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Abstract

Token-passing compuler networks operating on ring and bus topologies can be modelled as
multiqueucing systems. The free token behaves as a server (or key to channel access) that pro-
vides each siation with a chance to use the channel for a finite time. The strictly cyclic service
pattern and non-e;chaustive service causes interference berween queues, and conscquently, depen-
dencies between the different queueing processes. In the past, an assumption of independence
between queues (station independence) has commonly been used for analyzing such systems. In
this paper an exact method is presented, based on a Markov chain embedded in a certain semi-
Markov process. The result yields a computational form for the stcady-state distribution of the
token's random cycle-ime on th network. This result confirms the inadequacy of the station
independence assumption at all but very extreme system loads. In addition to the exact rcs an
assumption of packet independence in token-passing networks is introduced, in order to simplify
computational effort. It is shown that unlike staton independence, the packet independence
assumption works remarkably well. Using asymmetric Poisson arrivals and otherwise general
distributions, the ¢ycle-time distribution of the token is computed exactly, as well as approxi-
mately under both kinds of independence assumption The method we introduce leads to a
vacationing-server based queucing model for general, asymmetric 1oken-passing systems. A few
applications of cyle-times are included, for mean channel utilizartion, distribution of channel utili-

zadon, and busy and vacation periods of the token with respect to each station.
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Fig. 1 Conceptual view of Token-passing on bus



1. INTRODUCTION

The token-passing (contention-free) protocols on ring and bus networks are two of the three
access mechanisms presently being standardized by the IEEE standards commirtee [IEEES4a,
IEEE84b]. In principle, the token-passing protocols are like the Newhall networks {FaNe69] in
that they use a token 1o regulate channel access. A station that detects a free token is allowed to
use the channel. If the station is ready to transmit and has a packet stored in its buffer, it immedi-
ately puts the packet onto the channel. Upon completing its transmission, a station passes the
free token in an orderly fashion to the ‘next’ station on the channel. If a station has no packer to
send or is not ready to transmit when it acquires a free token, it'simply passes the token along to

the next station. In either event, a cyclic token-passing sequence of stations is defined.

A token ring {[EEE84a, ECMAS83a] is typically configured as a series of point-to-point
cables between consecutive stations, with stations tapping onto the ring using active interfaces.
The token is a unique signalling sequence of bits that circulates on the communication medium in
one of two states, i.e., free and busy. A station that detects a free token may capture the token,
change it to a busy token, and append to it a number of informative bits that go to make up a vari-
able length packet. The resulting string of bits is read and forwarded bit by bit (since the topol-
0gy is point to point) by conseculive stations on the ring. Only the destination station copies each
bit of the packet as it passes. When its transmission is complete, the sending station performs
certain tasks Lo ensure proper operation (including taking the packet off the ring) and then creates

a new free token which it passes to the next station on the ring,

The token-passing bus is conceptually very similar to the token-passing ring [Buxw84] (see
Fig. 1). A token bus [IEEE84b, ECMAS83b] is configured as a passive medium, with stations tap-

ping onto the medium via stubs in 2 multidrop fashion. The bus topology does not impose a
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sequential ordering of stations, as in the case of the ring. The token is made to circulate on a log-
ical ring instead of a physical one, with a sequence of sration addresses defining the token's path,
Token bus protocols take advantage of broadcast mechanisms in executing the difficult tasks of
establishing and maintaining the logical ring. Each station on the logical ring is required to know
its predecessor and successor. In steady-state, the protocol is seen to alternate between packet

broadcasts to destination stations, and token-passing broadcasts to successor stations.

Within the framework of the token-passing mechanism just described, there is room for
flexibility in protocol design. For example, the single token rule {Buxw81] versus the multiple
token rule [ﬁCJKSZ]. A more important design issue is the maximum length of time that a sta-
tion is allowed to retain control of the transmission medium, i.e., a station’s channel-retention

time. In this paper we are concemed with token-passing systems for which

(i)  each station is assumed to have unlimited buffer space for queueing packets, and

(ii) eachstation may transmit at most one packet at each instance of free token acquisition.

The outine of the rest of the paper is as follows. A comparison between token-passing
overhead on buses and rings is given in the following subsection. In section 2 the general asym-
metric queueing model is intro&uced along with a brief review of past work, a motvation for this
work, and a summary of our results. Due to page limitation we focus our attention mainly on one
aspect of the model, i.e., the token’s cycle-time distribution. An interesting application of this
distribution is in obtaining the distribution of channel utilization on token-passing schemes. In
secton 3 we derive the token’s cycle-time distribution using three different methods, two of
them approximate (since they use independence assumptions) and an one method exact (i.e., with
no assumptions besides mild conditions on input distributions). The system analysed is general,
in that we assume except for Poisson amivals, the other input distributions may be general for
each station (i.e., an asymmetric system). In section 4 is presented a comparison of the three dif-

ferent approaches along with a numercal example. It tums out that one approximate method
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(using station independence) fails at all but very extreme loads. An approximation that we intro-
duce (using packet independence} works exceedingly well due to its similarity to the exact
method. All three methods require a computational effori that is dependent on the number of sta-
tions. We are not especially concerned with the computational requirements at this stage because
this is the very first exact result on the token's cycle-time distribution, and this enables us to
assess the quality of some oft-used independence assumptions. Techniques for improving com-
putational effort is a next step. Some simple applications of the cycle-Lime approach are given in

section 5.

1.2 Token-Passing Delays

It is instructive to examine token-passing delays on ring and bus networks before introduc-
ing a queuecing model. On a ring, there are two kinds of delays. The first kind is the time
required to pass the token from station j to station (j +1). Assuming an asymmetric scenario,
this time is clearly a function of the distance between the two particular stations involved, averag-
ing to approximately five microseconds per km of cable. Denote this signal propagation time by
R((J, j+1). The second kind of delay, say R,(j+1), is due to station functions, including
repeater delay, token alterétion time, pattern matching time for loken detection etc. Thus, for
each pair of neighboring stations (j, j+1), token-passing delay on a ring is simply
R (J, j+1) + Ry(j +1) microseconds. Note that R,(j +1) is typically in the order of one bit
time.

Token-passing delays on a bus are considerably different from those on a ring. Since a bus
operates in broadcast mode, the act of token-passing requires the transmission of a 152 bit long
explicit token frame [IEEE84b]. Denote this transmission time for station / to its successor j by
B\ (¢, j) microseconds. A second delay is the signal propagation delay between the two stations,
say B,(i,j) microseconds. To ensure that all stations hear the token being passed from i to j,

Bo(i, ) is not less than the end-to-end bus propagation delay. The third delay is due to station
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functions, i.e., the time it takes a station to react from the instant it receives the token to the
mstant it creates either a token or a data packet for transmission. If we denote this delay by
Ba(j), then the token-passing delay on a bus is given by B (i, f) + B,(i,j) +B3(j).

Because of the conceptual similarities in the token-passing operation on buses and rings,
both schemes can be subjected to a uniform queueing analysis. However, it is clear that parame-

ters in each model will differ. From our knowledge of delays we see that
Ry, Jj+1)+Ro(j +1) <B (k) +Bo(j k) +B (k) )

in general, with X (") and X (-,-) used to denote averages over all stations and pairs of stations,
respectively. In other words, the mean token-passing delay between any station and its successor,
for comparable ring and bus topologies, is larger for a token bus than a token ring. It is reason-
able to conclude that for comparably configured rings and buses (i.e. when the model parameters
are made comparable in both meaning and value) the performance of the ring scheme is generally
superior to that of the token bus. Note that this only deals with channel utilization and queueing
delays and is a consequence of the relatively high token-passing overhead on buses. We make no
case for comparisons regarding system reliability, fault tolerance, stability, algorithm and imple-

mentation complexity, etc.

2. A QUEUEING MODEL

The model described in this section is applicable to any system of asymmetric multiqueues
where a single server provides strictly cyclic service to the system and at most one customer is
served at each (infinite capacity) queue. A detailed list of all symbols used is given in the appen-
dix. Consider a system of N independent buffers, chained together to form a ring by sections of
varying cable lengths, as shown in Fig. 2. Packet arrivals at station j are generated by some pro-
cess with interarrival distribution given by A; (¢)="Pr (f; <t), where /; is the interarrival tme

random vanable at station /, jeS ={1,2,..,N }.
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Denote the walk between station (f — 1) and station j with label w;, jeS. Here (j —1) indi-
cates station j's predecessor and (j +1) indicates station j’s successor on the path of the token.
If the circulating token finds a waiting packet at the buffer of station j, a transmission of random
length X; ensues, with probability distribution function B; (1) =Pr (X; £1). If not, it switches
(i.e., a small random time to bypass the empty station) from walk w 7 to walk w;,, taking a ran-
dom time V;, with distribution function $ i (8)=Pr(V; <¢). In most token-passing models it is
usually assumed that the switching time is small in comparison to the token-passing and packet-
transmission times and is consequently ignored. In any event, after leaving station j, the token
spends a randc;m time ¥, in walk wy, e W={w; wy, ...,w,}. The random vartiable Y; has a
distribution function given by U;(f)=Pr(¥; <¢),j € S.

We use the term distribution to denote the cumulative distribution function, while the term
density is reserved for the probability density function for continuous randoem variables. For ana-

lytic convenience, we assume that all distributions possess finite first and second moments.

2.1 Review, Motivation and Results

Though there has been much work on multiqueueing systems in the past, models for which
service is nonexhaustive are very scarce [Buxw84]. To the best knowledge of the authors, no
exact model for one-packet service asymmetric token-passing models existed prior to this
research effort. A detailed review of closely related nonexhaustive service models and exhaus-

tive service models in the context of token-passing can be found in [Rego85).

The approximate multiqueueing methods found in the literature that are applied to analyze
token-passing schemes can looscly be categorized as follows. One class of models are the
independence asswming models, e.g., [Kueh79, HaOh72, Heym83], and the other class of models
involve applications of “‘resembling'’ models, i.e., models whose behavior resemble the behavior

of the system of interest. In acrual implementations {e.g., Ringnet) token-passing schemes allow
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each station a fixed time for channel usage. Generally, this is transtated to mean only one-
packet-at-a-time. However, it is not unusual 10 find approximate models in the literature that use
exhaustive service systems [KoMe74, Swar77] to model-token passing [Buxw81, ChLL$2,
LiHG82Z). Another kind of resemblance model is the finite buffer model (i.e., buffering for at
most one packet) [MaMW57, Kaye72] applied as in [Buxw81, WuCh75] etc. A recent exact
result is one that analyses asymmetric systems but applies gated service (i.e., only those custo-
mers recorded by the server at the server’s scan instant ar each queue are served) [FeAm$5].
With asymmetry, these systems are generally not as fair as the one-packet-at-a-time service sys-
tems. Another recent model involves a decomposition rule and has been applied in the case of

infinite ¥ [FuCo85] and symmetric queues [Fuhrg4].

The contribution of this effort can briefly be summarized as follows. Following [Kueh79,
HaOh72], we first make the assumption that the events *‘station j is empty’’ and *‘station k is
empty’’ are independent for each pair of stations j,k € S, j=k . Using this assumption of sta-
tion independence, abbreviated as SIN, we present the token’s cycle-time distribution. The details
of this derivation can be found in [Rego85). Next, we derive the exact cycle-time distribution
under no independence assumptions (abbreviated NIN), and demonstrate the method for a two-
station system. Following this, we make the observation that computation can be considerably
simplified if we assume that, for a given station, two packets transmitted in two different cycles
can be interchanged without affecting the analysis. This is an assumption of packet independence,
or PIN, almost identical to the assumption used by Kleinrock in the Arpanet models [Klei76].
Indeed, using a numerical example we show that PIN performs exceedingly well for our example.
The example demonstrated utilizes station loads chosen with some care, i.c., moderate loads that
cause SIN 1o fail, while PIN and NIN compare very well. Finally, we present some simple apphi-
catons of cycle-imes such as the token's busy-period distribution and the exact distribution of

channel utilization.



3. CYCLE-TIME DISTRIBUTIONS

The cycle-time of the token can be defined as the random time between two consecutive
appearances of the token at an arbitrary reference station j, j € S. For convenience the reference
point is taken to be the point at which the token (or server) enters station j to scan for a packet
(or customer). Thus, the cycle-time random variable C is the time between two consecutive scan
instants at station j. Since the server actually wisits each station in each cycle, we may

equivalently take the reference point to be the point at which the server exits from station ;.

The existence of a stationary distribution F- () for the cycle-time random variable can be
proved in a straightforward manner. We must assume that given an N -station system, all queue-
length distributions are stationary. First assume that all queues are stable. (i.e., all mean queue
lengths are finite). The condition for stability is presented in section 5. For a stable system, the
time points corresponding 0 all emply queucs are regeneration epochs, meaning that at these
points in time the system regenerates itself, with a future that is indcpendent of the past. By
hypothesis, the first two moments of all input distributions are finite, i.e., the mean and variance
of the cycle-time random variable are finite. With these conditions, it follows that the mean fme
between regeneration epochs is finite. As a consequence (see theorems 10-4,10-5 of [HeS082)),
the regenerative process and the cycle-time distribution are asymptotically stationary. Removing
the assumption of stability for any queue, some combination of queues, or even all queues does
not change things. That is, we can still identify regeneration points and show that the mean lime

between regeneration points is always finite. Thus, the existence of F- () is proved.

3.1 An Approximation Under Station Independence

In this section is presented the distribution of cycle-time under SIN. For each station j in §,

let us assume that A;(), 8;(), S;(") and U/; (") are negative exponential distributions, with parame-

ters L . L ' L and L » respectively. Ler L; be a Bemoulli random variable rellecting the
Aj T Rjo Wiy 0
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status of queue { at its steady-state scan instants, for all e §. That is, L; =0 if the server finds
queue { empty and L; =1 otherwise, for all { € S. The approximation we obtain is a direct result

of the following assumption.
Assurmption of Station Independence (SIN)
‘The random variables L; and L; are independent, forall {,je 8 ,i ;.

The above assumption appears to have been used (in similar form) in multiqueues with
unrestricted buffers in the very early sixties {Lieb61], and since then in similar applications
[HaOh72, Kueh79, Rego85). With the aid of this assumption and some manipulation, the
approximate asymmetric and symmetric forms of the cycle time distribution can be obtained.
Interested readers are referred to [Rego85] for details of the derivation. With SIN, C becomes a

sum of independent random variables, Le.,

C=3Xi + 3 Y, (2)

keS ke ¥
where X; is distributed as the mixture P B () + qi S, () representing time spent by the server at
station k (in either serving or switching) and Y, is distributed as U, (-), representing the time
taken by the server to walk from station (k—1) to station £, for each k. Here, p; is the probability

thar station & is found nonempty by the server, and g, =1—p,, for k € S. The distribution of C

in the asymmetric case is given by

felo) I ay B e et @)
)= 2y Br + 3
c fezs kEZ@‘.E § e H m[els (p'mh. —0p .-1%5 ml;IS (umk.._unl‘-.)(aj _!J-nk..)

nex

where © is the set of all N-bit binary vectors k =(k| ....ky). a;0=p; Kjo, a;1=4q; i1,
pj+q;=1, with p;=A;E(C), for all jeS. The coefficient B; is a gencralized Erlang

coefficient, given by
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oL

Py = [sgs (o —oy)

log, for ail je S. @)
The mean cycle time E£(C) is obtained as

2 [ETD+EV)]
je8

[1- 3 MEXD+ 3 MEWVD]

ie8§ ie§

E(C)=

&)

Mean Channel Utilization

As an immediate application, an approximate mean channel utilization measure is obtained
as follows. For each k € ©, let , be the (joint) probability that the particular configuration of
stations which transmit during a steady-state cycle are given by the nonzero bits of the vectork .
That is, &; =1 if station { is included in the set of statons that transmit in the same ¢ycle, and 0
otherwise. Under the assumption of all stationary queue length distributions, the limiting joint
distribution {m, } will exist. As an example, in a two-station system, SIN will yield the distribu-
HoN Tpo=4 (g2 M1 =4 1P 2 T1p=P192 and m;;=p p,. Note that the mean cycle-time £ (C) can

be got by using this joint distribution. That is,

EC)= % ® 2 [LEX) + (A-kDEWV)I+ X EX) (6)
ke® jEeS few

Let ¥ denote the total overhead in walking, i.e., Y=Y, Yo+ -k ¥y. The mean channel utiliza-

tion I/° of the entire system of stations is the sum of each individual station's mean channel utili-

zation. Hence U” is given (with the SIN assumption) by

. [k £(X;))

Ut =
,Ee i E‘S [EQX) + (L-k)E(V)) + K EX;)]

M

A comparison of simulated and analytic densities (obtained under SIN) for N = 2,N =5
and N =8 station systems is shown in Fig. 3. From our observations, it appears that the approxi-
mation performs very well (when measuring cycle-times) under conditions of extremely high or
extremely low loads. However, for other load situations, as we shall see in the next section, the

SIN assumption fails.
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3.2 An Exact Result for Cycle-Times

In this section we derive the cycle-time distribution of the token without any assumptions of
independence (i.e., NIN). Besides Poisson arrivals, we allow for arbirrary input distributions and
only require that the first two moments of each distribution be finite, In order to show how the
distribution under NIN is derived without obscuring the technique, an example is demonstrated

for a two-station token-passing system.

We focus our attention on the queueing analogue of the two-station system. For conveni-
ence, assume that both stations have zero switching times (i.e., V{=V,=0). The server walks
around the multiqueueing system in a cyclic fashion, making an entrance to and an exit from each
station, as shown in Fig. 3a. On entering a station, at most one customer is served at the station
before the server makes an exit from the station and begins to walk o the next station. Let the
cycle-time random variable C denote the time between two consecutive server exits either from
station 1 or station 2. Since C is the server’s interappearance time regardiess of the point at

which these times are measured, C is independent of station index (see for example, [Kueh79]).

Consider an observer who siands at the point of exit from station 2 (shown in Fig. 3b) and
measures instances of the random length € with respect to Ihis exit point. In order to do this
efficiently, the observer works out an agreement with the server to do the following. On every
cycle made with respect to the observer's position, the server constructs a two-bit binary vector
Z =<z), 23>, where z; = 1 if a customer was served ar station ¢, and z; = 0 otherwise, for
i =1, 2. Each time the server passes by the observer, the server hands the observer the most
recent service-vector z (abbreviated SV z) constructed in this way. Clearly, in the two-station
case the observer receives a vector z from the set ©,={00, 01, 10, 11} each time he greets the

SCIVEL

Define the current state of the observer to be his most recently acquired SY. The next stare

of the observer is given by the nexr SV given to him by the server. If SV Z, = <z, 24> is given



-11-

to the observer at time ¢,, and SV Z, . | = <z{, zé) is given to the observer at time ¢, , ;, then
we say that the observer makes a transition from current state Z, to next state Z, .| at time
instant f, ; ;. Thus, at steady-state operation, the observer can be viewed as a randomly moving
particle in the finite set @,, described in discrete transition steps by the process {Z,, n 2 0}. The
following result shows that the observer behaves in a Markov fashion over the space @,. In a
forthcoming paper, we present the general counterpart of this result for @y, i.e., in the N station

case. Without any loss of generality, the two-station case is presented.

THEOREM (On a Markov Property of the Observer)

Let A, be an exponential distribution function, and let B, and U, be general input distrbutions,
all with finite first and second moments, & = 1, 2. Assume that an observer is placed at the exit
point of station 2 and that that the queue-length distributions at both stations are stationary, At
steady-state, let Zo, Z, Z,, -+ ,Z,, --* be a sequence of service-vectors transferred from
sérver to observer at a strictly increasing sequence of times tq, £y, £5, *-- , £,, respectively,
ﬁ 2 0, and let Z(¢) rcpresent the observer’s current state (i.e., last SV the observer received) at

time 7. Then
(@ {Z(), t = 0}is a semi-Markov chain.
(0) {Z,,n 2 0}is the Markov chain embedded in {Z(¢), ¢ = 0}.

PROOF: The proof that follows is by construction. This will enable us to use the method in a
numerical example. If we can prove either (a) or (b) then we are done because the other easily
follows. We will prove (b). That is, we compute P (Z, ,; | Z,) and show that this probability is
equal o P(Z, ., ,|Z,,Z,_|, -+ ,Zy). Note that a semi-Markov chain (see [Cinl75)) is a
semi-Markov process on 2 finite or counrable state space. A semi-Markov process is a process in
which the successive states visited forms a Markov chain, and the sojourn ime of the process has

a distribution which depends on the state being visited (i.e., current stale) as well as the next state
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to be entered. So, the sojourn time of the process in any state is generally not an exponcntially

distributed random variable.

In the sequel, we compuie the probability that the server goes from state Z, to state Z,,; by
using information given by only by these wwo states. Define g, as the conditional probability that,
at steady-state, the server finds exactly one customer queued at station &, conditioned on this sta-
tion being nonempty, k£ = 1, 2. By the assumption of stationarity for queue-length distributions,
these steady-state conditional probabilities are constant in time and can be computed explicitly as

will be shown.

For each transition <z,,z,> — <z|",2,"> madc by the observer, define T; = Y;,; + z; X; to be dis-
joint components of the random sojourn time (i.c., cycle-time) of the observer in the current state
<2y,zp>, before he makes the transition lo the next state <z,’,z;">, and similarly, define
T;"=Yi1+2"X; 1o be disjoint components of the observer's sojourn time (i.e., cycle-time) in the
next state. Note that subscripts are incremented modulo 2 (l.e., Yi.; is used to denote
Y (i mod2)+1.1 =1,2). In other words, during the server-cycle that generates SV <zy, z,>, T is
the time spent by the server in visiting with station 1 and then walking to station 2, and T is
described similarly for station 2. During the next server-cycle, which generates SV <z, zé>,
T\’ is the time spent by the server in visiting with station 1 and then walking to station 2, and T’
is described in similar fashion for station 2. Let C; be the random time between two consecutive
server exits from station &, k =1,2. We can write the system of cycle-times as

Cl Tl + Tz
Cz = Tz + T;

(15)

where it must be noted that for each %, given the SVs <z,z5>, <z;",22">, the random variables
T, and Tk' are independent. Given a current state and next state pair, for cach &,k =1,2, T is the
random time spent by the server at station & plus the tme it takes him o walk to the next station

in the current state of the observer. When the obscerver moves into the next state, the time spent
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Dy the server at station & plus the walk time to the next station will be independent of the server’s
corresponding walking time in the current state of the observer (since we are given the current
and next state). Observe that a packet transmitted by station £ (if any) while the observer is in the
next state will have a random length that is independent of the length of a station k packet (if
any) transmitted while the observer is in the current state. Consequently, the independence of T,

and T}’ follows, fork =1,2.

An observer transition of the general form <z), zo> —» <z|, z5> can occur only if station
1 makes the transition z; — z; in the random time C . and station 2 makes the transition
2 o zé in the random time C,. From (15), we see that C, and C, are dependent random vari-
ables due (o the overlap causcd by the random variable T appearing in both C| and C4. Thus,
in order to compute tfie probabilities of joint events at both stations, we require the joint distribu-
tion of C; and C,. For now, let us denote the joint density function as fe.c.Cy o), and let
pr(n, C¢) denote the probability of n customer arrivals at station % in the time Cr k=12
Since only three random variables are involved in the joint distribution for C, and C,, and each
-random is defined by one bit in the current-state and next state pair, eight possible joint distribu-

tions can arise, all of the same form but each with different parameters.

Given the current state z =<z),z9> and the next state z'=<z,”,zy"> of the observer, let
Ee (e | <2.2°>) denote the marginal conditional probability that each station £ makes the transi-
tion z, — z, in the time C, that the server stayed away from this stadon during this particular
observer transition. We only make use of the current and next state information in describing this
transition probability. This marginal conditional probability is computed for each station & as
( (0, Cp) 7 =0,2,=0
1=p(0.C) 2z =0,z =1

pO0CHG  z=1,2z=0
| 1=p0.COq ze=12%=1

Eilzi | <z ,2°>) -1 (16)
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fork =1, 2. Recall that g, is the conditional probability that station & has exactly one customer
queued given that it is nonempty, and by our assumption of stationary queues, it exists and is con-
stant in time, for each k. In order to compute the entire vector transition probability for the
observer’s transition (which is a joins transition probability involving both stations), we must use
the joint distribution f¢, ¢, (-, -) using the random variables described in (15). From (16), note
that we only need to compute the probability p, (0, C;) of zero arnivals in Cy, k& = 1, 2, for each
current state and next state pair of observer states. Thus, we compute any vector transition
z = <zy, 79> — z = <z}, 27> scen by our observer as having the corresponding joint probabil-
ity

o O

PZ,w1=2"1Z,=2)= [ & 12285022 L 2.2 ) fe, e, (c1, e dey dey  (1T)
04

Since (16) defines the transition probability using only the random times €, €5 (which depend
only on the current and next statc of the observer) and the steady-state conditional probabilities

g1, 42, we have proved (b).

The proof for (a) follows from the fact that {Z,} is the embedded Markov chain (see
[Cinl75]) for the semi-Markov chain {Z(),t=20} . The chain {Z(¢), t 2 0} is semi-Markov
because the observer makes transitions in a manner that depends on the current state, next state,

and the (nonexponentially distributed) time spent in the current state.

3.2.1 Computation of the Probability Transition Matrix (under NIN)

Consider the following simation for a two-station system. Packet arrivals at station j are
(independently) Poisson with parameter A; , j = 1, 2. Station j transmits packets with random
length X; which is exponentially distuributed with parameter L, j =1, 2. The oken-passing time
from station j —1 to station j is given by the random variable Y; which is exponcntially distm-

buted, with parameter ¢, j = 1, 2. For explanatory convenience, we assume that both stations
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have negligible (i.e., zero) switching times.

The theorem is now applied to compute the probability transition matrix corresponding to
the embedded Markov chain of observer transitions. The first step is the computation of the joint
cycle-time density f¢,, ¢,(, *) comresponding to each type of transition. This can be obtained by
standard methods for the system in (15). Assuming that we have this density, consider a few

example transitions. LetZ, = <00> and Z, , | = <10>. Using (16) we compute

£.(1100,100=1-p,(0,Cy)
£2(0100,10) =p,(0,Cy (18)

and from (17) we obtain

- - -

P(10100) = [ [[1 - p1(0, c)lp (0. c2)f ¢, calc 1, €2 dedesy
00

=] gcl ~ e ™M N e, ¢ (cr, cdde dey (19)
0

which, after substitution of the joint density of C, and C, , yields the desired probability. As
another example,

-

POLIID = [ f(g1e™(1 - q2e™ fe, o e codde dey 20)
00 .

where g, ¢ behave as constants (by the assumption of stationary queues).

3.3 An Approximation Under Packet Independence

Consider the system of equations in (15) involving the transition components z; ,z’, and
the random variables T; and T;, i =1,2. We were forced [0 compute the joint densily
fei.c.( + 7)) only because of overlap, ie., the same random variable T, appeared in the cycle-
time € seen by station 1 as well as the cycle-lime C, seen by station 2. If we assume that the
random cycle-times C; and C, are independent, we basically assume that the random time T in
C| is independent of the random time T, in C,. In other words, we remove the overlap by

assuming that during any particular cycle, station 1 and station 2 each view a transmission from
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station & as having an independen:ly random length from the same distribution B, (), £ =1,2.
This 1s another form of the independence assumption that was used extensively in the Arpanet
models [Klei76]. Note that the walk times do not contribute much to the gverlap in the sense that
the random time (¥, + Y, ) appears in every cycle-time regardless of the events (transmission or

no transmission) at the stations.
Under PIN, C, and C, become indepent random varables. As a consequence,

fenci{er, e = fe, (e fe,(e2), and we can rewrite (17) as

P'Zys1=2"1Z, =2) = [y | 2.2 fe (e de)[[ &2y | z,2") fe (e des] (1)
a 0

which is in a product-form. We use P’ 1o denote the transition matrix obtained under PIN, to

differentiate it from the probability measure P of section 3.2 computed under NIN.

4, A Numerical Example

In this section we use the two-station example introducted in section 3.2.1 with numerical
values for the parameters. The probability transition matrices P (under NIN) and P* (under
PIN) are computed to demonstrale our methods. Finally, we obtain the limiting distributions for
service vectors seen by the observer at station 2 using the usual assumpﬁon of station indepen-
dence (SIN) and our two new methods, to demonstrate the effect of queuve interference (depen-

dence between queues) at moderate Ioads.

We begin by computing the matrix P* under PIN. Assume that the system is operating at
steady-state. There are four possible service vectors that the observer (at the exit of station 2} can
receive from the server, ie., (00), (O1), (10), and (11). The i entry of each vector tells the
observer if station { did or did not transmit a packet in the corresponding cycle, fori =1, 2. For

example, <10> means that station 1 transmitted a packet while station 2 did not.

Fora given SV <i j>, let x;; be the probability that no cusiomers arrive at station 1 during
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a service cycle represented by vector <i j>. The comesponding probability for station 2 is

denoted by y;;. The 4 X 4 transition matrix P* is given by

00 01 10 11
00 XpaY oo xoo{l = yoo) Yor(1 — xo0) (1 — 2ol ~ yo1)
P = 01 | *mYwq2 xol-ywg2 qayul-xo) (1 -g2y100 —Xp1)
10 1 xioq1¥eo  Zwqill -y Yol —x10qy) (1 -y ~ x10qy)
1| x11y109192 21l —y1092) yugl —xng) (1 —yng(l—x11q)

where gy, g, are the conditional probabilities defined earlier. At this stage we have six unk-
nowns, and thesc are the limiting probabilities for the observer’s states, i.e., T, ®op, Tyg and my),
plus the conditional steady-state probabilities ¢, and ¢,. There are several ways in which we can
proceed to solve for these. As an example, we demonstrate one such method. Using M/G/1
theory we know that the probability that station { is empty when the server gets there is
Poi =1 =X E(C),fori =1, 2. Additionally, we know that

Too + o1 = Paa

oo + o = Po2

thus reducing our unknowns to only four. Thus, the problem is reduced to solving a system of
four independent equations in four unknowns. On solving this system, we obtain the conditdonal
probabilities ¢, and g,. We briefly mention that this works in the N station case t0o. Details on

the general result are not within the scope of the current paper. Consider an example for the

1
Cip

(moderate load) values A, = 0.0032, A, = 0.003492, ul = 198, ui — 100, ai =1, =2
1 2 1

and E(V))=E(V)=0. We obtain E(C)= 1744186, po =0.44186 , pg =0.39093 ,

g1 =0.0870366, and g, = 0.0805674. On uiilizing the g;, the final form of the matrix is

00 01 10 11

O | .9801 .0103 .0056 .0040
P" = 01 ].0491 .7012 0097 .2400
10 [ 0478 .0005 5568 .3949
11 | .0024 .0342 .0373 .9261
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yielding the limiting SV probabilitics as mgy = 0.3604, 1y = 0.0717, 10 = 0.0497 and
7ty = 0.51381. Note that (6) may be used to ascertain that these probabilities yield the comect
value for E(C) (i.e., as given by (5)). If Fpo(?), For(), F (") and F () represent the distributions
of the random variables corresponding to the service cycles (00), (01), (10), (11) as seen by the
observer (i.e., in this case each is a generalized Erlangian of a simple form), we obtain the cycle-
time distribution (under PIN) as
Fele) = mpFoole) + Mo For(e) + o F yole) + 1y Fiue)

In applying NIN, the transition probability matrix P is computed differently (i.c., using the
joint distribution of C and C5). For example, observe the difference between (19) and the entry
P* (10 00) in matrix 2~. On computng fe, . (., ") and applying it in (17), we obtain the tran-

sition matrix for SV transitions under no independence assumptions as

00 01 10 11

00 }.9802 .0094 .0063 .0040
P = 01 [.0473 .6862 .0080 .2585
10 |.0512 .0005 .5748 .3735
11 [ .0025 .0359 .0354 .9262

The limiting SV probabilities under NIN are mpg = 0.3614, 1y, = 0.0702, 19 = 0.0499 and
Ty = 0.5185. Again, (6) may be used to ascertain that these probabilities yield the correct value
for E(C). Observe that the probabilities obtained with PIN are very close to exact probabilities.
In this case, the values obtained for the conditional steady-state probabilities are g, =0.08917018
and g,=0.08081105. As a by-product of our method, we obtain the steady-siate probability gz

that station £ has exactly one customer queued, k=1,2. Thatis, g4 =q;(1—pq;) =0.0498, and

g2 =q2(1—pg) =0.0492.

4.1 Exact versus Approximate Methods

Consider the joint probabilities Rgo=gq2 To1=q P2 Tro=p g2 and %;;=p; ps, where

Pe=(1—po) and gy =(1—py), for k=1,2.. These probabilities constitute the joint distribution
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for SVs obtained with the SIN assumption. Though this joint distribution yields the exact mean
cycle-time, the cycle-time distribution obtained by using these is incorrect. The reason for this is

precisely the inappropriate application of the independence assumption for cycle-times.

One use of the cycle-time random variable is as a "service-time” in the M/G/1 approxima-
tion (applied to a single queue at a time) for token-passing queues. This approach has several
drawbacks, some of which are discussed in section 5. The advantage of the service-vector
approach is that it can be used to solve the queueing problem exactly via a semi-Markov
approach [Rego85].

Using SIN, Keuhn [Kueh79] computed the cycle-time variance, and (via simulation) con-
Cluded that the results underestimated true cycle-time variance. This can be attributed to depen-
dence of cycle-times, and in particular, the tendency for neighboring cycles to be positively corre-
lated. So SIN can be expected to perform well under very heavy and very light traffic conditions,
respectively. For these two extreme conditions, the dependency or covariance berween cycles
grows small, and actually disappears for unstable and zero traffic conditions. However, for other
traffic conditions, SIN can be shown 1o fail. For example, consider the probabilities obtained in
the previous section using the exact and (he approximate methods for a system load that is not
extreme. SIN appears to neglect covariance information between stations altogether (as is to be
expected). It is not clear at this stage whether PIN will do well in all situations. Qur current
knowledge about the behaviour of PIN is not sufficient to warrant any conjectures. However, we
can expect that it will always perform better than SIN, and due to its computational similarity to
NIN, we can expect that it will behave well. An investigation of the applicability of these approx-
imations in various situations is presently under way.

In Fig. 4 is shown a comparison of the exact (i.e., obtained under NIN) and simulated

cycle-time density for a moderate traffic, asymmetric two station system. In Figs. 5a and 5b the

same analylic density is compared with the approximate density obtained from the expression in
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Eq.(3) for asymmetric systems (i.c., via SIN). This clearly demonstrates a condition under which
SIN fails. In fact, the station independence assumption can be show to degrade for all traffic con-
dition that are not either extremely high or extremely low, especially as N increases. In contrast,

PIN does well in comparison to NIN for this numerical example.

5. SOME APPLICATIONS OF CYCLE-TIMES

A (token-passing) system of N stations can be analyzed approximately by viewing each sta-
tion in isolation as a2 GI/G/1 queueing system with Fe () as a “‘service-time"’ random variable.
This is a standard approach and has already been used by Hashida and Ohara [Haoh72), and later
by Kuehn [Kueh79] via an M/G/1 queveing analysis. Both use the cycle-time distribution
obtained under the SIN assumption to obtain the variance of the cycle-time process. In fact, they
obtain the variance by resorting to the Laplace-Stieltjes transform and do not actually derive the
distribution. Kuchn recognized that this approach tended to underestimate the actual cycle-time
variance (i.e., the variance that is obtained by considering a large number of consecutive cycles)
and consequently also the mean waiting ime. As an altemnative, and a way to increase cycle-ime
variance, Kuehn considered cycle-times seen by station j o be of two types. One type involved
customer service while the other type had no customer served at reference station j. The variance
of the new cycle-lime, created as a mixure of the two different cycle-times, was shown to be an
improvement. However, it was observed that, as a queueing approximation, the SIN approach
degraded as variance of the £(X;), E(Y;), or N, or some combination of these parameters was

increased.

LetC ,-' be the random length of a cycle conditioned on the cvent that a station j customer is

served during the cycle, j e S. The queueing process at station j is known ([Loyn62)) to posses a

steady-state distribution if the condition &; < is sarishied. Using a result due o Tweedie

w

J

([Twee83)), it follows that the queue at station J is srable (i.c., has a finite mean) if this condition
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holds and the cycle-time variance is finite. The finiteness of the variance follows from our

assumption that all random variables involved have finite first and second moments.

The approach using cycle-times as service-times for station j has two problems. One is
caused by the serial dependency of consecutive cycles. Clearly, long cycles follow tend to follow
long cycles, while short cycles tend to follow short cycles, thereby leading to a positive covari-
ance between cycles close together in a sequence. Since service times are supposed to be i.i.d
random variables in an M/G/1 system, cycle-time correlations reduce general M/G/1 analytic
measures 1o approximations. The other problem crops up when a station j customer arrives to
find an empty queue. Unlike the standard M/G/1 system, the server generally is not readily avail-
able. If there are many such critical armrivals, the M/G/1 analysis must surely yield an underesti-
mate in waiting-times, since the forward recurrence time of corresponding cycle-times is
neglected. In the next subsection we introduce the notion of ‘‘server vacations' in order to

remedy the situation.

5.1 Distribution of Token Vacation Periods

On an N station system, we place an observer at the exit point of station j and pretend that
this is a single server queueing station. Thus, we can embed the queueing process at this station
in a server vacation model. The token begins a vacation (as far as station j customers are con-
cemed) at the instant that the token scans an empty queue at station j. The term *‘vacation'' is
used because a station j customer arriving ar the queue gfter this scan instant must wait for the

next scan instant to meet the free token.
Define a station j token vacadon period to be the random time v = ¢,_; — ,_| , where
@ n>e, e.nel”

(Il) Z, € @O!Zr: ] @l 1 2o € @] '
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(iii) 2, ®y, es<m<n,

with the sers @, O, givenby ©,={ze @[z;=1}, ©=0-0,.
The first m =2¥- rows and columns of the transition matrix P fsee (17)] can be seen to

correspond to transitions between elements of & . Let us label this submatrix as Py and define

m
NO() to be an m-bit columa vector N%y=1- >, Po(i, k). With the elements of @ labelled as
k=

{1,2,..,m}, consider the Markov chain defined on the set {1,2, ..., m + 1} with probability transi-

tion matrix given by

Py NO
N = 22

0 1

describing transitions between service vectors for which station j remains empty. Let F, ()
denote the distribution of the vacation-time random variable. Each vacation cycle-time is a sum
of independent random vartables [see (15)] and will have a distribution which can be given by a
finite convolution. Since each vacation cycle-type vecior z € @, occurs with a steady-state pro-
bability %’ (where the index j indicates a limiting vector obtained by an observer standing at the
exit point of station j), there is a natural way to formulate the distribution of a random vacation
cycle-time as a finite mixture of finite convolutions. Since a token vacation period is comprised
of a random number of such cycle-times, F, (-) is a compound distribution given by repeated con-
volutions of the mixture. Because of the repeated convolutions, this form is not suited 1o compu-
tation. An alternative form is obtained via an application of phase-type distributions [Neut81],
[Lawo82].

Assume that each of the N stations utilizes exponentially distributed times for service,

switching and walking, with parameters given by 1 . L and L respectvely, foreachie S .

B: " 2

This assumption is made for analytic convenience, since generalized Erlangian distributions lend
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themselves easily to phase representations. For each vector z € @ let 4(z) be a unique label in
the label set {1,2,..,m}, and let a 4(;) be a 2N-bit vector with afl entries as zero except for the
very first entry, which is a 1. Define an indicator variable x;(z)tobe 1 ifbit{ inz isa 1,and 0
otherwise. The pair (a 4y, T) is said to be a representation of the Erlangian distribution Fyey ()

with entry (i, &) of the order 2N square matrix T being given by

— G i odd ,i=k
) o i odd , k=(i+1)
T= K@) B + (1 -x;@)7;: i even,i=k (23)
~%i(2) Bi — (1=K DY ieven. k=(+1)

“

The number of generalized Erlangian distributions required to completely specify the dif-
ferent vacation cycle-times is m =2Y-1 | Each vacation cycle-time is thus comprised of 2N
phases of a generalized Erlangian distribution, N phases given by the service and switching
times, and N phases given by the walk times. We now define a point process [Lato82] with
events governed by epochs of transitions of the Markov chain N defined in Eq. (22). Note that
each state of this order (m + 1) chain has a positive probability of being visited before absorption.
If the chain has made a transition to the state i, 1 <i <m , the next transition is to state £ , with

probability p;, , and the time between transitions has a PH-distribution F; (-) of order 2N.

Define the vector v = (Vy, ..., V,, ) t0 be the invariant vector corresponding to the ergodic
chain given by N. Note that these are conditional probabilities in the sense that we are restricting
transitions to be between elements of €y . Let S(¢) and n(¢) denote the state of the Markov chain
N at time ¢ and the phase of the Markov chain T gy at time ¢, respectively. Assume that the last
event occurred at time T at which time the chain N made a transidon to the state S{t)=k . Lel¢
denote the current time. Recall that the inital vector chosen for the Markov chain T is of order
2N, givenby a, =(1,0,...0) forall £ , 1<% <m . In the interval (T, ], the Markov chain T,

triggers through zero, one, or more than one transition, without entering its absorbing state. At
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time ¢ , ${¢)=k , and the chain 7} is in phase =(t) . We must assume that for ¢ >0 , the inter-
event intervals are conditionally independent given the path of N, so as to make {S(¢).x(¢)} a

continuous time Markov process.

Given the generator of the process {S(¢),w(¢)} , the distribution F,(-) can be obtained as a
PH-distribution. Let e be a 2N-bit unit vector. Define an order m * 2N square block-pattitioned
matrix A * with block-entry (i,k) as A™ (i,k) = p; ea, , where the vector product denotes the
product of a column vector by a row vector. Define also an order m * 2N square block-diagonal
matrix T* with diagonal block cntry i as T; . The infinitesimal generator of the Markov process
{S (t),Tl:(t)}-iS givenby T'=T" @ —A"), where Lis the order m * 2¥ identity matrix. Thus, the
token’s vacation-period distribution is a PH-distribution with the representation (0, T”) . A simi-

lar procedure can be applied to obtain the token's busy-period distribution as a PH-distribution.

5.2 Distribution of Channel Utilization

As another application of cycle-times and the ideas introduced in the previous section,
define U to be the random utilization of the channel by the N-station system at steady-state. If we
can determine the distrdbution Fy; (-} of the random variable U/ , we have a valuable steady-state
measure of channel behavior. Observe that U must lie in the interval [0, 1] 1o be considered a
utilization measure, with /' = ¢ taken to mean that the channel is busy 100a% of the time during

steady-state operation,

In an N -station system, U can be defined as follows. Each vector z € @ given to the
observer at station j (by the server) defines a set of stations {k € S | z; =1 in z} that contributed
to channel usage during that particular cycle. The probability &, corresponding to ecach z € @ is
already known via the methods of the previous section. The random varable U can thus be

defined as
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N
bz [E szk]

= E k=1

2T @ e

where b, is Bemoulli with parameter T, and Cy(z) is the server's cycle-time, corresponding to
the vector z, as seen by the observer at station N. As an example, we present the distribution of

U for a two station system.

We assume that the times corresponding to packet interarrivals, packet transmissions and
token-passing can be modelled as exponentially distributed random variables. Additionally, we

assume that switching times are negligible. Denote these parameter sets for station 1 and station

1 1

2as(—£— )and(z,é.

,L y— L), respectively. There are four possible service vectors (as
1 B oy 153
seen by an observer at station 1) and these are 00, 01, 10 and 11. Let the corresponding steady-
state probabilities for cycles generating these service vectors be mgg, Ty, o and mp;, respec-

tively. For binary digis { and j , m

; is the probability that a cycle of length

Cy=Y1+Yy+iX [+ jX, has just occurred, and the actual channel utilization during this
cycle is givenby u; =i X+ jX,. If by; is a Bernoulli random variable with parameter w;; for
(ij)e S , then the random variable describing the system's steady-state channel utilization can be
given by
u,-j
U= 3 () by (25)
{if)es Cr'j
where S ={00,01, 10,11}.

X

The three nonzero ratio random variables defined in Eq. (25), ie., D= Y 17.4x "
1t L2ty

D Xz d D X['I' Xz
= ———, an =
2T Y Y 4X, T Y Y+ X +Xs

can be regarded as Dirichlet components

[Joko72] of three respective gencralized Dirichler distributions. In fact, since negative exponen-

tial random variables are being used, this becomes a special case. With some labour, it can be
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shown that for0<d, <1,

1 1
ap+d i (Bi—0)  op+td (Br—op+(oa—a)(1—d))

fp,(d1} = oqogpp{ } (26)

and for0<d, <1,

1 1
Op+da(Ba—0n)  Cprtda(Bo— ) +(0ty—0y) (1 —d)

Fp{d2) = ayonBa{ } 27

and, for 0<d4 <1,

N 1 2-d;
fps(d1) =Ads [(a ) {hl(a+b_bd3)+ln(a)} (28)
L in(—=5 ) gy
®P-9) p+q-qds ’
2
where A =HZL~E;)BZ— v a=0g+di(Ba—c) , b=0p+d;(Bi—), p=0y+d3(Bs—0) and
-

g =0y +d3 (B —ay) . Finally, the exact distribution of the channel utilization random variable U

can be given as

i I I
Fy(t) = mo | fp,(®)dx +moy [ fp,x)dx +myy [ fp,(x)dx (29)
0 0 0

6. SUMMARY AND CONCLUSIONS

The intent of this paper was to address a problem suggested by Paul Kuehn [Kueh79] to be
an open problem, i.e., the cycle-time distribution of a single cyclic server in a multiqueueing sys-
tem when the service discipline at each queue is strictly at-most-one customer at a time. A
motivating factor was the applicability of ideas developed here in the performance of token-

passing computer nerworks.

We introduced a queueing model comprised of a system of dependent queueing processes,

and Poisson arrivals. Without specifying distribution particulars (other than desirable properties,
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such as existence of the first two moments) for the multiqueueing system, we determine that an
exact solution for the token's cycle-time distribution can be obtained. The distribution is
obtained as a finite mixture, where the mixing distribution is the limiting distribution of an
ergodic Markov chain. In the general case, the final form of the cycle-time distribution will
require the computation of the distrtbutions of sums of independent random varables. There are a

number of methods available for doing this (see for example [AlOb82], [MaSa73], [Math83]).

A numerical example is presented for a two-station system to demonstrate the general
method. For completeness, we derive and compute approximate forms of the cycle-time distibu-
tions based on an independence assumption made by Kuehn [Kueh79) and previously Hashida
and Ohara [HaOh72] (we call it SIN, or station independence). However, these authors worked
with the Laplace-Stieltjes transform to obtain the first two moments and did not actually compute
the distnbution. By computing both the exact as well as the approximatc distributions, we
demonstrate a breakdown of the SIN assumption and confinm some empirical observations made
'by Kuehn, The exact and approximate results are also compared to results obtained through simu-

lation.

In the course of the analysis, we determine that the computation is simplified if we assume
that packets transmitted by statons in different cycles have independenily random lengths (we
call this PIN, or packet independence). Applying PIN to the numerical values showed that PIN
did well in this case. How well the PIN assumption does in a variety of situations is a subject that
is presently being studied.

The queueing process at a single station can be embedded in a single-server model, where
the server is prone to taking vacations [Rego85). Unlike the classical server-vacation models, the
vacation periods of this system tum out to be dependent on service times. As an application of
the service vector approach, we obtain the distribution of server vacation periods as a PH-

distribution, a form suitable for computation. As another simple application of the exact methods,
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we define a random variable as a function of service vectors to represent the stochastic channel
utilization of the steady-state system. For a two station system it is shown how the distribution of

random channel utilization may be readily computed. This gives us the mean channel utilization

and also all the moments.
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APPENDIX

assumption of station independence
assumption of packet independence
no independence (assumptions)
number of stations

set of stations {1, 2, --- , N}

set of "'walks™ {w, wy, -+ , wy}
SuUWwW

interarrival time cdf for station j amrivals, j € S, (r-v is I;)

mean of A; (),

packer transmission length cdf for staton j, j € 8, (rv is X i)
mean of B; (")

token’s switching time cdf forstationj, j € §, (r-v is Vi

token's walk time (from station j — 1 to station j)edf,j € S (r-v is YH

mean onJ-

cycle-time of the token (server)
Bernovll 7-v, set to 0 if queue { is found empty (at steady-state), and 1 otherwise
set of all ¥ -bit binary vectors k = (k1,k3, -~ , kx)

kermnel (mamix) of transition functions for the semi-Markov process
introduced under SIN

embedded Markov chain for this scmi-Markov process
limiting state probabilities obtained for embedded Markov Chain (under SIN)
standard normalization probability used for semi-Markov limiting probabilities

limiting state probabilitics obtained for semi-Markov Chain (under SIN)
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U approx. mean channel utilization (under SIN)

z; tells if station { transmitted in current state of observer
z tells if station i ransmitted in next state of observer
SV service vector

<z), 29>, <z, 22>  cument and next state SV

02 {00, 01, 10, 11}
Zn Zy oy observe state at 1™ and (n + 1) transition steps

{Z{¢), 20} scmi-Markov Chain given by observer transitions (under NIN)
{Z,, n 20} Markov chain of observer transitions (under NIN)

q; steady-state conditional probability that station i has exactly one

customer queued, conditioned on the event that it is nonempty.
T; Y; + z; X;,station { *s component of cycle-time in ciarrent state of observer

T; Y; + z,-'X,-, station {’s component of
cycle-time in next state of observer

Cy random time between consecutive server exits from
stationk .,k =1,2

20, Cp) probability of zero packet arrivals at station & during cycle
C, generated by corresponding pair <z, 29>, <2y, 22>, k=1, 2
Er<zy 1<z, 2>) probability that station £ makes its part of the transition
fe,el ) joint probability density for C; and C4
P probability transition matrix obtained under PIN
P probability transition matrix obtained under NIN
c J-' random length of ¢ycle conditioned on the event

that a station j customer is served in the cycle

0, {z €8|j*bitinZ isal}
90 9 - 91
N conditional Markov chain (see eq. 22) matvix
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