H.-X. YI KODAI MATH. J. 13 (1990), 39-46

A QUESTION OF C.C. YANG ON THE UNIQUENESS OF ENTIRE FUNCTIONS

By Hong-Xun Yi

1. Introduction and Main Results

Let f and g be two nonconstant entire functions. If f and g have the same a-points with the same multiplicities, we denote this by $f=a \rightleftharpoons g=a$ for simplicity's sake (see, [1]). It is assumed that the reader is familiar with the notations of the Nevanlinna Theory (see, for example, [2]). We denote by S(r, f) any quantity satisfying S(r, f)=o(T(r, f)) as $r\to\infty$ except possibly for a set of r of finite linear measure.

M. Ozawa has proved the following theorem:

THEOREM A (see [1]). Let f and g be entire functions of finite order. Assume that $f=0 \Rightarrow g=0$, $f=1 \Rightarrow g=1$ and $\delta(0, f) > 1/2$. Then $f \cdot g \equiv 1$ unless $f \equiv g$.

In [3] H. Ueda has shown that in Theorem A the order restriction of f and g can be removed. He proved the following theorem:

THEOREM B. Let f and g be entire functions. Assume that $f=0 \Rightarrow g=0$, $f=1 \Rightarrow g=1$ and $\delta(0, f) > 1/2$. Then $f \cdot g \equiv 1$ unless $f \equiv g$.

In [4] C.C. Yang has asked: what can be said about the relationship between two entire functions f and g if $f=0 \rightleftharpoons g=0$ and $f'=1 \oiint g'=1$?

In this paper we answer the question posed by C.C. Yang. In fact, we prove the following theorem:

THEOREM 1. Let f and g be two nonconstant entire functions. Assume that $f=0 \Rightarrow g=0$, $f'=1 \Rightarrow g'=1$ and $\delta(0, f)>1/2$. Then $f'g'\equiv 1$ unless $f\equiv g$.

The assumption " $\delta(0, f) > 1/2$ " in Theorem 1 is best possible. Indeed, consider

$$f(z) = -\frac{1}{2}e^{2z} - \frac{1}{2}e^{z}, \qquad g(z) = \frac{1}{2}e^{-2z} + \frac{1}{2}e^{-z}.$$

Then $f=0 \stackrel{\rightarrow}{\underset{\rightarrow}{=}} g=0$, $f'=1 \stackrel{\rightarrow}{\underset{\rightarrow}{=}} g'=1$ and $\delta(0, f)=1/2$. $f \neq g$ and $f' \cdot g' \neq 1$ are evident.

In place of Theorem 1, we prove more generally the following theorem Received March 22, 1989 which includes Theorem B and Theorem 1.

THEOREM 2. Let f and g be two nonconstant entire functions. Assume that $f=0 \rightleftharpoons g=0$, $f^{(n)}=1 \rightrightarrows g^{(n)}=1$ and $\delta(0, f)>1/2$, where n is a nonnegative integer. Then $f^{(n)} \cdot g^{(n)} \equiv 1$ unless $f \equiv g$.

Theorem 2 is the best possible. Indeed, let

$$f(z) = -\frac{1}{2^n} e^{2z} + \frac{(-1)^{n+1}}{2^n} e^{z} ,$$

$$g(z) = \frac{(-1)^{n+1}}{2^n} e^{-2z} - \frac{1}{2^n} e^{-z} ,$$

where *n* is a non-negative integer. It is easy to see that $f=0 \rightleftharpoons g=0$, $f^{(n)}=1 \rightleftharpoons g^{(n)}=1$ and $\delta(0, f)=1/2$, but $f \not\equiv g$ and $f^{(n)}$. $g^{(n)} \not\equiv 1$. This shows that $\delta(0, f) > 1/2$ is needed.

2. Some Lemmas

The following Lemmas will be needed in the proof of our theorems.

LEMMA 1 (see [2]). Let f be a nonconstant entire function, n be a nonnegative integer. Then

$$T(r, f^{(n)}) \leq T(r, f) + S(r, f).$$

LEMMA 2. Under the same conditions of Lemma 1, we have

$$N(r, \frac{1}{f^{(n)}}) \leq T(r, f^{(n)}) - T(r, f) + N(r, \frac{1}{f}) + S(r, f).$$

Proof. We note that

$$m\left(r, \frac{1}{f}\right) \leq m\left(r, \frac{1}{f^{(n)}}\right) + m\left(r, \frac{f^{(n)}}{f}\right)$$
$$= m\left(r, \frac{1}{f^{(n)}}\right) + S(r, f).$$
(1)

By the first fundamental theorem (see [2]). we have from (1),

$$T(r, f) - N\left(r, \frac{1}{f}\right) \leq T(r, f^{(n)}) - N\left(r, \frac{1}{f^{(n)}}\right) + S(r, f).$$
(2)

Thus

$$N\left(r,\frac{1}{f^{(n)}}\right) \leq T(r, f^{(n)}) - T(r, f) + N\left(r, \frac{1}{f}\right) + S(r, f),$$
(3)

which proves Lemma 2.

LEMMA 3. Let g be a nonconstant entire function, n be a nonnegative integer. Then

$$N\left(r,\frac{1}{g^{(n)}}\right) \leq N\left(r,\frac{1}{g}\right) + S(r,g).$$

Proof. By Lemma 2 we have

$$N\left(r, \frac{1}{g^{(n)}}\right) \leq T(r, g^{(n)}) - T(r, g) + N\left(r, \frac{1}{g}\right) + S(r, g).$$

From Lemma 1 we have

$$T(r, g^{(n)}) \leq T(r, g) + S(r, g)$$
.

Hence

$$N\left(r,\frac{1}{g^{(n)}}\right) \leq N\left(r,\frac{1}{g}\right) + S(r,g), \tag{4}$$

which proves Lemma 3.

LEMMA 4. Assume that the conditions of Theorem 2 are satisfied. Then

$$T(r, f) = O(T(r, f^{(n)})) \qquad r(\in E),$$

$$T(r, g) = O(T(r, f^{(n)}) \qquad (r \in E),$$

where E is a set of finite linear measure.

Proof. From (1) we get

$$(\delta(0, f)+o(1))T(r, f) \leq T(r, f^{(n)})+S(r, f).$$

Hence we have

$$T(r, f) \leq \left(\frac{1}{\delta(0, f)} + o(1)\right) T(r, f^{(n)}) \qquad (r \in E),$$
(5)

that is

$$T(r, f) = O(T(r, f^{(n)}))$$
 $(r \in E)$.

By Milloux's basic result (see, for example, [2, Theorem 3.2]), we have

$$T(r, g) < N\left(r, \frac{1}{g}\right) + N\left(r, \frac{1}{g^{(n)} - 1}\right) + S(r, g).$$
(6)

We note that

$$N\left(r, \frac{1}{g}\right) = N\left(r, \frac{1}{f}\right) \leq (1 - \delta(0, f) + o(1))T(r, f)$$

$$\leq (1 - \delta(0, f) + o(1))\left(\frac{1}{\delta(0, f)} + o(1)\right)T(r, f^{(n)})$$

$$= \left(\frac{1}{\delta(0, f)} - 1 + o(1)\right)T(r, f^{(n)}) \qquad (r \in E)$$
(7)

and

$$N\left(r,\frac{1}{g^{(n)}-1}\right) = N\left(r,\frac{1}{f^{(n)}-1}\right) \leq T(r,f^{(n)}) + O(1).$$
(8)

From (6), (7), (8) we obtain

$$T(r, g) \leq \left(\frac{1}{\delta(0, f)} + o(1)\right) T(r, f^{(n)}) + S(r, g),$$

that is

$$T(r, g) = O(T(r, f^{(n)})) \qquad (r \in E).$$

This completes the proof of Lemma 4.

LEMMA 5. Let f_1 and f_2 be two nonconstant entire functions, and let c_1 , c_2 and c_3 be three nonzero constants. If $c_1f_1+c_2f_2\equiv c_3$, then

$$T(r, f_1) < N(r, \frac{1}{f_1}) + N(r, \frac{1}{f_2}) + S(r, f_1).$$

Proof. By the second fundamental theorem (see [2]), we have

$$T(r, f_{1}) < N\left(r, \frac{1}{f_{1}}\right) + N\left(r, \frac{1}{f_{1} - \frac{c_{3}}{c_{1}}}\right) + S(r, f_{1})$$
$$= N\left(r, \frac{1}{f_{1}}\right) + N\left(r, \frac{1}{f_{2}}\right) + S(r, f_{1}),$$

which proves Lemma 5.

LEMMA 6 (see [5], [6]). Let f_1, f_2, \dots, f_n be linearly independent entire functions satisfying $\sum_{i=1}^{n} f_i \equiv 1$. Then for $j=1, 2, \dots, n$ we have

$$T(r, f_j) < \sum_{i=1}^n N\left(r, \frac{1}{f_i}\right) + O(\log r + \log T(r)) \qquad (r \in E),$$

where T(r) denotes the maximum of $T(r, f_i)$, $i=1, 2, \dots, n$.

This is a special case of a result of R. Nevanlinna (see, $[5, P_{116}]$).

To prove our theorems, we also need the following result, which is interesting by itself.

LEMMA 7. Let f_1 , f_2 and f_3 be three entire functions satisfying

$$\sum_{i=1}^{3} f_i \equiv 1.$$
(9)

If $f_1 \not\equiv constant$, and

$$\sum_{i=1}^{3} N\left(r, \frac{1}{f_i}\right) \leq (\lambda + o(1))T(r) \qquad (r \in E)$$
(10)

where $T(r) = \max_{i=1,2,3} \{T(r, f_i)\}$, and $\lambda < 1$, then $f_2 \equiv 1$ or $f_3 \equiv 1$.

Proof. Suppose neither f_2 nor f_3 are constants. If f_1 , f_2 and f_3 are linearly independent, by Lemma 6 and (10) we have

$$T(r, f_{j}) < \sum_{i=1}^{3} N(r, \frac{1}{f_{i}}) + o(T(r))$$

$$\leq (\lambda + o(1))T(r) \quad (r \in E, j = 1, 2, 3)$$

$$T(r) \leq (\lambda + o(1))T(r) \quad (r \in E)$$
(11)

and hence

which is impossible. If f_1 , f_2 and f_3 are linearly dependent, there exist three constants $(c_1, c_2, c_3) \neq (0, 0, 0)$ such that

$$\sum_{i=1}^{3} c_{i} f_{i} \equiv 0$$
 (12)

Assume
$$c_1 \neq 0$$
, from (9), (12) we have

$$\left(1-\frac{c_2}{c_1}\right)f_2+\left(1-\frac{c_3}{c_1}\right)f_3\equiv 1,$$
 (13)

and

$$T(r, f_i) = (1+o(1))T(r) \qquad (i=1, 2, 3).$$
(14)

By Lemma 5 and (10), (13), (14) we also obtain (11), which is impossible. Assume $c_1=0$, from (9), (12) we have

$$f_1 + \left(1 - \frac{c_2}{c_3}\right) f_2 \equiv 1$$

and

$$T(r, f_i) = (1+o(1))T(r)$$
 (i=1, 2, 3),

giving a contradiction as before.

Suppose that $f_2 \equiv c \neq 0$. If $c \neq 1$, from (9) we have

$$f_1 + f_3 = 1 - c$$
 (15)

and

$$T(r, f_i) = (1+o(1))T(r)$$
 (*i*=1, 2, 3).

By Lemma 5 and (10), (14), (15) we obtain (11), which is impossible. Therefore c=1, that is, $f_2\equiv 1$.

Suppose that $f_3 \equiv c \ (\neq 0)$. In a similar manner we get $f_3 \equiv 1$. This completes the proof of Lemma 7. LEMMA 8. If, in addition to the assumptions of Theorem 2, $f^{(n)} \equiv g^{(n)}$, then $f \equiv g$.

Proof. Suppose that $f \not\equiv g$. From $f^{(n)} \equiv g^{(n)}$, we have

$$f(z) = g(z) + p(z),$$

where $p(z) \ (\equiv 0)$ is a polynomial of degree at most n-1.

From $\delta(0, f) > 0$ we know that f is a transcendental entire function. Thus we get

$$T(r, p) = o(T(r, f))$$

and

$$T(r, g) = (1+o(1))T(r, f)$$
.

By the second fundamental theorem (see, [2, Theorem 2.5]), we have

$$T(r, f) < N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f-p}\right) + S(r, f)$$

$$= N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{g}\right) + S(r, f)$$

$$= 2N\left(r, \frac{1}{f}\right) + S(r, f)$$

$$\leq 2(1 - \delta(0, f))T(r, f) + S(r, f).$$
(16)

Since

 $2(1-\delta(0, f)) < 1$,

so (16) is a contradiction. Hence $f \equiv g$.

3. Proof of Theorem 2

From $f^{(n)} = 1 \stackrel{\longrightarrow}{\leftarrow} g^{(n)} = 1$, we have

$$f^{(n)} - 1 = e^{\alpha} (g^{(n)} - 1), \qquad (17)$$

where α is a entire function.

Let $f_1 = f^{(n)}$, $f_2 = e^{\alpha}$, $f_3 = -e^{\alpha}g^{(n)}$. From (17) we have

$$\sum_{i=1}^{3} f_i \equiv 1$$

and

$$\sum_{i=1}^{3} N\left(r, \frac{1}{f_i}\right) = N\left(r, \frac{1}{f^{(n)}}\right) + N\left(r, \frac{1}{g^{(n)}}\right).$$
(18)

By Lemma 2 and Lemma 4 we have

ENTIRE FUNCTIONS

$$N\left(r,\frac{1}{f^{(n)}}\right) \leq T(r, f^{(n)}) - T(r, f) + N\left(r, \frac{1}{f}\right) + S(r, f^{(n)}).$$
(19)

By Lemma 3 and Lemma 4 we have

$$N\left(r, \frac{1}{g^{(n)}}\right) \leq N\left(r, \frac{1}{g}\right) + S(r, g)$$
$$= N\left(r, \frac{1}{f}\right) + S(r, f^{(n)}).$$
(20)

From (18), (19), (20) we obtain

$$\begin{split} \sum_{i=1}^{3} N\left(r, \frac{1}{f_{i}}\right) &\leq T(r, f^{(n)}) - T(r, f) + 2N\left(r, \frac{1}{f}\right) + S(r, f^{(n)}) \\ &\leq T(r, f^{(n)}) - T(r, f) + 2(1 - \delta(0, f))T(r, f) + S(r, f^{(n)}) \\ &= T(r, f^{(n)}) - (2\delta(0, f) - 1)T(r, f) + S(r, f^{(n)}) \end{split}$$
(21)

By Lemma 1 and Lemma 4 we have

$$T(r, f^{(n)}) \leq T(r, f) + S(r, f^{(n)}).$$
 (22)

Noting $2\delta(0, f) - 1 > 0$, from (21), (22), we get

$$\begin{split} \sum_{i=1}^{3} N\left(r, \frac{1}{f_{i}}\right) &\leq T(r, f^{(n)}) - (2\delta(0, f) - 1)T(r, f^{(n)}) + S(r, f^{(n)}) \\ &= 2(1 - \delta(0, f) + o(1))T(r, f^{(n)}) \\ &\leq (\lambda + o(1))T(r) \qquad (r \in E) \,, \end{split}$$

where $\lambda = 2(1 - \delta(0, f)) < 1$. By Lemma 7, we have $f_2 \equiv 1$ or $f_3 \equiv 1$.

If $f_2 \equiv 1$, from (17) we have $f^{(n)} \equiv g^{(n)}$. By Lemma 8, we get $f \equiv g$. If $f_3 \equiv 1$, from (17) we have $g^{(n)} = -e^{-\alpha}$, $f^{(n)} = -e^{\alpha}$, and hence $f^{(n)} \cdot g^{(n)} \equiv 1$. This completes the proof of Theorem 2.

References

- [1] M. Ozawa, Unicity theorems for entire functions, J. d'Analyse Math. 30 (1976), 411-420.
- [2] W.K. HAYMAN, Meromorphic functions, Oxford. 1964.
- [3] H. UEDA, Unicity theorems for meromorphic or entire functions II, Kodai Math. J. 6 (1983), 26-36.
- [4] C.C. YANG, On two entire functions which together with their first derivatives have the same zeros, J. Math. Anal. Appl., 56 (1976), 1-6.

HONG-XUN YI

- [5] R. NEVANLINNA, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Paris, Gauthier-Villars, 1929.
- [6] F. GROSS, Factorization of meromorphic functions, U.S. Govt. Printing Office Publication, Washington, D.C., 1972.

Department of Mathematics Shandong University Jinan, Shandong, 250100 P.R. of China