
A Quick Safari Through the Reconfiguration Jungle
Patrick Schaumont

IMEC
Leuven, Belgium

schaum@imec.be

Ingrid Verbauwhede
UCLA Dept of EE

Los Angeles, CA, USA
ingrid@ee.ucla.edu

Kurt Keutzer
UCB Dept of EECS
Berkeley, CA, USA

keutzer@eecs.berkeley.edu

Majid Sarrafzadeh
UCLA Dept of CS

Los Angeles, CA, USA
majid@cs.ucla.edu

ABSTRACT
Cost effective systems use specialization to optimize factors such as
power consumption, processing throughput, flexibility or
combinations thereof. Reconfigurable systems obtain this
specialization at run-time. System reconfiguration has a vertical, a
horizontal and a time dimension. We organize this design space as
the reconfiguration hierarchy, and discuss the design methods that
deal with it. Finally, we survey existing commercial platforms that
support reconfiguration and situate them in the reconfiguration
jungle.

1. INTRODUCTION
Programmability and reconfigurability are considered to be a key
ingredient for future silicon platforms [1]. The support of this
flexibility requires a dedicated and specialized toolset [2, 3]. Despite
that, reconfiguration is not yet generally recognized as a separate
axis of design. A generic definition of reconfigurable computing is
available [4], but a system level view on the reconfiguration process
has been missing. Also, the design data models and the
computational models needed to represent reconfiguration
effectively are still being researched [5].

In this paper we look at reconfiguration from the system-design
point of view. This includes a generic definition of the
reconfiguration process (Section 2) and an enumeration of the
system design technologies used to support it (Section 3). In Section
4, an overview of several existing platforms is given.

2. RECONFIGURATION HIERARCHY
2.1 Design Space
To motivate the origin of the reconfiguration hierarchy, consider an
FPGA that runs a soft Intellectual-Property (IP) core running a
protocol stack. Clearly, the protocol stack is a program, as it
consists of soft-core instructions. The FPGA however merely treats
this program as data that is being processed on the reconfigurable
fabric. The meaning of this data varies with the abstraction level. A
further complication originates when we would change the protocol
stack program dynamically depending on the type of protocol being
processed. While this can be called reconfiguration, it is not of the
same kind as the bitstream configuration on the FPGA.

Reconfigurable systems introduce multiple levels of programming
and design. As a consequence, also the configuration data itself
occupies multiple levels. Besides hierarchy in configuration, there is

also a hierarchy of processing as well as in data representation. For
instance, the routing table in a packet routing engine (Figure 1) is a
system configuration, while an FPGA bitstream containing a queuing
algorithm inside of the same routing engine is an architecture
configuration. The router itself is logically organized as a (logical or
physical) hierarchy of machines, each layer controlling a lower level
and processing finer data granularity.

We define a design space of three orthogonal axes to describe
(re)configurable systems: A vertical axis that expresses the level
of abstraction, a horizontal axis that expresses the reconfigurable
feature diversity, and a time axis that expresses the timing
relationship of configuration to processing.

The vertical axis is related to the level of abstraction. For an
application developer this is closely coupled to the idea of a virtual
machine or interpreter that fetches instructions and executes them
in terms of primitives at lower abstraction level. For an IC designer
the vertical axis is associated with the hierarchy of the granularity of
the computing primitives of the device. At the lowest level we
naturally recognize logic primitives (gates), simple storage
(registers) and routing. At higher levels, the micro-architecture,
instruction-set architecture and process architecture (or systems
architecture) represent additional layers of computation abstraction.
Reconfiguration is applicable to each new abstraction layer that is
introduced.

While the vertical axis describes a hierarchy, the horizontal axis
describes slices of the hierarchy. Each level of the hierarchy is
made up of a combination of communication, storage and
computation. Reconfiguration can affect each of those individually.
In table 1, an enumeration is given of different such design elements
(horizontal) characterized at different design levels (granularities).
The term coarse grain and fine grain reconfigurability are usually
associated with the variation of horizontal features at the
architectural level [6].

The binding time expresses when configuration data is send to the
processing part. Each level of the hierarchy can be bound

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
38th DAC, June 18-21, 2001, Las Vegas, Nevada, USA.

ConfigurationRouter
Engine

Routing
Table

Priority
Weight

BitstreamQueuing

Classifier

Router

instruction status

Packet

Field

Word

Language

Figure 1: Reconfiguration Levels in Router

individually. We distinguish implementation-time binding and design-
time binding. With implementation-time binding, configuration is
postponed until actual execution of the processing part is required.
With design-time binding, configuration is done at the moment that
the processing part is conceived. This is equivalent to hard-coding.
These terms are preferred over the more traditional run-time and
compile-time since the latter ones are not unique for hierarchical
systems. In order to have a physical implementation, the lowest
processing level of a system is always design-time bound. The top
level of programmable systems is always implementation-time
bounded. In between, there is a smooth transition called the binding
time continuum [4].

It is useful to relate processing activity to binding time. For the
packet routing engine example shown earlier we can consider how
often reconfiguration is done for each processed packet. It allows
distinction of configurability from reconfigurability and dynamic
reconfigurability. Refer to Figure 2. The C arrows indicate points
of configuration. Configurability indicates the possibility to fix
configuration data once and for all subsequent received packets
(typical use would be configuration once per silicon implementation).
Reconfigurability allows changing the implementation in between
any received packet (typical use would be configuration once per
computational task). Finally, dynamic reconfigurability applies new
configuration data at a faster rate then the reception of packets, for
instance per each processed packet field (typical use would be
configuring every 100 – 10,000 cycles of execution).

2.2 Design Example
We now give an example of a hierarchical system and point out
how reconfiguration is useful at different levels of the hierarchy.

Elliptic-curve public key cryptography is based on the operations on
points of a specific curve in a finite field, the so-called underlying
field. The point multiplication is the fundamental operation for the
key agreement protocol. The Diffie-Hellman key agreement
protocol works as follows [7]: given a point P on the curve, Alice
will compute a.P, and Bob will compute b.P. Alice receives b.P and
computes a.b.P. Bob receives a.P and computes a.b.P. They now
share a secret key a.b.P. The assumption is that an eavesdropper,
who has access to a.P and b.P cannot compute a.b.P because the
discrete logarithm problem is a hard problem in the elliptic curve
group. The algorithm can be implemented across different
abstraction levels. At the highest level, the point multiplication k.P is
executed, where k is an integer and P is a point on the elliptic curve.
The point multiplication can be decomposed into doublings, additions
and subtractions of points on the elliptic curve. These primitive
operations on points of the elliptic curve can again be decomposed
in operations on elements of the underlying field. These operations
are the addition, the division, the multiplication and the squaring of
elements of the underlying field.

The architecture of this elliptic curve crypto-processor is shown in
Figure 3. This processor has been designed with a hierarchical
controller [8]. At the top layer, an FSM PointMult accepts an
instruction stream that allows programming of algorithm parameters
as well as initiating the point multiplication k.P. The next layer
arranges three FSM. Input and Output match the word-length
characteristics of the encryption algorithm (n bits) to that of the
system (W bits), while FSM DoubleAddSub implements primitive
elliptic curve operations. The data-path implements those in
operations of the underlying field.

Configuration Packet 1

Time

Reconfiguration

Dynamic
Reconfiguration

C

C C C

Packet 2 Packet 3

C

Packet 1 Packet 2 Packet 3

C C C C C C C C

Field 1
Field 2

Field 3

Figure 2 : Binding Time

Table 1 : Examples of Configurable Design Elements

Communication Storage Processing

Implementation Switches
Muxes

RAM Organization CLB
Parametrizable IP-block

Micro-Architecture Crossbar
Busses

Register File Size
Cache Architecture

Execution Unit Type
Interpreter Levels

Instruction Set
Architecture

Size of address/data bus Register Set
Memory Architecture

Custom Instructions
Interrupt Architecture

Process Architecture/
Systems Architecture

Interconnection network Buffer Size Number and type of asynchronous
processes and tasks

Datapath
GF(2^n)

FSM
DoubleAddSub

FSM
Point Mult

FSM
Input

FSM
Output

>> >>

readyinstruction

W n

Figure 3: Elliptic Curve Encryption Processor

The advantages of a hierarchical control specification have been
advocated before [9]. They include better control on complexity and
increased reuse opportunities. In addition, we note here that
reconfiguration is useful at each level of abstraction.

• The architecture can support different field sizes (n values) by
making the data-path reconfigurable. Typically n is 200 bits.
Fine-grain reconfigurability allows supporting the optimal
architecture for each polynomial length.

• A reprogrammable FSM DoubleAddSub receives micro-
instructions from the FSM PointMult and translates this in a
sequence of micro-instructions for the data path.

• A reprogrammable FSM PointMult allows changing of the
elliptic curve multiplication algorithm itself. The instruction set
allows reprogramming of the elliptic curve as well as the
irreducible field polynome.

3. DESIGN TECHNOLOGIES
This section briefly overviews how design technologies support the
types of reconfigurability discussed above. The aim of these
technologies is (a) to identify the required reconfigurability, and (b)
to effectively exploit it. Figure 4 demonstrates the general approach
to achieve this. Starting with an application domain, we profile a set
of applications to identify common and computationally intense
kernels (domain primitives). The parametric implementation of these
kernels forms the building blocks of the reconfigurable platform.

In the second step a single application out of the application domain
is mapped, manually or automatically, onto the reconfigurable
portions of the platform. The granularity of these computational
kernels varies significantly as do the techniques for doing the
mapping. The remainder of the section considers design technology
support for these two steps at different levels of abstraction.

3.1 Instruction Set Architecture
First we consider configurations of the instruction set architecture.
Specialized operations have to be included in a system through a
careful trade-off of area, throughput and or power consumption.
The following two examples illustrate this point.

Example 1: The instruction set of general-purpose microprocessors
has the widest coverage. The power consumption is however
several orders of magnitude higher than programmable DSP
processors such as the ones used in cellular phones. The reason is
that DSP processors have the right amount of programmability for
the application domain of wireless communications [10]. This
includes specialized instructions to accelerated Viterbi decoding and
even turbo decoding. Example systems that use instruction-set
configuration are given in section 4.1.

Example 2: The FPGA supports the most generic type of
reconfiguration: implementation-level reconfiguration. A power
breakdown of the FPGA shows that 65% of the power consumption
is associated with the interconnect [11]. This is a high price for
general reconfigurability, especially when considering applications
that have high operation regularity (like DSP) and thus only have
low routing requirements.

Consequently there is a need for domain specific processors that
provide sufficient reconfiguration and/or reprogrammability within
the application domain, yet at the same time don't need and cannot
afford the general reprogrammability. Examples are wireless

communications, multimedia, packet processing in routers and
switches, signal processing, encryption, and so on.

There are four areas of possible specialization in a processor: the
data paths that perform the actual operations, the memory
architecture, the interconnect architecture and the control
architecture.

Profiling can be used to identify the right processor specializations.
In first-order profiling, a set of representative algorithms from an
application domain is executed and the type and quantity of
operations per algorithm needed is collected. This information then
is used in the instruction set design process. But more advanced
strategies are possible. Future generations of instruction sets will
have explicit communication and dependence information embedded
in the instruction. This is because of the dominance of interconnect
and memory bandwidth in deep sub-micron technologies, and
because many of the application domains are heavily throughput
driven. Such dependence information can be derived from a higher-
order profiling step that also considers operation data dependencies
next to operation types, and is a topic of current research.

3.2 Micro-Architecture Level
Flexibility in reconfigurable systems comes at the expense of the
reconfiguration time (including synthesis, place and route). To
circumvent that, we can move the system hierarchically as
described in Section 2. At any given level of hierarchy, one can
think of the basic building blocks of a reconfigurable architecture as
parameterized functional blocks that are pre-placed within a fully
reconfigurable fabric. We call these Versatile Parameterizable
Blocks (VPBs). VPBs are programmable with minimum amount of
input. At the lowest level of hierarchy, VPBs are equivalent to
CLBs and the highest-level VPBs are capable of performing
complex functions (as described in Section 2). When implementing
an application, the VPBs will perform operations that can be
mapped onto these fixed blocks; computational blocks that will be
instantiated on the fully reconfigurable portion of the chip will
perform the remaining operations. (For a more detailed description
of VPBs see [12].)

We demonstrate this concept with an example in image processing.
Repetitive arithmetic operations on a large amount of data can be
very efficiently implemented using hardware. First, algorithms that

ApplicationApplicationApplication

Profiling

Domain
Primitives

Mapping

All 1 Instance

Target
Configuration

Future
Application

Application Domain

Formation Platform

Figure 4: Design of Reconfigurable Platforms

have common properties and operations are grouped together. Such
algorithms can use a common set of VPBs for their implementation.
The algorithms and the classes that they belong to are summarized
in Table 2.

An example VPB that is useful for image processing is the Filter
Operations Block shown in Figure 5. This block takes five
parameters that define its operation. It can be used for an iterative
image restoration algorithm, and several other filtering operations
such as mean computation, noise reduction, high pass sharpening,
Laplace operator, and edge detection operators (e.g. Prewitt,
Sobel). The mask-coefficients array holds the values of the
coefficients. Parameters B, A, and c take the value 0 for all the
functions except the iterative image restoration algorithm.

Given a fabric with a collection of VPBs, one can use compiler
techniques to map a given algorithm/specification to this
heterogeneous architecture. An initial mapping can be extracted
based on profiling techniques. In present-day design, a final manual
intervention is needed to obtain an optimized design.

We performed a preliminary study into application profiling. The
starting point is high level code, e.g. C/C++/Fortran, of a set of
applications that is compiled into control dataflow graphs (CDFGs).
This can be done using the SUIF compiler [13] as a front-end and
Machine-SUIF [14] to take the SUIF Intermediate Format (IR) to
control flow graphs (CFG). From there, one can implement a pass
to translate the CFGs to CDFGs and perform some simple profiling.

Multimedia applications are known to have a high level of
parallelism, which can be exploited for performance on hardware.
Therefore, we examined the MediaBench application suite [15].
We profiled files from the suite which performed the actual
multimedia operations e.g. FFT, motion detection, etc. Table 3
presents the results for simple operation sequences. The notation
OP1-OP2 denotes that OP2 directly uses output from OP1 i.e.
there is an edge {OP1, OP2} in the CDFG.

The percentage listed for the potential VPB operations is

opsnumtotal
OPOPseqeuncenum

__
)2,1(_ ; therefore the sum of the

percentage across a single application will exceed 100%. We can
gather a lot of information using this simple profiling. For example,
the sequence of operations deviates from probability theory as the
sequence MUL-ADD is found with much greater frequency than
ADD-MUL. Probabilistically, these sequences should occur in the
same proportion. Additionally, the profiling shows that the MUL-

ADD sequence should be implemented as a VPB as it is widely
used across all the applications.

4. PLATFORM SURVEY
Having presented a taxonomy of reconfigurable devices and given
some indication of design support for these devices, we now survey
reconfigurable platforms and (do our best to) place them in our
taxonomy. As several good surveys of academic reconfigurable
platforms are available [16,17,18,6], we concentrate on the
commercial ones. Table 4 lists both academic and commercial
platforms, along with pointers to more detailed information. This set
is not exhaustive. Due to the rapid evolution in this area we can only
claim to have a representative selection of devices.

4.1 Commercial Configurable Platforms
The architectural elements that are most naturally configurable are
processor blocks. These blocks are not intended to be fully
autonomous devices, but are intended to be included as Intellectual
Property (IP) blocks on a silicon die. In the basic parameters of the
processor, we can define three types of vertical configurability:
architectural, micro-architectural, and implementation-level
configurability. Architectural configurability means that the actual
programmer’s view of the processor is configured in different ways.
For example the number of registers or even the instruction set may
change. Micro-architectural configurability means that the functional
unit organization can change. For example the number of arithmetic-
logic units to implement an instruction may change. Finally,
implementation configurability means that the physical

Table 2: Classification of Image Processing Algorithms

Algorithms Operations Class

Image Restoration, Mean
Computation, Noise
Reduction,
Sharpening/Smoothing
Filter

Weighted Sum,
addition,
subtraction,
multiplication

Filter Operations

Image Halftoning, Edge
Detection

Comparison Thresholding

Image Darkening, Image
Lightening

Addition,
Subtraction

Pixel Modification

Table 3 Profile of Operations and Simple Combinations

MediaBench file name

motion getblk adpcm convol jctrans

ADD 50.3% 44.5% 45.3% 64.8% 84.6%

MUL 36.3% 24.0% 9.4% 22.2% 13. 8%

Potential VPB Operations

MUL-MUL 0.0% 1.3% 0.0% 0.0% 0.0%

ADD-ADD 14.5% 3.2% 0.0% 0.0% 9.1%

ADD-MUL 0.0% 0.6% 0.0% 0.5% 0.4%

MUL-ADD 36.3% 21.5% 9.4% 20.1% 13.0%

w B A b c

Out

Av = In x w;

Out = B.In + A.In1 + (b-c).Av;

In1 = In;

Processing Cycle:

In

Configuration

Figure 5: Filtering Block

implementation may change. For example one physical
implementation of the same architecture may be more power-
efficient, while another may be more performance (speed) oriented.

The ARC Tangent A4-RISC core and the Tensilica Xtensa
micprocessor each illustrate all three types of configurability. All IP
blocks delivered in soft (i.e. in a hardware description language)
format may have their implementation configured by the RTL
synthesis tools and the place and route tools that create their
physical implementation. Thus these processors have configurable
implementations.

Each of the Tangent and Xtensa processors are based on simple
RISC cores. These processors also offer per-instance horizontal
micro-architectural configuration options such as size and
organization of caches or the number and priority of interrupts.

The most significant configurability of these processors comes from
instruction-set architectural configurations. Starting with a base
instruction set of 29 instructions the ARC Tangent user can add
application specific instructions such as multiply-accumulate (MAC)
or normalize without writing any HDL. The Tensilica Xtensa and
ARC Tangent both offer set instruction extension packages for
specific domains such as DSP. ARC offers two types of use-level
instruction extensibility. In the first type the user chooses from a set
of pre-defined instruction set extensions. For these instructions the
software environment including simulator, assembler, and compiler
are automatically regenerated. The designer may also augment the
ARC with an arbitrarily complex co-processor. For such
augmentations more user intervention is required to generate the
software environment.

The Xtensa also supports user-defined instruction extensions.
Tensilica places limits on the extensibility of instructions but fully
generates the software environment for these instructions. Using
either type of instruction extensions users are able to gain from 6X
(JPEG) to 100X (Viterbi decoding) speed improvement over a
standard RISC microprocessor.

VLIW processors are another class of processors that are well
suited for configurable applications. In such processors there are a
significant number of architecture parameters that can be varied
while still adhering to the same VLIW system concept and design
environment. Examples are the number and type of data-paths, the
interconnect-architecture, the controller architecture and so on.
AR/T Designer from Frontier Design is an environment that creates
(configures) VLIW processors starting from a C++ description.

The Improv Programmable Systems Architecture® offers
configurability at both the instruction-set architecture and the
process architecture(or systems architecture) level. Designers may
configure the individual VLIW Jazz processor by adding designer-
defined computational units. These units are scheduled and
controlled in an integrated fashion with the other execution units.
Multiple Jazz processors may be then integrated together with
integration blocks to form a multi-processor Integration Systems
Architecture®.

Integration of processors together with IP blocks on a single die led
to the predominance of the system-on-a-chip IC. With configurable
processors such as the ARC Tangent, Tensilica Xtensa, and the
Improv Jazz, a new type of pla tform is introduced that supports
integration at the instruction level. The resulting platforms rival

ASIC speeds in an IC that may be entirely programmed in a
traditional C-based software environment.

4.2 Commercial Reconfigurable Platforms
Configurability is powerful but in configurable devices the
architecture and implementation are fixed during semiconductor
processing. Many designers will want the flexibilility of deferring
configuration decisions until actual field deployment or even runtime.

FPGA’s deal with reconfigurability at implementation level. Xilinx
introduced these devices over 15 years ago and now offers
differentiated product families optimized for high performance, low
power consumption or low cost.

The Chameleon Reconfigurable Communications Processor is
targeted towards wireless communication applications such as
cdma2000, W-CDMA and UMTS. Reconfiguration is possible at
the micro architecture level, although an on chip ARC core also
supports process-level reconfiguration. The reconfigurable fabric of
the CS2112 is organized as four processing slices, each consisting of
three tiles and each tile consists of seven 32-bit datapath elements
and two-multipliers. This offers 84 32-bit datapath elements and 24
multpliers. Two planes of configuration memory are present and
accessible from the ARC core. Compiler techniques have been
presented [3] to map a single C program thread on a combination of
the fabric and the core, and to optimize reconfiguration overhead.
Product literature indicates this device is able to handle cdma2000
Chip Rate Processing of 50 channels. The device also allows for

Table 4 : (Re)configurable Platforms

Platform Vertical1 Reference

Excalibur, Altera I, M http://www.altera.com

Virtex, Xilinx I http://www.xilinx.com

Xtensa, Tensilica I,M,ISA http://www.tensilica.com/

Tangent, ARC
Compiler

I,M,ISA,P http://www.arccores.com/

Frontier Design P http://www.frontierd.com/

Chess, Target ISA http://www.retarget.com/

Jazz, Improv Systems I,ISA,M,P http://www.improvsys.com

MECA 4I, PMC-Sierra P http://www.pmc-sierra.com/

Morphics P http://www.morphics.com/

E7/A5, Triscend ISA,P http://www.triscend.com/

FPSLIC, Atmel I,P http://www.atmel.com/

C
om

m
er

ci
al

CS2112, Chameleon
Syst.

M,P www.chameleonsystems.com

Garp, UCB I, ISA, P http://brass.cs.berkeley.edu/

PipeRench, CMU M http://www.ece.cmu.edu/rese
arch/piperench

MorphoSys, UCI I,ISA,P http://www.eng.uci.edu/morp
hosys

SPS, UCLA I,M http://www.cs.ucla.edu/~elib/
reconfigurable

A
ca

de
m

ic

C-RISP, KULeuven ISA http://www.acca.be/

(1) I = Implementation, ISA= instruction set architecture,
M = Micro-Architecture , P = Process architecture

relatively inexpensive dynamic reconfiguration and algorithms
exploiting reconfiguration every 1000 to 10,000 cycles are in
development.

By driving specialization further across the micro-architecture level
and into the task-level, platforms for specific application areas are
obtained. For example the PMC-Sierra MECA 4I™ is targeted for
Voice-over-IP applications and comes with its own firmware for
reconfiguring the device. The advantage of reconfigurability is
realized when the user downloads firmware upgrades in the field.
Compared to Chameleons’ CS2112, the MEC 4I™ offers relatively
fewer but more powerful coarse-grain datapath-oriented
reconfigurable elements. Another example of coarser-grain
reconfigurability is provided by Morphics, which offers both
packaged stand-alone reconfigurable devices targeted for the
wireless base-station market as well as reconfigurable IP blocks.
Architecturally the standalone Morphics device is organized as a
series of reconfigurable kernel processing elements controlled by a
general-purpose processor. Each reconfigurable element is also
coarse-grained and datapath-oriented.

Another recent trend is the combination of a fine-grain
reconfigurable fabric with a general-purpose processing core. The
resulting system provides implementation level reconfiguration of the
fabric, combined with task-level reconfiguration of the core. The
fabric is memory mapped to the core. One example here is the
Triscend E5 and A7 CSOC (Configurable System-on-a-Chip)
families. Each platform supports different processor cores (8032
MCU/E5;ARM 7/A7) and application types. Atmel offers the
FPSlic based on the AVR micro-controller. Altera combines
embedded microprocessors (ARM, MIPS) and peripherals with
reconfigurable logic in the Excalibur™ family.

Finally, it should also be mentioned that reconfigurable blocks are
also being offered as IP blocks that can be embedded by an end-
customer IC developer. Besides Morphics, reconfigurable logic
vendors Actel with its new VariCore™ program and Adaptive
Silicon with its new Programmable Logic Core™ are taking this
direction. This will allow one more mechanism by which the
reconfiguration hierarchy can proliferate in the ASIC landscape.

5. CONCLUSIONS
Reconfigurable systems introduce an exciting new dimension of
programming, spanning all abstraction levels of a system. New
design technology is needed to offer an effective use model for
these systems. On the commercial side, it is encouraging to see that
many of the product offerings are application focused and rely on
reconfigurabilty as simply an efficient mechanism to provide
application performance. As a result reconfigurable technology is
moving from academic research to a solutions oriented commercial
technology.

6. ACKNOWLEDGEMENTS
The authors would like to thank the companies mentioned in this
paper for providing us with product details and useful insights. The
authors are also grateful for the organizational contributions of
Diederik Verkest at IMEC.

7. REFERENCES
[1] ASIPs: Get ready for reconfigurable silicon, M. Santarini,

http://www.eetimes.com/story/OEG20001120S0028

[2] Xtensa Application Specific Microprocessor Solutions,
Overview Handbook pp. 59-64, http://www.tensilica.com

[3] A Compiler Directed Approach to Hiding Configuration
Latency in Chameleon Processors, X. Tang, M. Aalsma, R.
Jou, FPL 2000, pp. 29-38, 2000.

[4] Reconfigurable Computing: What, Why, and Implications for
Design Automation, A. Dehon, J. Wawrzynek, DAC99, 1999.

[5] Stream Computations Organized for Reconfigurable
Execution (SCORE), E. Caspi, M. Chu, R. Huang, J. Yeh, Y.
Markovskiy, J. Wawrzynek, and A. DeHon, FPL 2000, pp.
605-614, 2000.

[6] A Decade of Reconfigurable Computing: A Visionary
Perspective, R. Hartenstein, Proc DATE ‘01, Munchen,
March 13-16, 2001.

[7] E. Dewin, B. Preneel, "Elliptic Curve Public-Key
Cryptosystems: An Introduction," LNSC 1528, Springer-
Verlag, June 1997, pg. 131-141

[8] A Hardware Implementation of Elliptic Curve Public-Key
Cryptosystems, W. Borremans, P. Gijsels, MS thesis,
KULeuven, July 2000.

[9] SpecCharts: A VHDL front-end for embedded systems, F.
Vahid, S. Narayan, and D. Gajski, IEEE Trans CAD,
14(6):694-706, June 1995.

[10] Low Power DSP's for Wireless Communications, Ingrid
Verbauwhede, Dave Garrett, ISLPED 2000, pp. 303-310,
August 2000.

[11] The design of a low energy FPGA, V. George, Hui Zhang,
Jan Rabaey, ISPLED 1999, pp. 188-193, San Diego, 1999.

[12] SPS: A Strategically Programmable System, S. Ogrenci, E.
Bozorgzadeh, R. Kastner and M. Sarrafzadeh, Proc. RAW
2001, April 2001, San Francisco.

[13] The SUIF 2 Compiler System, Stanford University Compiler
Group, http://suif.stanford.edu/suif/suif2/.

[14] The Machine SUIF SUIFvm Library, Glenn Holloway and
Michael D. Smith, Technical Report, Division of Engineering
and Applied Systems, Harvard University, 2000.

[15] MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems, Chunho Lee,
Miodrag Potkonjak and William H. Maggione-Smith.
Technical Report, Computer Science Department, University
of California, Los Angeles, 2001

[16] The flexibility of configurable computing, J. Villasenor, B.
Hutchings, IEEE Signal Processing Magazine, pp 67-84,
September 1998.

[17] The Roles of FPGA’s in Reprogrammable Systems, S. Hauck,
IEEE Proceedings, pp. 615-638, April 1998.

[18] Reconfigurable Instruction Set Processors: A Survey, F.
Barat and R. Lauwereins, pp. 168-173, Proc. RSP 2000.

