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Abstract

Battery lifetime is a key impediment to long-lasting low power sensor nodes and networks thereof.

Energy harvesting — conversion of ambient energy into electrical energy — has emerged as a viable

alternative to battery power. Indeed, the harvested energy mitigates the dependency on battery power

and can be used to transmit data. However, unfair data delivery delay and energy expenditure among

sensors remain important issues for such networks. We study performance of sensor networks with mobile

sinks: a mobile sink moves towards the transmission range of the different static sensor nodes to collect

their data. We propose and analyse a Markovian queueing system to study the impact of uncertainty in

energy harvesting, energy expenditure, data acquisition and data transmission. In particular, the energy

harvesting sensor node is described by a system with two queues, one queue corresponding to the battery

and the other to the data buffer. We illustrate our approach by numerical examples which show that

energy harvesting correlation considerably affects performance measures like the mean data delay and

the effective data collection rate.

1 Introduction

Sensor networks, formed by collections of intercommunicating sensor nodes (SN), are used to collect and
monitor spatially distributed data like temperature, humidity, movement, noise, etc [1–3]. Sensor networks
have a variety of applications including military, environmental, home and health applications, see e.g.
Akyildiz et. al [1, 2] for an extensive overview of actual applications and Alemdar and Ersoy [4] for specific
applications in healthcare.

A typical SN includes a sensing subsystem, local data processing capability and a data communication
subsystem, all drawing power from an on-board battery [5, 6]. As the lifetime of the sensor network mostly
depends on the limited energy budget of its SNs, energy conservation has been a major concern in the design of
sensor networks since their inception. Indeed, the replacement of batteries is often expensive if not impossible
once the SNs are deployed. According to Anastasi et al. [7], controlling the communication subsystem is the
key to reducing energy consumption. Ideally, the communication subsystem should be switched off when not
needed and waken up again when necessary. This basic idea is applied when operating under dynamic power
management (DPM). DPM can be integrated into the medium access control (MAC) protocol or may be
implemented independently. A detailed explanation of both approaches with a list of low duty cycle MAC
protocols and independent sleep/wakeup protocols are respectively given in section 4.2 and 4.3 of [7].

Despite vast improvements on power consumption and ongoing developments in power management, the
limited energy budget of on-board batteries remains an impediment for long-lasting sensor networks. To
mitigate or overcome this dependency on batteries, current research effort focusses on the development of
sensors that scavenge the necessary energy from their environment [6, 8–12]. This alternative technique is
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called energy harvesting (EH). The specific nature of such energy-harvesting wireless sensor networks (EH-
WSNs) requires a thorough understanding of the energy harvesting dynamics and its impact on performance.

The present paper studies the performance of a specific type of EH-WSNs: sensor networks where the
data is collected by mobile sinks. Such a network consists of static sensors responsible for sensing envi-
ronmental variables, and mobile sinks that move to designated sink locations where they gather the data
that is collected by the static sensors. Sink mobility in conventional sensor networks is known to reduce the
energy consumption of the sensors, balance the workload among sensors and overcome the hot-spot effect,
and prolong the lifetime of the sensor network [13–21]. Some applications of WSNs with mobile sinks include
monitoring of agricultural areas [22], improving WSN data delay in emergency situations [23], and continuous
object tracking [24]. Contributions on models for EH-WSNs are discussed below.

1.1 Related literature

Various authors have proposed models for EH-WSNs. Within the control community, Sharma et al. [25]
study the optimal energy consumption of an EH-WSN that periodically transmits data. The authors mainly
tackle existence questions. In particular, they show the existence of an α-discount optimal and average cost
optimal control policy assuming finite energy storage capacity. The same control problem is addressed by
Yang and Ulukus [26], albeit in a deterministic setting. That is, the authors consider a setting where the
amount of harvested energy and the data arrivals are known in advance. Also in a deterministic setting,
Tutuncuoglu and Yener [27] consider optimal transmission policies for short-term throughput maximisation
and for transmission completion time minimisation. In contrast, Ozel and Ulukus [28] assume that the amount
of energy in consecutive time slots constitutes a sequence of independent random variables and derive the
optimal power allocation that maximises the average throughput based on the concepts of information theory.
The authors further provide a geometric interpretation for the resulting power allocation. Rajesh et al. [29]
find the Shannon capacity of a sensor node with an energy harvesting source and show that the capacity
achieving policies are related to throughput optimal policies. They also obtain the capacity when energy
conserving sleep-wakeup modes are supported as well as the achievable rate for a system with inefficiencies
in energy storage. Finally, Zhang and Seyedi [30] derive the overall probability of packet loss in the network
due to channel errors or lack of energy in the nodes. Based on this result, a near-optimal design for sizing a
sensor’s energy storage and harvesting components is obtained.

Sensors being autonomous in deciding which information to transmit as well as when to transmit, various
authors propose game theoretic models; see e.g. [31] for power control games in wireless networks. Tsuo et
al. [32] consider a Bayesian game where each node knows its local energy state. An evolutionary hawk and
dove game with harvesting nodes transmitting either at high or low power is studied in [33] and [34]. With a
focus on solar power, Niyato et al. [35] determined the optimal energy management of sensor nodes adopting
a sleep-wakeup strategy by means of a bargaining game.

Other authors propose Markovian models to study EH-WSNs. In particular, Jornet and Akyildiz [36]
and Seyedi and Sikdar [37, 38] analyse the battery dynamics of a sensor node as a Markovian model. More
precisely, the battery is modeled as a Markovian buffer. Ventura and Chowdhury [39] propose a similar model
for an energy harvesting body sensor network and allow for multiple sensor nodes harvesting from the same
energy source. Ho et al. [40] and Lee et al. [41] verify statistically that a Markov modulated arrival process
is appropriate for describing solar energy harvesting. Sahu et al. [5] study stochastic stability of an energy
harvesting node with data buffering and rely on simulation to assess its performance. Michelusi et al. [42]
focus on transmission policies for harvesting sensor nodes. Energy harvesting is modelled by a two-state
discrete time Markov chain. In [43], battery degradation is studied assuming a Markovian harvesting process
with a finite number of states. With battery degradation, the harvested energy is not available perpetually
(or till it is consumed), but only remains available for a geometrically distributed amount of time. Finally,
Michelusi et al. [44] investigate transmissions when the state of the battery is not known perfectly. In such a
scenario, energy outage — a lack of energy to complete the requested transmission — should be taken into
account.

Finally, some authors particularly study EH-WSNs with mobile sinks, most authors focussing on opti-
mising the path of the mobile sink or the transmission rate. Ren and Liang [45] formulate an optimisation
problem to find an optimal close trajectory for the mobile sink and to schedule the sojourn time at each
sojourn location such that the network throughput is maximised. The same authors also study the path
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optimisation problem where the path of the mobile sink is constrained [46]. In contrast to optimising the
mobile sink path, Ren, Liang and Xu [47] and Mehrabi and Kim [48] focus on optimising the transmission
rates when the mobile sink travels along a fixed path with a fixed speed.

1.2 Contribution

The major contributions of this paper are as follows. We propose a versatile Markovian model for an energy-
harvesting sensor node in a sensor network where data is collected by a mobile sink. The model allows
for introducing correlation in the data collection and energy harvesting processes as well as for introducing
differences in energy expenditure while transmitting and/or collecting data. While the Markovian setting at
hand allows for computationally efficient performance evaluation of the EH-WSN, it is not limiting in terms
of versatility. Indeed, the introduction of a Markovian environment variable allows for the introduction of
time-correlation in both energy harvesting and data collection (cfr. infra). We show that various performance
measures of interest like the mean data delay, the data collection rate and the mean battery level can be
calculated efficiently. By means of illustration, we study the effect of correlation in energy harvesting and
sensing on these performance measures and show that time correlation of the energy harvesting process is a
key determinant of the performance of the sensor network.

The model at hand primarily focusses on a static node in isolation which senses changes of environmental
parameters, its data being collected by a mobile sink. However, the model is sufficiently versatile to be of use
in other application scenarios where the randomness of sensing and harvesting have a considerable impact on
the performance of the WSN. For example, the model can be used to study nodes that relay data from other
sensor nodes to the mobile sink. Indeed, from a modelling perspective, there is no difference in buffering
sensed or relayed data.

The present work most closely relates to the Markovian models above. However, in contrast to existing
literature, we explicitly account for data buffering. This makes the problem more complex as the energy
harvesting sensor node now consists of two buffers: a finite-capacity buffer modelling the battery and an
infinite-capacity buffer which tracks the temporarily stored data. From a methodological perspective, the
model under study relates to paired queueing systems. Pairing means that transmission is only possible
if both queues are nonempty. These systems have been studied in various contexts including leaky-bucket
access control [49,50], kitting processes [51,52] and decoupling buffers in production systems [53]. The present
paper extends our preliminary findings presented in [54] which also studies an energy harvesting sensor node,
but adopts a simplified energy expenditure model.

1.3 Paper organisation

The remainder of this paper is organised as follows. In the next section, the EH-WSN model under investi-
gation and the notational conventions are introduced. In section 3, the stochastic process at hand is shown
to fit the framework of quasi-birth-and-death processes (QBD). This section also discusses the numerical
solution methodology that leads to the relevant performance measures. To illustrate our approach, section 4
considers various numerical examples. Finally, conclusions are drawn in section 5.

2 Model description

Noting that a battery operates very much like a queue — energy chunks being the “customers” in the queue,
see [55, 56] — we focus on a single energy-harvesting sensor node in an WSN as depicted in Figure 1. The
energy harvesting sensor node is modelled as a queueing system with two queues, one finite-capacity queue
for the battery and one infinite-capacity queue for the data buffer while service is only available when the
mobile sink is in range. More precisely, data transmission is only possible when (i) there is sufficient energy,
(ii) there is sensed data available and (iii) the mobile sink is within range. The stochastic processes that
describe data collection and storage, energy harvesting and storage, energy expenditure and transmissions
are described below.

Concerning data acquisition, we assume that the sensor picks up data in accordance with a Markovian
arrival process with finite state space A = {a1, . . . , aA}. Let Ω1

A and Ω0
A denote the generator matrices

governing state transitions with and without data packet arrivals when the energy queue is not empty.
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Figure 1: Stochastic model of energy harvesting for low power sensor nodes.

Similarly, let Ω̃1
A and Ω̃0

A denote the generator matrices governing state transitions with and without data
packet arrivals when the energy queue is empty. Prior to transmission, sensed data is temporarily stored in
the data buffer which has infinite capacity. Hence, the data process is described by two state variables: the
number of data packets in the buffer and the state of the Markovian arrival process.

Remark 1. We do not exclude the possibility of data arrivals when there is no energy. This is e.g. possible
if harvesting always supplies sufficient energy for sensing. In such a case, we can directly subtract the energy
for sensing from the harvested energy. The excess energy is then stored in the energy buffer, to be used for
transmissions later on.

Remark 2. Here and in the remainder, we assume that generator matrices only collect the transmission
rates. Hence, the diagonal elements of the generator matrices of unmarked transmissions like Ω0

A are zero.
Of course marked transmissions without state change are possible such that the diagonal elements of the
generator matrices of the marked transitions like Ω1

A may be non-zero.

Analogously to the sensing process, energy harvesting is modelled by a Markovian arrival process with
state space E

.
= {e1, . . . , eE} in accordance with the findings in [40]. Let Ω1

E and Ω0
E denote the generator

matrices governing the state transitions with and without energy arrivals respectively. The energy queue has
finite capacity Ce to reflect limitations in energy storage. We however do not subscribe to the energy chunk
paradigm where each customer in the energy queue represents a chunk of energy. Instead, we associate queue
content with energy levels, the difference being that a packet transmission does not necessarily requires a
complete chunk of energy and that an “energy arrival” corresponds to an increase of the energy level. While
our modelling assumptions still allow for considering the battery as a storage for energy chunks, dropping the
concept of energy chunks in favour of energy levels enables one to describe the dynamics of large batteries
with less Markovian states. This speeds up the computation of the various performance measures without
loss of accuracy (cfr. Figure 4 below).

To introduce energy expenditure and transmission, a third marked Markov process is introduced with
state space D = {d1, . . . , dD}. This Markov process describes the departures from both energy and data
queue and its generator matrices therefore depend on wether or not data and energy are available. When
both data buffer content and energy level are non-zero, let Ωe

D, Ωd
D, Ωde

D and Ω0
D denote the generator matrices

governing the transitions when the energy level decreases, when there is a data transmission completed, when
the energy level decreases and a data transmission is completed and when there is a state transition with
neither an energy drop nor a transmission completion respectively. When there is energy available and no
data in the buffer, let Ω̂e

D and Ω̂0
D denote the generator matrices governing the transitions when there is

a decrease of energy and when there is no decrease of the energy level. Finally, when there is no energy
available, data transmission is also not possible. Hence in this case only non-marked state transitions are
possible. Let Ω̃D denote the corresponding generator matrix. The following two examples illustrate the
versatility of the introduced marked Markov process above.

Example 1. As a first example, consider an exogenous Markov process which neither depends on queue
content nor energy level. Let ΩD be its generator matrix and let its state space D be partitioned into two
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non-overlapping sets Da and Db with Da and Db elements, respectively. The chain describes the availability
of a receiver (like a mobile sink): transmissions occur at a rate µ when the chain is in Da (when there is data
to send) and there are no transmissions while being in Db. We further assume that the energy buffer depletes
at a rate θa during data transmission and at a rate θb when there is no transmission. In accordance with [38]
and [36], energy is required to communicate with other nodes and to sense, compute and store data. This
required amount of energy increases during data transmission such that θa > θb. In this case, there are no
simultaneous departures from the data and energy queue. Hence, we have,

Ωde
D = 0 .

While there is data and energy, the depletion rates of data and energy queues depend on the state of the
exogenous Markov process,

Ωd
D =

[
µIa 0
0 0

]
, Ωe

D =

[
θaIa 0
0 θbIb

]
,

where Ia and Ib are identity matrices of size Da×Da and Db×Db, respectively. In the absence of data there
are no data transmissions such that,

Ω̂e
D = θbID ,

with ID the identity matrix of size D ×D. Finally, as the state of the Markov chain changes independently
of the presence of data and energy, we have,

Ω0
D = Ω̂0

D = Ω̃D = ΩD .

Example 2. Adopting the energy chunk paradigm, assume that every data transmission requires a single
energy chunk from the battery, while sensing does not take energy (see Remark 2). Hence, only simultaneous

departures from both data and energy queue are possible. This implies Ωe
D = Ωd

D = Ω̂e
D = Ω̂e

D = 0. Adopting
the exogenous Markov process with generator matrix ΩD from the preceding example, state changes of this
Markov process do not depend on the presence of data and energy such that,

Ω0
D = Ω̂0

D = Ω̃D = ΩD .

Again assuming that transmissions occur at a rate µ when the chain is in Da and that there are no trans-
missions while being in Db, the remaining generator matrix Ωde

D then has the block matrix representation,

Ωde
D =

[
µIa 0
0 0

]
.

3 Analysis

We now show that the Markov process at hand is a quasi-birth-death-process (QBD) by identifying the level
and phases of the QBD. We first introduce the balance equations as well as some auxiliary matrices.

3.1 Balance equations

Let Q(t) and C(t) be the number of packets and the energy level at time t. Moreover, let E(t), A(t) and D(t)
be the state of the energy, data, and transmission process, respectively. The state (in the Markov sense) of the
sensor node at time t can then be represented by the vector [Q(t), C(t), E(t), A(t), D(t)] ∈ N×C×E ×A×D
with C = {0, 1, . . . , Ce}.

Let π(n,m, e, a, d) denote the probability that there are n data packets in the data buffer, that the energy
level is m and that the energy, arrival and departure states equal e, a, and d, respectively. In the remainder,
let the rate ωx

X(i, j) be the (i, j)th element of the matrix Ωx
X for X ∈ {A,E,D} and for x ∈ {0, 1, d, de, e}.

The rates ω̂x
X(i, j) and ω̃x

X(i, j) are defined likewise.
We have the following possible transitions from state (n,m, e, a, d):

• Harvesting: For m < Ce, there is an energy arrival with rate ω1
E(e, e

′) for all e′ ∈ E . The new state
is (n,m+ 1, e′, a, d). Furthermore, the state of the arrival process changes with rate ω0

E(e, e
′) to state

(n,m, e′, a, d) for all e′ ∈ E \ {e}.
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Figure 2: Transition rates from and to state (n,m, e, a, d) to and from states in levels n− 1 and n+ 1.
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Figure 3: Transition rates from (to) state (n,m, e, a, d) to (from) states in level n.
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• Data acquisition: For m > 0 there is a data arrival with rate ω1
A(a, a

′) for a′ ∈ A. The new state is
(n + 1,m, e, a′, d). For m = 0 there is a data arrival with rate ω̃1

A(a, a
′) for a′ ∈ A. The new state

is (n + 1, 0, e, a′, d). Furthermore, the state of the arrival process changes with rate ω0
A(a, a

′) to state
(n,m, e, a′, d) for m > 0 and with rate ω̃0

A(a, a
′) to state (n, 0, e, a′, d) for m = 0 and for all a′ ∈ A\{a}.

• Departures: For m > 0 and n > 0 there is a simultaneous departure of energy and data with rate
ωde
D (d, d′) for d′ ∈ D. The new state is (n− 1,m− 1, e, a, d′). For m > 0 and n > 0 there is a departure

of energy with rate ωe
D(d, d′) for d′ ∈ D, the new state is (n,m− 1, e, a, d′). For m > 0 and n > 0 there

is a departure of data with rate ωd
D(d, d′) for d′ ∈ D, the new state is (n− 1,m, e, a, d′). For m > 0 and

n > 0 the state of the departure process changes with rate ω0
D(d, d′) for d′ ∈ D \ {d}, the new state is

(n,m, e, a, d′). For n = 0 and m > 0, there is a departure of energy with rate ω̂e
D(d, d′) for d′ ∈ D, the

new state is (n,m − 1, e, a, d′). For n = 0 and m > 0 the state of the departure process changes with
rate ω̂0

D(d, d′) for d′ ∈ D \ {d}, the new state is (n,m, e, a, d′). Finally, for m = n = 0, the state of the
departure process changes with rate ω̃0

D(d, d′) for d′ ∈ D \ {d}, the new state is (n,m, e, a, d′).

The possible state transitions from and to state (n,m, e, a, d) (for n > 0 and C > m > 0) are also depicted in
figures 2 and 3. Figure 2 shows the possible transitions that change the size of the data buffer (or the level,
cfr. infra), while figure 3 shows the possible transitions where the size of the data buffer does not change.
In view of the transition diagrams depcited in Figures 2 and 3 and in view of the possible state transitions
described above, we find the following balance equations,

π(n,m, e, a, d)γ(n,m, e, a, d) =
∑

e′∈E\{e}

π(n,m, e′, a, d)ω0
E(e

′, e) +
∑

e′∈E

π(n,m− 1, e′, a, d)ω1
E(e

′, e)

+ 1{m>0}

∑

a′∈A\{a}

π(n,m, e, a′, d)ω0
A(a

′, a) + 1{m>0}

∑

a′∈A

π(n− 1,m, e, a′, d)ω1
A(a

′, a))

+
∑

a′∈A\{a}

π(n, 0, e, a′, d)ω̃0
A(a

′, a) +
∑

a′∈A

π(n− 1, 0, e, a′, d)ω̃1
A(a

′, a)

+
∑

d′∈D

(1{n>0}π(n,m+1, e, a, d′)ωe
D(d′, d)+1{m>0}π(n+1,m, e, a, d′)ωd

D(d′, d)+π(n+1,m+1, e, a, d′)ωde
D (d′, d))

+ 1{m>0,n>0}

∑

d′∈D\{d}

π(n,m, e, a, d′)ω0
D(d′, d) +

∑

d′∈D

π(0,m+ 1, e, a, d′)ω̂e
D(d, d′)

+ 1{m>0}

∑

d′∈D\{d}

π(0,m, e, a, d′)ω̂0
D(d′, d) +

∑

d′∈D\{d}

π(n, 0, e, a, d′)ω̃D(d′, d) , (1)

for n ∈ N, m ∈ C, a ∈ A, e ∈ E and d ∈ D. Here γ(n,m, e, a, d) denotes the total outgoing rate from state
(n,m, e, a, d),

γ(n,m, e, a, d) =
∑

e′∈E\{e}

(ω0
E(e, e

′) + ω1
E(e, e

′)) + 1{m<Ce}ω
1
E(e, e) +

∑

a′∈A\{a}

ω0
A(a, a

′) +
∑

a′∈A

ω1
A(a, a

′)

+ 1{m>0,n>0}

∑

d′∈D

(ωe
D(d, d′) + ωd

D(d, d′) + ωde
D (d, d′)) + 1{m>0,n>0}

∑

d′∈D\{d}

ω0
D(d, d′)

+ 1{m>0,n=0}

∑

d′∈D

ω̂e
D(d, d′) + 1{m>0,n=0}

∑

d′∈D\{d}

ω̂0
D(d, d′) + 1{m=0}

∑

d′∈D\{d}

ω̃D(d, d′) . (2)

We now focus on the block matrix representation of this system of equations and its numerical solution.

3.2 Auxiliary matrices

We first describe the transition matrices of the marked Markov process that tracks all state information
except the queue content and the energy level. Recall that the state space of the energy harvesting process,
of the sensor data arrival process and of the departure process are denoted by E , A and D, respectively. This
Markov chain then has state space K = E × A ×D with size K = E AD and its transition matrices depend
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on the presence of data and energy. Let IE , IA and ID denote identity matrices with size E ×E, A×A and
D ×D, respectively. In the remainder we use the symbol ⊗ to denote the Kronecker product.

• When both energy level and queue content are non-zero, the unmarked transitions (when there are
neither arrivals nor departures) are governed by the K ×K matrix,

A = Ω0
E ⊗ IA ⊗ ID + IE ⊗ Ω0

A ⊗ ID + IE ⊗ IA ⊗ Ω0
D .

Analogously, when there is energy but no data and when there is neither energy nor data, the unmarked
transitions are governed by the K ×K matrices,

Â = Ω0
E ⊗ IA ⊗ ID + IE ⊗ Ω0

A ⊗ ID + IE ⊗ IA ⊗ Ω̂0
D .

and,
Ã = Ω0

E ⊗ IA ⊗ ID + IE ⊗ Ω̃0
A ⊗ ID + IE ⊗ IA ⊗ Ω̃D ,

respectively.

• The K ×K matrix BE governs the transitions when there is an arrival in the battery:

BE = Ω1
E ⊗ IA ⊗ ID .

• The K ×K matrices BA and B̃A govern the transitions when there is an arrival in the data buffer and
there is energy and no energy respectively:

BA = IE ⊗ Ω1
A ⊗ ID , B̃A = IE ⊗ Ω̃1

A ⊗ ID .

• The marked transitions when the energy level drops and/or when there is a transmission again depend
on the presence of data and energy. When there is both data and energy, let CD, CE and CDE denote
the K ×K generator matrices governing the transitions when there is a transmission, an energy drop
or both, respectively:

CD = IE ⊗ IA ⊗ Ωd
D ,

CE = IE ⊗ IA ⊗ Ωe
D ,

CDE = IE ⊗ IA ⊗ Ωde
D .

When there is energy but no data, the K ×K matrix governing the transitions when the energy level
decreases is given by,

ĈE = IE ⊗ IA ⊗ Ω̂e
D .

Remark 3. In the remainder, all results will be expressed in terms of the matrices defined above. These
results remain valid when the arrival processes of data and energy and the departure process are correlated
as well. In that case there is a single marked Markov process, with marks for data arrivals, energy arrivals
and data transmissions.

3.3 Quasi-birth-death process

The Markov process under study is a homogeneous quasi-birth-and-death process (QBD), see [57]. A Markov
process is a QBD if its state can be described by a positive integer level and a phase taking values in a finite set
such that there are only transitions within the same level or to neighbouring levels. The generator of such a
Markov process has a block tridiagonal structure, which allows for efficiently calculating various performance
measures of the Markov process (cfr. infra).

In the present setting, the level or block index indicates the number of data packets available while the
phase, i.e. the index within a block element, indicates both the battery level and the state of the modulating
chain. That is, the phase takes values in the set C × K. Describing the state of the system by the triplet
[n,m, i], n ∈ N being the number of data packets available, m ∈ C being the battery level and i ∈ K being the
state of the modulating chain, the balance equations show that there are only transitions restricted to states
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in the same level (from state [n, ∗, ∗] to state [n, ∗, ∗]) or between two adjacent levels (from state [n, ∗, ∗] to
state [n+ 1, ∗, ∗] or state [n− 1, ∗, ∗]).

We then find that the generator matrix of the Markov chain has the following block matrix representation,

Q =




B0 A2 0 0 · · ·
A0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .



. (3)

The blocks are matrices of size P × P with P
.
= (Ce + 1)K and are given by,

B0 =




Ã BE 0 · · · 0

ĈE Â BE · · · 0

0 ĈE Â · · · 0
...

...
...

. . .
...

0 0 0 · · · Â




, (4)

A0 =




0 0 · · · 0 0
CDE CD · · · 0 0
0 CDE · · · 0 0
...

...
. . .

...
...

0 0 · · · CDE CD



, (5)

A1 =




Ã BE 0 · · · 0
CE A BE · · · 0
0 CE A · · · 0
...

...
...

. . .
...

0 0 0 · · · A



, (6)

and,

A2 =




B̃A 0 0 · · · 0
0 BA 0 · · · 0
0 0 BA · · · 0
...

...
...

. . .
...

0 0 0 · · · BA



. (7)

Having defined the different blocks of the QBD process, we now focus on the solution method. Recall
that the state of the Markov chain is described by the triplet [n,m, i]; n is the size of the data buffer, m is the
size of the battery and i is the state of the modulating chain. Let π(n,m, i) be the steady state probability
to be in state [n,m, i] and let π be the vector with elements π(n,m, i). The vector π satisfies the balance
equations,

π(Q− ∂Q) = 0 .

Here, for any matrix X , we define ∂X to be the diagonal matrix with diagonal elements equal to the row sums
of X . A well-known method for finding the stationary distribution of QBD processes is the matrix-geometric
method. Using the vector notation πn = [π(n,m, i)]m∈C,i∈K, the matrix geometric method shows that these
probability vectors can be expressed as,

πn = π0R
n. (8)

where the so-called P × P rate matrix R is the minimal non-negative solution of the non-linear matrix
equation

R2A0 +RĀ1 +A2 = 0 ,
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with Ā1 = A1 − ∂A0 − ∂A1 − ∂A2. We compute the rate matrix by implementing the improved iterative
algorithm of [57, chapter 8, p.179-187]. Once the rate matrix is found, the remaining unknown vector πo is
the unique solution of,

π0(IP −R)−11P = 1 , π0(B̄0 +RA0) = 0 ,

with B̄0 = B0 − ∂A2, where IP is the P × P identity matrix and where 1P is a column vector of P ones.

3.4 Performance measures

Once the steady state probabilities have been determined numerically, we can calculate a number of interesting
performance measures for the harvesting energy sensor node. For ease of notation, we introduce the marginal
probability mass function of the battery level π(e)(m) and of the data buffer content π(d)(n),

π(e)(m) =
∑

i∈K

∞∑

n=0

π(n,m, i) =

∞∑

n=1

π0R
n(em ⊗ 1K) = π0(IP −R)−1(em ⊗ 1K) ,

π(d)(n) =
∑

i∈K

Ce∑

m=0

π(n,m, i) = π0R
n1P .

Here em is a column vector of size Ce + 1 with all its elements zero, apart from the mth element which is 1,
while 1K is a column vector of K ones. We have the following performance measures.

• The mean data buffer content Qd and the variance of the data buffer content Vd equal

Qd =

∞∑

n=1

π(d)(n)n , Vd =

∞∑

n=1

π(d)(n)n2 − (Qd)
2 ,

and can be expressed in terms of π0 and R as follows,

Qd = π0(IP −R)−1R(IP −R)−11P ,

Vd = 2π0(IP −R)−1R(IP −R)−1R(IP −R)−11P +Qd −Q
2

d .

• We express the battery level as a fraction of the maximum capacity of the battery. The mean battery
level Be and its variance Ve are given by,

Be =

Ce∑

m=1

π(e)(m)
m

Ce

, Ve =

Ce∑

m=1

π(e)(m)
m2

C2
e

− (Be)
2 .

• The mean data delay D (calculated based on Little’s theorem) is the average amount of time between
the arrival of a data packet and its transmission:

D =
Qd

ad
.

Here ad is the data collection rate: the mean number of data packets that are sensed per time unit.
The data collection rate ad only accounts for packets that effectively enter the data buffer. Its value
can be determined by the following expression,

ad = π0(IP −R)−1A21P .

4 Numerical results

Having established the model and its numerical analysis, we now evaluate the performance of an energy
harvesting sensor node that is visited by a mobile sink. Assuming no simultaneous departures from the data
and energy queue during data transmission, the numerical experiments fit Example 1 of Section 2.

We consider a scenario in which an isolated sensor is visited by a mobile sink for a fraction of the time.
We make the following assumptions:
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• Sensing and transmissions are only possible when there is energy (the battery level exceeds 0).

• The battery depletes at a rate θa during data transmission and at a rate θb when there is no transmission.

• To analyse the impact of irregularity in the energy harvesting process, we assume that energy arrives
in accordance with an interrupted Poisson arrivals. The interrupted Poisson process considered here is
a two-state Markovian process. In the active state, energy arrives in accordance with a Poisson process
with rate λ∗

e whereas no new energy arrives in the inactive state. Let αe and βe denote the rate from
the active to the inactive state and vice versa, respectively. For convenience, we use the more intuitive
parametrisation (σe, κe, λe), with

σe =
βe

αe + βe

, κe =
1

αe

+
1

βe

, λe = λ∗
eσe .

Here, σe is the fraction of time in which the interrupted Poisson process is active, the time scale
parameter κe is the average duration of an active and an inactive period, and λe is the arrival load of
harvested energy.

• Also data arrives in accordance with a (two-state) interrupted Poisson process. In the active state, data
arrives in accordance with a Poisson process with rate λ∗

d whereas no new data arrives in the inactive
state. Let αd and βd denote the rate from the active to the inactive state and vice versa, respectively.
For convenience, we use the more intuitive parametrisation (σd, κd, λd), with

σd =
βd

αd + βd

, κd =
1

αd

+
1

βd

, λd = λ∗
dσd .

where σd is the fraction of time during which the interrupted Poisson process is active, the time scale
parameter κd is the average duration of an active and an inactive period, and λd is the arrival load of
harvested energy.

• Data transmission times are exponentially distributed with service rate µ = 1.

• The fraction of time in which the mobile sink is available (unavailable) is exponentially distributed
with mean 1/αt (1/βt) such that the fraction of time σr the mobile sink is available and the average
duration κt of an available and non-available period equals

σt =
βt

αt + βt

, κt =
1

αt

+
1

βt

.

Note that 1/αt is the mean time that the mobile sink is in the transmission range of the sensor node.
In a scenario where the mobile sink does not stop, but only passes by with speed v, the mean time in
range relates to the transmission range T of the sensor node as T/v.

We can now study the effects of correlation in energy harvesting and data collection. However, we first
evaluate the choice of Ce which we will use in the remainder of this section. The value of Ce corresponds
to the number of energy levels we account for. The more levels one accounts for, the more accurate we can
capture the state of the battery. However, more levels also means that the number of possible phases of the
QBD increases which leads to longer calculation times, the number of phases being equal to P = 8(Ce + 1)
with the assumptions above. Fortunately, it turns out that once we have a sufficiently large Ce, a further
increase hardly influences the performance measures. Hence, there is no need to further increase Ce beyond
this level.

To determine the value of Ce, Figure 4 depicts the cumulative distribution function of the (normalised)

battery level for different values of Ce, κe and the normalised harvesting rate λ̂e as indicated. Normalisation
of the battery levels means that battery level Ce corresponds to 100% and the normalised harvesting rate λ̂e

is the harvesting rate that is needed to completely load the battery in the same time, but when the battery
has 100 levels. The normalised depletion rates θ̂a and θ̂b are defined likewise. The corresponding rates for a
model with capacity Ce are then calculated as follows,

λe = λ̂e

Ce

100
, θa = θ̂a

Ce

100
, θb = θ̂b

Ce

100
.
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Figure 4: Cumulative distribution of the (normalised) battery level for different values of Ce, κe and λ̂e as
indicated. (Energy collection σe = 0.1; Poisson data arrivals with rate λd = 0.001; energy depletion rates

θ̂a = 1.6 and θ̂b = 0.4; mobile sink parameters σt = 0.01 and κt = 1000.)

It is easily checked that the average time to completely deplete or load the battery is equal for every choice
of Ce. We assume the following depletion rates: θ̂a = 1.6 and θ̂b = 0.4. We further assume Poisson data
arrivals with rate λd = 0.001, the mobile sink is available for a fraction σt = 0.01 of the time, with κt = 1000,
while the node collects energy for a fraction σe = 0.1 of the time. Different values of λ̂e and κe are assumed
as indicated.

Figure 4 shows that the cumulative distribution function for Ce = 50 hardly differs from the corresponding
curve for Ce = 70. Therefore, we will fix the number of battery levels to Ce = 50 in the remainder. For this
choice, the number of phases (and therefore also the size of the matrices) equals P = 408. Figure 4 further

reveals that the probability mass is either concentrated around battery level 0 (for λ̂e = 0.2) or around

battery level Ce (for λ̂e = 0.4). This observation is in line with queueing theory: for finite queues most of
the probability mass of the queue content is either concentrated near 0 when the load is below the service
capacity or near full capacity when this is not the case.

Remark 4. In figure 4 as well as in the following figures we also depict simulation results for a number of
points on all curves to verify the correctness of our calculations. To simulate the system at hand, we have
used uniformisation to simulate the time-evolution of the Markov chain directly from the balance equations
(1) and (2), see [59, p. 61]. The simulation generates (i) samples from the energy level and (ii) samples
from the data delay. The delay is calculated by logging the arrival times of all data arrivals such that we
can calculate the data delay upon departure. In addition, for every arrival we generate an arrival indicator
sample which equals one if the arrival is admitted and zero if this is not the case. Recall that a data arrival
is not admitted if there is no energy. We have simulated 108 samples from the system state to estimate
the mean and distribution of the battery level, 2 × 106 data delay samples to estimate the mean delay, and
2×106 arrival indicator samples to estimate the fraction of admitted arrivals. We have used the batch means
method to estimate the confidence interval of these estimators.

Having decided on the number of battery levels, we now study the effect of energy harvesting correlation.
Figure 5 depicts the mean data delay D, the mean battery level Be and the fraction of arriving data that is
collected φd = ad/λd versus the arrival rate λe of energy packets for different values of κe as indicated. Note
that the sensor may not be able to collect all data as data is only collected if there is energy. The sensor
node harvests during a fraction σe = 0.1 of the time. In addition, data arrives in accordance with a Poisson
process with rate λd = 0.001 whereas the mobile sink is with the sensor node 1% of the time (σt = 0.01) and
returns after a time κt = 1000 on average. Finally, the depletion rate of the battery during transmission is 4
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Figure 5: Mean data delay D, mean battery level Be and data collection rate φd vs. the energy arrival
rate λe for different values of κe. (Energy collection parameters σe = 0.1; Poisson data arrivals with rate
λd = 0.001; energy depletion rates θa = 0.8 and θb = 0.2; battery capacity Ce = 50; availability of the mobile
sink σt = 0.01 and κt = 1000.)

times the depletion rate while it is not transmitting (θa = 0.8 and θb = 0.2) while the battery has Ce = 50
levels in accordance with the findings of Figure 4.

From Figure 5 we observe that when there arrives more energy (increasing λe), the mean data delay
decreases, the mean battery level increases and the fraction of data that is sensed increases as well. This is
not unexpected. When there is more energy, it is less likely that the sensor node runs out of energy when
the mobile sink passes by. If the sensor node has no energy, transmissions need to be postponed till the next
time the mobile sink passes by such that the data delay increases. Moreover, if there is more excess energy,
more energy will be stored in the battery such that the mean battery level increases. Finally, when there
is more energy, the chance to run out of energy decreases such that it is less likely that the sensor node is
without energy when there is something to sense.

We further observe that the mean data delay is considerably higher for higher κe while the amount of
sensed data is considerably lower for higher κe. Higher κe (for a fixed σe) means that we have longer periods
with harvesting followed by longer periods without harvesting. In other words, the supply of energy is more
bursty and the chance to run out of energy during the long periods without harvesting increases. This in
turn implies that it is more likely that there cannot be transmissions (an increase of the mean data delay) or
sensing (lower φd) due to a lack of energy. The effect of κe on the mean battery level is less clear. For low λe,
increasing κe leads to an increase of the mean battery level while the opposite effect is observed for higher
values of λe. This effect can be explained by accounting for the finiteness of the battery. For low λe it is not
likely that energy is lost as the battery is hardly ever fully loaded. In this case, the battery level increases
to higher levels during the longer periods with harvesting leading to an overall increase of the mean battery
level. In contrast, for higher λe, the battery capacity is reached during the longer periods with harvesting and
energy is lost. Due to this loss, the battery runs out of energy during the longer periods without harvesting,
leading to an overall decrease of the mean battery level. Results not shown here confirm these qualitative
effects for different values of σt, κt and different θa and θb as well as for interrupted Poisson data arrivals.

The effect of κe on D, Be and φd is further investigated in Figure 6 which depicts these performance
measures versus κe for different values of λe as indicated. We retain the assumptions on the various parameter
values from Figure 5 apart from the Poisson data arrivals. We now consider interrupted Poisson data arrivals
with parameters λd = 0.001, σd = 0.1 and κd = 100. The figure shows that the mean data delay increases
with κe while the fraction of sensed data decreases, in line with the observations of Figure 5. The mean
battery level first increases and then decreases, which again can be explained by the finiteness of the battery.
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Figure 6: Mean data delay D, mean battery level Be and data collection rate φd vs. the time scale parameter
for for different values of λe. (Energy collection parameters σe = 0.1; Interrupted Poisson data arrivals with
rate λd = 0.001, and parameters σd = 0.1 and κd = 100; energy depletion rates θa = 0.8 and θb = 0.2;
battery capacity Ce = 50; mobile sink availability parameters σt = 0.01 and κt = 1000.)

For low values of κe, an increase results in longer periods where the battery builds up (during harvesting)
followed by longer periods where it builds down (without harvesting) which implies an increase of the queue
content. For even larger κe, energy loss during the harvesting becomes more likely (even for fairly low λe),
this energy loss resulting in lower battery levels. Notice that the reduction in energy expenditure (less data
is sensed as seen on the φd plot, so less data needs to be transmitted), cannot compensate this energy loss.

In contrast to harvesting correlation which affects D, Be and φd, changing the time scale of the visits by
the mobile sink only affects the mean data delay. Figure 7 depicts the mean data delay D, the mean battery
level Be and the fraction of arriving data that is collected φd = ad/λd versus the arrival rate λe of energy
packets for different values of κt as indicated. We use the parameter values of Figure 5 for the data arrival
process, the battery capacity, the energy expenditure and the availability of the mobile sink and further
assume κe = 50. It is readily seen that an increase of κt results in longer data delays. This is not unexpected
as the time between consecutive visits of the mobile sink increases. In contrast, it is not entirely expected
that κt hardly influences Be and φd. To visualise the limited effect of κt, we have plotted the deviation of

Be and φd with respect to the case κt = 1: B
∗

e = Be(κt)/Be(1) − 1, φ∗
d = φd(κt)/φd(1) − 1. Additional

experimentation with different values of κe, σe, κt and σt confirmed this qualitative observation.
Finally, we study the effect of correlation in the sensing process. Figure 8 depicts the mean data delay D,

the mean battery level Be and the fraction of arriving data that is collected φd = ad/λd versus the arrival
rate λe of energy packets for different values of κd as indicated. We use the parameter values of Figure 5
for the battery capacity, the energy expenditure and the parameters of the mobile sink and further assume
κe = 50 and λd = 0.001. The value of κd hardly influences W , Be and φd. To visualise the limited effect
of κd on Be and φd, we have plotted the deviation of Be and φd with respect to the case that the arrival
process is Poisson. Qualitatively similar results were obtained when we increased and decreased κt and σt

which indicates that the arrival correlation of sensing data is not detrimental to performance.

5 Conclusion

In this paper, we analysed the performance of an energy harvesting sensor node assuming uncertainty in
energy harvesting, energy depletion and data acquisition. To this end, energy harvesting sensor nodes
were modelled as stochastic systems with two queues: one queue representing the battery and one queue
representing a sensor data buffer. We investigated EH-WSNs where data is collected by a mobile sink which
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Figure 7: Mean data delay D, mean battery level Be and data collection rate φd vs. the energy arrival rate
λe for different values of κt. (Energy collection fraction σe = 0.1; Poisson data arrivals with rate λd = 0.001;
energy depletion rates θa = 0.8 and θb = 0.2; battery capacity Ce = 50; collection parameters σt = 0.01 and
Kt = 1000.)
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Figure 8: Mean data delay D, mean battery level Be and data collection rate φd vs. the energy arrival rate
λe for different values of κd. (Energy collection fraction σe = 0.1 and κe = 50; Interrupted Poisson data
arrivals with σd = 0.1, with rate λd = 0.001 and with κd as indicated; energy depletion rates θa = 0.8 and
θb = 0.2; battery capacity Ce = 50; collection parameters σt = 0.01 and Kt = 1000.)
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introduced an additional source of uncertainty as sensor nodes can only send data when the mobile sink is in
range. Methodologically, we showed that the queueing system at hand can be described by a homogeneous
quasi-birth-death process (QBD). This allowed for calculating various performance measures computationally
efficient by means of matrix-geometric methods. Extensive numerical experimentation revealed that time
correlation of the harvesting process is a key determinant of the performance of the EH-WSN. In contrast,
the time between visits of the mobile sink only affected the mean data delay, whereas data arrival correlation
had only limited impact on all performance measures.
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