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ABSTRACT

This paper considers an n-server queueing system with m customer
classes distinguished by the reward associated with serving customers
of that class. Our objective is to accept or reject customers so as
to maximize the expected value of the rewards received over an in-
finite planning horizon. By making the assumptions of Poisson arrivals
and a common exponential service time this problem can be formulated
as an infinite horizon continuous time Markov decision problem. In
Section 3 we customize the general algorithm for solving continuous
time Markov decision problems to our queueing model. In Section 4
we obtain qualitative results about the form of the optimal policy.
Section 6 reports the results of simulation tests which compare heu-
ristic policies for our model when the service times associated with
each customer class have arbitrary distributions. The "winning"
policy is based on a rather intricate theorem whose proof comprises

Section 5.
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1. PROBLEM FORMULATION

We consider an n-server queueing system with m customer classes.

A customer class k 1s distinguished by the reward T agsociated with
serving a customer of that class. It is convenient to order the customer
classes so that r1 > T, > ... > r and we assume r, > 0. This assump-
tion makes the analysis 'cleaner" and is not restricting as customers
with negative rewards would be rejected (see next paragraph) anyway.
Customers of class k arrive according to a Poisson rate xk and their
service time is exponentially distributed with a mean of 1/u., indepen-
dent of k.

Decisions are made at the instant a customer arrives, We have the
choice (if some servers are free) of serving the arriving customer and
obtaining the associated reward or of rejecting the customer in order to
keep available servers free. We assume there is no backlogging of cus-
tomers or preemption. Our objective (given in detail later) is to maxi-

mize the average number of rewards per unit time the system receives

over an infinite planning horizon.

*Any views expressed in this paper are those of the author. They
should not be interpreted as reflecting the views of The RAND Corporation
of the official opinion or policy of any of its governmental or private
research sponsors. Papers are reproduced by The RAND Corporation as a
courtesy to members of its staff,

Much of the work presented here comes from part of the author's
Ph.D. dissertation in the Operations Research Prograr at Stanford and
was supported by the National Science Foundation under wyrant 3P-3739.



We use a scenario to illustrate the basic relationships of the
model. In this example there are 2 servers and 2 customer classes

defined by r, =6, r, =2 = 2/hour and . = l/hour.

\
1 2 S |

The initial state at time 0 is that both servers are free.

= 1/hour, g

: CUMULATED
TIME EVENT DECISION RESULTANT STATE REWARD
0:21 Class 2 Arrival Serve 1 Free Server, 1 Busy 2
0:35 Class 1 Arrival Serve 2 Busy Servers 8
1:17 Service Finished Does Not Apply 1 Free Server, 1 Busy 8
1:27 Class 2 Arrival Don't Serve 1 Free Server, 1 Busy 8
1:37 Service Finished  Does Not Apply 2 Free Servers 8
1:39 Class 2 Arrival Serve 1 Free Server, 1 Busy 10
1:45 Class 2 Arrival Don't Serve 1 Free Server, 1 Busy 10
1:56 Class 1 Arrival Serve 2 Busy Servers 16
2:17 Class 1 Arrival Can't Serve 2 Busy Servers 16

Formulation as a Continuous Time Markov Decision Process

We begin the formulétion as a continuous time Markov decision
problem by letting the states be 0, 1, ..., n, where being in state
i means 1 servers are free. We let Ai be the set of actions associated
with state i where an action is a set of integers indicating which cus-
tomer clasgses are to be served. For 1 > 1, Ai is the set of all pos-

sible subsets of {1, 2, ..., m} while A  has one action, the empty set.

0
For example, one action might be the set {2,5,8} and in cases where
this action applies customers of classes 2, 5, or 8 would be served

and all other types of customers would be rejected.

With each action a ¢ Ai we associate a reward rate r(a) = Ekeakkrk
which i1s independent of the state. The reward rate is an expected
reward rate. The chosen action a also determines a vector with com-
ponents q(j|i,a), O < j < n, having the property that q(j|i,a) > 0,

4 #1, and I, q(j|1,a) = 0. The interpretation of q(j|i,a) is the

3

transition rate into state } from state i using action a. We have



q(i+1]i,a) = (n-i)y (servers becoming free)
q(i-l\i,a) = Zkeaxk (customers being served)
q(iIi,a) = -(n-i)u—Zkea%k (transition rate out of i)
and q(jli,a) =0 otherwise.
‘Let F = X?=0 Ai' For each decision vector f ¢ F, we associated

a reward vector r(f) whose i component is r(fL) and an infinitesimal
generator matrix Q(f) whose (i,j) element is q(j]i,fi). In this
paper we will consider only stationary policies which are necessarily
elements of F. This class of policies seems sufficient large since in
(6, Theorem 7] it is shown that a stationary policy is optimal over the
class of piecewise constant policies in the averaging case. Using the
policy f means that when the system is in state i (i servers are
free) we will serve an arriving customer of class k if and only if
kefi.

We let pij(t’f) be the probability our system is in state j at
time t given the system was in state i at time 0 and we are using
the policy £, and P(t,f) be the corresponding matrix. It is well

known that the probability transition matrix function P(.,f) s given

by the solution of the differential equations
d
(1) ar P60 = B(&,D) Q(h)

with the initial condition P(0,f) = I.
In the infinite horizon averaging case we seek the f ¢ F such
that the vector of expected average rewards
T

(2) X(£) = 1im T ! [ (e, 8 (6
0



is maximized in all coordinates and this is called the optimal policy.
*
This limit exists since P(t,f) converges to a matrix P (f) [1, p. 181,

Theorem 17,

Related Models

A problem which we do not consider here, but which occurs at some
point in the decision making process is how many servers to procure.
This problem has been considered for related models by Tainter [7] and

Whisler [8]. Both of their models have only one customer class.

2. AN APPLICATION

The author became interested in this classg of problems when he
worked for an oil company. The oil company rents a fixed number of tank
cars to be used along with a pipeline to fill orders for liquid petroleum
gas which come from different warehouse locations all over the country.
The pipeline represents an unlimited supply method. When a tank car
satisfies a request it leaves the supply depot, delivers the gas to
the warehouse, and returns to the depot. When a request comes there is
a known cost of fulfilling the order by tank car or by pipeline
(typically a higher cost) and the decision maker must decide which
to use.

This problem can be modeled by letting the tank cars be servers
and the different warehouse locations be the customer classes. Shipping
by pipeline is equivalent to not serving the customer. The service time
is the turnaround time needed to ship the gas to the customer. The re-
ward associated with a warehouse location is the pipeline tariff minus

the tank car cost to that warehouse.



Our model represents reality reasonably well with respect to the
assumptions of no backlogging and no preemption as well as the reward
structure. The assumption of a common exponential service time is
unrealistic, and this problem must be handled by an approximation such

as those given in Sec. 6,

3. A SOLUTION ALGORITHM

The solution of finite state continuous time Markov decision
problems is considered by Howard [2, Chapter 10] and further examined
recently by the author [6].

We begin the algorithm by choosing an arbitrary f ¢ F and

calculating vectors =x(f) and y(£f) from the equations
(3 x(£) = P*(£) r(H) (see eq. (2)), and

(4) () + Q(f) y(£) = x(£) p¥(£) y(£) = 0.

The vector x(f) can be interpreted as the vector of steady state
rewards (which we are trying to maximize), and y(f) can be interpreted

from the equation
(5) 7o = [ - P(£) r(f) dt.
Then for each a ¢ Ai consider the following 1nequalities:
(6) Q (a) x(£) > 0,
(7 r(a) + Qi<é) y(£) 2 x ()

where Qi(a) is a row vector. Let G(f,i) be the set of actions a

such that (6) holds strictly or that (6) holds with equality and (7)
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holds strictly. If G(f,i) 1s empty for all i then f is optimal,

i.e., x(f) > x(g) for all geF. If not we obtain a new policy g by

setting 84 fi if G(f,i) is empty and 8 € G(f,1) otherwise, the
particular choice being arbitrary. The policy g is then substituted
for f, and we continue by calculating x(f) and y(f), etc. This

algorithm is finite since it has been shown that no policy recurs.

Specialization to the Queueing Model

For our queueing reward model, we are able to restrict our attention
n '
i=0 Ai’
Ai are defined by Ad = A0 = ¢, and A;, iz 1, differs from Ai in

that it does not include the action don't serve anyone, the empty set,

to a policy set F'c F (Theorem 4.6) where F' = X The sets

If fe¢ F' then all states communicate which implies the elements of
x(f) are identical,
If we let Vyi(f) = yi(f) - yi—l(f)’ then the first equation of

(4) can be written

_ nuVy, () = x(£)
(8) Zieg MW (D) * @Dy, () = x(9)
Zké:fn}\k(rk_vyn(f)) = X(f)

where x(f) 1is a scalar equal to the identical components of the
vector x(f). Since the coefficients of the Vyi(f) form a diagonal
matrix, these equations are extremely easy to solve for the unknowns
Vyl(f), Vyz(f), ooy x(£). The.first and third paragraphs of an example
near the beginning of Sec. 5 comprise a numerical example of (8).

All the elements of the vector x(f) are identical so that

equation (6) holds with equality for any state and action and is therefore



bypassed. Equation (7) becomes

9) B ahiF D) 2 B g My (5 Ty (D)

since r(a) + Q, (a)y(f) =7 (r Vy (f)) + (n- i)pVyi+1(f). and

kea k
from (8) x(f) = Zkefikk(rk-Vyi(f)) + (n—i)pVyi+1(f). Hence we can
construct the sets G(f£,i) from (9) alone. The algorithm for our
queueing model then reduces to picking an initial policy £, solving

(8), and then checking condition (9). Either f 1is optimal or we

obtain a new policy from (9) and repeat.

4. QUALITATIVE RESULTS

In this section we establish two qualitative results. The first
(Theorem 4.4) 1is that if it is optimal to serve a customer of class k
when 1 servers are free, it is optimal to serve a customer of class k
when j servers are free if j 2 i. The second (Theorem 4.6) is that
if f maximizes x(f) over f ¢ F' then f maximizes f ¢ F and we
can limit our attention to the set F'. To avoid uninteresting cases
we assume there is at least one server and one customer class.

Let f* be the policy obtained by the algorithm of Sec. 3 and
therefore optimal over the set F', It follows from (9) and the fact

%
that G(f ,i) is empty that for i =z 1,

Tre f: Al 9y ( £9] H(Vy  ( £)

where

u

H(x) xl(rl-x) if x>r

k 1 k[r x] if xsr,.



The first equation defining H(:) follows from our requirement that

f: is not empty. We note that H(x) is a strictly decreasing function
of x for all x.

Lemma 4.1. For any feF', 0 < x(f) < zkzl Akrk’ where x(f) is the
common element of the vector x(f).

Proof: From (3) the vector x(f) = P*(f)r(f). The lemma follows from
the inequalities Aty i_ri(f) <z
0 < p:o(f) < for all 1. The inequalities concerning p:o follow from

k:l Mt 121, T (£)=0, and
the fact that all states communicate for feF'.

Lemna 4.2. For all 1, i =1, 2, ..., n, Wy, (£ > 0.

Proof: Assume the contrary, that Vyj(f*) < 0 for some j. We now
prove by induction that Vyz(f*) <0 for § <% <n. It holds for

£ = j by assumption. Suppose it holds for 3, 3#+1, ..., 2. From the

* * *
241 equation of (8) we have H(Vyg(f )) + (n—l)uVyl+l(f ) = x(f ) or

(19 Vg () = (e n(ry, (£9) /-ty

* *
By the induction hypothesis Vyg(f ) < 0 so that H(Vyl(f )) > Ekzl Akrk

* *
> x(f ) from Lemma 4.1 which proves Vy2+1(f ) < 0 and implies

* * *
Vyn(f ) < 0. From the n+l equation of (8) we have x(f ) = H(Vyn(f )

m *
Ek=l Xkrk since Vyn(f ) < 0, which contradicts Lemma 4.1.
2

Let vy (£ * *
et iy (£) = Vy (f )-Vy 1 (E).

*
Lemma 4.3. For any i, i =2, 3, ..., n, szi(f ) < 0.

2

- *
Proof: Assume the contrary, that v yj(f ) > 0 for some j. We now

*
prove by induction that szi(f ) >0 for j < 2<n. It holds for 2=

by assumption. Suppose it holds for j, j+1, ..., 2. As in (10)



% * *
Vy, () = (x(£) - H(Vy,_, (£ )))/(n-4+1)u
(11)

* B * *
Ty, (F ) = (x(£) = H(Ty (£)))/(m-2)u

By the induction hypothesis Vyz(f*) > Vyl—l(f*)' The function H(*)
is strictly decreasing so that (11) implies vyl+1(f*) > Vyk(f*) un-
less Vy2+1(f*) < 0 and the denominators adversely affect our inequal-
ity. However, this case is impossible by Lemma 4,2, Therefore the
induction is validated and szn(f*) > 0. The nt+l and n equations of
(8) are H (Vyn(f*)) - x(£) = H (Vyn_l(f*)) + oy Vyn(f*). Since
Vyn(f*) > Vyn_l(f*), u Vyn(f*) < 0 which contradicts Lemma 4.2.
Theorem 4.4. The policy f* has the property that if k ¢ f:_l, then
ke f’; for 1 =1, 2, .evy 0.

Proof: The theorem is nearly an immediate consequence of Lemma 4.3,

*

*
i-1 if and only if k = 1 or r, Z_Vyi_l(f ) (compare

For i > 1, ke £

*
with the definition of H(+)). From Lemma 4.3 szi(f ) < 0 so that

*
k € fi—l , k # 1, implies 2

k=1c¢e¢ fi this completes the i > 1 case. The i = 1 case is imme-

% * *
ke vyi—l(f ) 1_Vyi(f ) and k € fi. Since

*
diate since f_. = ¢.

0
Lemma 4.5. For any 1, 1 =1, 2, ..., n, Vyi(f*) j_rl.
Proof: Assume the contrary that for some j, Vyj(f*) > 1. This
implies using Lemma 4.3 that Vyl(f*) > r- As in (10) we have
Vyz(f*) = (x(f*) - H(Vyl(f*)))/(n-l)u > x(f*)/(n—l)u. From the first
equation of (8), Vyl(f*) = x(f*)/nu. Hence Vyz(f*) > Vyl(f*) since

*
x(f) > 0 from Lemma 4.1. This contradicts Lemma 4.3 and completes

the proof.
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Theorem 4.6. The policy f* is optimal over the set F,

Proof: The policy f* is optimal unless there is some a ¢ Ai\ Ai such
that a ¢ G(f;i), since a ¢ G(f,1) if a ¢ Ai by the optimality of f*
over F'. The only a ¢ Ai\\ Al is the empty set which we now show
does not lie in G(f,i). Since all elements of x(f*) are identical,
equation (6) holds with equality for the action "serve no one." From

%* * *
Lemma 4.5 Vyi(f ) < r, so that £ —Vyi(f Y) =0 f_ll(rl-Vyi(f ).

1 keo k Tk
Since the action {1} ¢ G(f,1), Al(rl—Vyi(f*)) f-zkef: Ak(rk—Vyi(f*)).
These two inequalities imply that the action ''serve no one' does not
lie in G(f,1i) and completes the proof.

The finite horizon version of this model 1s considered in [4]
and the analogous result to Theorem 4.4 is obtained for that case.
There it is also shown that if it is optimal to serve a customer of
class k at time t' when i gervers are free it is optimal to serve a
customer of class k when i servers are free for all t > t'.

The result (Theorem 4.4) that we are more eager to serve cus-—
tomers when more servers are free is quite intuitive. However, it
does depend on our assumption that an arriving customer desires only
one gerver, as the following example shows.

Example: There are two servers, two classes of customers and
Al = Xz =y = 1, Customer class 1 has the reward structure rl(2) =
10, rl(l) = (0, and rl(O) = 0 where the argument of r1(~) is the num-
ber of servers assigned. Customer class 2 has the reward structure
r2(2) = 3, rz(l) = 3, and r2(0) = 0. If we let our policy be that
of serving customer class 1 only with 2 servers when 2 servers are

free and serving customer class 2 only with 1 server when 1 server
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is free, then (4) becomes

- 2y (£) + 2y,(9) = x,(f)
3+ y (£) - 2y, (0) +y,(f) = x,(f)
10 + y (f) -y, () = x,(f) .

As before, all elements of x(f) are equal (4 1/3). The vector
y(f) satisfies yo(f) = yo(f), yl(f) =2 1/6 + yo(f), and yz(f) =
5 2/3 + yo(f). It can be verified that this policy is optimal from
(6) and (7), vet a customer of type 2 is served when 1 server 1s free
but not when 2 servers are free, since 3 > yl(f) - yo(f) = 2 1/6 and

3 < yz(f) - yl(f) =3 1/2.

5. A FURTHER EXAMINATION OF THE FUNCTIONS Vyi(-)
We have seen from Sections 3 and 4 that the actlons taken depend
entirely on the value of the Vyi(f) which intuitively is the expected

cost to the system for having one of the i free servers become busy

u

for a random length of time whose c.d.f. is l-e £ when using the

policy f. The main result of this section is Theorem 5.1, which
gives us a further interpretation of Vyi(f). It will be shown in
Section 6 how this theorem leads to an approximation in the case

where service times have arbitrary distributions.
[o4]

n

Theorem 5.1. For £eF', Vy(f) = | e ¥p (s, £Y) (2 (£)4QUE)y(E) - r(fh)
(o)

- Q(fl)y(f))ds where fl is the policy defined by fi = fi—l’ the
matrix P(s,fl) is (1-n) by (0-n), and the coordinates of Vy(f) run

from 1 to n.

Example of Theorem 5.1: In this example there are 2 servers
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and 2 classes of customers. The parameters of the problem are Al =
AZ =y =1, r, = 5, and r, = 2. We let f be the policy f2 = {1,2},
fl = {1}, and f° = ¢,

The policy fl is therefore f; = {1}, and fi = ¢, We solve for

P(s,fl) and obtain

1 -2 1 -28
Py1(8:E) = 1/2 +1/2 ™%, p., (s,£7) = 1/2 - 1/2 ™°%,

le(s,fl) =1/2 - 1/2 e—zs, and Pyy (s,fl) = 1/2 +1/2 e_zs.

The equations of Theorem 5.1 are:

«©

vy, (f) = j e_s((1/2+l/2e_zs)(S—Vyl(f))
(o]
+ (1/2-1/ze"25)(7-2Vy2(f)—5+vy2(f))) ds

Vy,(£) = j e 3 ((1/2-1/2¢
o]

28 (5-vy, (£))

+ (1/241/2¢77%) (7-27y, (£)-5+7y,,(£))) ds
which when integrated gives us
Ty, (£) = 31/3 - 2/3 Vy (£) + 2/3 - 1/3 Vy, (£)
Vy,(£) = 5/3 - 1/3 Vy, (£) + 4/3 - 2/3 Vy,(f)

The solution of these equations is Vyl(f) = 2 1/8 and Vyz(f) = 1 3/8.

The equations (8) for this problem are
2 Vyl(f) = x{f)
5 - Vyl(f) + Vyz(f) = x(f)

7 - 2 Uy, (f) = x(f)
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and the solution is x(f) = 4 1/4, Vyl(f) =2 1/8, and Vyz(f) =1 3/8.

Interpretation of Theorem 5.1.

The interpretation of the theorem is that exp(-us) represents
the probability that the server which became available at time O is
still unavailable at time s, and the remaining expression of the
integrand is the expected loss recorded at time s if that server is
unavailable. This loss depends on time only through the transition
matrix P(s,fl). The components of the vector (r(f)+Q(f)y(f)
—r(fl)—Q(fl)y(f)) represent the non-optimality of using action fi—l
when in state 1 rather than actiom fi (see (7) of Section 3). If
the decision vector f is not optimal, then some of these components

could be negative.

Summary of Previous Results

Before beginning the proof of Theorem 5.1, it is necessary to
present some results from the theory of continuous time Markov
decision processes. Interestingly, results from the finite horizon
case as well as the infinite horizon case are needed.

Let m be a piecewise constant policy defined on the interval
[0,t], where m(u)eF is the decision vector which applies at time u
when using the policy . We define the vector function y(*) by the

differential equations
d
(12) - g5 V= r(r(w) +Qm(u) ¥

0 <u < t, with the terminal condition y(t) = O.
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From [5, Theorem 2] we have

_t-u
(13) Y(u) = j P(s,f) r(f)

)
if m in (12) 1is the stationary policy f. As noted in [5], (13) gives
us the interpretation of wi(u) as the expected return that will be
obtained in time length (t-u) using the policy f when the system
begins in state i, We extend modestly the results of [5] for sta-

tionary policies and obtain the limiting form of (13) using (3) and

(5) of Section 3. This substitution gives us
(14) limt+m{w(u)-x(f)(t-u)—y(f)} =0 .

From both [5, Eq. (6)] and [3, p. 817] we have that for any two

plecewise constant policies 7}, 2,

. t
(15) V(t,m2) - v(t,nl) = [ Peu,nl)(r(r?(u))

v

o]

+Q (n2(w) ¥(u) - r(rl(u)) - Q (rl(u)) ¥ (u))

where y(-) is given by (12) using the policy 7?2 and V(t,n) =
t ,
© P(u,m) r(m(u)), the vector of expected returns up to time t using

.

o
the policy w.

Outline of the Proof

It will be shown that Vy(f) equals limt+m{V(t,f)—V(t,f)'} where
the prime indicates the coordinates go from 0 to n-1 rather than 1
to n. We set V(t,f)' equal to the expected value of the conditioned
vector V(t,f|s)' defined as the vector of expected returns up to

time t using the policy f conditioned on the fact that one of the
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unavailable servers will become avallable exactly at time s and all
other servers follow the exponential distribution as before. After
the one server becomes free at time s, it also follows the exponential
law. We show (Lemma 5.3) that V(t,f[s)' is equal to V(t,fs) for all

t where the vector V(t,fs) runs’through the states 1, 2, ..., n, and

the policy £° 1is given by

n
h
(a3
| A
w

f7 = £ t>s.

We then compare V(t,fs) with V(t,f) using (15) and the limiting re-

sult (14).

Proof of Lemmas 5.2 and 5.3.

Let pij(t,f|s) be the probability of being in state j at time
t given the system is in state i at time 0, the policy f is used,
and one of the (n-1) servers becomes free exactly at time s.

Lemma 5.2. For t <s, 0 <141, j, <n-1

8
Py (EsE]8) = pyy yy (6,E0)

8
and pi,j+1 (s,fls) = pi+l,j+l<s’f ) .

Proof: We prove the first equation by considering the relevant dif-

ferential equations of the form (1) for t < s

4 p(e,£le)" = P(c,E]e) 0(f]s)'  and
a

s S S
_d'E'P(t,f ) = P(t:f ) Q(f )
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with initial conditions P(O,f]s)' =1 = P(O,fs). As before the prime
indicates coordinates 0 through n-1 and the unprimed notation indi-
cates coordinates 1 through n. In the first case the state n is
never reached since one server will not be free until time s and in
the other case the state 0 is never reached since fi ; f0 = ¢. Hence
both these states can be eliminated from consideration in their
respective cases.

The solution to these differential equations is unique so that

we will have proved the first part of the lemma if Qij(fls) =

Q:I.+1 j+1(fs)’ for 0 < 1, < n-1. We have
L]

1 ¢S

fl4r = fia(8)oe < s,

S
Qi,i_l(f]s) = Qg ((f) since

and (fs) since in the conditioned case one

Q141 CEl9) = Qg 44y
of the (n-1i) busy servérs is‘certain to remain busy. The other
elements of the Q matrices are zero, except for the diagonal elements
which satisfy the desired condition since all rows of an infinitesimal
generator matrix must sum to zero. The second equation follows by
definition of the conditioning from the first equation using contin-

ulty considerations which completes the proof.

Lemma 5.3. For all 0 < t < =, V(t,f|s)' = V(t,fs).
t t
Proof: For t < s, V(t,fls)' = [‘P(u,f|s)' r(f) = f P(u,fs) r(fl) -
—_— J
0 o]
V(t,fs) since Lemma 5.2 implies P(u,fls)' r(f) = P(u,fs) r(fl) for

all u <s. Fort>s

Vi(t,fls) = Vi(s,fls) + I (s,f]s)Vj(t—s,f)

1P13
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and Vi+l(t,fs) = Vi+l(s,fs) + I Py g (s,fs)Vj(t-s,f).

From the first part of this lemma Vi(s,fls) = Vi+1(s,fs), and
s
the second equation of Lemma 5.2 says that pij(s,f]s) pi+1’j(s,f )

which completes the proof.

Proof of Theorem 5.1.

From the representation (5) and the definition of Vy(f),
t

Vy(£) = lim jﬁ (P(u,t)r(£) - P*(£)r(£)] - [P(u,£)'r(f) - P*(E)'r(f)]

%

where P(u,f) is an l-n by O-n matrix and P(u,f)' is a O-n-1 by O-n
matrix. By assumption feF' so that all states form one ergodic chain

which implies the components of x(f) = P*(f)r(f) are equal so that

t
Vy(£) = lim [ P, D)r(f) - P(u,)'r(8)
(o]

= lm V() - V(e ) .

We condition the vector V(t,f)' on the time one of its unavail-

able servers will return, which gives us

[=+
Vy(£) = lm_ V(t,£) - u[' we "% v(t,f|s)"
(¢}
= lim e (e, 6) - (e, E%)
[o]
using Lemma 5.3,
-

[><]

S 1
- 1imt*° [ pe & U p(u, ) (x (£)

o v

+ QYW - r(E) - QUEDP(w)
using (15) where y(*) 1is based on the policy f. Here we have substi-

tuted f1 for fs(u),u < g. The integral stops at s because after s the

policies £% and f are identical, causing the terms in brackets to
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cancel. We can substitute for y(u) using (14) and the fact that all
components of x(f) are identical to obtain

ot . S

a

Vy(f) = iue_“ss P(u, 1) (r(£) + Q(£)y(f)

- r(£Y) o(eYyy())

.; e p(s,fl) (z(B) + Q(E)y(E)

oY) - eeby(e))

using well-known relationships between a density function and its

cumulative distribution function which completes the proof.

6. ARBITRARY SERVICE TIMES

In this section we consider the same model as Section 1, except
that instead of requiring that all customer classes be served accord-
ing to a common exponential distribution we permit a general service
digtribution with c¢.d.f. Wi (*) for customer class k. Unfortunately,
it appears that this problem cannot be solved optimally, and two
approximating procedures will be presented which are compared by

simulation.

The Exponential Approximation

The exponential approximation method consists of approximating
the general gervice problem by an exponential service problem. We
then solve the latter by the algorithm of Section 3, and use that
answer for the general service problem. Since more of our work in-
volves the exponential problem, we reserve the unprimed notation for

that case.
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Let XL, rﬁ, and l/ué, k =1, ..., m, be the arrival rate, reward,

and mean service time associated with customer class k in the general
service problem. The parameters of the exponential service problem
are obtained from
[ !

Mo ™ N/

(16)
] 1

r, = rpu/u

with u, the common exponential service rate, arbitrary. The trans-
= ETR = [

KV rkpk and Akrk Akrk.
The exponential problem is then solved to obtain the optimal

formations (16) have the virtues that r

policy £. Our decision rule for the general service problem is to
serve a customer of class k when i servers are free if, and only if,

kef Interestingly, the optimal f will not depend on the value of

5
¢ chosen. The value of u does affect the approximation based on the
method of Theorem 5.1, and therefore should be reasonable (some

intelligently weighted average of the ui).

The Approximation Based on Theorem 5.1.

This approach begins literally where the exponential approach
finigshes, Instead of accepting the policy f, we turn to Theorem 5.1°°

and compare the relevant reward ri with the expected loss from having

one of 1 free servers unavailable for a random length of time with

c.d.f. Wi (*). This loss we approximate by the i coordinate of

©

an [ a-npe)) 2ee,£Y) (2(6) + BV - £ -

(o]

Q(E)y ()} vhere £ = £, .
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The (1—Wi(s))term represents the probability that the server used to
serve a customer of class k is still unavailable at time s. The rest
of the expression represents the expected loss rate at time s from
having the servers unavailable. Unfortunately, this expected loss
rate applies to the exponential approximation, rather than the actual
general service problem.

In order to keep the computational requirements at a very modest
level, we approximate the expected loss rate at time s for coordinate

1 by the exponential form

(18) Cli + C21 exp(-C3is) .

The vectors Cl’ Cz, and C3 are obtained from our knowledge of
the expected loss rate at s = 0, as s * =, and that for Wi(s) =

l-exp(-ps) the loss should integrate to Vyi(f). The specific equa-

tions are
19) ¢y +C, = (D) + QDY - r(E)-QEDY(E), and
1 1 1

(20) ¢y = PR(£7) {e(£)+Q(E)y(f) - r(£)-Q(£)y(£)}

- PR (eNY (x(D)-r (1)} since Pr(EHQUEY) = 0

([6, Theorem 5])

= x(f) - x(fl) since x(f) has all coordinates equal.

Also g exp(—us){Cli + C21 exp(—C3is)} = Vyi(f), which integrates to

(21) Cyy/u + Cypy/ (Cyy) = Wy, ()
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The equations (19), (20), and (21) are solved for cli’ CZi’ and

C3i' If C3i turns out to be negative, the exponential form (18) is

invalid and C21 and C3i are set equal to zero, while Cli remains un-

altered. We return to (17) and serve a customer of class k when i

servers are free if, and only if,

H
v

%(1—Wk(s))(cli+C21 exp(—CBis))

Cpylmp ¥ (Cpy/Cyy) (A-WE(-Cyy))

where w§(~031) is the moment generating function of wL(-) evaluated
at —C3i.
The policies using the Theorem 5.1 approximation and the ex-
ponential approximation will tend to differ in the following way:

The Theorem 5.1 method will be more eager to serve customers when

the number of free servers i is relatively large and the customer

mean service time is relatively short, or when the number of servers

i is low and the customer mean serve time is relatively long. The
exponential approximation method will be more eager to serve customers
in the exact opposite situations. The reason for this is that the
Theorem 5.1 method incorporates the effect that the loss per unit
time from having a server unavailable is usually an increasing
(decreasing) function of time if the state i is high (low), rather

than a constant function of time which is the implicit assumption of

the exponential method.

A Comparison by Simulation

A total of 500 individual simulation runs were made to compare
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the two methods. In each simulation run there were five servers and
ten customer classes. The service time for each customer class was
Gamma distributed with mean l/uk and shape parameter a, . Figure 1
details the simulation.

-—————’DO

1,50
¢

Generate the parameters l/uk, LU A ko=

1, 2, ..., 10 from the following distributions:

1/uk uniform on [0,2],

a = 5, 6, 7, or 8 with probability 1/4 each,
T, uniform od [0,10], and
Ak uniform on [0,2].

Independence was used throughout. Calculate the
exponential approximation policy and the Theorem
5.1 policy.

l

Do 1,10

| : Compare both policies by a simulation of time
length 5.0.

Fig. 1 -~ Flow chart of the simulation

Let Rj’ §=1,2, ..., 50, be the rewards received using the

Theorem 5.1 policy minus the rewards received by the exponential
policy during the ten simulations for the jth set of parameters.
The results of the simulation were that R = zjaj/so = 10.2 and

_ L
(R —R)2/50°49)2 = 3.2 go that a t-test would give preference to

Z
&
the Theorem 5.1 method with confidence greater than .995.
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