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A QUESTION OF C.C. YANG ON THE UNIQUENESS
OF ENTIRE FUNCTIONS

BY HONG-XUN Yl

1. Introduction and Main Results

Let / and g be two nonconstant entire functions. If / and g have the
same α-points with the same multiplicities, we denote this by f=a^g=a for
simplicity's sake (see, [1]). It is assumed that the reader is familiar with the
notations of the Nevanlinna Theory (see, for example, [2]). We denote by
S(r, /) any quantity satisfying S(r, /)=0(T(r, /)) as r->co except possibly for
a set of r of finite linear measure.

M. Ozawa has proved the following theorem:

THEOREM A (see [1]). Let f and g be entire functions of finite order.
Assume that /=0;±£=0, f=l^g=l and 3(0, /)>l/2. Then f-g=l unless f=g.

In [3] H. Ueda has shown that in Theorem A the order restriction of / and
g can be removed. He proved the following theorem:

THEOREM B. Let f and g be entire functions. Assume that f=Q^:g=Q,
f=l^g=l and 3(0, /)>l/2. Then f g=l unless /==#.

In [4] C. C. Yang has asked: what can be said about the relationship be-
tween two entire functions / and g if /=0;±g—0 and /'=l;±g'=l?

In this paper we answer the question posed by C.C. Yang. In fact, we
prove the following theorem :

THEOREM 1. Let f and g be two nonconstant entire functions. Assume that
f=Q^g=Q, f' = l^g' = l and 3(0, /)>l/2. Then f'g'^l unless f=g.

The assumption "3(0, /)>l/2" in Theorem 1 is best possible. Indeed, consider

f(z)=~e*'~e , g(zϊ=-^e-2z+je-z.

Then /=0;±g=0, f = l^gr = landδ(0f /)=l/2. f&g and f' g'&l are evident.

In place of Theorem 1, we prove more generally the following theorem
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which includes Theorem B and Theorem 1.

THEOREM 2. Let f and g be two nonconstant entire functions. Assume that
f=Q^:g=Q, f^n^ — l^lg^n^ — 1 and 3(0, /)>l/2, where n is a nonnegatiυe integer.
Then /<»>.£<»> = ! unless f=g.

Theorem 2 is the best possible. Indeed, let

ι (_ιy»+ι
^ X'on

£/

where n is a non-negative integer. It is easy to see that /=0^±^=0, /(n) — 1̂ !
g<n>=1 and 3(0, /)=l/2, but /^^ and /cn). gcn)^l. This shows that 3(0, /)
>l/2 is needed.

2. Some Lemmas

The following Lemmas will be needed in the proof of our theorems.

LEMMA 1 (see [2]). Let f be a nonconstant entire function, n be a nonnega-
tive integer. Then

T(r, /<»>)£T(r,

LEMMA 2. Under the same conditions of Lemma 1, w

, )+S(r, /) .y

Proof. We note that

/ 1\ / 1 \ / /(n)

(r, j)< m(r, j^)+ m(r, —m

By the first fundamental theorem (see [2]). we have from (1),

T(Γt f}—N(Tf _Λ<:7^rί /<n>)—Λ/Yr, ___Λ_j_5(r? ̂  (2)

Thus
1 x / 1 \

0, (3)

which proves Lemma 2.
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LEMMA 3. Let g be a nonconstant entire function, n be a nonnegative integer.
Then

Proof. By Lemma 2 we have

N(r, ~}<T(r, g^)-T(r, g)+N(r, ^τ)+S(r, g).

From Lemma 1 we have

T(r, £<n>)^T(r, g)+S(r, g) .
Hence

g ) , (4)

which proves Lemma 3.

LEMMA 4. Assume that the conditions of Theorem 2 are satisfied. Then

T(r, /)=0(T(r, /<»>

T(r, ^)=0(T(r, /^

where E is a set of finite linear measure.

Proof. From (1) we get

(3(0,

Hence we have

T(r, / ) ^ + 0 ( l ) τ ( r , /cw)) (r^£), (5)

that is
T(r, f)=0(T(r, f^

By Milloux's basic result (see, for example, [2, Theorem 3.2]), we have

T(r, g}<N(r, j)+N(r, ^τ)+S(r, g) . (6)

We note that

N(r, j)=N(r, j)<(ί-δ(0,
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and

\r> gw_ιJ — \ > fw__ι)= r>

From (6), (7), (8) we obtain

T(r, £)^(^~

that is

T(r, g}=0(T(r, f<*>

This completes the proof of Lemma 4.

LEMMA 5. Let fl and f2 be two nonconstant entire functions, and let cl9 c2

and c3 be three nonzero constants. If C1f1+c2f2=c3) then

T(r, fJ<N(r, γ)+N(r, y-)+S(r, A).

Proof. By the second fundamental theorem (see [2]), we have

which proves Lemma 5.

LEMMA 6 (see [5], [6]). Let f l f f2, •••, /n be linearly independent entire
n

functions satisfying Σ /ί = l T/zen /6>r y=l, 2, •••, 72 w e

T(r, fi)< ΣW(r, —j+0(log r+log T(r))

T(r) denotes the maximum of T(r, /t), i=l, 2, •••, n.

This is a special case of a result of R. Nevanlinna (see, [5, Pnβ]).
To prove our theorems, we also need the following result, which is inter-

esting by itself.

LEMMA 7. Let flf f2 and /3 be three entire functions satisfying

3

Σ f — 1 (Qΐ\ji — L. (y)
t = l

// f'^constant, and
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Σ N(r, -r)^W+o(l))T(r) (r^E) (10)1=1 V /t'

Γ(r)=rnax {T(r, Λ)}, and Λ<1, ί/z^n /2 = 1 or /8Ξl.
1=1,2,3

Proof. Suppose neither /2 nor /3 are constants. If f ί } /2 and /3 are linearly
independent, by Lemma 6 and (10) we have

T(r, fj)< Σ Λ^(r, τr)+o(T(r))

5, /=!, 2, 3)
and hence

(11)

which is impossible. If /!, /2 and /3 are linearly dependent, there exist three
constants (d, cz, c3)^(0, 0, 0) such that

Σct/<=0 (12)
1 = 1

Assume c^O, from (9), (12) we have

and
(ι = l, 2, 3) . (14)

By Lemma 5 and (10), (13), (14) we also obtain (11), which is impossible. As-
sume £ι=0, from (9), (12) we have

and
T(r, Λ)=(l+0(l))T(r) (ι=l,2,3),

giving a contradiction as before.
Suppose that /2=c(^=0). If c^l, from (9) we have

l-c (15)
and

T(r, /t)=(l+o(D)T(r) (ι = l ,2,3).

By Lemma 5 and (10), (14), (15) we obtain (11), which is impossible. Therefore
c=l, that is, fz=l.

Suppose that /3=c (^=0). In a similar manner we get /3^1.
This completes the proof of Lemma 7.
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LEMMA 8. //, in addition to the assumptions of Theorem 2, /<">=#<">, then

f=8

Proof. Suppose that f^g. From /(n)=gcn), we have

/(*)=#(*)+/>(*),

where p(z) (^0) is a polynomial of degree at most n — 1.
From β(0, /)>0 we know that / is a transcendental entire function. Thus

we get

T(r, p)=o(T(r, /))
and

T(r, *)=(

By the second fundamental theorem (see, [2, Theorem 2.5]), we have

T(r, f)<N(r, j

, )+S(r,y

^2(1-3(0, /))T(r, /)+S(r, /). (16)

Since

2(1- ί(0, /))<!,

so (16) is a contradiction. Hence /=£.

3. Proof of Theorem 2

From /cn) = l;±g(n) = l, we have

/(n)~l=ea(gcn)-l), (17)

where a is a entire function.
Let /ι=/(7l), /2^^α, /3=-0V° From (17) we have

Σ3/i=l
ι=ι

and

(18)

By Lemma 2 and Lemma 4 we have
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N(r, -~^)^T(r, /<n>)-T(r, /)+tf(r, y)+S(r, /<»>). (19)

By Lemma 3 and Lemma 4 we have

/<»>). (20)

From (18), (19), (20) we obtain

ΣN(r, j)<T(r, /<n>)-T(r, /)+27V(r, j)

£T(r, /Cn))-T(r,

=T(r, /<n>)-(23(0, /)-l)T(r, /)+S(r, /(π)) (21)

By Lemma 1 and Lemma 4 we have

T(r, /cn))^T(r, /)+S(r, / (w)) . (22)

Noting 23(0, /)-l>0, from (21), (22), we get

Σ N(r, ^]^T(r9 /^)-(
1=1 \ /i/

-2(1-5(0,

where ^=2(1-3(0, /))<!. By Lemma 7, we have /2=1 or /8=1.
If /2=1, from (17) we have /<»>=#<»>. By Lemma 8, we get /=#. If

/8=1, from (17) we have g™ = -e-«, fw = -e«f and hence f™ g™ = l. This
completes the proof of Theorem 2.

REFERENCES

[1] M. OzawA, Unicity theorems for entire functions, J. d'Analyse Math. 30 (1976),
411-420.

[2] W. K. HAYMAN, Meromorphic functions, Oxford. 1964.
[ 3 ] H. UEDA, Unicity theorems for meromorphic or entire functions II, Kodai Math.

J. 6 (1983), 26-36.
Γ 4 ] C. C. YANG, On two entire functions which together with their first derivatives

have the same zeros, J. Math. Anal. Appl., 56 (1976), 1-6.



46 HONG-XUN YI

[ 5 ] R. NEVANLINNA, Le theoreme de Picard-Borel et la theorie des fonctions mero-
morphes, Paris, Gauthier-Villars, 1929.

[ 6 ] F. GROSS, Factorization of meromorphic functions, U. S. Govt. Printing Office
Publication, Washington, D. C., 1972.

DEPARTMENT OF MATHEMATICS
SHANDONG UNIVERSITY
JINAN, SHANDONG, 250100
P. R. OF CHINA


