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A QUESTION OF C.C. YANG ON THE UNIQUENESS
OF ENTIRE FUNCTIONS

By HoNG-XUN Y1

1. Introduction and Main Results

Let f and g be two nonconstant entire functions. If f and g have the
same a-points with the same multiplicities, we denote this by f=aZg=a for
simplicity’s sake (see, [1]). It is assumed that the reader is familiar with the
notations of the Nevanlinna Theory (see, for example, [2]). We denote by
S(r, f) any quantity satisfying S(r, f)=o(T(r, f)) as r—oo except possibly for
a set of r of finite linear measure.

M. Ozawa has proved the following theorem :

THEOREM A (see [1]). Let f and g be entire functions of finite order.
Assume that f=022g=0, f=12g=1and 60, )>1/2. Then f-g=1 unless f=g.

In [3] H. Ueda has shown that in Theorem A the order restriction of f and
g can be removed. He proved the following theorem :

THEOREM B. Let f and g be entire functions. Assume that f=0=g=0,
f=12g=1 and 60, f)>1/2. Then f-g=1 unless f=g.

In [4] C.C. Yang has asked: what can be said about the relationship be-
tween two entire functions f and g if f=0=g=0 and f'=12g'=1?

In this paper we answer the question posed by C.C. Yang. In fact, we
prove the following theorem :

THEOREM 1. Let f and g be two nonconstant entive functions. Assume that

f=022g=0, f'=122g’=1 and 00, /)>1/2. Then f'g’'=1 unless f=g.
The assumption “6(0, f)>1/2” in Theorem 1 is best possible. Indeed, consider

— 1 22_1_ z __l, -2z _l_ -z
f(Z)——ge 5 g(Z)—ze +ye
Then f=02g=0, f'=12g'=1and 60, f)=1/2. f#g and f'-g'#1 are evident.

In place of Theorem 1, we prove more generally the following theorem
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which includes Theorem B and Theorem 1.

THEOREM 2. Let f and g be two nonconstant entire functions. Assume that
f=02g=0, f™=122g"™=1 and 60, f)>1/2, where n is a nonnegative integer.
Then f™.gM=1 unless f=g.

Theorem 2 is the best possible. Indeed, let

L,
fa)= ¢ + o

_(_l)"+1 —22___1_ -z
g(z)= on ¢ ane

where n is a non-negative integer. It is easy to see that f=0=2g=0, f™ =12
g™=1 and 400, /)=1/2, but f=*=g and f™, g™=1. This shows that (0, f)
>1/2 is needed.

2. Some Lemmas

The following Lemmas will be needed in the proof of our theorems.

LEMMA 1 (see [2]). Let f be a nonconstant entire function, n be a nonnega-
tive integer. Then

T(r, f)ST(r, /)+SE, f).

LEMMA 2. Under the same conditions of Lemma 1, we have

LYes, .

N (r, 7

f(n)) T(r, f™)=T(r, f)+N(7’,

Proof. We note that

(r, f)<m( f(n)>—l—m(r, ff:)

=m(r, J—,m>+5(r, f. (1)
By the first fundamental theorem (see [2]). we have from (1),
TG, )=N(r, 7)ST0, S™)=N (1, 7o)+, 1. @
Thus
N(r, f(n))<T(r, fo)=Ttr, HHN(r, %—>+S(r, n, @)

which proves Lemma 2.
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LEMMA 3. Let g be a nonconstant entive function, n be a nonnegative integer.
Then

N(r, g(ln)><N<r, é)-}—S(r, g).

Proof. By Lemma 2 we have
N( <n)>ST(7’ g™)—T(r, g)+N<7’ —>+S(7’, g).

From Lemma 1 we have

T(r, g™)ZT(r, g)+S(, g).
Hence

N(r, g}n) <N(r, %)+s<r, 2, @
which proves Lemma 3.
LEMMA 4. Assume that the conditions of Theorem 2 are satisfied. Then
T(r, N=0T(r, f™) r(€E),
T@r, )=0T(r, [™)  (r&E),
where E is a set of finite linear measure.

Proof. From (1) we get

000, NHF+oNT @, HET @, f)+S, ).
Hence we have

10, N=(55 7 ToAO)T 1) GeE), ®)

that is
T(r, N=0T(r, f™) (k).

By Milloux’s basic result (see, for example, [2, Theorem 3.2]), we have
1 1
T, <N (r, 2)+N(r, Zan—p)+5C 2. ©)
We note that

N(r. 5)=N(r, %) SA=30, H+oT(, 1)

<(A~30, N+o)(55—5+oD)T(r, £™)

(0, f)

(575~ 1+W)T, 1) () ™
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and
N(r, 2e—7)=N(r: 7=)ST(r, F#)+0CD). ®
From (6), (7), (8 we obtain

T(r, g) < +o(D)T(r, F™)+S(r, ),

( 1
o0, f)
that is

T(r, ©)=0(T(r, ) (r&E).

This completes the proof of Lemma 4.

LEMMA 5. Let f, and f, be two nonconstant entire functions, and let ¢, ¢,
and ¢y be three nonzero constants. If ¢,f,+c2fa=cs, then

TG, f)<N(r, %)-l—N(r, %>+S(r, £2.

Proof. By the second fundamental theorem (see [2]), we have

TG, f)<N(r, )+N(r, o )+Sr, £

Cl
=N(r, 1)+ N(r, D)+5¢, £,
fl fz
which proves Lemma 5.

LEMMA 6 (see [5], [6]). Let fi, fo ==, fn be linearly independent entire
Sfunctions satisfying :Zlfizl. Then for j=1, 2, ---, n we have

TG, f9< S N(r, )+0<log rlog T()  (r&E),
where T(r) denotes the maximum of T(r, f.), i=1, 2, -, n.

This is a special case of a result of R. Nevanlinna (see, [5, Piiql).
To prove our theorems, we also need the following result, which is inter-
esting by itself.

LEMMA 7. Let f, f, and f, be three entire functions satisfying
3
3 fi=l. ®
If fi=constant, and
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SN(r 5)S@HoITE) (B (10)

" [
where T(r)= Lriazxs{T(r, o}, and 2<1, then f,=1 or f,=1

Proof. Suppose neither f, nor f, are constants. If f,, f, and f,; are linearly
independent, by Lemma 6 and (10) we have

s 1
T, f)< ZN(r, 7)+oT0)

=@+o(INT(r) (r&E, j=1, 2, 3)
and hence
T(r)=@A+o(INT () (r&k) 11

which is impossible. If f,, f, and f, are linearly dependent, there exist three
constants (c,, ¢s, ¢35)(0, 0, 0) such that

S efi=0 (12)
Assume ¢,#0, from (9), (12) we have
(1= 2) et (1-2)1e=1, (13)
and
T(r, f)=0+o)T(r) @=1, 2, 3). (14)

By Lemma 5 and (10), (13), (14) we also obtain (11), which is impossible. As-
sume ¢;=0, from (9), (12) we have

firt(1=2) =1

and
T(r, fo=1+oINT() (=1,2,3),

giving a contradiction as before.
Suppose that f,=c(#0). If ¢#1, from (9) we have

fitfs=1—c (15)
and
T(r, fo=1+o)T() (=12,3).
By Lemma 5 and (10), (14), (15) we obtain (11), which is impossible. Therefore
c¢=1, that is, f.=1.

Suppose that f;=c (#0). In a similar manner we get f,=1.
This completes the proof of Lemma 7.
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LEMMA 8. If, in addition to the assumptions of Theorem 2, f™=g™, then

f=g.
Proof. Suppose that f=£g. From f™=g™  we have

f(@=g()+p(2),

where p(z) (£0) is a polynomial of degree at most n—1.
From (0, f)>0 we know that f is a transcendental entire function. Thus
we get

T(r, p)=o(T(r, f))
and
T@r, g)=14+o(NT(, f).

By the second fundamental theorem (see, [2, Theorem 2.5]), we have

TG, N<N(r, 5)+N(r, 25)+50, 1)
=N(r, 7)+N(r, —g—>+S(r, f

=2N(r, %)—I—S(r, f

=2(1-600, T, HH+S, ). (16)
Since
2(1-46(0, <1,

so (16) is a contradiction. Hence f=g.

3. Proof of Theorem 2

From f™=12g™=1, we have

fm—l=e(g™-1), an

where a is a entire function.
Let fi=f™, f,=e% fy=—e%g™. From (17) we have

3 /=t
and

2N(r, fl> =N(r, f(,,))+1v‘(r, g(n)) (18)

By Lemma 2 and Lemma 4 we have
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1 1
N(r, a5 ST f)=Ttr, P+N(r, 7)+50, 1. (19)
By Lemma 3 and Lemma 4 we have
1 1
N(T, F)=N(7’, E)'i's(r, g)

1

:N(r, 7

)+t £). 20)

From (18), (19), (20) we obtain

1

3
1=21N 7, 7.

)gT(r, Fm)—T(r, f)+2N<r, %)-FS(;’, )y

=T, f™)=T(, NH+21-60, NT(r, H+S, f™)
=T(r, f™)—260, )—DT(r, N+Sr, f™) @D
By Lemma 1 and Lemma 4 we have
T@r, f"™)=T(r, N+SE, [7). (22)

Noting 20(0, f)—1>0, from (21), (22), we get

S N(r, ) ST, F*)= @0, N=DTG, [*)+S(, £©)

=2(1—00, f)Fo()NT(r, f™)
=@4+o(NT(r) (r&k),

where 1=2(1—0(0, f))<1. By Lemma 7, we have f,=1 or f,=1.

If f,=1, from (17) we have f™=g™. By Lemma 8, we get f=g. If
f:=1, from (17) we have g™ =—¢ %, f™=—¢* and hence f™-.g™=1. This
completes the proof of Theorem 2.
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