
we have a group of occurrences for each value for N. For each
group, the aggregation operators are executed once; in this
case, the aggregation goes over all possible assignments to E

in the group.
Aggregates may also be used in the WHERE clause to restrict

the results of a query. For example, adding the statement

WHERE count(E) > 1

to the query above will restrict the results to nodes with
more than one incoming edge. The grouping used for exe-
cuting this condition is defined by the object creation state-
ment in the SELECT clause.

Aliases.
In the pattern that expresses the graph of Figure 6 (see

Section 4.2) we used a path expression containing five vari-
ables; we had to provide a name for each of the individual
variables in the pattern. Using an alias we can rewrite this
query, eliminating the need to name every variable in the
pattern in the SELECT statement.

DEFINE PatZ AS

SELECT <Pattern>

FROM (X N1 -- Y -- X N2 -- Y -- X N3)

AS Pattern

WHERE N1.color = red AND N2.color = blue

AND N3.color = yellow

Aliases are especially useful in combination with regular ex-
pressions, because the number of variables defined in these
expressions is unknown; we will use an alias to refer to each
possible occurrence of the regular expression.

Regular expressions.
The path expressions we used in all the previous exam-

ples were limited in their expressivity because the length
of the connections needed to be known. By using regular
expressions we can overcome this limitation.

For example one could express a path of arbitrary length
as

FROM X (-- Y -- X)* -- Y -- X

This expression can be expanded into

FROM X -- Y -- X

FROM X -- Y -- X -- Y -- X

FROM X -- Y -- X -- Y -- X -- Y -- X

...

We do not allow variable names inside a repetition block,
as there may be no or multiple assignments to these vari-
ables. We can, however, assign an alias to such a block,
which allows us to access the objects matched by the regu-
lar expression.

FROM X A ((-- Y -- X)* -- Y) AS Path -- X B

This alias can be used in combination with, for example,
aggregate functions to calculate the length of the path,

SELECT <Path>{ length: count(Path->Y) }

or to select paths according to length,

WHERE count(Path->Y) < 5

A special construct can also be used to specify the shortest
path:

WHERE count(Path->Y) is minimal

In this query we use a construction in which Path->Y repre-
sents all nodes in domain Y linked to the object Path.

7. ILLUSTRATIVE EXAMPLES
In Section 2 we pointed out some queries that should be

expressible. Using the principles outlined above, we can now
verify that our language indeed supports these examples.

First we can define the co-authorship relation as follows
(Example 1).

CREATE CoAuthors AS

SELECT <A,B>{strength: count(P)}

FROM Author A -- Paper P -- Author B

This creates a new CoAuthor object for every pair of authors,
and adds the number of papers they share as attribute. Each
co-author attribute is also linked to both authors in the re-
lation.

The definition of the author citation relation is similar.

CREATE AuthorCites AS

SELECT <A,B>{ A ->, -> B}

FROM Author A -- Paper -> Cites ->

Paper -- Author B

GOOD

GRAM

GOQL

GraphDB

PQL

(a) Original citation
graph

GOOD

GRAM

GOQL

GraphDB

PQL

PI

PI

PI

(b) Influence as directed
hypergraph

GOOD

GRAM

GOQL

GraphDB

PQL

GRAM

GOQL

GraphDB

PQL

GOQL

GraphDB

PQL

(c) Influence as set of graphs

Figure 7: Result of influence query on the citation graph of
graph database papers

However, because the citation relation is directed, we need
to override the default behavior of creating undirected links
to objects A and B. We do this by explicitly specifying the
direction of the links between the new object <A,B> and its
children A and B.

To find authors mutually citing each other (Example 2),
we can use the AuthorCites relation we just defined.

CREATE MutualCitation AS

SELECT <A,B>

FROM Author A -> AuthorCites -> Author B,

Author B -> AuthorCites ->

(Author -> AuthorCites)* -> Author A

To find quasi cliques in this graph (Example 3) we can call
an external algorithm. This algorithm takes a graph with
Authors as nodes and MutualCitations as edges.

CREATE G AS INSTANCE labeled_graph WITH

Author AS NODES,

MutualCitation AS EDGES

CREATE C AS INSTANCE QuasiCliques(G)

We can find for each paper the set of papers that cite it
directly or indirectly (Example 4). This can be done using
a regular expression.

CREATE PaperInfluence AS

SELECT <X>{ X ->, -> Y }

FROM Paper X (-> Cites -> Paper)* ->

Cites -> Paper Y

This query creates for each paper X a new object and links
it to (1) paper X itself, (2) every paper Y for which a citation
path exists. Figure 7 shows the result of this query on an
example citation graph. The result of the query is a directed
hypergraph, which can also be treated as a set of citation
graphs by defining a suitable context.

Finally, we will study how to cluster citations (Exam-
ple 5). First, we need to add similarities between citations,
assuming we have a location attribute in every citation.

CREATE CitationSimilarity AS

SELECT <X,Y>

FROM Paper P -> Cites X, Paper P -> Cites Y

WHERE abs (X.line - Y.line) < 3

Using the resulting relations between citations, we can create
a graph and execute a graph clustering algorithm.

CREATE G AS INSTANCE labeled_graph WITH

Cites AS NODES,

CitationSimilarity AS EDGES

CREATE C AS INSTANCE GraphCluster(G)

The graph clustering algorithm is assumed to have a similar
output as the quasi-clique algorithm, and returns a set of
subgraphs, each corresponding to a cluster.

8. CONCLUSIONS
Motivated by the need to have database support for the

analysis and mining of large networks we contributed a novel
data model and query language (BiQL) that can act as the
basis for an inductive database system. The data model
is based on a number of design choices that make – as far
as the authors are aware – it unique as compared to other
graph database formalisms. These features include the uni-
form treatment of nodes and edges, providing for contexts,
enforcing the closure property and supporting external calls
to other procedures. This last choice should allow the easy
coupling of the database to external data mining algorithms.
This is similar to what happens in existing database systems
that support data mining in this way, such as SINDBAD
[20] and Oracle’s Data Mining extensions. Other impor-
tant features of the language include its support for graph-
based querying (using, for instance, path or subgraph ori-
ented queries) and the easiness with which networks can be
transformed into one another.

Nevertheless, there remain several important issues for
further research. The first of these concerns the development
of an efficient and scalable implementation, which should
enable us to experiment with several application databases
and to realize a true inductive database. Today, a prototype
of this system exists, implemented in Prolog and based on
the Datalog representation described in Section 5. In fu-
ture work we aim to extend this prototype to a scalable and
fully functional system containing the different extensions
described in Section 6 of this paper.

Other interesting issues concern the incorporation of mech-
anisms for supporting probabilistic reasoning in such net-
works as well as providing a user interface and a visual-
ization interface that should enable the naive end-user to
operate the system. These topics will be studied further in
the European BISON project.

Acknowledgements
This work was supported by the European Commission un-
der the 7th Framework Programme FP7-ICT-2007-C FET-
Open, contract no. BISON-211898 and by a Postdoc grant
from the Research Foundation — Flanders.

9. REFERENCES
[1] B. Amann and M. Scholl. Gram: a graph data model

and query language. In HT, pages 201–211. ACM,
1992.

[2] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Computing Surveys, 40(1):1–39, 2008.

[3] I. Bhattacharya and L. Getoor. Collective entity
resolution in relational data. Data Engineering
Bulletin, 29(2):4–12, 2006.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[5] R. H. Güting. GraphDB: Modeling and querying
graphs in databases. In VLDB, pages 297–308.
Morgan Kaufmann Publishers Inc., 1994.

[6] M. Gyssens, J. Paredaens, and D. van Gucht. A
graph-oriented object database model. In PODS,
pages 417–424. ACM, 1990.

[7] J. Han, L. V. S. Lakshmanan, and R. T. Ng.
Constraint-based multidimensional data mining. IEEE
Computer, 32(8):46–50, 1999.

[8] H. He and A. K. Singh. Graphs-at-a-time: query
language and access methods for graph databases. In
SIGMOD, pages 405–418. ACM, 2008.

[9] J. Hidders. Typing graph manipulation operations. In
ICDT, pages 394–409. Springer-Verlag, 2003.

[10] T. Imielinski and H. Mannila. A database perspective
on knowledge discovery. Communications of the ACM,
39(11):58–64, 1996.

[11] A. Inokuchi, T. Washio, and H. Motoda. Complete
mining of frequent patterns from graphs: Mining
graph data. Machine Learning, 50(3):321–354, 2003.

[12] G. Karypis and V. Kumar. Multilevel k-way
partitioning scheme for irregular graphs. Journal on
Parallel and Distributed Computing, 48(1):96–129,
1998.

[13] U. Leser. A query language for biological networks.
Bioinformatics, 21(2):33–39, 2005.

[14] M. Levene and A. Poulovassilis. The hypernode model
and its associated query language. In JCIT, pages
520–530. IEEE Computer Society Press, 1990.

[15] M. Levene and A. Poulovassilis. An object-oriented
data model formalised through hypergraphs. Data and
Knowledge Engineering, 6(3):205–224, 1991.

[16] R. Meo, G. Psaila, and S. Ceri. An extension to SQL
for mining association rules. Data Mining and
Knowledge Discovery, 2(2):195–224, 1998.

[17] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2008.

[18] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher,
and T. Eliassi-Rad. Collective classification in network
data. AI Magazine, 29(3):93–107, 2008.

[19] L. Sheng, Z. Ozsoyoglu, and G. Ozsoyogly. A graph
query language and its query processing. In ICDE,
pages 572–581. IEEE Computer Society Press, 1999.

[20] J. Wicker, L. Richter, K. Kessler, and S. Kramer.
SINDBAD and SiQL: An inductive database and
query language in the relational model. In
ECML/PKDD (2), volume 5212 of Lecture Notes in
Computer Science, pages 690–694. Springer, 2008.

[21] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent
closed quasi-clique discovery from large dense graph
databases. In KDD, pages 797–802. ACM, 2006.

