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Abstract

Token-passing computer networks operating on ring and bus topologies can be modelled as

multiqueucing systems. The free token behaves as a server (or key to channel access) that pro­

vides each smion with a chance to use the chaIUlel for a finite time. The strictly cyclic service

pattern and non-exhaustive service causes interference bctween queues, and consequently, depen­

dencies between the differem queueing processes. In the past, an assumption of independence

between queues (station independence) has commonly been used for analyzing such systems. In

this paper an exact method is presented, based on a Markov chain embedded in a certain semi­

Markov process. The result yields a computational fonn for the steady-state distribution of the

token's random cycle-time on th network. This result confinns the inadequacy of the s[:J.tion

independence assumption at all but very extreme system loads. In addition to the exact res an

assumption of packet independence in token-passing networks is introduced, in order to simplify

computational effort. It is shown that unlike station independence, the packet independence

assumption works remarkably well. Using asymmetric Poisson arrivals and otherwise general

distributions, the cycle-time distribution of the token is computed exactly, as well as approxi­

mately under ooth kinds of independence assumption The method we imroduce leads to a

vacationing-server based queueing model for general, asymmetric loken-passing systems. A few

applications of cyle-times are included, for mean channel utilization, distribution of channel utili­

zation, and busy and vacation periods of the token with respect to each station.
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1. INTRODUCTION

The token-passing (contention-free) protocols on ring and bus networks are two of the lhree

access mechanisms presem..ly being smndardized by the IEEE standards committee [IEEE84a,

IEEE84b]. In principle. the token-passing protocols are like me Newhall networks [FaNe69] in

iliat they use a token to regulate channel access. A station that detects a free token is allowed to

use the channel. If the smtion is ready to transmit and has a packet stored in ils buffer, it immedi­

ately pms the packet onto the channeL Upon completing its transmission, a station passes me

free token in an orderly fashion to the 'next' station on the channel. If a station has no packet [Q

send or is not ready [0 transmit when it acquires a free tokeno;'i(simply passes lhe token along to

the next station. In. either event, a cyclic token-passing sequence of stations is defined.

A token ring (IEEE84a, ECMA83a] is typically configured as a series of poim-to-point

cables between consecutive stations, wilh stations tapping omo the ring using active interfaces.

The token is a unique signalling sequence of bits that circulmes on me communication medium in

one of two states. i.e., free and busy. A station that detects a free token may capture the token,

change it to a busy token, and append to it a number of informative biLS that go to make up a vari·

able length packet. The resulting string of bits is read and forwarded bit by bit (since the topol­

ogy is point to point) by consecutive stations on the ring. Only the destination station copies each

bit of the packet as it passes. When its transmission is complete. the sending station performs

cenain tasks to ensure proper operation (including taking me packet off the ring) and then creates

a new free token which it passes to the next station on the ring.

The token-passing bus is conceptually very similar to lhe token-passing ring [Buxw84] (see

Fig. 1). A mken bus [IEEE84b, ECMA83bJ is configured as a passive medium, with stations tap­

ping onto the medium via stubs in a multidrop fashion. The bus topology does not impose a
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sequemial ordering of stations, as in the case of the ring. The token is made to circulate on a log­

ical ring instead of a physical one, with a sequence ofsration addresses defining the token's path.

Token bus protocols take advantage of broadcast mechanisms in executing the difficult tasks of

establishing and maintaining the logical ring. Each station on the logical ring is required [0 know

its predecessor and successor. In steady-state, the protocol is seen to alternare between packet

broadcasts to destination stations, and token-passing broadcasts to successor stations.

Within the framework of the token-passing mechanism just described. there is room for

flexibility in protocol design. For example, the single token rule [Buxw81] versus the multiple

token rule [BCJK82]. A more important design issue is the maximum length of time that a sta­

tion is allowed to retain control of the transmission medium, Le., a station's channel-retention

time. In this paper we are concerned with token-passing systems for which

(i) each station is assumed to have unlimited buffer space for queueing packets, and

(ii) each station may transmit at most one packet at each instance of free loken acquisition.

The outline of the rest of the paper is as follows. A comparison between token-passing

overhead on buses and rings is given in the following subsection. In section 2 the general asym­

metric queueing model is introduced along with a brief review of past work, a motivation for this

work, and a summary of our results. Due to page limitation we focus our attention mainly on one

aspect of the model, i.e., the token's cycle-time distribution. An interesting application of this

distribUlion is in Obtaining the distribution of channel utilization on token-passing schemes. In

section 3 we derive the token's cycle-time distribution using three different methods, two of

them approximate (since they use independence assumptions) and an one method ex.act (Le., wilh.

no assumptions besides mild conditions on input distributions). The system analysed is general,

in that we assume except for Poisson arrivals, the other input distributions may be general for

each station (i.e., an asymmetric system). In section 4 is presented a comparison of the three dif­

ferent approaches along with a numcric:l1 example. It turns out that one approximate method
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(using swtion independence) fails at all but very extreme loads. An approximation that we intro­

duce (using packet independence) works exceedingly well due to its similarity to the exact

method. All three methods require a computational effort that is dependent on the number of Sta­

tions. We are not especially concerned with the computational requirements at this stage because

this is the very first exact result on the token's cycle-time distribution, and this enables us to

assess the quality of some oft-used independence assumptions. Techniques for improving com­

putational effon is a next step. Some simple applications of the cycle-lime approach are given in

section S.

1.2 Token-Passing Delays

It is instructive to examine token-passing delays on ring and bus networks before introduc­

ing a queueing model. On a ring, lhere are [wo kinds of delays. The first kind is the time

required to pass the token from station j to station (J + I). Assuming an asymmetric scenario,

this time is clearly a function of the distance betwecn me two particular stations involved, averag­

ing to approximatcly five microseconds per kIn of cable. Denote this signal propagation time by

R \(J, j + I). The second kind of delay, say Rz(j + I), is due to station functions, including

repeater delay, token alteration time, panern matching time for token detection etc. Thus, for

each pair of neighboring stations (J, j + 1), token-passing delay on a ring is simply

R 1(J, j + I) + RzU +1) microseconds. Note that Rz(J +1) is typically in the order of one bit

time.

Token-passing delays on a bus are considerably different from those on a ring. Since a bus

operates in broadcast mode, the act of token-passing requires the transmission of a 152 bit long

explicit token frame [IEEE84b]. Denote this transmission time for station i to irs successor j by

8 I (i, j) microseconds. A second delay is the signal propagation delay between !.he two stations,

say 8 2(i ,j) microseconds. To ensure !.hat all SIations hear me loken being passed from i lO j,

8 z(i ,j) is nO[ less man me end-to-end bus propagation delay. The mird delay is due to station
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functions, Le., the time it takes a station to react from the instant it receives the token [0 the

instant it creates either a token or a dam packet for trarnmission. If we denote this delay by

B30), then the token-passing delay on a bus is given by B 1(i . j) + B2(i I j) +B 30).

Because of the conceptual similarities in the token-passing operation on buses and rings.

both schemes can be subjected to a unifonn queueing analysis. However, it is clear that parame-

refS in each model will differ. From our knowledge of delays we see that

- -
R IU ,j +1)+R2U + I) <B1U ,k)+B 2U ,k)+B,(k) (I)

in general. with X (-) and X (".) used to denote averages over all stations and pairs of stations,

respectively. In olher words, the mean token-passing delay between any station and its successor,

for comparable ring and bus topologies, is larger for a token bus than a token ring. It is rcason-

able to conclude mat for comparably configured rings and buses (i.e. when the model parameters

are made comparable in both meaning and value) the perfonnance of the ring scheme is generally

superior to that of the token bus. Note !.hat this only deals with channel utilization and queueing

delays and is a consequence of the relatively high token-passing overhead on buses. We make no

case for comparisons regarding system reliability, fault tolerance, stability, algorithm and imple-

mentation complexity, etc.

2. A QUEUEING MODEL

The model described in this section is applicable to any system of asymmetric multiqueues

where a single server provides strictly cyclic service to the system and at most one customer is

served at each (infinite capacity) queue. A detailed list of all symbols used is given in the appen-

dix. Consider a system of N independent buffers, chained together (0 fonn a ring by sections of

varying cable lengths, as shown in Fig. 2. Packet arrivals at station j are generated by some pro-

cess with intcr.mival distribution given by A j (E)=Pr (lj ::;;t), where 1j is the interarrival time

random variable at station j, j E S ={ 1,2, ... ,N }.
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Denote the walk between station U-1) and station j with label wi' j E S. Here U-1) indio

cares station j 's predecessor and U+1) indicates station j's successor on the path of the token.

If the circulating token finds a waiting packet at the buffer of station j . a transmission of random

length Xj ensues, with probability distribution function Bj (r) = Pr (Xj ::; t). If not, it switches

(Le.• a small random time to bypass the empty station) from walk Wj to walk Wj+!. taking a ran~

dam time Vj, with distribution function Sj(t)=Pr(Vj :S;t). In most token-passing models it is

usually assumed that the switching time is small in comparison [0 the token-passing and packet­

transmission times and is consequently ignored. In any event, after leaving station j, the token

spends a random time Yj +1 in walk Wj+1 E W ={WI, W2,"" wn }. The random vartiable Yj has a

distribution function given by Uj(t)=Pr(Yj ::;'t) ,j E S.

We use the term distribution to denme the cumulative distribution function, while the term

density is reserved for the probability density function for continuous random variables. For ana­

lytic convenience, we assume that all distributions possess finite first and second moments.

2.1 Review, Motivation and Results

Though there has been much work on multiqueueing systems in the past, models for which

service is nonexhaustive are very scarce [Buxw84]. To the best knowledge of the authors, no

exact model for one-packet service asymmetric token-passing models existed prior to this

research effort. A detailed review of closely related nonexhaustive service models and exhaus­

tive service models in the context of token·passing can be fOWld in [Rego85].

The approximate multiqueueing methods fOWld in the liternture thar are applied to analyze

token-passing schemes can loosely be categorized as follows. One class of models are the

independence asswning models, e.g., [Kueh79, HaOh72, Heym83J, and the other class of models

involve applications of "resembling" models, i.e., models whose behavior resemble the behavior

of the system of interest. In actual implemcmmions (e.g., Ringnet) roken·passing schemes allow



- 6 -

each sration a fixed time for channel usage. Generally, this is translated [0 mean only one­

packet-at-a-time. However, it is not unusual to find approximate models in the literature that use

exhaustive service systems [KoMe74, Swar77] to model~token passing [Buxw81, ChLL32,

LiHG82]. Another kind of resemblance model is the finite buffer model (i.e., buffering for at

most one packet) [MaMW57, Kayen] applied as in [Buxw81, WuCh75] etc. A recent exact

result is one that analyses asymmetric systems but applies gated service (Le., only those custo­

mers recorded by the server at !:he server's scan instant at each queue are served) [FeAm85}.

With asymmetry, these systems are generally noc as fair as the one-packet-at-a-time service sys­

[ems. Another recent model involves a decomposition rule and has been applied in the case of

infinite N [FuCo85J and symmetric queues [Fuhr84].

The contribution of this effort can briefly be summarized as follows. Following [Kueh79,

HaOh72], we first make the assumption that the events "station j is empty" and "station k is

empty" are independent for each pair of stations j, k E S ,)-::;:k . Using this assumption of sta­

tion independence, abbreviated as SIN, we present the token's cycle-time distribution. The details

of this derivation can be found in [Reg085]. Next, we derive the exact cycle-rime distribution

under no independence assumptions (abbreviated NIN), and demonstrate the method for a two­

station system. Following this, we make the observallon that computation can be considerably

simplified if we assume that, for a given station, two packets transmitted in two different cycles

can be interchanged without affecting the analysis. This is an assumption ojpacket independence,

or PW, almost identical to the assumption used by Kleinrock in the Arpanet models [Klei76].

Indeed, using a numerical example we show that PIN perfonns exceedingly well for our example.

The example demonstrated utilizes stallon loads chosen with some care, i.e., moderate loads that

cause SIN to fail. while PIN and NIN compare very well. Finally, we present some simple appli­

cations of cycle-times such as the token's busy-period distribution and the eX<lct distribution of

channel utilization.
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3. CYCLE-lThIE DISTRIBUTIONS

The cycle-time of the token em be defined as me random time between two consecutive

appearances of the token at an arbitrary reference smuon j , j E S. For convenience the reference

point is taken to be the point at which the token (or server) enters station j to scan for a packet

(or customer). Thus, the cycle-time random variable C is the time between two consecutive scan

instants at station j. Since the server actually visits each station in each cycle. we may

equivalently take the reference point to be the point at which the server exits from station j.

The existence of a srationary distribution FcO for the cycle-time random variable can be

proved in a suaightforward manner. We must assume that given an N -station system, all queue-

length distributions are stationary. First assume mat all queues are stable. (Le., all mean queue

lengths are finite). The condition for stability is presented in section 5. For a stable system. the

time points corresponding to all empty queues are regeneration epochs. meaning that at these

poinlS in time the system regenerates itself. with a future that is independent of the past. By

hypothesis. me first two moments of all input distributions are finite, i.e.. the mean and variance

of the cycle-time random variable are finite. With these conditions, it follows that the mean time

between regeneration epochs is finite. As a consequence (see theorems 10-4,10-5 of [HeSo82J),

the regenerative process and the cycle-time distribution are asymptotically stationary. Removing

the assumption of stability for any queue. some combination of queues. or even all queues does

not change things. That is. we can still identify regeneration points and show that the mean time

between regenerntion points is always finite. Thus. lhe existence ofFcO is proved.

3.1 An Approximation Under Station Independence

In this section is presented the disuibution of cycle· time under SIN. For each station j in 5,

let us assume that AjO. Bj O. SiC') and Uj 0 are negative exponential distributions. with parame-

1 1 1 1 .
ters ~.-, - and - • respectively. Let Lj be a Bernoulli random variable reOecting the

Aj ).ljD Iljl O-j
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starns of queue i at its steady-state scan instants, for all i E S. That is. L j =0 if the server finds

queue i empry and Li = 1 orherwise. for all i E S. The approximation we obmin is a direct result

of the following assumption.

Asslunprion ofStation Independence (SIN)

The random variables Li and Lj are independent, for all i ,) E S ,i:;z!: j.

The above assumption appears [Q have been used (in similar form) in multiqueues with

unresmctcd buffers in the very early sixties [Lieb61l, and since then in similar applications

[HaOh72, Kueh79, Rego85]. With the aid of this assumption and some manipulation, the

approximate asymmetric and symmelric forms of the cycle time distribution can be obtained.

Interested readers are referred to [Rego85] for dcmils of the derivation. With SIN, C becomes a

sum of independent random variables. i.e.,

C = l: X; + l: Y, (2)
keS keW

where X; is distribmed as the mixture PI: BkO + ql: SkO representing time spent by the server al

stmion k (in either serving or switching) and Yk is distributed as Uk (-), representing the time

taken by the server [0 walk from sLation (k-1) to station k, for each k. Here, PI: is the probability

ma[ station k is found nonempty by the server, and qk = 1-Pk I for k E S. The distribution of C

in the asymmetric case is given by

{

e-a"
!c(t)= l: l: II a", ~j + l:

jeSkeSleS n (1lmk,.,-CJ.j) neSm"

e-'
IT (~mk. ~")("j

moS.,.
(3)

Pj+qj=1, with pj="A.jE(C) , for all jeS. The coefficient ~j is a generalized Erlang

coefficient, given by
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for ailj E S. (4)

The mean cycle time E(C) is obtained as

L [E(Yj)+E(Vj ))
E(C)= jeS

[1- L l.,Eex,)+ L l.,E(V,)]
ieS ;ES

Mean Channel Utilizarion

(5)

(6)

As an immediate application, an approximate mean channel utilization measure is obtained

as follows. For each k E e, let 1tk be the (joim) probability that the particular configuration of

stations which transmit during a steady-state cycle are given by me nonzero bits of the vector k .

That is, ki = 1 if station i is included in lhe set of stations tlm transmit in the same cycle, and 0

otherwise. Under the assumption of all stationary queue length distributions, the limiting joint

distribution {1tk} will exist. As an example. in a two-gmtioo system, SIN" will yield me distribu-

tion 1too=q 1Q2' 1tol =q IP2. 1tlO=P 1 Q2. and 7t11 =P I P2' Note that the mean cycle-time E(C) can

be got by using this jOllU distribution. That is.

E(C) = L xk L [kjE(Xj ) + (l-kj)E(Vj )] + L E(Yj )
kee je5 jeW

Let Y denote the total overhead in walking, i.e.• Y =}' 1 Y2+."+ YN. The mean channel utiliza·

tion U
4

of the entire system of stations is the sum of each individual station's mean channel utili-

zation. Hence U· is given (with the Sill assumption) by

(7)

A comparison of simulated and analytic densities (obmined under SIN) for N = 2 ,N =5

and N = 8 stalion systems is shown in Fig. 3. From our observations, it appears that lhe approxi-

mation perfonns very well (when measuring cycle· times) under conditions of extremely high or

extremely low loads. However, for other load situations, as we shall see in lhe next section, the

SIN assumption fails.
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3.2 An Exact Result for Cycle-Times

In this section we derive the cycle-time distribution of me token wilhout any assumptions of

independence (Le.• Nm). Besides Poisson arrivals, we allow for arbirrary input distributions and

only require that the first two moments of each distribution be finite. In order to show how the

distribution under NIN is derived without obscuring the technique, an example is dcmonsrrared

for a two-station token-passing system.

We focus OUf attemion on lhe queueing analogue of the two-station system. For conveni­

ence, assume that both smtions have zero switching times (Le.• V 1= V 2=0). The server walks

around the mu!tiqueueing system in a cyclic fashion, making an entrance to and an exit from each

smtioll, as shown in Fig. 3a. On entering a station, at most one customer is served at !:he station

before the server makes an exit from the station and begins to walk to the next statiOIL Let the

cycle-time random variable C denote the time between two consecutive server exits either from

station 1 or smtion 2. Since C is the server's interappearance time regardless of t.he point at

which these times are measured, C is independent of station index (see for example, [Kueh79J).

Consider an observer who slands at the point of exit from station 2 (shown in Fig. 3b) and

measures instances of the random length C with respect to this exit point. In order to do this

efficiently, the observer works out an agreement with the server to do the following. On every

cycle made with respect to the observer's position, the server constructs a two-bit binary vector

Z = <zl, z2>, where Zi = 1 if a customer was served at station i, and Zj = 0 otherwise, for

i = 1, 2. Each time the server passes by the observer, the server hands the observer the most

recent service-vector Z (abbreviated SV z) constructed in this way. Clearly, in the two-station

case the observer receives a vector z from the set 8 2= {OO, 01, 10, II} e<lch time he greets lhe

server.

Define the current Slate of the observer to be his most recently acquired SV. The next Slare

of !..he observer is given by the next SV given to him by the server. If SV Zn = <z j, z:!> is given
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to the observer at time In. and SV 2n + 1 = <z; , z~ > is given to the observer at time tn + }, then

we say that !.he observer makes a transition from current state 2n to next scate 2" + 1 at time

instant tn + 1· Thus. at steady~state operntion, the observer can be viewed as a randomly moving

particle in the finite set 8 2, described in discrete transition steps by the process {2n• n ~ O}. The

following result shows that the observer behaves in a Markov fashion over the space 8 2. In a

forthcoming paper, we present the general counterpart of this result for eN, i.e., in the N station

case. Without any loss of generality, the two-station case is presented.

THEOREM (On a Markov Property aftlle Observer)

Let Ak be an exponential distribution function, and!ct B" and Uk be general input disnibUlions,

all with finite first and second moments, k = 1, 2. Assume that an observer is placed at the exit

point of station 2 and um that the queue-length distributions at both stations are stationary. At

steady-state, let Zo, Z]. Z2• ... ,Zn. ... be a sequence of service-vectors transferred from

server to observer at a Strictly increasing sequence of times to, 110 12, ...• In' respectively,

n ;;:: O. and let Z(t) represent the observer's current state (i.e., last SV the observer received) at

time {. Then

(a) {Z(t). 1 ;;:: O} is a semi-Markov chain.

(b) {Zn. n ;::, O} is the Markov chain embedded in {Z(t). { ~ O}.

PROOF: The proof that follows is by construction. lbis will enable us to use the method in a

numerical example. If we can prove either (a) or (b) lhen we are done because the other easily

follows. We will prove (b). That is. we compute P(Zn + I IZn) and show that this probability is

equal to P (Z" + I IZ". Z" _ I, ...• Zo). Note that a semi-MarkoY chain (see [Cin175J) is a

semi-MarkoY process on a finite or coumable Slate space. A semi-Markov process is a process in

which the successive s[ates visited forms a Markov chain, and me sojourn lime of me process has

a dislribmion which depends on the state being visited (Le., current stale) as well as the next state



- 12-

to be entered. So, me sojourn time of the process in any state is generally not an exponentially

distributed random variable.

In the sequel, we compute the probability that the server goes from srate 2" to state 2n+! by

using information given by only by these two states. Define qk as the conditional probability that,

at steady-srale, the server finds exactly one customer queued at station k, conditioned on this sta-

tion being nonempty, k = 1. 2. By the assumption of stationarity for queue-length distributions,

these steady-state conditional probabilities are constant in time and can be computed explicitly as

will be shown.

For each transition <z I,z2> --7 <z \',Z2'> made by the observer. define T j = Yi +1 + Zi Xi to be dis-

joint components of the random sojourn time (Le., cycle-time) of lhe observer in the current state

<Zl,Z2>, before he makes the transition to the next state <Z\',Z2'>, and similarly, define

T/ =Yi+1+Zi' Xi to be disjoint components of the observer's sojourn rime (Le., cycle-time) in the

next state. Nare that subscripts are incrememcd modulo 2 (i.e., Yi+1 is used to denote

YCimod2)+bi =1 ,2). In other words, during the server-cycle that generates SV <Zit Z2>, T 1 is

the time spent by the server in visiting with station 1 and then walking to station 2, and T2 is

described similarly for station 2. During lhe next server-cycle, which generates SV <Z~, z;>,

T I' is the time spent by the server in visiting with station 1 and then walking to station 2, and T2'

is described in similar fashion for station 2. Let Ck be the random time between two consecutive

server exits from station k, k = 1, 2. We can write the system of cycle-times as

(15)

where it must be nOled that for each k, given the SVs <z\lz2> , <Z{,Z2'>, the random variables

Tk and T; are independent. Given a current state and next s[<J.[e pair, for each k, k = 1,2, Tk is the

random time spent by the server at station k plus the time it takes him to walk to the next station

in the current state of the observer. 'When!he observer moves imo the next state, the lime spent
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by the server at station k plus me walk time to me next station will be independent of the server's

corresponding walking time in the current state of the observer (since we are given the current

and next state). Observe that a packet transmiued by station k (if any) while the observer is in the

next state will have a random length that is independent of lhe length of a station k packet (if

any) transmitted while the observer is in me current state. Consequently, me independence ofTk

and T):' follows. for k = 1 ,2.

An observer transition of lhe general form <z 1, z:z.> -) <z ~. z~ > can occur only if station

1 makes me transition z1 -) z; in me random time C b and station 2 makes the transition

Z2 -) Z~ in the random time C2. From (15), we see that C I and C2 are dependent random vari~

abIes due La the overlap caused by the random variable T; appearing in born eland c 2- Thus,

in order to compute me probabilities of joint events at both stations, we require the joint distribu-

tion of C 1 3l1d C 2. For now, let us denote the joint density function as f c"cl, '), and let

Pk(n, C/c) denote the probability of n cuslomer arrivals at station k in the time Cb k = 1, 2.

Since only three random variables are involved in the joint disrribUlion for C I and C2, and each

random is defined by one bit in the current-state and next state pair, eight possible joint distribu-

tions can arise, all of the same form bm each with different parameters.

Given the current state z = <z bZ2> and the next sLilte z' = <z l',Z2
/> of the observer, let

~/c(z; I <Z ,Z'» denote the marginal conditional probability that each station k makes the transi-

tion Z/c -) z; in the rime CJc that the server stayed away from lhis station during this particular

observer transition. We only make use of the current and next state infonnation in describing mis

tr3l1silion probability. TItis marginal conditional probabiliry is computed for each station k as

p,(O, C,)

1 - p,(O, C,)

p,(O,C,)q,

1 - p,(O, C,)q,

Z/c = 0, z; = 0

ZJc = o. z; = 1

ZJc = 1, z; = 0

Zk = 1, z; = I

(16)
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for k = 1, 2. Recall that q" is the conditional probability that station k has exactly one cusromer

queued given that it is nonempty. and by our assumption of stationary queues, it exists and is con~

stam in time. for each k. In order to compute the entire vec[Qr transition probability for the

observer's rransition (which is ajoinc transition probability involving bom stations), we must use

the joint distribution f C lo C1 (', -) using the random variables described in (15). From (16), note

that we only need to compute the probability P"CO, Ck) of zero arrivals in C1" k = 1, 2, for each

current state and next srate pair of observer states. Thus, we compute any vector transition

z = <z 1> Z2> --) z = <z; , z~ > seen by our observer as having me corresponding joint probabil-

ity

P(Zn+l=z'I ZIl =z)= JJ~I(Z~ IZIZ')~2(Z; Iz,z')!cl,cl(c!,ci!dcidc2 (17)
o 0

Since (16) defines the transition probability using only the random times Ct. C2 (which depend

only on the currcnt and next staw of the observer) and the steady-state conditional probabilities

qt, Q2' we have proved (b).

The proof for (a) follows from the fact that [ZIl} is the embedded Markov chain (see

[Cinl75]) for the semi-Markov chain [Z(r),t;:::O} . The chain (Z(t), t;::: O} is semi-Markov

because the observer makes transitions in a manner that depends on the current state, next state,

and the (nonexponentially disttibuted) time spent in the current state.

o

3.2.1 Computation of the Probability Transition Matrix (under NIN)

Consider the following simation for a two-station system. Packet arrivals at station j are

(independently) Poisson with parameter Aj , j = 1. 2. Station j transmits packets with random

length Xj which is exponentially distributed with parameter ).1j J j = 1, 2. The token-passing time

from station j - 1 to station j is given by the random variable Yj which is exponentially disai-

buted, with parameter CJ.i' j = 1, 2. For explanaLOry conveniencc, we assume that both stations
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have negligible (i.e., zero) switching times.

The theorem is now applied to compute the probability transition matrix corresponding [0

the embedded Markov chain of observer transitions. The first step is lhe computation of the joint

cycle-time density leI. el, .) corresponding to each type of transition. This el1Il be obtained by

standard methods for !:he system in (15). Assuming that we have this density, consider a few

example transitions. LetZn = <00> andZn +\ = <10>. Using (16) we compute

1;,(lIOO,IO)~I-p,(O,C,)

1;,(0 I00, 10) =p,(O,CiJ

and from (17) we obtain

P (10 I 00) = f f [1 - p ,(0, e ,)]p ,(0, eiJIc" c,(e" eiJ dc, dc,
o 0
~ ~

= f JO- e-A,CJ)(e-A.2Cj!cI,C,(Cb Ci)dCl de2
o 0

(18)

(19)

which, after substitution of the joint densiry of C I and C 2 I yields the desired probability. As

anomer example,

~~

peDI I 11) = Jf (ql e-A'C')(l - Q2e-4c,)!c,. cl(e I. cvdc I dez
o 0

where q 10 q2 ochave as constants (by the assumption of stationary queues).

3.3 An Approximation Under Packet Independence

(20)

Consider the system of equations in (15) involving lhe transition components Zi ,z/ ' and

the random variables T; and T,.', i = I, 2. We were forced to compute the joint density

!c"cl ' -) only because of overlap, Le., the same random variable T2 appeared in the cycle-

time C I seen by station I as well as the cycle-time C 2 seen by station 2. If we assume that the

random cycle-times eland C 2 are independent. we basically assume that the random time T'1. in

C 1 is independent of the random time T 2 in C 2 _ In other words, we remove the overlap by

assuming that during any paI1lcular cycle. slil[ion 1 and station 2 each view a transmission from
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station k as having an independently random length from the same distribution 8,,0. k=l,2.

This is another form of the independence assumption mat was used extensively in lhe Arpanet

models [Klei76]. Note that the walk times do not contribute much to the overlap in the sense lhat

the random time (Y 1 + Y2) appears in every cycle-time regardless of the events (transmission or

no transmission) at the stations.

Under PIN, C I and C2 become indepcnt random variables. As a consequence,

-
Iz,z')!c,(cr)dctlrfS2(Z; I z,z')!c,(ciJdc,j

o
(21)

which is in a prodllct-Jorm. We use p. [0 denote !.he transition matrix obtained under PIN, to

differentiate it from the probability measure P of section 3.2 computed under NIN.

4. A Numerical Example

In this section we use lhe lwo-station example introducted in section 3.2.1 with numerical

values for the parameters. The probability transition matrices P (under NIN) and p. (under

PIN) are computed to demonstraLe our methods. Finally, we obtain the limiting distributions for

service vec[Qrs seen by the observer at station 2 using the usual assumption of station indepen-

dence (SIN) and our two new methods, to demonstrate the effect of queue interference (depcn-

dence between queues) at moderate loads.

We begin by computing the matrix p. under PIN. Assume that the system is operating at

steady-state. There are four possible service vectors that the observer (at the exit of station 2) can

receive from me server, i.e" (00), (01), (10), and (11). The i 1h entry of each vector tells the

observer if station i did or did not transmit a packet in the corresponding cycle, for i = I, 2. For

example, <10> means mat station I transmitted a packet while station 2 did not.

For a given SV <i », letxjj be the probability that no cUS[Qmers arrive at S[ation I during
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a service cycle represented by vector <i j >. The corresponding probability for station 2 is

denoted by Yij' The 4 x 4 transition matrix p. is given by

00
p' = 01

10
11

00

XooYoo

X01YlOQ2

XlOqlYOO

X\lYlOQtQ2

01

xoo(l - Yoo)

xOI(! - Y loqz)

xlOQ1(I - Yoo)

xlIql(l-YlOqU

10

YOI(l - xool
Q2Yll(1 - XOI)

YOl(l- XIOql)

Yl1Q2(l-XnQI)

11

(1 - xool(I - YOl)

(1 - q2Y 11)(1 - XOl)

(1- YOI)(l - xlOq,)

(l-Yllq,)(l-Xllq,)

where q" q2 are ilie conditional probabilities defined earlier. At this stage we have six unk-

nowns, and these are the limiting probabilities for the observer's states, i.e., 1too, 'Itol' 1t1O and 7t1l.

plus the conditional steady-state probabilities q I and Q2' There are several ways in which we can

proceed to solve for these. As an example, we demonstrate one such method. Using WG/1

theory we know that the probability that station i is empty when the server gets mere is

POi = 1 - Aj E(C), for i = 1, 2. Additionally, we know that

1too + 'Itol = POI

1too + nlQ = POl

thus reducing our unknowns to only four. Thus, the problem is reduced to solving a system of

four independent equations in four unknowns. On solving this system, we obtain the conditional

probabilities q1 and q2. We briefly mention that this works in the N station case too. Details on

the general result are not within the scope of lhe current paper. Consider an example for Ehe

1 1 1 1
(moderate load) values A, = 0.0032. A" = 0.003492. - = 198. - ~ 100, - = 1. - = 2,

I!I 1!2 Ct.1 Ct.2

and E(V,)=E(V,)~O. We obtaln E(C)= 174.4186, POI =0.44186. P02=0.39093

q 1 = 0.0870366, and q2 = 0.0805674. On utilizing the qi, the final form of the matrix is

00 01 10 11

00
p' = 01

10
11

.9801 .0103 .0056 .0040

.0491 .7012 .0097 .2400

.0478 .0005 .5568 .3949

.0024 .0342 .0373 .9261
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yielding the limiting SV probabilities as 1too = 0.3604, 'TCol = 0.0717.1C1O = 0.0497 and

1tll = 0.5181. Note mat (6) may be used to ascenain that these probabilities yield the correct

value for EeC) (i.e.• as given by (5». IfF000, F 010, F 100 and F 1I0 represent me distributions

of the random variables corresponding La the service cycles (00), COl), (10), (II) as seen by lhe

observer (Le.• in this case each is a generalized Erlangian of a simple form), we obtain the cyclc-

time distribution (under PIN) as

Fde) = 1t(loFoo(c) + 1[01 F mec) + 1tIOF lOCe) + 7t11 F liCe)

In applying NIN, the transition probability matrix P is computed differently (Le., using the

joint distribution of C I and C V. For example, observe the difference between (19) and the entry

p. (10 J 00) in matrix p ... On computing f C I,CZ(. , .) and applying it in (17), we obtain the tran-

siLicn matrix: for SV transitions under IUJ independence assumpcions as

00 01 10 11

00 .9802 .0094 .0063 .0040
p 01 .0473 .6862 .0080 .2585

10 .0512 .0005 .5748 .3735

11 .0025 .0359 .0354 .9262

The limiting SV probabilities under N1N are "00 =0.3614, lfol =0.0702, ~IO =0.0499 and

1tu = 0.5185. Again, (6) may be used to ascenain that lhese probabilities yield the correct value

for E(C). Observe that the probabilities obtained with PIN are very close to exact probabilities.

In this case, the values obtained for the conditional steady-state probabilities are q 1=0.08917018

and q2 =0.08081105. As a by-product of OUf method, we obtain the steady-state probability q;

that station k has exactly one customer queued, k = 1 ,2. That is, q ~ =q I (I -Pal) =0.0498, and

qi =q2(I-pai! =0.0492.

4.1 Exact versus Approximate Methods

p~ =(I-Pok) and q~ =(l-pk)' for k = 1,2.. These probabilities constitule the joint distribution
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for SVs obtained with the SIN assumption. Though this joint dislribution yields the exact mean

cycle-timc, the cycle-time distribution obtained by using these is incorrect. The reason for rhls is

precisely the inappropriate appliciltion of the independence assumption for cycle-times.

One use of the cycle-time random variable is as a "service-time" in the MlGll approxima­

tion (applied [0 a single queue at a time) for token-passing queues. This approach has several

drawbacks. some of which are discussed in section 5. The advantage of the service~vector

approach is that it can be used to solve the queueing problem exactly via a semi-Markov

approach [Rego85].

Using SW, Keuhn [Kueh79] computed the cycle-time variance. and (via simulation) con­

cluded that the results underestimated uue cycle-time variance. This can be attributed to depen­

dence of cycle-times, and in particular, the tendency for neighboring cycles to be positively corre­

lated. So SIN can be expected to perform well under very heavy and very light traffic conditions.

respectively. For these two extreme conditions, the dependency or covariance between cycles

grows small, and actually disappears for unstable and zero traffic conditions. However, for other

traffic conditions. SIN can be shown La fail. For example, consider the probabiliLies obtained in

the previous section using the exact and Lhe approximate methods for a system load that is not

extreme. SIN appears to neglect covariance iruonnation between stations altogether (as is to be

expected). It is not clear at this stage whether PIN will do well in all situations. Our current

knowledge about the behaviour of PIN is not sufficient to warrant any conjectures. However, we

can expect that it will always perform better than SIN, and due to its computational similarity to

NIN, we can expect that it will behave well. An investigation of the applicability of these approx.­

imations in various situations is presently under way.

In Fig. 4 is shown a comparison of the exact (Le.• obtained under NIN) and simulated

cycle-time density for a moderate traffic, asymmetric two stmion system. In Figs. 5a and 5b the

same analytic density is compared with the approx:imate density obtained from the cx.pression in



- 20-

Eq.(3) for asymmetric systems (i.e., via SIN). This clearly demonstrates a condition under which

SIN fails. In fact, the station independence assumption can be show to degrade for all traffic con-

dition that are not either extremely high or extremely low, especially as N increases. In comrast,

PIN does well in comparison to NIN for this numerical example.

5. SOME APPLICATIONS OF CYCLE-TIMES

A (token-passing) system ofN stations can lx: analyzed approximately by viewing each 5ta-

tion in isolation as a GUO/I queueing sysrem with FeO as a "service-time" random variable.

TIlls is a standard approach and has already been used by Hashida and Ohara [Haoh72l, and later

by KuelUl [Kueh79] via an MlG/1 queueing analysis. Both use the cycle-time distribution

obtained under the SIN assumption [Q obrain the variance of the cycle-time process. In fact, they

obtain the variance by resorting to !:he Laplace-Stieltjes transform and do not actually derive the

distribution. Kuehn recognized that this approach tended to underestimate the actual cycle-time

variance (Le., the variance that is obtained by considering a large number of consecutive cycles)

and consequently also the mean waiting time. As an alternative, and a way to increase cycle-time

variance, Kuehn considered cycle-times seen by station j to be of two types. One type involved

custOmer service while the other type had no customer served at reference station j. The variance

of the new cycle-time, created as a mixture of the two different cycle-times, was shown to be an

improvement However. it was observed that, as a queueing approximation, the SIN approach

degraded as variance of the E (Xi). E (Yi ), or N, or some combination of these parameters was

increased.

Let Cj• be lhe random length of a cycle conditioned on the cvem that a station j customer is

served during the cycle, j E S. The queueing process at station j is lmown ([Loyn62J) to posses a

steady-state distribution if the condition "A.j < I is satisfied. Using a result due to Tweedie
ECCj)

([Twee83J), it follows Lhat the queue at station j is stable (Le., has a finite mean) if this condilion
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holds and the cycle-time variance is finite. The finiteness of the variance follows from our

assumption that all random variables involved have finite first and second moments.

The approach using cycle-times as service-times for station j has two problems. One is

caused by the serial dependency of consecutive cycles. Clearly, long cycles follow tend to follow

long cycles. while shan cycles tend to follow shon cycles, thereby leading to a positive covari­

ance between cycles close together in a sequence. Since service times are supposed to be i.i.d

random variables in an M/Oll system, cycle-time correlations reduce general M/O/1 analytic

measures to approximations. The other problem crops up when a station j customer amves to

find an empty queue. Unlike the standard MlG!1 system. the server generally is not readily avail~

able. If there are many such critical arrivals, the M/G/1 analysis must surely yield an underesti­

mate in waiting-times, since lhe forward recurrence time of corresponding cycle-times is

neglected. In the next subsection we introduce the notion of "server vacations" in order to

remedy the situation.

5.1 Distribution of Token Vacation Periods

On an N station system, we place an observer at the exit point of station j and pretend that

this is a single server queueing station. Thus, we can embed the queueing process at this station

in a server vacation model. The token begins a vacation (as far as station j customers are con­

cerned) at the instant that the token scans an empty queue at station j. The tenn "vacation" is

used because a station j customer arriving at the queue after this scan instant must wait for the

next scan instant to meet the free token.

Define a station j token vacation period to be the random time y = In_1 - le_1 , where

(i) n>e, e,ner

(ii) ze E 8 0 'Zn E 8 1 , Ze_L E 8 1
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(iii) zm E 8 0 • e ~m <n,

with the sers 8 0 ,SI given by 8 j ={z Eel zj=I}, 8 0=8-81 ,

The first m =2N
-

1 rows and columns of the transition matrix P [see (17)] can be seen to

correspond to transitions between elements of 8 0 , Let us label this submatrix as Po and define

m
NO (i) to be an m-bit column vector NOel)= 1- L Po (i, k). With the elements of 8 0 labelled as

k=1

{I,2, ... ,m}, consider me Markov chain defined on the sct {I, 2, .... m + I} with probability transi·

tion matrix given by

N = [ ~o ~o] (22)

describing transitions between service vecmfS for which station j remains empty. Let FvO

denote the distribution of the vacation-time random variable. Each vacation cycle-time is a sum

of independent random variables [see (15)] and will have a distribution which can be given by a

finite convolution. Since each vacation cycle-type vector Z E 8 0 occurs with a steady-smte pro-

bability 1tP) (where the index j indicates a limiting vector obtained by an observer standing at the

exit pOUl[ of station n, there is a natural way [Q formulate the disrribution of a random vacation

cycle-time as a finite mixture of finite convolutions. Since a token vacation period is comprised

of a random number of such cycle-times, F v (-) is a compound distribution given by repeated con-

volutions of the mixture. Because of the repeated convolutions, this form is not suited to compu-

tatian. An alternative form is obtained via an application of phase-type disrributions [Neut81],

[La,082].

Assume that each of the N stations utilizes exponentially distributed times for service,

swi[Ching and walking, with paramelers given by _1_ , ..!.. and _1_ respectively, for each j E S
R. v. a.1-'," ,

This assumption is made for analytic convenience, since generalized Erlangian distributions lend
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themselves easily to phase representations. For each vector Z E 8 0 let d(z) be a unique label in

the label set (l.2 ....,m} I and let ad(z) be a 2N-bit vector with all entries as zero except for the

very first entry I which is a 1. Define an indicator variable JCi (z) to be 1 if bit i in z is ai, and 0

otherwise. The pair (ad{z)' T) is said to be a representation of the Erlangian distribution F d(z)O

with entry (i I k) of the order 2N square matrix T being given by

T~

-Ui

C1.,

K,(Z)~, + (l-K;(z))y;

- K,(Z)~, - (l-K,(z))y,

iodd,i=k

i odd.k=(i+l)

i even, i =k

i even. k=(i +1)

(23)

The number of generalized Erlangian distributions required to completely specify the dif-

ferent vacation cycle-times is m =2N- 1 . Each vacation cycle-time is thus comprised of 2N

phases of a generalized Erlangian distribution. N phases given by the service and switching

times, and N phases given by the walk times. We now define a point process [Lat082] with

events governcd by epochs of transitions of the Markov chain N defined in Eq. (22). Note that

each state of this order (m + 1) chain has a positive probability of being visited before absorption.

If the chain has made a transition to the state i, 1~ i ~m , the next transition is to state k ,wim

probability Pile, and the time between transitions has a PH-distribution Fi (-) of order 2N.

Define the vector U = (Ul"'" urn) to be the invariam vector corresponding to the ergodic

chain given by N. Note that these are conditional probabilities in the sense that we are restricting

transitions to be between elements of eo. Let S (t) and 1t(c) denote lhe state of the Markov chain

N at time t and lhe phase of the Markov chain T S(I) at time C, respectively. Assume lhat the last

event occurred at time 't at which time the chain N made a transition to the state S('t)=k . Let t

denote the current time. Recall that the initial vector chosen for the Markov chain T k is of order

2N, given by ale = (1,0, ... ,0) for all k , 15k ~m . In the interval (t,c], the Markov chain T k

triggers through zero, one, or more than one transition, wiLhout entering its absorbing state. At
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time ( I S(t)=k ,and the chain TJ: is in phase re(t). We must assume that for t >0 I the inter­

evem intervals are conditionally independent given the pam of N • so as to make {S (t) ,n(t)} a

continuous time Markov process.

Given the generator of the process {S (t), rc(t)} • the distribution F.,(·) can be obtained as a

PH·distribution. Let e be a 2N~bi[ unit vector. Define an order m '" 2N square block-panitioned

matrix A .. with block-emry (i I k) as A" (i, k) = Pik e a k ' where the vector product denotes the

product of a column vector by a row vector. Define also an order m .;0 2N square block-diagonal

matrix T" with diagonal block cntry i as T i • The infinitesimal generator of the Markov process

{S (c), nCt)} is given by T'= T" (I - A") I where I is me order m '" 2N identity matrix. Thus, me

token's vacation-period distribution is a PH-distribution with the representation (v, T'). A simi­

lar procedure can be applied to obtain the token's busy-period distribution as a PH-distribution.

5.2 Distribution of Channel Utilization

As another application of cycle~times and the ideas introduced in lhe previous section,

define U to be the random utilization of the channel by lhe N-station system at steady-state. If we

can determine the distribution Fu(-) of the random variable U • we have a valuable steady-state

measure of channel behavior. Observe that U must lie in the interval [0. 1] to be considered a

utilization measure, with U = a taken to mean that the channel is busy lOOa% of the time during

steady-state operation.

In an N -station system, U can be defined as follows. Each vector Z E e given to the

observer at station j (by lhe server) defines a set of stations {k E S I Zk = 1 in z} that comributed

to channel usage during that particular cycle. The probability 1tz corresponding to each Z E e is

already known via the methods of the previous section. The random variable U can thus be

defined as
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N

b, [L "X,]
kzzl

(24)

where bz is Bernoulli with parameter 1t"z and CN(z) is the server's cycle-time. corresponding to

the vector z, as seen by the observer at statton N. As an example, we present the distribution of

U for a two station system.

We assume that the times corresponding to packet interarrivals, packet transmissions and

token-passing can be modelled as ex:ponentially distributed random variables. Additionally, we

assume that switching times are negligible. Denote these parameter sets for station 1 and station

2 as (~ I i- I _1_) and (/ I ~ • _1_), respectively. There are fOUf possible service vectors (as
I t-' I Ct.} "-2 IJ2 Ctz

seen by an observer at station 1) and lhcse are 00. 01, 10 and 11. Let the corresponding steady-

state probabilities for cycles generating these service vectors be 1too, 1to1 ,1t1O and 1tl1. respec-

rively. For binary digilS i and j , 1Cij is the probability that a cycle of length

Cij = Y1 + Y2 + i X I + j X2 has just occurred, and the actual channel utilization during this

cycle is given by U1j = i X 1+ j X 2 • If bij is a Bernoulli random variable with parameter TCij for

(ij) E S ,then the random variable describing the system's steady-stme channel ulilization can be

given by

where S =(00,01, 10, 1I}.

Uij
U= L (-) bij

OJ)eS C ij
(25)

Xl
The three nonzero ratio random variables defined in Eq. (25), i.e.• D I = ~-~--o,..

YI+Y2+X l

can be regarded as Dirichlet componems

[Joko72] of three respective generalized Dirichlet distributions. In fact, since negative exponcn·

tial random variables are being used, this becomes a special case. \Vim. some labour, it can bc



- 26-

shown !:hat for 0 $; d 1 < 1 I

(26)1 )

(27)
1

fD,(diJ = Ci,Ci21l:z( C<z+d
2

(1lz-a,)

1 2-d,
[(a -b) {In( a +b -bd, )+In(a)) (28)

1 2-d,

(p ) {In( + d )+In(p»)],-q p q -q ,

q =((1 +d3 CPt-al) . Finally, the exact distribution of me channel milization random variable U

can be given as

, , ,
FUCI) = 7tIOJfDl(.x)dx+1tolJfD~(X)dx+1tl1ffDl(x)dx

o 0 0
(29)

6. SUMMARY AND CONCLUSIONS

The iment of lhis paper was to address a problem suggested by Paul Kuehn [Kueh79] [0 be

an open problem, i.e., the cycle-time disuibuLion of a single cyclic server in a multiqueueing sys-

tern when the service discipline at each queue is strictly at-most-one customer at a time. A

motivating factor was the applicability of ideas developed here in lhe perfonnance of tokcn-

passing computer networks.

We introduced a queueing model comprised of a system of dependent queueing processes,

and Poisson arrivals. Wirnout specifying distribution particulars (orner than desirable properties,
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such as existence of the first two moments) for the multiqueueing system, we detennine that an

exact solution for the loken's cycle-time distribution can be obtained. The distribution is

obtained as a finite mixture. where the mixing distribution is the limiting distribution of an

ergodic Markov chain. In the general case, the final fonn of the cycle-lime distribution will

require the computation of the distributions of sums of independem random variables. There are a

number of methods available for doing this (see for example [AlOb82J. [MaSa731, [MathS3]).

A numerical example is presented for a two-station system to demonstrate the general

method. For completeness, we derive and compme approximate fOnTIS of the cycle-time disrribu­

tions based on an independence assumption made by Kuehn [Kueh79] and previously Hashida

and Ohara [HaOh72] (we call it SIN, or station independence). However, these authors worked

with the Laplace-Stieltjes transform to obtain the first two moments and did not actually compute

the distribution. By computing bom the exact as well as lhe approximate distributions, we

demonstrate a breakdown of me sm assumption and confirm some empirical observations made

by Kuehn. The exact and approximate results are also compared to results obtained through simu­

lation.

In the course of me analysis, we detennine that me computation is simplified if we C1ssumc

that packets transmitted by stations in different cycles have independently rnndom lengms (we

call this pm, or packet independence). Applying pm to the numerical values showed that pm

did well in this case. How well the PIN assumption does in a variety of situations is a subject that

is presently being studied.

The queueing process at a single stalion can be embedded in a single-server model, where

the server is prone to taking vacations [Rego85]. Unlike the classical server-vacation models, the

vac<ltion periods of this system tum out to be dependent on service limes. As an application of

the service vector approach, we obw.in the distribulion of server vacation periods as a PH­

dislribution, a fonn suitable for computation. As another simple application of the exact methods,
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we define a random variable as a function of service vectors to represent the stochastic channel

utilization of the steady-staw system. For a two station system it is shown how the distribution of

random channel utilization may be readily computed. This gives us the mean channel utilizmion

and also ali the moments.
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APPENDIX

assumption of station independence

assumption of packet independence

no independence (assumptions)

number of stations

S set of stations {I, 2, ,N}

W

S·

c

e

Q(+~)

p.

set of " walks" {wl'WZ' ... ,wN}

SuW

imerarrival time cd! for station} arrivals,} E S, (r'v is 'i)

packet transmission length cd! for station} ,} E S, (r'v is Xi)

token's switching time cd! for station} ,} E S, (r·v is Vi)

token's walk lime (from station) - 1 to station}) cd! ,} E S (r'v is Yj )

meanofYi

cycle-time of !.he token (server)

Bemovll r'v, set to 0 if queue i is found empty (at steady-state), and 1 otherwise

set of all N -bit binary vectors k = (k r,kz, ... ,kN )

kernel (matrix) of transition functions for the semi-Markov process
introduced under SIN

embedded Markov chain for this semi-Markov process

limiting stiUe probabilities obtained for embedded Markov Chain (under SIN)

standard nonnalization probability used for semi-Markov limiting probabilities

limiling srate probabililies obtained for semi-Markov Chain (under SIN)
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u· approx. mean charmel utilization (under SIN)

Zj tells if station i I:ransmitted in current state of observer

Zj tells if station i transmitted in next state of observer

SV service vector

, ,
<ZI, Z2>, <zI. Z2> currentandnextstateSV~

82 {OO, 01,10, ll}

ZfI' 2 11 + I observe srate at n rh and (n + lyh transition steps

{Z(t), t ;;:: O} semi-Markov Chain given by observer transitions (under NIN)

{Zn. n :<:: O} Markov chain of observer transitions (under NIN)

qj steady-srate conditional probability that station i has exactly one
cus[Qrner queued. conditioned on lhe event that it is nonempty.

T j Y j + Zj Xi ,-station ('s component of cyc1e~time in current state of observer

T/ Yj + Z/Xi, stati,on i 's component of
cycle-time in next state of observer

Ck random time between consecutive server exits from
stationk ,k = I, 2

Pk(O, Ck) probability ofzern packet arrivals at station k during cycle
C" generated by corresponding pair <z 10 z2>' <z ~ , zi>, k = I, 2

~,,<z; I <z, z'» probability that station k makes its part of the transition

f C 1, cJ, -) joint probability density for C 1 and C2

P - probability transition matrix obtained under PIN

P probability transiLion matrix obtained underNIN

Cj- random length of cycle conditioned on the event
that a station j cUSLOmer is served in the cycle

9t {z E a I ph bit in Z is a I}

N conditional Markov chain (see eq. 22) "",,,,1;,,,,;(
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