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In recent years, a good deal of effort has been devoted to .the develop-

ment and application of quantitative methods to assist police depa~tments in 

making resource allocation and manpower scheduling decision~. The work of 

Larson (13] and of Heller [7] are important examples. Surveys and evalua­

tions of much of the pertinent literature in this area are given by Chaiken 

and Larson [2], and by Gass, Dawson, et al. [S]. This paper can be viewed 

as part of this general effort. It presents a methodology for creating 

new patrol car schedules that improve the correspondence between patrol 

car availability and demands for service. The approach is currently being 

tested for use by the New York City Police Department. 

The level of demand for police service varies considerably through the 

day. Recognizing this, police departments assign more patrol cars to duty 

during the busy hours. Figure 1 illustrates both of these points using 

data from one New York City police precinct. Scheduling decisions, however, 

have usually been more or less educated guesses. Improvements resulting 

from better schedules can be quite significant. In an example given below, 

a schedule derived using the·methods presented in this paper maintains per­

formance standards with almost a 25 percent reduction in the number of cars 

fielded under the traditional schedule. 

We view the patrol environment as a complicated multiple-server queueing 

system. Calls for service--either telephone calls to the radio dispatcher who 

sends the cars to the scene, or accidents, crimes, and other incidents en­

countered by the patroling units--are assumed to occur randomly over time. 

These calls require random amounts of "service time" by one or more patrol 

cars. When not working on such "jobs" a patrol car is presumed to be either 

on preventive patrol or out of service for some reason. A variety of mathe­

matical models of this environment can be formulated depending on the objec­

tives of the analysis. Our objective is to use queueing theory to generate 

estimates of hourly car requirements needed as input to a scheduling model 

and then to evaluate the resulting schedule with respect to various mea-

sures of patrol system performance. We discuss methods for generating 

estimates of patrol car requirements in Section I, an integer program for 

generating schedules given patrol car requirements in Section II, and a 

time-dependent queueing model for evaluating schedule performance in 
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Section III. Section IV uses.data from one of New York City's police pre­

cincts to show how the method was applied to a sample problem. 

The methodology that we have developed for creating and evaluating 

schedules is iterative. An overview is provided below. 

• Specify the Poliay Constraints' on the Schedules. That· is, what 

tours of duty and mealtime breaks are permitted? (See Section IV.) 

• GenePate Estimates of HOUl'-by-HoUP Car Requirements. This can be 

done using one of several mathematical models together with, and 

modified by, police judgment. (See Section I.) 

• Obtain an Optimal ScheduZe. Using the specifications made above, 

an integer linear program is generated and solved that satisfies 

all of the constraints using the fewest number of ca.rs. (See 

Section II.) 

• EvaZuate the Schedule. Using a time-dependent queueing model, 

detailed information is provided on the levels of police service 

that would result over the day if the schedule were implemented. 

(See Section III.) 

• Revise the ConstPaints. Since approximate models were used to 

generate car requirements, the schedule generated may not actually 

meet all the performance levels desired. Moreover, there may be 

performance measures of interest besides those explicitly used in 

estimating the patrol car requirements. This should be remembered 

when evaluating the resulting schedules. Based on this evaluation, 

the requirements and constraints of the integer linear program can 

be revised and the problem resolved. This process may be re­

peated. as often as necessary. (See Section IV.) 

- / 
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I. ESTIMATING PATROL CAR REQUIREMENTS 

Using almost any measure of effectiveness, patrol performance is im­

proved by increasing the number of patrol cars on duty. Queueing delays 

and response times decrease, while car availability and the hours spent on 

preventive patrol increase. Most other indicators of the quality or 

quantity of patrol service exhibit improvement where the number of cars is 

increased. In this section we show, as an example, how one specific measure 

of service performance is quantitatively related to the number of cars 

fielded, and how this relationship--really an approximation--can be used to 

generate estimates of the number of cars required at each hour of the day 

to obtain desired police performance levels. These requirement estimates 

can then be used as input to the integer programming model described in 

Section II. Similar methods can be used to derive car requirements based 

on other queueing-related service measures. 

The Probability That All Cars Are Busy 

The relationship between the number of cars on duty during hour t 

and a, the probability that all the cars are busy, is complicated. The 

complications arise from the fact that we are dealing with the multiple­

server queueing situation, in which the call rate, the number of cars on 

duty, and other factors are time-dependent. Suppose that the hourly call 

rates, At' and service rates, µt' are known, and suppose also that a has 

been specified. We want to find rt, the smallest number of cars to place 

on duty during hour t so that, given At and µt' the probability that all 

rt cars are busy at a random epoch during hour t is less than a. 

This problem is difficult to solve, the primary difficulty being that 

the demand for service is not stationary in time, and so r depends on A 
t t 

and also on At-l' rt-l' At_2 , rt_2 , ••• , etc. A solution can be obtained 

using the time-dependent queueing model, which is discussed in Section III, 

in an iterative trial and error fashion: Guess at the values of rt; 

run the model; correct the values of rt on the basis of the run, etc. In 

~~st cases, however, using the easier to calculate long-ruu (~= stationary) 

state probability distribution, computed with parameters appropriate only 

to hour t, will provide excellent estimates of the required number of cars, 

rt. There are two reasons why this is so. First, although queues building 

up in hour t may carry over into hour t + 1, if a is small the probability 

of a queue will also be small. Therefore, there will be little carry-over, 
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and hours t and t + l will be approximately independent. Second, although. 

the call rate, At' changes over time, the changes in successive hours are, 

in general, not large. 

Let aj(t) denote the stationary probability that j jobs are in the system 

during hour t, given that there are nt cars on duty, that the call rate is 

· At' and that the service rate is µt. Define pt • At/µt. Then, using results 

for the M/M/n queueing model, aj(t) is given by: 

bd 

p j 
t 

ao (t)' 1 < j < n jT - - t 

aj (t) = 
j 

Pt •oCt) 
j. > nt 

n (j-nt) 
, 

nt! t ' 

[ 
n -1 j nt ir t 0 pt (nt µt 

•o<t> ... I~ + 
j=O j ! ntl nt µt - A 

t 

Given a value of a, rt is the smallest value of nt such ttat 

nt-1 

l aj(t) > 1 - a • 
j=O 
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II. AN INTEGER LINEAR PROGRAM FOR GENERATING SCHEDULES 

Suppose that the number of patrol cars required in the field during 

each hour of the day has been specified. (This may have been done using 

the formulae in Section I.) Suppose also that there is a set of feasible 

tour start times, S, given by the police department, all of which we assume 

start on the hour. Each tour of duty lasts eight hours. We also assume 

that every tour includes a one-hour mealtime, which also begins on the hour. 

There may be constraints on the earliest and latest hours of a tour that 

can be used for a meal break.; let e(t) and R.(t), respectively, denote these 

values for a tour starting at hour t. Then the earliest possible mealtime 

for cars working tour t starts at hour t + e(t), and the latest possible 

mealtime begins at t + J/,(t). (These assumptions are made fo-r. clarity of 

exposition only and are not intrinsic to the model. The model can easily 

handle tours starting on the half hour, quarter hour, etc., as well as tours 

and mealtimes of any length.) 

Consider a 24-hour problem, and let rt denote the (integral) number 

of cars required during hour t (t = 0,1, ••• ,23; hour 24 =hour 0), 

where hour t runs from t to t + 1 clock hours. The decision variables 

·of the programming problem are: 

ni • the number of cars assigned to work the tour starting 

at hour i, ieS. 

mij • the number of cars working tour i that are assigned to 

mealtime at hour j, where i+e(i)<j.:_i+~(i) and i€S. 

We wish to find tour assignments {n.} and mealtime assignments 
J. 

{mij} that meet the car requirements using the least number of cars. An 

integer linear program that accomplishes this objective is: 
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ie:S 

subject to 
i+R.(:i:) 
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ie:S 

(A} 

t = 0, 23 

The value of the objective function is the total number of cars used 

over the day. The first set of constraints assures that every car is assigned 

a mealtime~ and the second set of constraints assures that the actual cars on 

duty (number of cars assigned minus number of cars on meals) meets each of 

the hourly requirements. 

The resulting integer linear programs can be quite large for reasonable 

real-world situations. With only three tour start times and four possible 

mealtimes, there are 15 variables and 27 constraints. This is modest but 

not trivial for an integer program. With 24 tours, and mealtimes 

allowed at any hour of a tour, there are 216 variables and 48 constraints. 

We have also formulated and solved problems for an entire week involving 

as many as 1344 variables and 336 constraints. 

Fortunately, the constraint matrix has a special structure that 

permits the problem to be solved as a mixed integer program in which 

only a small number of the variables need be "forced" to be integers. 

The remaining variables are automatically integral in any 

optimal solution. This permits use of a standard mixed integer program­

ming code to solve even the largest of our problems in reasonable times. 

'J'hp key idea is contained in thP following: 
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Theorem: Suppose that ni, the number of cars assigned to tour i, 

is limited to integer values •. Then m .. , the mealtime assignment variables, 
1.J 

are automatically integral in any basic solution of (A). 

* Proof: When the n
1 

take on fixed values, say n
1 

, the constraints 

of (A) become 

---------·· ---- - ___ .,.,_ .. ' -

i+~(i) * 
l m -n ieS 

j•i+e(i) ij- i ' 

* n. , 
.l 

t = 0,. 23 

The onlycoefficients of (B) are +1 and 0, and each of the col­

umns of the associated matrix contains at most two nonzero elements. 

The matrix, therefore, has a network-like structure ·that is well known 

to be totally unimodular. Hence, all of the extreme points of (B) 

* are integer regardless of the values of rt and n
1 

([4], p. 70; (8], 

p. 126). 

To solve the smaller problems, the .mixed int_eger program (MIP) 

subroutines of MPSX [14] can be used in a straightforward fashion. 

To solve the larger problems we have modified the branching rules in MIP 

to take advantage of the problem structure. See Appendix A for a descrip­

tion of these modifications. An overview of the MIP-MPSX algorithm is 

given by Geoffrion and Marsten [6]. 
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III. EVALUATING SCHEDULES 

The actual environment in which a schedule may be implemented is 

complex and random. Nevertheless, a schedule generated using the approach 

described above is derived from a deterministic integer linear programming 

model, the inputs to which are determined partly by simple approximate 

models and partly by police judgments. Before trying any s~ch -schedi.il.e in~ 
. - ·---- --- -··---~----

the field, we would like to test it using mathematical models that represent 

more of the.complexity of the real world.. Two types of models can be 

used for this purpose. The first is a simulation model of police patrol 

operations, such as the one described in [10]. A simulation, however, is 

a relatively expensive and cumbersome tool that requ~res the collection 

of a considerable amount of input data to make it work. 

The second type of model that can be used for evaluation is a time­

dependent M/M/n queueing model. It is not difficult to develop the set 

~f differential equations that describes the system dynamics of the M/M/n 

queueing system with time-dependent parameters. It is, however, extremely 

difficult to obtain an analytic solution to the set of equations. We 

therefore propose numerical integration of the differential equations 

to obtain such characteristics of the patrol system as the probability 

distribution of the number of busy patrol cars and the number of calls 

queued. Our approach is motivated by a recent paper by Bernard O. Koopman 

[11] in which the efficiency and usefulness of this type of model is 

illustrated by applying it to the study of air traffic control problems. 

Koopman also discusses the advantages of this approach relative to the use 

of simulation .. 

Our time-dependent queueing model represents a single police precinct. 

As the different tours and mealtimes commence, the number of police cars 

available for patroling and for servicing calls will vary. The rate at 

which calls for service are received also varies during the day, 

with a peak occurring in the late evening hours and a lull in the 

morning (Fig. 1). From historical data we can predict the average 

number of calls for service and the distribution of the number of calls 

during each hour of the day. Our data also permit identification of daily 

and seasonal patterns in the call rate. We have determined· from these 
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call histories that the arrival .of calls for service in any given hour can 

be well represented as a Poisson process. That is, the probability that a 

given number of calls will occur during a given hour in a given day is 

specified by a Poisson distribution with a mean characteristic of that time 

period. 

The model assumes that each.call for service is handled by a single 

patrol car. In practice it sometimes happens that two or more cars are 

necessary to service a call. Nevert~eless, a comparison of results 

from a stationary M/M/n queueing model (which also incorporates the 

one car per call assumption) to results from the simulation model (which 

more closely imitates reality and uses as many cars as is appropriate 

for the call) indicates that such complications may be neglected without 

seriously altering the resulting queueing probabilities [9]. 

While the types of calls (crimes in progress, past crimes, 

emergencies, accidents, etc.) may vary during the day, we have found 

that the average service time remains fairly constant. Actual data 

show that the service times for calls do not have an exponential 

distribution as assumed by the model, but again a comparison of 

the M/M/n queueing model to the simulation model, which used 

empirical--and hence nonexponential--service times, shows good 

agreement for the prediction of average performance. 

One limitation of the time-dependent queueing model is that there 

is no priority structure in the dispatching of calls. As a result, we 

can only examine overall call delays. Modeling of priority calls is 

possible, but it would significantly increase the complexity of the compu­

tations. It was not undertaken since detailed analysis of delays by 

call priority can be performed with either the simulation or.a sta­

tionary M/M/n queueing model. Calls in this time-dependent model are 

served, therefore, on a first-come-first-served basis. If a patrol car 

is free when a call arrives, it is dispatched immediately and the call 

remains in the system only for the length of its service time. (The 

response time of the patrol car is not explicitly modeled. It would be 

very difficult to do this in an accurate way without destroying the 



-11-

Markovian nature of the system, which is essential to our method of solution. 

·since travel times are short com.pared to the time spent at ·the scene of the 

incident, this approximation is not critical.) During the service interval 

the patrol car is unavailable for further assignments. If a call arrives 

when all patrol cars are busy, it waits in queue until all preceding calls 

have been dispatched. It is then dispatched as soon as the next car becomes 

available. 

The model we have.just described is an M/M/n queueing system with time­

depeudent parameters. In studying this system. we focus attention on the 

random variable X(t), the number of calls in the system at time t, including 

those being served by patrol cars and those in the queue. A great deal of 

information about the performance of the system can be obtained from the 

Markovian transition probability function pij(t
0
,t), defined as follows: 

i,j = o, 1, .•• 

For example, let n(t) denote the number of patrol cars on duty at time t. 

Then if X(t) is less than n(t), X(t) represents the number of busy cars and 

n(t) - X(t) represents. the number of cars on patrol. If X(t) is greater 

than or equal to n(t), all cars are busy and X(t) - n(t) represents 

the number of calls waiting in the dispatching queue. Suppose that 

at some time we know that there are i calls in the system--that is, 

X(t ) = i. Given this infonnation about Lhe state of the system at time 
0 

t
0

, we can calculate the following system performance character-

istics for any future time t: 

The probability that there is at least one call in queue: 
00 

P[X(t)~n(t) +l] l 
j=n(t)+l 

p .• (t ,t) 
l.J 0 

The probability that all cars are busy: 

PLX(t)>n(t)] = I pij(t ,t) 
j=n(t) 

0 

The PXpt'Ct~<l numu~r of call::; in <{Ut.!Uo.;. 

EQ = ). (j-n ( t;) ) p .. ( t , t) 
j=n(t)+l lJ o 

(1) 

(2) 

(J) 
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The expected number of cars available for patrol: 

n(t)-1 
EA .. I 

j=O 
[n(t) - j]pi.(t ,t) 

J 0 
(4) 

Before considering how to determine the transition probabilities, we 

introduce some additional notation: 

.:\ (t)= the call rate at time t; i.e., the expected number of calls per 

hour being received at time t, which is the mean of the Poisson 

process generating the calls. Here we refer to a specific epoch 

t and its instantaneous call rate A(t). Earlier we used At to refer 

to the average number of calls during the~ t to t + 1. 

u = the service rate; l/µ •ES, the expected service time 
~ . 
per call. As verified by actual data, we assume in this 

analysis that JJ does not change through time. (Relaxation 

of this assumption would not appreciably complicatt.! Lhe 

analysis.) 

The transition probabilities satisfy the following system of dif-

ferential-difference ~quations. For t>t , 
0 

pi '(t ,t)•-A(t)pi (t ,t)+µpil(t ,t), 
0 0 0 0 0 

j >n ( t). 

These equations cannot be solved analytically for p
1
j(t

0
,t), except 

for the simplest of functions A(t) and n(t). However, we can solve (inte­

grate) them numerically. Since A(t) and n(t) are periodic functions 

(repeating themselves every 24 or 168 hours depending on the applica­

tion) there is a periodic solution that is independent of the initial 

state i. We wish to find this periodic solution. We denote i.t by 

p. (t), the "long run" probability that x(t)=j. 
J 

p. (t) for large t. [7]) 
J 

(5) 
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There a.re an infinite number of equations in (5) • In or.der to 

solve them numeri~ally we limit ourselves to a finite sys.tem of equa­

tions that approximates (5) by assuming--not unrealistically-that 

there is a maximum possible number of calls, ~, that can be in the 

system .at one time. In some applications the value of m is dictated 

by the limitations of the dispatching system. Where such physical 

constraints do not exist, m is chosen so that the probability 

of having m or more calls in the system is very small. Hence, we 
-

replace (5) by 

p '(t)=-A(t)p (t)+µp
1

(t) 
0 0 

p j. (t)=,\ ( t)p j-1 ( t)-[ ,\.( t)+n( t) µ ]p j ( t)+n ( t) µp j+l (t), 

pm'(t)=,\(t)p 
1

(t)-n(t)µp (t). 
m- m 

A discussion of the numerical methods used to solve this set of 

m+l differential equations is given in Appendix B. 
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IV. A SAMPLE PROBLEM 

We illustrate the scheduling methodology described above with a sample 

problem based on data from a police precinct in New York City. The precinct 

used in this example cannot be called typical--there is no such thing. 

It does, however, have characteristics in the middle range of precincts on 

several measures: physical area, total demand for police service, crime rate, 

number of cars fielded, etc. 

Our data for the hourly call rates are derived from job records col­

lected during one week in August 1972 by the computerized dispatching system 

used by the New York City Police Department. Based on empirical data, we 

took the average service time to be 30 minutes (µ = 2 calls per hour). 

Table 1 contains At' the call rate, pt • At/2, the aver~ge number of 

busy cars, and rt, the number of cars required so that the system is unclogged 

at least 90 percent of the time. That is, rt is the smallest number of cars 

needed during hour t so that the probability of at least one car being avail­

able to respond to a call is at least 0.9. The values of rt were estimated 

using the stationary M/M/n queueing model, as discussed in Section II. 

Figure 2 shows the schedule that was actually in use in the precinct 

during the period in August 1972 from which our data come. It uses 24 cars 

over the three eight-hour tours of a day. Because of low car availability 

during the early morning hours, the schedule produces periods in which there is 

a very high probability that no cars will be available to answer a call for 

service. The line on the graph that shows the probability that there are no 

cars on patrol was obtained from the time-dependent queueing model. 

In order to obtain schedules with better performance characteristics, 

we set up and solved several integer linear programs. A description and 

evaluation of some of the resulting schedules follows. 

Integer Linear Program 1 (Standard Tours with Standard Mealtimes) 

In this case, we restricted ourselves to the tour start times and 

mealtimes generally used in the New York City Police Department. There are 

three permitted tour start times--0800,1600, and 2400 (or 0000) hours--and 

mealtimes can be tnken between the s~cond through the fifth hours of the 
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Table 1 

HOURLY CALL RATES, EXPECTED NUMBER OF BUSY CARS, AND NUMBER 
OF CARS REQUIRED FOR SAMPLE PROBLEMS 

t. At 
pt 

rt ('At/2) 

0 9.8 4.9 9 

r 9.6' 4.8 9 

2 8.7 4.4 8 

3 7.4. 3.7 8 

4 6.7 3.4 7 

s S.3 2.1 6 

6 4.1 2.1 5 

7 3.3 1. 7 4 

8 2.s 1.3 4 

9 2.5 1.3 4 

10 2.9 1.5 4 

11 3.8 1.9 s 
12 4.3 2.2 s 
13 5.0 2.5 6 

14 5.9 3.0 6 

15 6.6 3.3 7 

16 7.8 3.9 8 

17 8.6 4.3 8 

18 9.4 4.7 9 

19 . 9.8 4.9 9 

20 10.2 5.1 9 

21 10.4 5.2 9 

22 10.2 5.1 9 

23 10.0 5.0 9 
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tour. There are 15 variables and 27 constraints in the linear program. 

Using the car requirements, rt' shown in Table 1, we obtain the following 

optimal integer solution, which uses 29 cars: 

~i2 Tour starting at .2400 hours 

cars assigned = 10 

mealtimes assigned: l cars at 0200 

2 " " 0300 

3 " " 0400 

4 " " 0500 

~ii) Tour startin8 at 0800 hours 

cars assigned = 7 

mealtimes assigned: 2 cars at 1000 

2 " " 1100 

2 n 
" 1200 

l " " 1300 

(iii) Tour startins at 1600 hours 

cars assigned = 12 

mealtimes assigned: 3 cars at 1800 

3 " " 1900 

3 " " 2000 

3 " " 2100 

The characteristics of this schedule are illustrated in Fig. 3. Here 

again, the probability that there are no cars on patrol was computed using 

the time-dependent queueing model. 

Integer Linear Program 2 (All Possible Tour Start Times and Mealtimes) 

This program allows a tour to start at the beginning of any hour of the 

day, and a unit's mealtime can be taken during any hour of the tour. The 

solution to this problem provides the smallest possible number of cars that 

could be used to meet the specified requirements. Any addicional restrictions, 

such as prohibited hours for starting mealtimes or tours, will produce 

a requirement for at least as many cars as the solution to this program. 
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An optimal integer solution was obtained that requires 24 cars over the day, 

but uses 13 different tour start times--an administrative nightmare to 

implement. This schedule is not illustrated here. 

This result led us.to ask if it was possible to find a less difficult 

schedule, but one that would still require only 24 cars. The type of schedule 

we wanted would have only a small number of tour start times, avoid undesirable 

start times (e.g., 3:00 a.m.), and have mealtimes scheduled during reasonable 

hours of the day.. By running programs with different numbers of tours and 

different allowable mealtimes, relying on the results of the previous analysis 

for insights on what might work well, we obtained the following schedule: 

Integer Linear Program 3 (Five Tours, All Possible Mealtimes) 

This program has five tour start times--the three current times, 0800, 

1600, and 2400; and two additional times, 1200 and 2000. Mealtimes are 

allowed at any hour during a tour. The optimal integral solution calls for 

a total of 24 cars (the minimum possible) and the solution is: 

(i) Tour starting at 0800 hours 

cars assigned = 5 

mealtimes assigned: 1 cars at 0800 

1 II II 0900 

1 II II 1000 

1 

1 

II 

" 

(ii) Tour starting at 1200 hours 

cars assigned = 2 

" 
" 

1200 

1400 

mealtimes assigned: 1 cars at 1200 

1 " It 1300 

(iii) Tour starting at 1600 hours 

cars assigned = 8 

mealtimes assigned: 2 cars at 1200 

2 

1 

1 

1 

1 

" 
" 
" 

" 

" 

It 

" 

" 
It 

II 

1700 

1800 

1900 

2200 

2300 
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~iv~ Tour starting at 2000 hours. 

cars assigned ... · 2 

mealtimes assigned: 1 cars at 2000 

1 " " 2100 

~v) Tour startins at 2400 hours 

cars assigned .. 7 

meal.times assigned: 1 cars at 0300 

1 It " 0500 

2 " II 0600 

3 " " 0700 

This schedule is illustrated in ¥ig. 4. Comparing these results to 

the current situation shown in Fig. 2, we see that although both schedules 

field the same number of patrol cars over a day, the resulting performance 

characteristics are considerably different. For example, under the current 

schedule, almost 60 percent of the incoming calls during some hours 

have to wait in queue before a car is dispatched. Under the 

schedule resulting from Linear Program 3, the percentage of calls delayed 

in queue never exceeds 12 percent. 

The above are only a few examples from an extensive series of integer linear 

programs that were solved to test and develop new schedules for the New York 

City Police Department.. The resulting schedules that appeared capable of being 

implemented were subjected to analysis using the time-dependent queue~ng model. 

In addition to the one-day schedules illustrated above, we solved scheduling 

problems for entire weeks with data from different seasons of the year and from 

different precincts. We used the techniques presented in this paper to find 

answers to such questions as: 

• What improvements in performance would result if patrol cars 

could be assigned to start their tours of duty at any hour of 

the day and take their mealtimes at any hour during the tour? 

e What is the best schedule that uses only four tour start times? 

How much worse is t-~o rerformance of such a scheduli:• than the 

performance of the best five-tour schedule? How much better is 

this sche.dult.: than the standard three-tour schedule? 

• Since the pattern of calls on weekends is different from weekdays, 

should the weekend schedules be different? 
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• Are the patterns of calls for service in different areas similar 

enough so that principles developed from studying a few precincts 

can be applied generally? 

• Haw does the number of patrol cars assigned vary with the desired 

service levels? 
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Appendix A 

An IBM program product, the Mathematical Programming System Extended 

(MPSX) with Mixed Integer Programming (MIP) ·was used to obtain integer solu­

tions to the Scheduling problem [14]. MIP uses the branch and bound method 

of solving mixed integer programming problems, and allows the user to choose 

a standard solution strategy or to implement a strategy appropriate to the 

structure of the problem. 

We modified the standard solution strategy because of several special 

features of the Scheduling problem. In our problems, all.feasible integer 

solutions have integer-valued objective functions, and the optimal integer 

solution is, in general, very close in value to the optimal solution to the 

problem when integer constraints are relaxed. Also, there may be many 

alternative optimal solutions, but for our purposes, we often do not need 

•to enumerate these alternatives. Finally, the standard MIP strategy makes 

heavy use of the "pseudocosts" of altering variable values and of the 

variable weights in the objective function. Since all of the integer 

variables in our objective function have the coefficient unity, some 

modification of the branching rules seemed desirable. 

When the search for an optimal integer solution cotmnences, there is· already 

available an optimal solution to the problem obtained by relaxing the integer 

constraints. We take advantage of the fact that the integer solution is often 

close to this "continuous solution" by placing all nodes whose objective 

function value is at least 4 cars more than the continuous solution into 

an inactive state. If there is no integer solution this close to the con­

tinuous solution, a new set of nodes with values no more than 8 cars 

higher than the continuous solution is made active. This process continues 

until an integer solution is found. In practice, an integer solution 

has always been found among the first set of nodes. 

When a feasible integer solution is found, all nodes with a value lower 

by less than 1 are placed in an inactive state and all nodes with values 

wcrse than the solution are drupped. Because we know tha't any integer 

solution must have an integer functional value, we know that the nodes just 

made inactive cannot lea<l to an integer solution better than that just 

obtained. The nodes are not dropped, however, since the last solution might 

be optimal and we may want alternative optima for some problems. 
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~ the search progresses, the best functional value among all the nodes, 

which is usually noninteger, will become larger. If we obtain an integer 

solution that has a functional value equal to the best functional value. rounded 

up to an integer, we know that the solution is optimal. If only one optimal 

solution is desired, the search can StQp at. this point. If alternative optima 

are wanted, the search continues. 

During the search process the variable expected to give the greatest 

expected functional deterioration is chosen ~s the branching variable, and 

all variables with current values [x]+.2<x<[A""f-l]-.2 are given priority for 

· branching consideration. The node with the best functiona1 value is choosen 

in order to obtain a "bushy" tree. Since we know that the optimal in.teger 

solution will usually be close to the optimal continuous solution and since 

we also know that the optimal solution can be no smaller than the best functional 

value rounded to the next highest integer, this procedure ensures a quicker 
. , . 

"proof of optimality" even though it may take longer to find the first 

integer solut~on. 

While the standard solution strategy would have been suf fieient to· obtain 

the desired solutions, the revised strategy allows a quicker proof of optimality 

and a more predictable behavior of the search process for our particular problem. 
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Appendix B 

An IBM program product, the Continuous System Modeling Program 

(CSMP) [3], was used in the .numerical solution of the time-dependent 

queueing equations. CSMP pennits description of the queueing model 

with FORTRAN-like statements, and the user can select among various 

numerical integration techniques. 

We selected the fourth-order Runge-Kutta method with a variable 

step size. Two difficulties peculiar to the family of equations we 

were solving led to this choice. First, Runge-Kutta was chosen be­

cause there is a discontinuity in the equations at each tour change 

or scheduled meal. There are many numerical integration methods that 

evaluate the equations to be integrated several steps ahead and use 

the results to estimate higher'"'order derivatives, which are in turn 

* used to accelerate the integration. Unfortunately, the estimated 

derivatives are. incorrect when a discontinuity exists in the equa­

tions. The Runge-Kutta techniques, in contrast, concentrate on a 

single step and do not look ahead. Therefore, if a single step does 

not pass over a shift change,.there will be no discontinuity in the 

calculations. 

Second, a variable step size was chosen because after a shift 

change there may be & quick transient response in the solution. The 

intervals over which strong transient responses occur constitute only 

a small fraction of the entire interval of integration. A fixed step 

procedure would have required an uneconomically small step size over 

the entire time period of the calculations to insure the numerical 

stability of the solution innnediately after the shift changes. There­

fore a variable step procedure was chosen with the constraint that a 

step could not straddle a shift change. 

During the numerical evaluation of the equations, the state pro­

babilities were constrained to be greater than or equal to zero. A 

check was made of numerical accuracy by summing the probabilities. At 

no point in the solution did the sum deviate from unity by more than 

0.0014. 

* See[l2] for a discussion·of alternative numerical integration 
techniques. 
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As initial values for the integration,we used the steady state 

solution for the M/M/n system with the midnight parameter values. The 

integrations were run for a two-day interval and the solutions for 

the f~rst day were compared to the solutions for the second day. After 

a sufficiently long time the effects of the initial distribution should 

disappear and one might expect that two solutions of the equations sep­

arated by 24 hours would be close. In all cases, the proba-

bilities converged to the periodic solution well before the onset of the 

second day. Of course, we did not learn this until the second day had 

been solved. The values of p.(t) for the second day were then used as 
J 

the periodic solutions to the equations. 


