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ABSTRACT

Current solutions for creating co-located Mixed Reality (MR) ex-

periences typically rely on platform-speci�c synchronisation of

spatial anchors or Simultaneous Localisation and Mapping (SLAM)

data across clients, often coupled to cloud services. This introduces

signi�cant costs (in development and deployment), constraints

(with interoperability across platforms often limited), and privacy

concerns. For practitioners, support is needed for creating platform-

agnostic co-located MR experiences. This paper explores the utility

of aligned SLAM solutions by 1) surveying approaches toward align-

ing disparate device coordinate spaces, formalizing their theoretical

accuracy and limitations; 2) providing skeleton implementations for

audience-based, small-scale and large-scale co-location using said

alignment approaches; and 3) detailing how we can assess the accu-

racy and safety of 6DoF/SLAM tracking solutions for any arbitrary

device and dynamic environment without the need for an expensive

ground truth optical tracking, by using trilateration and a $30 laser

distance meter. Through this, we hope to further democratise the

creation of cross-platform co-located MR experiences.
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1 INTRODUCTION

Mixed Reality (MR) devices are ever-present in our daily lives, from

the ubiquitous Android (ARCore) and iOS (ARKit) smartphones, to

the commodity VR and AR headsets (e.g. Oculus Quest, Hololens 2)

that are seeing steady uptake by both consumers and industry. With

respect to shared and social experiences, there has been an under-

standable emphasis on at-a-distance usage, such as VR multiplayer

gaming (e.g. [32]) and social VR (e.g. Mozilla Hubs [28], Facebook

VRST ’20, November 1–4, 2020, Virtual Event, Canada
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Horizon [12]). However, MR devices also have the potential to cre-

ate highly engaging co-located experiences [17], in theory being

able to augment, or even entirely supplant, reality for groups of

people in the same space. Recently, there has been a concerted push

by MR platform providers to support co-location. This has been

driven by the ubiquity of 6DoF “inside-out” tracking in MR devices,

relying on visual-inertial odometry, using camera-based Simultane-

ous Localisation and Mapping (SLAM) and Inertial Measurement

Unit (IMU) sensing to track the real-time position and orientation

of a device relative to the real world environment. These solutions

have become increasingly robust and (seemingly) reliable e.g. being

the de�ning feature of the Oculus Quest VR headset, enabling both

positional tracking and the safety-critical “guardian” boundary.

Given such 6DoF tracking, the creation of multi-user co-located

experiences requires only that we can determine a transformation

between each MR device coordinate space and our real-world coor-

dinate space [9]. Recent e�orts by Microsoft [3, 31], Google [27],

Apple [26] and Oculus [33] have focused on synchronised (often

cloud-based) spatial anchors, allowing for common reference points

across clients, or synchronised SLAM data [33] to fully align device

coordinate spaces with reality. However, these solutions are often

“black boxes” - closed source solutions, introducing tight coupling

to speci�c MR SDKs, often relying on internet-dependent cloud-

based APIs that introduce concerns regarding costs and privacy,

with interoperability across platforms often limited by design as

a means of creating a ‘walled garden’ for a given device ecosys-

tem. Conversely, whilst co-located experiences have been repeat-

edly examined in research without relying on such dependencies

[9, 16, 20, 23], the methods by which aligned experiences (from

seated audiences to arena-scale co-location) were facilitated have

never been su�ciently documented to enable replication.

The aim of this paper is to better equip practitioners in creating

basic co-located MR experiences, and remove the necessity of de-

pending upon speci�c platforms, freeing them to use any combina-

tion of available SLAM-tracked devices that suit both their speci�c

needs, and the context they are deployed in. We do this through

an exploration of aligned SLAM approaches, where we determine

transformations to pre-determined points in reality, allowing dis-

parate SLAM devices to quickly align their coordinate systems. We

do so in three ways: 1) we describe, through pseudo-code, how

to accurately align devices to both small-scale (using one-point

alignment) and large-scale (using two-point alignment) spaces, and

formalize the accuracy and limitations of these approaches; 2) we

provide example scenes with skeleton implementations using these

alignment techniques to enable seated audience, small-scale and

large-scale co-location scenarios, demonstrating the feasibility of

https://doi.org/10.1145/3385956.3418968
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co-location across generic 6DoF XR devices and ARCore smart-

phones; 3) we detail a novel approach, using two-point alignment,

allowing practitioners to assess the accuracy and precision of 6DoF

tracking for any given space/context without the necessity of exter-

nal optical tracking, e�ectively enabling practitioners to determine

whether a given combination of an MR device and physical environ-

ment (e.g. with moving people, changing lighting etc.) can safely

support co-location, using only a $30 laser distance meter.

Whilst originally motivated by our own practical needs work-

ing with artists, our contributions will help practitioners and re-

searchers to create co-located MR experiences right now, with

no platform-speci�c dependencies. We provide all our implemen-

tations to the community via Github and hope to better inform

the community regarding the potential for democratized, low-cost,

cross-platform co-located mixed reality, supporting researchers,

students and artists in creating shared and social MR experiences.

2 BACKGROUND

Consumer MR devices have often presented a barrier to co-located

interaction, resulting in isolation of the wearer, and exclusion of

non-headset users [16]. However, their merit in co-location has been

well explored. For collaboration, co-located MR has been deployed

in a variety of contexts, from construction and engineering, educa-

tion, entertainment and gaming, tourism and more, accounting for

approximately 40% of collaborative MR research from 2013–2018

[2], with notable bene�ts in terms of cognitive load, cooperation,

and awareness. For play, research into co-located augmented play-

spaces (CAPs) [34] has established bene�ts in terms of stimulating

physically active behaviour, social interactions, cognitive develop-

ment in children, and fundamentally in enabling unique, joyful ex-

periences. And in art, co-located MR performances such as CAVRN

[20], Holojam [15], and CAVE [23] have pushed the boundaries in

terms of audience experience, with “the adaptation of both cine-

matic and theatrical elements o�er[ing] a unique set of a�ordances

for content designers and producers” [23]. Such experiences might

incorporate multiple types of MR devices and displays (the utility of

which was particularly emphasised by ShareVR [17]) and multiple

user roles, from passers-by, to spectators, to headset users [37].

2.1 Visual-Inertial SLAM Across Devices

SLAM tracking [11] generates knowledge of the real-world envi-

ronment using optical data which is then fused with IMU data to

allow for high sample rate positional tracking. For MR headsets

and devices, this is typically referred to as “inside-out” positional

tracking, and such spatial positioning has become a commonplace

feature of VR and AR devices, necessary to create exocentric, 6DoF

tracked MR experiences. Such solutions can operate as relative

positional tracking (e.g., relying on optical �ow and IMU data), but

typically also retain a spatial memory of the environment (e.g.,

through stored point clouds of environmental features), meaning

that positioning can be absolute if there is su�cient knowledge

of the environment. Note that tracking is only absolute with re-

spect to each individual device, being internally consistent – the

inter-device coordinate spaces are inevitably di�erent (based on the

starting point/alignment, the state of the IMU, etc.). To create co-

located experiences with multiple devices we then need to be able

to synchronize their spatial frames/align their coordinate spaces.

2.1.1 Alignment using Features, GNSS. SynchronizAR [22] demon-

strated how ad-hoc co-located experiences could be constructed

spontaneously and implicitly. They used Ultra-Wide Bandwidth

(UWB) modules attached to each MR device, providing distance

measurements between all devices in the co-located session, which

in turn allowed for the positions (relative to each other) of the MR

devices to be resolved. Once synchronisation was complete, they

relied on the in-built SLAM tracking for providing subsequent po-

sition updates as users moved throughout the space. This approach

was both highly novel and e�ective, however this did require be-

spoke hardware attached to each MR device. Discounting additional

hardware, common tracked features can also be used for alignment.

For example, ArUco/�ducial markers or LightAnchors [1] with

parallel positions in the virtual scene are su�cient for a device to

align it’s coordinate space to said marker to an extent. Every major

AR platform has some mechanism for supporting this implicitly

without markers, typically through spatial anchors. These de�ne a

point that can be tracked across devices and time through identi-

�cation of features in the physical environment. For example the

Microsoft Mixed Reality SDK supports Spatial Anchors directly

[31] which can be shared across devices supporting the major AR

toolkits (ARCore, ARKit, Microsoft) using Azure Spatial Anchors

[3]. This situation is mirrored on ARCore with Cloud Anchors [27]

and iOS with the ARWorldMap [26]. Given visibility of a shared

spatial anchor, we can align the individual coordinate space of each

MR device to these anchors. However inaccuracy in identifying

and tracking a singular marker or feature can introduce signi�cant

errors in alignment as Defanti noted: “simple calculations yield that

even 5deg of error will cause objects to have almost 10cm of error

per 1m they are positioned away from the frame origin” [9].

Indoors, a plethora of research has examined transposing trilater-

ation/triangulation approaches for e.g., WiFi, RADAR [5], and other

technologies (summarized by [38]). And for outdoor experiences,

we can incorporate Global Navigation Satellite System (GNSS) data,

capable of providing absolute positioning to anywhere from multi-

meter to (soon) deci-centimeter level accuracy [6]. However, such

solutions have their own caveats e.g. in terms of signal availability,

accuracy and reliability, although work by companies such as Ni-

antic on their “world platform” [21] is rapidly bridging this sensor

fusion gap of external triangulation + SLAM data.

2.1.2 Synchronised SLAM. Alternatively, there is the synchroni-

sation of SLAM data to consider. Instead of tracking one or more

features and aligning to those, instead devices can share [29], and

even collaboratively map [35], the environment such that they all

share the same coordinate space and absolute positioning within

this environment. Perhaps the most relevant example of the syn-

chronised SLAMapproachwas demonstrated byOculus in 2018 [33].

They showed an arena-scale co-located VR game, where synchro-

nization appeared to be achieved through sharing a pre-captured

map of the environment that all headsets could refer to. This al-

lowed the inside-out tracking to determine the absolute position

of the headset relative to the environment, without any necessary

re-alignment or transformation to match other device’s coordinate

https://github.com/mark-mcg/VRST-20-Aligned-SLAM-Exemplars
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spaces. This also had the bene�t of being able to share pre-de�ned

safety boundaries (the Oculus ‘Guardian’ system) for the arena

environment. This demonstration prompted a variety of developers

to work on the creation of such experiences, with it being noted

by Auxietre that “we held full-scale playtests in an ‘ideal’ setting

of 30x15m (50x100feet) with 8 simultaneous users and it worked

nicely on development hardware” [4].

Synchronised SLAM and shared spatial references are the ul-

timate end-point of ubiquitous co-located MR. However, they do

have a number of caveats to be considered. For synchronised SLAM,

[29] noted in particular issues regarding end-to-end latency in dis-

covery and alignment, bandwidth usage (particularly at the initial

synchronisation of a map), and processing requirements (partic-

ularly if o�oading elements of the map processing to the cloud).

Across both solutions there are common caveats in terms of:

Internet access They often require an internet connection with a

dependency to cloud infrastructure (although P2P synchronisation

is sometimes supported, e.g., with ARWorldMap), introducing a

potentially critical failure point for public deployments;

Privacy They require the transmission of summary data regard-

ing the device (e.g. GNSS position, device orientation, calculated

hashes or sparse point clouds of camera data) either P2P or to the

cloud. The sharing of this data introduces concerns regarding pri-

vacy in particular - your real-world environment may be mapped

and made accessible to applications on other devices;

Platform-Speci�c Dependencies There is no one common SDK

that supports all devices, restricting development to “Walled Gar-

dens” of speci�c devices on supported platforms.

This latter point is perhaps most prescient. The aforementioned

Oculus Co-location API has yet to be released, with developers

noting the lack of communication from Oculus regarding public

access to this API restricting the development of co-located VR

[4]. Indeed, Oculus restrict the capability of developers to create

co-located experiences, with it being noted [18] that the Oculus for

Business Enterprise Use Agreement contains the restriction that

“Unless separately approved in writing by Oculus, you will not...

modify the tracking functionality (including the implementation

of any custom co-location functionality) on your Software”. Even

whenOculus release their co-location SDK, there is still the question

of how MR headsets and devices from other manufacturers might

be integrated into shared experiences—if at all. With reference to

the Oculus SDK speci�cally, Heaney [19] noted that co-location

code resides as part of the Oculus Platform SDK, requiring approval

for developer access and leveraging the Oculus store and servers.

Moreover, for privacy reasons, the cameras on the Oculus Quest

cannot yet be accessed by developers, in turn hindering support for

other platforms that might facilitate co-location such as ARCore.

In fairness, this situation is by nomeans unique to Oculus e.g., the

Apple ARWorldMap is supported only on iOS devices, whilst Azure

spatial anchors aren’t supported on Magic Leap devices, and so on.

Indeed, such incompatibilities are likely to be exacerbated, at least

in the short term, as companies compete for dominance of the MR

marketplace, and common standards emerge. Whilst companies are

exploring general purpose, cross-platform alignment solutions (e.g.,

Spatial.io [30]) there are likely to be many cases where bespoke,

low-cost, platform agnostic solutions would prove invaluable.

2.2 Assessing The Accuracy of SLAM Tracking

Given the reliance on optical tracking, the localisation accuracy

(i.e., that the device determines its position in reality correctly) and

precision (i.e., that the position is consistent and repeatable) of

SLAM solutions can be highly dependant on the environment they

are used within, and speci�cally how that environment physically

changes over time (e.g. the presence of moving others). Feigl et

al. [13] assessed the localisation accuracy of ARCore, ARKit and

Hololens devices, �nding that “out of the box, these AR systems are

far from useful even for normal motion behaviour”, with an average

error of approximately 17m per 120m when assessed in a large-

scale industry environment (60m+ traversals). And Duque [10]

assessed the Oculus Rift CV1 outside-in tracking, �nding distance

error of approximately 1.7 cm. Feigl et al. in particular found that

the mean absolute position error was deoendent on the number of

optically unique features in an environment, the presence of RGB-

Depth sensing on the device, and dynamic, prolonged occlusion

of the environment. Consequently, determining whether a given

SLAM-tracked device will work for a particular environment/use

case is di�cult to answer without some form of assessment in-

situ. Problematically, common to both these papers was the use

of external optical tracking as a ground truth for benchmarking

(e.g., ARTTRACK cameras in [13], outside-in tracking cameras in

[10]). This signi�cantly increases the cost and complexity of in-

situ assessments in di�erent spaces, with optical tracking solutions

capable of tracking devices over large spaces costing signi�cant

sums and requiring the installation of hardware infrastructure.

3 BUILDING CO-LOCATEDMR EXPERIENCES

Our focus is on facilitating platform-agnostic co-located MR experi-

ences using inside-out positionally tracked MR devices (assumed to

have a robust spatial memory). In an evaluation-by-demonstration

[24], we walk the reader through two approaches for aligning a MR

device with a real-world space, aligning to a single known point in

reality (requiring known position and orientation, suited to small

roomscale co-location), or two known points (requiring position

only, suited to large roomscale co-location). For each approach, we

detail the potential accuracy and pitfalls in application, and provide

demonstrator scenes exploring real-world application, across seated

audiences, and small-/large-scale co-location, that work for both

AR smartphones (ARCore) and generic XR headsets, with the full

Unity project provided at github.com/mark-mcg/VRST-20-Aligned-

SLAM-Exemplars. For all scenes, we provide a basic client-server

network implementation using Mirror [25].

3.1 Aligning to a single known point

The most basic means of alignment is to perform a one-point align-

ment, a one-shot transformation from the device’s current posi-

tion+orientation in reality to a speci�ed position+orientation in

the virtual coordinate space which has a congruent, equivalent

position+orientation in reality. This approach has typically been

seen in projects such as CAVE and CAVRN [20, 23], where each au-

dience seat in reality has an equivalent position noted in virtuality,

such that the MR device can be aligned with said point, giving the

audience member the equivalent view in MR as in reality, and such

a transformation can be generated trivially:

http://github.com/mark-mcg/VRST-20-Aligned-SLAM-Exemplars
http://github.com/mark-mcg/VRST-20-Aligned-SLAM-Exemplars
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Listing 1: Alignment to known point in VR

// Align orientation by rotating the device by the angular

↩→ difference

Quaternion Rotation = Quaternion.Euler (new Vector3(0, target.transform.
↩→ eulerAngles.y − device.transform.eulerAngles.y, 0) );

// Rotate the device position around origin to match new orientation

Vector3 Position = device.transform.position.RotateAroundPivot(Vector3.zero,
↩→ Rotation);

// Calculate the difference between the rotated and target positions

Vector3 Translation = target.transform.position − Position;
// ... then apply rotation and translation to parent of tracked MR

↩→ device ...

This alignment approach is simple but e�ective - you need only

de�ne a point in virtuality (‘target’), and an equivalent point in

reality that your device can track; e.g., aligning a headset or con-

troller with this point, or tracking a �ducial marker/QR code/spatial

anchor at this point, so that we have a position and orientation in

the virtual coordinate space that we can align with the known po-

sition/orientation of the ‘target’ in reality. Multiple devices can be

aligned in this way, meaning that, regardless of di�erences in their

individual coordinate spaces, the eventual position of the devices

will be aligned, allowing for co-located MR.

3.1.1 Practicality of Approach1. The e�ectiveness of aligning to a

single known point is highly dependent on how accurately we can

determine the virtual equivalent of our ‘target’ in reality. Consider

multiple VR users that each stand at the same noted point in reality,

and point their headsets toward a pre-determined feature in the

room. Each pulls the trigger of their VR controller, enacting a one-

point alignment. Once �nished, each device will be theoretically

aligned for co-located interaction. However, in practice, each user

will vary in terms of the precision of positioning and orientation

of the device, and these errors can have signi�cant impact on the

perceived alignment [9]. Consider a circular play area with radius

', with an alignment point in reality at the centre of the play area

&8 . If the user attempts to align the device with&8 but is slightly o�

on the position (%8 ) and angle (\1), and then walks to the edge of the

play area (distance ') along the G axis, then their expected position

&4 and actual position %0 would be separated by a distance of �? ,

our positional error (�? = 3 (&4 , %0)), as can be seen in Figure 1. To

calculate this, we need only �nd the position of point %0 , which

can be determined as:

%0 = %8 + ('.2>B (\1), '.B8=(\1)) (1)

For simplicity, if we consider the impact of the angular error

alone for di�erent radii of play areas, assuming alignment occurs

at the center of the play area, we can see that the resulting position

error by the time we reach the edge of the play area (i.e. having

travelled by ') increases linearly with angle (see Figure 2). For small

play areas, there is a reasonable margin for error in calibration here,

with ±4.5° still allowing for positional error within ±0.1< for a

1.5< radius play area. However, as the play area size increases,

this margin for error becomes increasingly tight, requiring precise

initial angular alignment. There is a clear trade o� for this approach

- it is quick to enact, but not well suited to large play areas.

1N.B. For all discussions regarding accuracy hereafter, we assume a circular play area
boundary to simplify position error calculations - for any non-circular play area, refer
to the largest enclosing circular play area for the worst case error. For angular error we
refer to yaw error on Y - orientation di�erences on X/Z between devices are assumed
to be corrected by IMU sensor fusion using the direction of gravity.

3.1.2 Exemplar 1: Seated Audiences. The most basic co-located

application of this approach is in the creation of seated audience

experiences - alignment with reality is achieved merely by en-

suring that audience seat locations in MR mirror their physical

arrangement and positions precisely in reality. In exemplar scene (1

Audiences.unity), we provide a basic mock-up of audience seating

for an immersive co-located VR experience such as CAVE [23]. We

have created 6 GameObjects denoting 6 alignment points, one for

each seat (see Figure 3), each with attached OnePointAlignment

components. In every example in this paper, the alignment compo-

nents extend a base TransformationToReality component which

speci�es what device or marker should be treated as the equiva-

lent point in VR when alignment is enacted (e.g., 3/6DoF headset,

tracked object such as a 6DoF controller, or tracked marker such

as a QR code), and whether we should align to this point on xyz,

or just xz (e.g. for aligning a headset whilst retaining the height of

the user relative to others). By default, this is taken as the available

MR headset position. This scenario is unique in that it works for

both 3DoF and 6DoF headsets, thus SLAM tracking is not strictly

required (provided the audience members remain seated).
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Figure 1: Example of performing a one-shot calibration to a

known point &8 , with an initial positional error of �8 . If the

user moves by ' along the G axis, they would be expected to

be at point &4 in reality. However, given potential angular

mis-alignment of \1, their resultant actual position would

be estimated to be %0 , with an overall error of �? .
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Figure 3: Left: Each sphere represents an audiencemember’s

seat alignment position in VR with a congruent point in re-

ality. Right: UI for allowing users to select their seat to align

their headset manually.

This scene is setup to demonstrate alignment using the XR head-

set, meaning that the headset needs to be held, or worn, such that

it is in the same comparable point in reality as it will be calibrated

to in VR. We can indicate which location we are aligning to in

a number of ways e.g. pre-determined based on a con�g �le on

the device, selected by the user via a UI (as shown in Figure 3),

or conveyed remotely by an operator, and then enact the align-

ment procedure when the headset is in said position. The bundled

UI queries an AlignedPointManager class and presents all avail-

able TransformationToReality components as options to align

to. The result is that the headset will be calibrated such that, when

the user wears the headset, they will perceive themselves to be at

approximately the same location and orientation in reality as they

are in virtuality.

The biggest issue with such a setup is if the alignment procedure

is not followed correctly or if the incorrect seat is chosen. Such a

setup will be relatively forgiving of minor mis-alignments, given

that users will be seated throughout the experience, however con-

sider that the user selects seat A1 instead of seat B3. Their view of

the scene would thus be markedly di�erent than their position in

reality. Equally, if the user performs the calibration by aligning an

MR device directly, and the device is in the wrong orientation, they

would �nd that the MR world would be o�set by the di�erence be-

tween the expected and actual orientation at alignment. CAVE [23]

appears to have used an operator-driven approach, and it seems

likely that the headsets were placed in their pre-determined seat

positions for calibration prior to audience arrival, or that audience

members were asked at the start to look straight ahead prior to

calibration. If the headset has an available front-mounted camera

feed (not possible on the Oculus Quest, for example), alternatively

placing a �ducial marker/QR code on the space in front of the real-

world seat would allow for headsets to auto calibrate themselves,

however any inaccuracy in detecting the orientation/position of

the marker would again impact alignment. These trade-o�s would

need to be thought through depending on the scale and longevity

of the expected deployment.

3.1.3 Exemplar 2: Small-Scale Co-Location. This exemplar (Small

Scale Colocation.unity) is a facsimile for co-located experiences

that are roomscale in scope; i.e., modest living-rooms or o�ces,

Figure 4: Shows an Oculus Quest and Android ARCore de-

vice both aligned using one-point alignment, captured from

the perspective of the ARCore smartphone device with pass-

through video enabled. The pink spheres represent the cen-

ter of gravity of the headset and controllers, with a head and

hand models attached to those points in the XR player pre-

fab. See video �gure for footage this picture was taken from.

where a small number of people might operate within restricted con-

�nes (e.g., around 3 ∗ 3<) for a relatively ad-hoc experience. Again,

the exemplar scene is setup for directly aligning the headset with a

known point, this time performing a one-point alignment with a

point in the center of the available play area (ensuring best accu-

racy as we move toward the center of the play area), facing/aligned

with a known landmark for orientation, with alignment occurring

either through on-screen UI (for smartphones) or XR primary trig-

ger input. The end result is that we can have = devices sharing an

aligned play space, as seen in Figure 4. Again, we could swap out

direct alignment of the headset with detecting a visual marker, if

supported, but this could introduce further inaccuracy based on

errors in estimating the position/orientation of said marker.

As with the audience example, because we rely on a one-point

alignment, accuracy again depends on the alignment being con-

ducted appropriately by each user. And, as detailed previously,

accuracy at the edges of the play area will be determined by the

quality of this initial calibration. We suggest that this approach be

used for settings where a quick, rough ad-hoc alignment is required

because of these issues. For example, aligning multiple smartphones

and AR headsets to interact with shared virtual content, or pro-

viding smartphone users with a perspective correct view of a VR

user’s actions. In both cases, there is little in the way of roomscale

movement, nor the possibility of collisions between blinded VR

users, so issues regarding the accuracy of alignment are minimised.

3.2 Aligning to two known points

Given the degradation in accuracy for one-point alignment as we

move away from the alignment point, for larger co-located play

areas, we need to consider how we might provide an alignment

approach that is more robust to the error in positioning/aligning

the MR device (e.g., headset, controller, identi�ed QR code or spa-

tial anchor) to a known point in reality. DeFanti [7] considered

that the angular error was the predominant issue with the latter

approach, and proposed aligning the position only to two known

points in reality to e�ectively remove the angular error from consid-

eration. They noted that “if a user can accurately place the headset

within 1cm of each of the �xed points [at opposite ends of the
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play area], then there will be no more than 1cm of error through-

out the tracked space”. Consider a circular play space of radius ',

with the headset positioned with a degree of error at each of the

two alignment points, P1 and P2. If the points chosen are oppos-

ing points at the edge of this play area, then the positional error

will be, at worst, equivalent to the error at the nearest recorded

alignment, with the maximum angular misalignment on y being

\2 = atan2(%2.~−%1.~/%2.G−%1.G). Performing such an alignment

is again straightforward (see Listing 2), requiring two known points

in reality, with the position of the MR device (or controller, marker

etc) recorded when the device is at each of said points.

Listing 2: Alignment to two known points, Q1 and Q2, inMR

// Calculate the rotation on the y axis for alignment

Quaternion Rotation = Quaternion.Euler(0, Quaternion.FromToRotation(P2.
↩→ transform.position − P1.transform.position, Q2.transform.position − Q1.
↩→ transform.position).eulerAngles.y, 0);

// Rotate the recorded device points around origin to align

↩→ orientation

Vector3 P1PositionR = P1Position.RotateAroundPivot(Vector3.zero, rotation);
Vector3 P2PositionR = Q2Position.RotateAroundPivot(Vector3.zero, rotation);

// Find the translation between the centroids of Q1/Q2 and P1R/P2R

Vector3 Translation = ((Q1Position + Q2Position) / 2) − ((P1PositionR + P2PositionR
↩→ ) / 2);

// ... then apply rotation and translation to parent of tracked MR

↩→ device ...

Practicality of Approach. This alignment approach requires more

e�ort in calibration, requiring that for each devicewe align a tracked

object (e.g., headset, controller, marker) to two points in our play

area. However, once this alignment has been performed, this ap-

proach will provide greater accuracy than the one-point approach,

and is relatively fool-proof in terms of conducting the alignment

thanks to the orientation of the device/alignment points being of

no consequence. With this, accuracy at the boundaries is dictated

by how accurately we can align to each of our points, and how

far apart those points are. The latter point is, however, potentially

problematic for very large play areas (e.g., arena scale), requiring

that each device be calibrated to points at the far reaches of the

play area at least once (assuming we can store and retrieve this

calibration for the given real world location, which may not always

be possible). For practicality, let us assume we cannot store and

retrieve this calibration, and wish to calibrate to two points closer

together than the maximum extents of our play area and are will-

ing to sacri�ce accuracy to some extent e.g., using two points at

a denoted location where a headset is calibrated and handed to a

user, at the edge of the play area (see Figure 5).

Ep
P1

P2

C x
R + d(C,O)

Q2Q1
d(Q1,C)

O

Figure 5: If we calibrate to two known points Q1 and Q2 of

an arbitrary distance apart, with an accuracy of �? , placed at

the very edge of our play area, this shows the approximate

distance to the furthermost point in the play area.

Beyond the encircling boundary of &1 and &2, the error �? will

scale linearly as we move further from the centroid � (imagine

drawing a line between P1 and P2, and carrying that line further -

this line represents our position including error). Consequently, we

can approximate the positional error �1 at the furthest boundary

from� in our play space, G , through a ratio of the distance3 (G,�) =

' + 3 (�,$) and 3 (&1,�):

�1 = �?
' + 3 (�,$)

3 (&1,�)
(2)

In practice however, it would be useful to plug in the size of the

play area, where the alignment centroid will be (i.e., where we will

be performing the alignment), and what our required accuracy at

the furthest reaches of the play area might be, to determine the

minimum required distance between our calibration points:

3 (&1,�) =
�?

�1
(' + 3 (�,$)) (3)

So for a play area of 5m in radius, with a measuring accuracy

of ±0.01< and a tolerance of ±0.1< at the edges of the play area,

with calibration performed at the edge of the play area (5m from

center), we would need to measure two points with a centroid at

the edge of the play area separated by 2 ∗ (0.01/0.1) ∗ (5+ 5)) = 2<.

Approximations for expected accuracy assuming the calibration

always occurs at the edge of the play area can be seen in Figure 6.

Given that we can predict the accuracy at any point in the play

area, we could also incorporate this knowledge into the design of

our co-located experience; for example, making safety boundaries

around users larger as they reach the edge of the play area, or

adjusting targeting to compensate.

3.2.1 Exemplar 3: Large Scale Co-location. This exemplar (see 3

Large Scale Colocation.unity) demonstrates the use of a two-

point alignment for enabling large-scale multi-user co-location.

For this, we need some pre-existing knowledge of the environ-

ment, speci�cally the distance between our two alignment points

in reality, such that we can place our virtual alignment points the
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racy highlighted. A ±0.1< position accuracy (�? ) is assumed.
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same distance apart. Said distance should be determined by the

practitioner based on our previous accuracy guidance.

For such a scenario, errors in tracking, and accidental/inadver-

tent resets of the user’s view, can become a safety-critical concern.

Consider that the user accidentally holds the Oculus menu but-

ton, and resets their orientation and position. Or consider that the

MR device SLAM tracking may determine it is in an entirely dif-

ferent position in reality to where it was the previous frame, and

instantaneously teleport the MR user to the seemingly new ‘correct’

position. In both cases, our position in virtuality is no longer cor-

rectly aligned with reality. There are two mechanisms by which we

can deal with such errors. Firstly, we can detect movements that are

deemed physically impossible, based on the expected movements

of the devices. TrackingFailureDetector provides an example

of this, where we can act on such an event by, e.g., requesting

the user take o� their headset and return to the start/perform a

re-calibration. Secondly, if the device exposes some knowledge of

the position/alignment of the real-world space such as a safety

boundary, we can utilize this knowledge to recover from any sig-

ni�cant changes in the device’s virtual coordinate space. We can

retrieve the boundary positions, �nd a transformation from our

current boundary positions to the boundary positions when we

performed our alignment, and apply both this transformation and

our previous transformation to once more arrive at an experience

that is aligned correctly relative to reality (again, �rst postulated by

DeFanti [8]). In this way, we can use aligned SLAM tracking safely

to enable co-located experiences bounded only by the spatial mem-

ory and capability of the tracking on our MR devices. Moreover,

the burden of performing an alignment can be lessened for long

term deployments in the same space.

4 ASSESSING SLAM ROBUSTNESS

Finally, we detail a novel low-cost approach, using two-point align-

ment, toward assessing the accuracy of a SLAM-tracked device in

any given environment/context, requiring only a $30 laser range

�nder. This step is crucial for establishing whether a given SLAM

device will operate robustly enough for alignment approaches to

be viable, and more broadly empowers practitioners to readily as-

sess the potential safety and e�ectiveness of SLAM devices in any

environment (e.g. large spaces, in changing lighting conditions,

with moving crowds etc) without necessitating an expensive opti-

cal ground truth. In this way, this paper provides all the necessary

support for practitioners and researchers to create and deploy their

own cross-platform co-located MR experiences.

This latter point is, however, highly prescient — the accuracy of

our alignment techniques is dependent both on the application of

each technique, and also the underlying robustness of the SLAM

tracking implementation. We could trivially perform a two-point

alignment with 0.01< worst case theoretical error at the edges of

the play area, however the error in reality is also contingent on the

accuracy of the SLAM tracking solution in a given environment —

and this can vary markedly depending on said environment and the

sensing available on the device [13]. Consequently, for large scale

co-location in particular, we need the ability to assess the accuracy

of any arbitrary combination of MR device and environment, so that

we can determine a) whether safe operation is possible, and b) what

safety margins need to be incorporated into the experience (e.g., to

prevent occluded VR users from accidentally colliding). We could

use external optical tracking to provide a ground truth, but this is

typically extremely expensive, and indeed undermines one of the

key points of using inside-out tracking in the �rst place: the lack of

a reliance on physical infrastructure for tracking. Our challenge is

that we can perform a two-point alignment in a given environment,

but outside of examining how accurately we can return to these two

points after moving through this environment, we cannot assess

howwell the tracking works throughout the space (e.g., at the edges

of a play area). However, if we have two known points in our space,

we can determine the position (in x,y) of any other arbitrary point

in our play space through trilateration [14].

For this technique, we will need the ability to accurately measure

the distance between multiple points in reality. The tool we found

best suited to this was commodity laser distance meters, which can

be purchased for approximately $30, and typically has millimeter-

level accuracy. Let us pick two points at the extremes of our play

area, C1 and C2. We will assume these two points lie on our G axis,

and the distance between these two points is U, meaning C1 lies

at (0,0), and C2 lies at (U,0). For any arbitrary point of interest P,

we can determine its (x,y) coordinates by measuring the distance

between P and C1 (A1), and P and C2 (A2) as follows:

G =

A21 − A22 +*
2

2*
~ = ±

√

A21 − G2 (4)

Consequently, we can de�ne any number of known points of

interest in reality relative to our predetermined alignment points

with a high degree of precision using the range �nder only. If we

then perform a two-point alignment of an MR device to C1 and

C2, we can then align the device with any subsequent points of

interest and compare the headset’s aligned position with the known

position in reality, previously determined using the range �nder.

In this way, we can assess how the accuracy of any given SLAM

tracking solution might vary across a given environment.

4.1 Comparing Quest, ARCore, and ZED Mini

To demonstrate this approach, we assessed three SLAM-capable

devices: an Oculus Quest with a four camera array, a single RGB

camera ARCore-enabled smartphone (Xiaomi Mi 9T Pro), and a

stereo ZED Mini RGBD depth camera typically used in robotics

and automotive applications, all devices with integrated IMUs that

support positional tracking with spatial memory. Given the Covid-

19 restrictions at the time of writing, we assessed these devices in

a small-scale home play area of ≈ 3 ∗ 2< in size, as seen in Figure 7.

Our intention was to move the devices around the play area, noting

their perceived position in reality at each de�ned point. We de�ned

8 points, four covering the extremities of the play area, and four

covering the center, as Figure 7 shows. Points (1) and (3) were placed

�rst, and taken as being on our G axis, with (1) being (0,0) and (3)

being measured using a laser distance meter (Lomvum LV-120M,

with a range of 120m and a ±0.002< accuracy) to be (0, 2.660). For

each of the remaining points, distance measurements were taken

from (1) and (3), such that we could determine each point’s position

in (x,z) on the �oor to an estimated accuracy of 0.005<.
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Figure 7: Left: Points chosen for benchmark, with (1) and (3)

indicating the alignment points, and the clockwise route in-

dicated (counter-clockwise route was same route in reverse).

Middle: Real-world space assessment was performed, with

labelled targets. Right: A plumb line being used to line a de-

vice up with a target point on the ground.

Each device was familiarised with the space prior to testing, with

the Oculus Quest having a boundary setup, and the ARCore and

ZED Mini devices having traversed the environment once fully. A

two point alignment with (1) and (3) was then performed for each

device, before the devices were taken on 3 laps of our route - going

clockwise, and then counter-clockwise along our de�ned path. At

each point on the path, the device was aligned with the target on the

�oor using a plumb line (a weight on a length of string, attached to

the center of each device) to allow for accurate targeting regardless

of orientation. The experimenter noted the point id being captured

through a dwell interaction (trigger on Oculus Quest, touch screen

button on ARCore, keypress on ZED Mini laptop). For the recorded

points on each device, we report on the precision (the distance

from the mean center of the points) and the accuracy (the distance

from the target in reality). It should be noted that this benchmark

is not re�ective of any one device’s performance relative to the

others, and no such analysis is performed here. Our intention is to

illustrate the degree to which we can assess if a given SLAM device

works in a given environment or context, and these results are

illustrative only of performance in this particular environment.

4.2 Precision and Accuracy Assessment

As can be seen in Table 1 and Figure 8, using trilateration and two

point alignment we could assess the robustness of multiple SLAM

devices without any external ground truth tracking. We can see that

the ZEDMini and Oculus Quest featured near identical performance

on average, with a mean localization accuracy of ±0.04<, with a

high degree of precision. These results will be in�uenced by the

accuracy of our plumb line targeting, which we would estimate as

±0.01<, but nonetheless such �ndings would suggest that these

devices perform well in the experimenter’s kitchen – a suitable

environment for a small-scale co-located MR experience. However,

the ARCore device featured greater positional deviations, with an

accuracy of ±0.18m, and an apparent drift over time (see Figure 8).

4.3 Discussion

The ability to assess the accuracy of a SLAM tracking solution is

important for any deployment that pushes the boundaries of what

these systems are considered capable of. This applies regardless

of whether the devices are manually aligned as this paper details,
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Figure 8: Top: Plot of recorded device positions in virtual-

ity (blue points) when aligned with known targets on the

ground in reality (red circles). Bo�om: Plot of device posi-

tion for every recorded point as an o�set of the target point

in reality over time.

or aligned through synchronised SLAM solutions. Where previous

research typically relied on expensive ground truth optical tracking

systems, by using trilateration combined with two point alignment

we can assess the robustness of any SLAM capable device for any

given environment or use case. Armed with such an approach, a

practitioner could instrument their given room/arena-scale environ-

ment to determine any points where the SLAM tracking struggled,

e.g. requiring additional high-contrast features, or explore the upper

bounds on the amount of moving proximate persons (e.g. crowds,

bystanders) that can be incorporated into the play space without

tracking degradation. Our assessment found notable di�erences in

accuracy and precision between a standard ARCore smartphone

and the other camera-based SLAM devices. For a practitioner ex-

pecting to deploy a combination of these devices co-located into the

same environment, they might choose to assess the ARCore device

over a greater period of time, to �rst explore whether the apparent

drift it experienced stabilised (which, given the visual landmark

recognition of the SLAM tracking, it should). Then, the apparent

inaccuracy of the ARCore devices could be incorporated into the

design of the co-located experience: e.g., a�ording ARCore players

a wide virtual berth so that VR users did not accidentally collide

Device Precision (m) Accuracy (m)

Mean Std.Dev Mean Std.Dev

ARCore ±0.10 0.17 ±0.18 0.17

ZED Mini ±0.02 0.01 ±0.04 0.02

Quest ±0.02 0.01 ±0.04 0.02

Table 1: Mean Precision and Accuracy of devices at targets.
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with them. In this way, the design can take into account the a�or-

dances and capabilities of disparate SLAM devices, validating safe

operation and minimizing the possibility of accidental overlaps.

5 GENERAL DISCUSSION

This paper has detailed how the coordinate spaces of multiple

disparate SLAM devices can be aligned to enable co-located experi-

ences, formalizing the theoretical accuracy and practical challenges

of one- and two-point alignments and providing exemplars of audi-

ence, small-scale, and large-scale co-location scenarios. We have

also detailed the novel combination of utilising trilateration in con-

junction with two-point alignment to assess the robustness of any

SLAM device when used in any arbitrary space or context. We can

use this approach to evaluate the precision and accuracy of devices

without the need for an external ground truth optical tracking,

enabling practitioners to validate the suitability of co-located MR

deployments in situations that would be considered challenging to

visual-inertial SLAM. These challenges might be a result of light-

ing or weather conditions, moving features such as bystanders or

trees in the wind, or novel combinations of MR devices. Regard-

less, we give practitioners the means to perform these assessments

themselves, for their unique use cases.

5.1 Is this really necessary given ____ APIs?

Our focus has been on detailing pragmatic, private, platform-agnostic,

easy to implement/understand alignment techniques for MR co-

location, formalizing an understanding of how such experiences

can be created. In contrast, as previously detailed, there are now

a variety of SLAM synchronisation/spatial anchor APIs available

from Google, Apple, Microsoft and (soon) Oculus, with varying

cross-platform support and reliance on cloud (versus local or P2P)

networking for synchronisation. It is therefore pertinent to ask

why alignment solutions remain relevant. Eventually, we imagine

that there will emerge ‘gold standard’ cross-platform, standardised,

device-agnostic SLAM synchronisation solutions that can operate

locally or P2P, able to identify precisely where they are in the world

through a sensor-fused combination of SLAM sensing and (when

available) GNSS data, an objective that projects like openarcloud.org

are working toward. However, no such solution currently exists,

with the status quo being companies competing for their platforms

to become the predominant means by which MR experiences are en-

acted. Alignment solutions are therefore a useful tool as we journey

toward implementations that meet our gold standard requirements.

For example, if Oculus release their co-location API and it supports

P2P SLAM synchronisation between Oculus devices only, a practi-

tioner could perform an alignment with one Oculus device to then

enable ARCore or ARKit devices to be co-located with all Oculus

devices in the shared experience. In this way, such techniques can

be used not just as the primary means of co-location, but also as a

means toward bridging sophisticated platform-speci�c solutions.

And, more broadly, the combination of trilateration and two-point

alignment will remain pertinent in assessing the capability of SLAM

devices regardless of how co-location is achieved.

5.2 Are there alternative approaches?

It should also be noted that there are other robust approaches that

could be considered. For headset-based devices in particular, the

same mechanisms by which they track controllers, through embed-

ded IR LEDs with frequency-encoded information, could be used

to allow for the tracking of other headsets in a co-located space

without necessitating the transfer of point-cloud data or manual

alignment - there is no technical impediment preventing a Quest

headset from, for example, detecting the position of other con-

trollers in the same play area, and the position of other headsets is

known in relation to these controllers. Other signals in the environ-

ment could also be used for alignment, much as SynchronizAR [22]

used Ultra-Wide Bandwidth distance measurements, for example

using triangulation-based localisation techniques to create an align-

ment, with varying margins for error that might be acceptable for

speci�c use cases. In the end, such solutions may just be stop-gaps,

but for speci�c use cases and user groups these solutions might be

more pertinent routes toward immediate ad-hoc co-location.

5.3 Co-located MR and Covid-19

Translational gain is a means by which we can increase the per-

ceived size of a real-world physical space by applying gain to user

movement in VR, meaning that, e.g., 1m of movement in reality

could equate to 2m or 3m of movement in VR [36]. For those in

small scale spaces (e.g., families in small �ats), the combination of

co-location and translational gain could o�er the ability to increase

the perceived size of the play area for all taking part. As transla-

tional gain is deterministic, it is compatible with the alignment

approaches in this paper. We would encourage further research

here, particularly in a time when so many �nd themselves restricted

to their homes due to Covid-19 - a co-located MR experience lever-

aging a combination of VR headsets with translational gain and

large immersive environments, and smartphone or headset AR for

aligned spectatorship, could create inclusive, shared experiences

that defy the perceived limitations of restrictive living spaces that

may be becoming all-too-familiar.

6 CONCLUSIONS

Mixed Reality (MR) devices are ever-present in our daily lives;

however, building multi-device, multi-user co-located experiences

is complex. For practitioners in research and the arts, support is

needed for quickly creating low-cost, cross-platform co-located MR

experiences. We have provided this support in three ways. Firstly,

we have surveyed di�erent approaches toward aligning disparate

device coordinate spaces with a real-world environment, formal-

ising the theoretical accuracy and limitations of such approaches.

Secondly, we have provided skeleton implementations for audience-

based, small-scale and large-scale MR co-location. Thirdly, we have

explored how we can assess the suitability of aligned SLAM track-

ing for any combination of device and environment without the

need for an expensive ground truth optical tracking, by using tri-

lateration and a $30 laser distance meter. We open source all our

implementations, and hope to democratize the creation of basic

co-located cross-platformMR experiences, supporting practitioners

and researchers in exploring the shared and social future of MR.

openarcloud.org
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