
A Quorum-Based Group Mutual Exclusion
Algorithm for a Distributed System

with Dynamic Group Set
Ranganath Atreya, Neeraj Mittal, Member, IEEE Computer Society, and Sathya Peri

Abstract—The group mutual exclusion problem extends the traditional mutual exclusion problem by associating a type (or a group)

with each critical section. In this problem, processes requesting critical sections of the same type can execute their critical sections

concurrently. However, processes requesting critical sections of different types must execute their critical sections in a mutually

exclusive manner. We present a distributed algorithm for solving the group mutual exclusion problem based on the notion of surrogate-

quorum. Intuitively, our algorithm uses the quorum that has been successfully locked by a request as a surrogate to service other

compatible requests for the same type of critical section. Unlike the existing quorum-based algorithms for group mutual exclusion, our

algorithm achieves a low message complexity of OðqÞ and a low (amortized) bit-message complexity of OðbqrÞ, where q is the

maximum size of a quorum, b is the maximum number of processes from which a node can receive critical section requests, and r is

the maximum size of a request while maintaining both synchronization delay and waiting time at two message hops. As opposed to

some existing quorum-based algorithms, our algorithm can adapt without performance penalties to dynamic changes in the set of

groups. Our simulation results indicate that our algorithm outperforms the existing quorum-based algorithms for group mutual

exclusion by as much as 45 percent in some cases. We also discuss how our algorithm can be extended to satisfy certain desirable

properties such as concurrent entry and unnecessary blocking freedom.

Index Terms—Message-passing system, resource management, mutual exclusion, group mutual exclusion, quorum-based algorithm.

Ç

1 INTRODUCTION

MUTUAL exclusion is one of the most fundamental
problems in concurrent systems including distributed

systems. In this problem, access to a shared resource (that
is, execution of critical section) by different processes must
be synchronized to ensure its integrity by allowing at most
one process to access the resource at a time. Numerous
solutions [2], [3], [4], [5], [6] and extensions [7], [8], [9], [10]
have been proposed to the basic mutual exclusion problem.
More recently, another extension to the basic mutual
exclusion problem, called group mutual exclusion (GME),
has been proposed [11]. In the GME problem, every critical
section is associated with a type or a group. Critical sections
belonging to the same group can be executed concurrently,
whereas critical sections belonging to different groups must
be executed in a mutually exclusive manner.

The readers/writers problem can be modeled as a special
case of GME using nþ 1 groups, where n denotes the
number of processes in the system. In this case, all read
requests belong to the same group, and write requests by
each process belong to a different group. As another
application of the problem, consider a CD jukebox, where
data is stored on disks and only one disk can be loaded for

access at a time [11]. In this example, when a disk is loaded,
users that need data on the currently loaded disk can access
the disk concurrently, whereas users that need data on
different disks have to wait for the currently loaded disk to
be unloaded.

Solutions for the GME problem have been proposed
under both shared-memory and message-passing models.
Solutions under the shared-memory model can be found in
[11], [14], [15], [16], and [17]. In this paper, we investigate
the GME problem under the message-passing model. For
the message-passing model, solutions to GME have been
proposed for ring networks [18], [19] and tree networks
[20]. Typically, solutions for ring and tree networks incur
high synchronization delay and have high waiting time. For
a fully connected network, two GME algorithms based on
the modification of the Ricart and Agrawala’s algorithm for
mutual exclusion [4] have been proposed in [21]. These
algorithms have high message complexity of OðnÞ. The first
algorithm has low expected concurrency of Oð1Þ, whereas
the second algorithm has high message and bit-message
complexities of OðnÞ and Oðn2 rÞ, respectively, where r is
the maximum size of a request. (A request basically consists
of three components: 1) the logical time stamp of the
request, 2) the process that generated the request, and 3) the
type of the request. Note that r ¼ �ðlognþ logmÞ, where m
denotes the number of groups in the system.)

The quorum-based mutual exclusion algorithm of
Maekawa [22] has also been modified to derive two
quorum-based algorithms for GME [12]. These algorithms
use a special type of quorum system called the group quorum
system. In a group quorum system, two quorums belonging
to the same group need not intersect, whereas quorums

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007 1

. The authors are with the Department of Computer Science, University of
Texas at Dallas, Richardson, TX 75083.
E-mail: ratreya@amazon.com, neerajm@utdallas.edu,
sathya.p@student.utdallas.edu.

Manuscript received 30 Nov. 2005; revised 1 Sept. 2006; accepted 5 Dec. 2006;
published online 26 Jan. 2007.
Recommended for acceptance by X. Jia.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0496-1105.
Digital Object Identifier no. 10.1109/TPDS.2007.1072.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

belonging to different groups must intersect. The maximum

number of pairwise disjoint quorums offered by a group

quorum system is called the degree of the quorum system. In

[12], Joung introduced a group quorum system called the

surficial quorum system, which has a degree of

ffi

2n

mðm� 1Þ

s

:

When used with Maekawa’s algorithm, the surficial quorum

system can only allow up to the degree number of processes

of the same group to execute concurrently. To achieve

unrestricted maximum concurrency, Joung also proposed

two quorum-based algorithms, namely, Maekawa_M and

Maekawa_S, based on two separate modifications to

Maekawa’s original quorum-based algorithm. The first

modification enables a node to issue multiple locks to

requests belonging to the same group. The drawback of this

approach is that in the event of conflict between requests of

different groups, deadlock avoidance requires multiple

locks to be taken back. This results in a high (worst case)

message complexity of Oðqnd Þ, where d is the degree of the

underlying group quorum system (it can be proved that

d � ffiffiffi

n
p

[12]). To overcome this drawback, Joung proposed

a second modification, which avoids deadlocks altogether.

Specifically, deadlocks are avoided by locking quorum

members in some fixed order. Although this approach

reduces the message complexity to OðqÞ, the synchroniza-

tion delay evidently increases from 2 to OðqÞ message hops,

where q is the maximum size of a quorum. In addition, both

of these algorithms need an a priori knowledge of the

number of groups to construct the group quorum system,

which cannot change with time.
For some applications, the number of groups in the

system may change dynamically during the course of

execution. For instance, in the CD jukebox example, new

CDs may be added at runtime. Hence, it is desirable for a

GME algorithm to be able to handle dynamic changes in the

number of groups. Toyomura et al. have proposed a

quorum-based algorithm that uses a traditional quorum

system [13]. Their algorithm is similar to Maekawa_M and
therefore has a high message complexity of OðnqÞ.

In this paper, we take a slightly different approach and
introduce the notion of surrogate-quorums. The existing
quorum-based algorithms [12] can provide either a low
synchronization delay of two message hops or a low
message complexity of OðqÞ, but not both. Hence, they are
either inefficient or nonscalable. Our algorithm, on the other
hand, achieves a low message complexity of OðqÞ while
maintaining both synchronization delay and waiting time at
two message hops, thereby satisfying both of the seemingly
opposing qualities: efficiency and scalability. To accomplish
this, we exchange OðbqrÞ bits per request (amortized over
all requests), where b denotes the maximum number of
processes from which a node can receive requests for
critical section, and r denotes the maximum size of a
request. As a result, our algorithm has an amortized bit-
message complexity of OðbqrÞ.

Some of the existing quorum-based algorithms, such as
those in [12], use a group quorum system whose construc-
tion may require an a priori knowledge of the number of
groups in the system. Our algorithm uses a traditional
quorum system, which does not depend on the number of
groups in the system. Consequently, our algorithm can
adapt without performance penalties to dynamic changes
(at runtime) in the number of groups. Finally, as with
the other quorum-based algorithms, it is possible for all
processes to execute their critical sections concurrently if all
of them request critical sections belonging to the same
group. Table 1 compares the performance of various
quorum-based GME algorithms. When our algorithm is
used with the grid quorum system, for which q ¼ b ¼
2

ffiffiffi

n
p � 1, it clearly outperforms the other three quorum-
based algorithms. Later in this paper, we will also describe
how our algorithm can be extended to satisfy certain
desirable properties such as concurrent entry [21] and
unnecessary blocking freedom [23].

The rest of the paper is organized as follows: We present
our system model and formally describe the GME problem
in Section 2. Section 3 describes the background necessary
to understand our algorithm. We then present our quorum-

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

TABLE 1
Comparison of Various Quorum-Based GME Algorithms

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

based algorithm for GME in Section 4. We prove its
correctness in Section 5, analyze its performance in Section 6,
and present our simulation results in Section 7. In Section 8,
we discuss several extensions to our basic algorithm.
Finally, we present our conclusions in Section 9.

2 MODEL AND PROBLEM DEFINITION

2.1 System Model

We assume an asynchronous distributed system comprising
a set of processes �, with j�j ¼ n. Processes communicate
with each other by sending messages over a set of channels.
We assume that there is a channel between every pair of
processes. There is no global clock or shared memory. The
processes are nonfaulty. The channels are reliable and
satisfy the first-in, first-out (FIFO) property. In this paper,
we use lowercase English letters (for example, x, y, and z) to
denote processes and uppercase English letters (for exam-
ple, P , Q, and R) to denote sets of processes.

2.2 The Group Mutual Exclusion Problem

The group mutual exclusion problem (GME) was first
proposed in [11] as an extension to the traditional mutual
exclusion problem. In this problem, every request for a
critical section is associated with a type or a group. An
algorithm for group mutual exclusion should satisfy the
following properties:

. Group mutual exclusion. At any time, no two
processes, which have requested critical sections
belonging to different groups, are in their critical
sections simultaneously.

. Starvation freedom. A process wishing to enter
critical section succeeds eventually.

Clearly, any algorithm for solving the traditional mutual
exclusion problem also solves the GME problem. However,
such algorithms are suboptimal because they force all
critical sections to be executed in a mutually exclusive
manner and therefore do not permit any concurrency
whatsoever. To avoid such degenerate solutions and
unnecessary synchronization, Joung proposed that an
algorithm for achieving GME should satisfy the following
desirable property:

. Concurrent entry (nontriviality). If all requests are
for critical sections belonging to the same group,
then a requesting process should not be required to
wait for entry into its critical section until some other
process has left its critical section.

Intuitively, the concurrent entry property states that if
processes currently in their critical sections, if any, never
leave their critical sections and no process has or makes any
conflicting request, then any process with a pending request
should eventually be able to enter its critical section. The
GME problem can be cast as a congenial talking philosophers
(CTP) problem [21]. In the CTP problem, a philosopher can
be in one of the three states at any time: thinking, waiting,
and talking. Philosophers think alone but talk in forums. A
philosopher, who is currently thinking, may at any time
decide to join a specific forum by changing its state to
waiting. Each forum is of a specific type and is held in a

meeting room. There is only one meeting room available,
and at most one forum (of any type) can be in progress in
the meeting room at any time. However, a forum can be
attended by any number of philosophers. A philosopher, on
entering the requested forum, changes its state and starts
talking. The first philosopher to enter a forum initiates a
session of that forum type, and the last philosopher to leave
it terminates that session.

2.2.1 Complexity Measures

Traditionally, the following metrics have been used to
measure the performance of a GME algorithm:

. message complexity—the number of messages ex-
changed per request for a critical section,

. bit-message complexity—the number of bits exchanged
per request for a critical section,

. synchronization delay—the amount of time elapsed
between when the current forum terminates and
when the next forum (of some other type) can
commence,

. waiting time—the amount of time elapsed between
when a process issues a request for a critical section
and when it actually enters the critical section, and

. concurrency—the number of processes that are in
their critical sections at the same time.

The first four metrics are used to evaluate the perfor-
mance of a traditional mutual exclusion algorithm as well.
The fifth metric is specific to a GME algorithm. We measure
synchronization delay and waiting time in terms of the
number of message hops rather than in terms of real time.
Further, as in [12], when analyzing the performance of a
GME algorithm theoretically, we compute its minimum
synchronization delay, minimum waiting time, and max-
imum concurrency.

Message complexity and bit-message complexity to-
gether capture the overhead imposed on the communica-
tion network by the GME algorithm during runtime.

Synchronization delay captures the effectiveness of a
GME algorithm in utilizing the resource that it is managing.
Intuitively, the minimum synchronization delay measures
the amount of time that a resource has to stay idle not because
of lack of requests for accessing the resource but, rather,
because of the algorithm itself. To compute the minimum
synchronization delay, it is typically assumed that the
system is heavily loaded, and there is a lot of contention
among the processes for accessing the resource. Synchroni-
zation delay and concurrency together capture the system
throughput that can be achieved when the system is heavily
loaded (the lower the synchronization delay and the higher
the concurrency, the greater the system throughput). A
simple way to measure the concurrency of a GME is to
compute its maximum concurrency, which is given by the
maximum number of processes that can execute their
critical sections concurrently.

Waiting time captures the effectiveness of a GME
algorithm in fulfilling a request for the resource that it is
managing. Intuitively, the minimum waiting time measures
the amount of time that a process with an outstanding request
has to wait not because of other requests for the resource but,
rather, because of the algorithm itself. To compute the

ATREYA ET AL.: A QUORUM-BASED GROUP MUTUAL EXCLUSION ALGORITHM FOR A DISTRIBUTED SYSTEM WITH DYNAMIC GROUP SET 3

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

minimum waiting time, it is typically assumed that the
system is lightly loaded, and there is no contention among
the processes for accessing the resource.

3 BACKGROUND

3.1 A Quorum System

A quorum is a subset of nodes or processes. Although nodes
and processes are identical, following the convention in
[12], we use the term node specifically when referring to the
role of a process as a quorum member. A quorum system C,
also referred to as a coterie, for a (traditional) mutual
exclusion is a set of quorums satisfying the following
properties:

. Intersection: 8P , Q 2 C :: P \Q 6¼ ;.

. Minimality: 8P , Q 2 C : P 6¼ Q : P 6� Q.

If a process enters its critical section only after it has
successfully locked all nodes in some quorum, then the
intersection property ensures that no two processes can
execute their critical sections concurrently. The minimality
property ensures that no process is required to lock more
nodes than necessary to achieve mutual exclusion. For a
node x, let Bx denote the set of processes from which x can
receive requests for the critical section. We refer to Bx as the
membership set of x. For a grid quorum system, for every
node x, jBxj ¼ Oð ffiffiffi

n
p Þ.

Some existing quorum-based algorithms for GME use a
special type of quorum system called the group quorum
system [12]. In a group quorum system, any two quorums
belonging to the same group need not intersect, whereas
quorums belonging to different groups must intersect. We
do not use a group quorum system in this paper; instead,
we employ a traditional quorum system. Hereafter, the
phrase “quorum system” is used to refer to “traditional
quorum system.”

3.2 Maekawa’s Algorithm

Maekawa’s algorithm implements mutual exclusion by
using a coterie that satisfies the aforementioned properties.
Lamport’s logical clock [3] is used to assign a time stamp to
every request for a critical section. A request with a smaller
time stamp has a higher priority than a request with a larger
time stamp (ties are broken using process identifiers).
Maekawa’s algorithm works as follows:

1. When a process wishes to enter a critical section, it
selects a quorum and sends a REQUEST message to
all the quorum members. It enters the critical section
once it has successfully locked all its quorum
members. On leaving the critical section, the process
unlocks all its quorum members by sending a
RELEASED message.

2. A node, on receiving a REQUEST message, checks
to see whether it has already been locked by some
other process. If not, it grants the lock to the
requesting process by sending a LOCKED message
to it. Otherwise, the node uses time stamps to
determine whether the process currently holding a
lock on it (hereafter referred to as the locking process)
should be preempted. If the node decides not to

preempt the locking process, it sends a FAILED
message to the requesting process. Otherwise, it
sends an INQUIRE message to the locking process.

3. A process, on receiving an INQUIRE message from a
quorum member, unlocks the member by sending a
RELINQUISH message as and when it realizes that it
will not be able to successfully lock all its quorum
members. This is ascertained when a FAILED
message is received from one of the quorum
members.

4. A node, on receiving a RELINQUISH or RELEASED
message, grants the lock to the process whose
request has the highest priority among all the
pending requests, if any.

Maekawa [22] proved that the message complexity of the
above algorithm is OðqÞ, where q is the maximum size of a
quorum. Further, its synchronization delay and waiting
time are both two message hops. The synchronization delay
is two message hops because once a process leaves the
critical section, another process can enter the critical section
after all the quorum members of the former process have
received a RELEASED message and the latter process has
received a LOCKED message from its quorum members.
(When analyzing the synchronization delay of a quorum-
based algorithm derived from Maekawa’s algorithm, we
ignore the delay incurred due to an exchange of deadlock
avoidance messages. This is consistent with the practice of
other researchers [22], [12].) Likewise, the waiting time is
two message hops because if a process generates a request
when there is no other request in the system, then the
requesting process can enter the critical section within two
message hops after all its quorum members have received
its REQUEST message and it has received a LOCKED
message from all its quorum members.

4 A SURROGATE-QUORUM-BASED ALGORITHM

We now describe our approach for solving the GME
problem. We call two requests as compatible if they are for
the same type; otherwise, they are said to be conflicting.

4.1 The Main Idea

The main focus of our algorithm is to provide the following
advantages. Our algorithm should be scalable and, hence,
achieve a low message complexity and a low bit-message
complexity. To that end, we choose a quorum-based
approach. Our algorithm should be efficient, which means
that it should have a low waiting time, a low synchroniza-
tion delay, and a high maximum concurrency. In addition,
we want our algorithm to be independent of the underlying
quorum system and be able to handle dynamic changes, at
runtime, in the number of groups. Therefore, unlike the
existing quorum-based algorithms [12], we do not assume a
group quorum system. On the contrary, we assume
minimal properties for the underlying quorum system.
Particularly, we only assume the properties listed in
Section 3.1.

One approach to achieving concurrency is by enabling
the nodes to issue multiple locks [12]. However, in this
approach, deadlock avoidance may require multiple locks to
be preempted, thereby increasing the message complexity.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

To ensure scalability, we take the leader-follower approach
introduced in [21], along with the notion of surrogate-
quorum. In our approach, processes requesting entry into
their critical sections try to lock their respective quorums. A
process that successfully captures its quorum invites other
processes with compatible requests to enter the forum.
Therefore, a process can enter the forum by either locking
all its quorum members or by receiving an invitation from
another process. The process in the former case is called a
leader and that in the latter case is called a follower. In order
to inform a leader about other requests, a quorum member
on sending its lock also sends compatible requests that are
currently in its queue. To ensure the GME property, the
leader does not release its quorum until all its followers
have left the forum. We therefore use the quorum of the
leader as a surrogate for its followers; hence the name
surrogate-quorum. To avoid repetition, we describe only our
extensions to Maekawa’s algorithm:

1. A node, when sending a LOCKED message to a
process, piggybacks all requests currently in its
queue, which are compatible with the request by
the locking process.

2. A process, on receiving a LOCKED message, stores
all the requests that were piggybacked on the
message. Once it has successfully locked all its
quorum members, it sends an INVITE message to
processes that made these requests.

3. A process, on receiving an INVITE message for its
current request, sends a CANCEL message to all its
quorum members. It then enters the forum.

4. A node, on receiving a CANCEL message from a
process, removes its request from the queue, if it
exists.

5. Once a follower exits the forum, it sends a LEAVE
message to its leader.

6. A leader maintains the lock on its quorum members
until it has received a LEAVE message from all its
followers and has itself left the forum. It then sends a
RELEASED message to its quorum members.

7. A node, on receiving a RELEASED message from a
process, removes all those requests from its queue
that it piggybacked on the last LOCKED message
that it sent.

Since a process can enter a forum (as a follower) without
locking all its quorum members, fulfilled requests may
persist in the system for some time. We refer to these
requests and the messages generated due to these requests
as “stale.” A process may receive stale LOCKED, FAILED,
INQUIRE, and INVITE messages due to its stale requests.
Each of these messages can be piggybacked with the time
stamp of the request for which they were generated. As a
result, the requesting process, upon receiving a message,
can easily determine whether the message is stale. A
process needs to send a LEAVE message to the leader that
sent it a stale INVITE message. Stale LOCKED, FAILED, and
INQUIRE messages should be ignored.

If a leader leaves its forum and has not received a LEAVE
message from all its followers, then the leader is called a
surrogate-leader. It should be noted that a process in the
surrogate-leader mode can execute its underlying program

unimpeded. With the above modification, our algorithm has
a message complexity of OðqÞ and a synchronization delay
of three message hops (LEAVE, RELEASED, and LOCKED).
Since a node can piggyback at most one compatible request
per process in its membership set on a LOCKED message,
the size of a LOCKED message is bounded by OðbrÞ, where
b is the maximum size of a membership set, and r is the
maximum size of a request. Therefore, the worst case bit-
message complexity of the modified algorithm is given by
OðbqrÞ.

4.2 Reducing Synchronization Delay

A synchronization delay has a significant impact on
efficiency, especially the system throughput. Therefore, it
is desirable to reduce it further. It is evident that LEAVE
messages can be eliminated by allowing a follower to
directly release the quorum members of its leader. To do so
and still ensure the GME property, we make the following
modifications:

1. A leader, upon entering a forum, sets its weight to 1.
2. Upon sending an INVITE message, a leader reduces

its current weight by half and piggybacks the other
half over the INVITE message.

3. A leader, upon exiting its forum, instead of waiting
for LEAVE messages, sends a RELEASED message,
along with its remaining weight, to its quorum
members.

4. A follower, upon exiting its forum, instead of
sending a LEAVE message to the leader, sends a
RELEASED message, along with the weight that it
received and the INVITE message, to all the quorum
members of its leader.

5. A node accumulates all the weights that it received
over RELEASED messages and maintains its lock
until its cumulative weight becomes 1.

An efficient solution for weight distribution and recov-
ery using rational numbers was proposed in [24]. It is clear
that a fulfilled request may receive at most q stale INVITE
messages, one corresponding to each of its quorum
member. Before this modification, for each stale INVITE
message, a node only sent one LEAVE message, and hence,
the message complexity was OðqÞ. However, according to
the above modifications, for each stale INVITE message, a
node sends q RELEASED messages, thereby increasing the
message complexity to Oðq2Þ. To ensure scalability, we
propose another modification that reduces the message
complexity to OðqÞ while maintaining the bit-message
complexity at OðbqrÞ. The main idea is to eliminate stale
INVITE messages completely.

4.3 Avoiding Stale INVITE Messages

To lower the message complexity to OðqÞ, we need to
eliminate stale INVITE messages. It is clear that a quorum
member sends a LOCKED message only after receiving
RELEASED messages from all the processes in the current
forum. The “new” leader, due to the intersection property
of a quorum system, has to obtain a LOCKED message from
at least one quorum member of an “old” leader. Hence,
there exists a causal path from all the processes leaving a
forum to a process entering a forum later as a leader. We

ATREYA ET AL.: A QUORUM-BASED GROUP MUTUAL EXCLUSION ALGORITHM FOR A DISTRIBUTED SYSTEM WITH DYNAMIC GROUP SET 5

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

exploit this causal path to pass on information about stale
requests to the next leader. Specifically, we propose the
following changes:

1. Each process maintains a list of stale requests: There
is at most one entry in the list for every process in the
system. Likewise, each node also maintains a similar
list of stale requests (observe that the list maintained
by process x is physically different from the list
maintained by node x, and the two lists are updated
independently). The entry for process y in the list at
process (respectively, node) x contains the latest
request by y that has been fulfilled according to
process (respectively, node) x’s knowledge.

2. A node, on receiving a RELEASED message from a
process, updates its list with the request that sent the
RELEASED message.

3. Upon sending a LOCKED message to a process, a
node, in addition to piggybacking compatible
requests, also piggybacks those stale requests from
its list which have not been previously sent to the
process.

4. A process, on receiving a LOCKED message from a
node, updates its list by using the stale requests
received, along with the LOCKEDmessage (note that
the list needs to be updated even if the LOCKED
message is stale).

5. Upon successfully locking all the quorum members,
a leader desists from sending INVITE message to a
process y whose request has a time stamp that is less
than or equal to the corresponding entry in its
vector.

Note that the list of stale requests at a node is updated
only on receiving a RELEASED message, whereas the list of
stale requests at a process is updated only on receiving a
LOCKED message. With the above modifications, we have
an algorithm that has a synchronization delay of two
message hops (RELEASED followed by LOCKED) and a
message complexity of OðqÞ. However, we appear to have
increased the bit-message complexity of LOCKED mes-
sages. Since every process in the system may concurrently
enter a given forum, in the worst case, the size of a LOCKED
message may be as large as OðnrÞ. This leads to a relatively
high bit-message complexity of OðnqrÞ. We will show later
that the bit-message complexity, in fact, amortizes to only
OðbqrÞ over all requests.

4.4 Formal Description of Our Algorithm

We refer to our algorithm as Surrogate. A formal descrip-
tion of Surrogate can be found in Figs. 1, 2, 3, and 4. Figs. 1
and 2 describe the actions (P1-P6) of a process as an entity
that generates requests for a critical section. Figs. 3 and 4
describe the actions (N1-N5) of a process as a node, that is,
as an entity that manages requests for a critical section. The
processes are using Lamport’s logical clock algorithm [3],
which is not shown in the formal description.

5 PROOF OF CORRECTNESS

In this section, we formally prove that Surrogate, in fact,
satisfies the first two properties of a group mutual exclusion
algorithm, namely, GME and starvation freedom.

Note that a request for a critical section may have to wait
for one or more requests to release locks on its quorum
members. These wait relationships may recursively grow to

form what we call wait-for subgraphs emanating from a
request. Wait-for subgraphs may branch out and form more
wait-for subgraphs. However, as we will show later, these
wait-for subgraphs eventually unlink.

In the following proofs, we model the execution of the
system as an infinite alternating sequence of global states
and events, with � ¼ S0e1S1 . . .Si�1eiSi For executions
with a finite number of such global states, we assume the
existence of a hypothetical nop event for no operation,
which remains enabled in all states following the last global
state. A nop event does nothing, and so, in our model, for
executions with a finite sequence of global states, the final
state is repeated infinitely. On executing an enabled event ei
in global state Si�1, the system transitions to global state Si.
We assume that a continuously enabled event is eventually
executed.

In this paper, we use lowercase Greek letters (for
example, �, �, and �) to denote requests for a critical
section. When a node x sends a message MSG (LOCKED,
INQUIRE, or FAILED) to a process y for a request �, we say
that x sent MSG to � (or, equivalently, � received MSG from
x). Likewise, when a process x sends a message MSG
(RELINQUISH or RELEASED) to a node y for a request �,
we say that � sent MSG to y.

5.1 Proving Safety (GME)

For proving the safety property, we use the notation
described in Fig. 5. Using the notation in the figure, we
state some properties about our algorithm that can be
verified easily. The first property states that if a request is
currently being satisfied, then there exists a request of the
same type that currently holds locks on all its quorum
members:

forumð�; iÞ)
h9� : � 2 Ri : leaderð�Þ ^ ðtypeð�Þ ¼ typeð�ÞÞ ^ ð1Þ

h8x : x 2 quorumð�Þ : lockedðx; �; iÞii:
The second property states that a node cannot be locked

by two different requests at the same time. Formally,

lockedðx; �; iÞ ^ lockedðx; �; iÞ) � ¼ �: ð2Þ
We now prove that our algorithm is safe.

Theorem 1 (Safety property). Surrogate satisfies the GME
property; that is, two requests of different types cannot be
satisfied concurrently. Formally,

forumð�; iÞ ^ forumð�; iÞ) typeð�Þ ¼ typeð�Þ:

Proof. Assume that forumð�; iÞ and forumð�; iÞ hold. Since
forumð�; iÞ holds, using (1), there exists a request � 2 Ri

such that

leaderð�Þ ^ ðtypeð�Þ ¼ typeð�ÞÞ
^ h8x : x 2 quorumð�Þ : lockedðx; �; iÞi: ð3Þ

Likewise, since forumð�; iÞ holds, using (2), there
exists a request � 2 Ri such that

leaderð�Þ ^ ðtypeð�Þ ¼ typeð�ÞÞ
^ h8y : y 2 quorumð�Þ : lockedðy; �; iÞi: ð4Þ

From the intersection property of a quorum system,
there is node z in quorumð�Þ \ quorumð�Þ such that z has
been locked by both � and � in global state Si. Observe

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

that a node can be locked by at most one request in
any global state. This means that � and � are actually the
same request. From (3) and (4), typeð�Þ ¼ typeð�Þ ¼
typeð�Þ ¼ typeð�Þ. tu

5.2 Proving Liveness (Starvation Freedom)

Our algorithm for GME is derived from Maekawa’s

algorithm for mutual exclusion. Maekawa himself gave a

very informal proof for liveness in his paper [22]. We

provide a more formal proof for starvation freedom of our
algorithm in this paper.

We say that a request is satisfied as soon as the
requesting process enters the critical section because of
the request. For proving liveness, we use the notation
described in Fig. 6, in addition to the notation used in the
safety proof. Before giving the proof, we formalize the
concept of the “waiting-on relation” and “wait-for graph.”
We say that a request � is waiting on another request � if

ATREYA ET AL.: A QUORUM-BASED GROUP MUTUAL EXCLUSION ALGORITHM FOR A DISTRIBUTED SYSTEM WITH DYNAMIC GROUP SET 7

Fig. 1. Formal description of Surrogate for a process (continued in Fig. 2).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

1) � is still pending, 2) the time stamp of � is smaller than
the time stamp of � (ties are broken using process
identifiers), and 3) � is waiting for a lock that was sent
to �. The case when � has a lower priority than � can be
easily resolved to one of the cases above. Formally,

waiting-onð�; �; iÞ
¼�

pendingð�; iÞ ^ ðtsð�Þ < tsð�ÞÞ ^
h9x : x 2 quorumð�Þ \ quorumð�Þ : ð� 2 queueðx; iÞÞ^

lockedðx; �; iÞi:
Based on the above definition of the waiting-on relation,

each state of a distributed system running Surrogate can be
represented by a directed graph. For any system state, the
set of vertices in the graph is given by the set of requests
that have been made so far, and a directed edge exists from
vertex � to vertex � if request � is waiting on request � in
the given state. The graph for a state Si is called the wait-for
graph at state Si and is denoted by WFGðiÞ. The following
properties about a wait-for graph can be easily verified.

Lemma 2. WFGðiÞ satisfies the following properties:

1. WFGðiÞ is acyclic.
2. All paths in WFGðiÞ are simple paths.
3. If � has been satisfied in Si, then � does not have any

outgoing edges in WFGðiÞ.
4. The maximum length of all paths in WFGðiÞ is

bounded by j�j.
For a global state Si, the subgraph of WFGðiÞ emanating

from a request � is called the wait-for subgraph of � at Si. We
define the wait-set of � at Si, denoted by wait-setð�; iÞ, as the
set of requests that � is directly waiting on at Si, that is,
wait-setð�; iÞ ¼ f� j waiting-onð�; �; iÞg. The wait-set of a
fulfilled request is trivially empty. Note that once every
node in quorumð�Þ has received the request �, the wait-set
of � cannot grow. Formally,

pendingð�; iÞ ^ h8x : x 2 quorumð�Þ : � 2 queueðx; iÞi
)

h8u; v : u; v � i : u � v) wait-setð�; uÞ � wait-setð�; vÞi:
ð5Þ

For a request to be satisfied as a leader, its wait-set
should eventually become permanently empty. This is

relatively easy to prove if a request sends a RELINQUISH
message immediately on receiving an INQUIRE message
(that is, without first waiting to receive a FAILED message).
However, the proof is more involved when FAILED
messages are also considered.

In our proof, we use two attributes of a pending request,
namely, potence and omnipotence, which are defined as
follows: A pending request � is said to be potent in a global
state Si, denoted by potentð�; iÞ, if no request with a higher
priority (that is, smaller time stamp) is ever generated in a
global state following Si. Further, a potent request � is said
to be omnipotent in Si, denoted by omnipotentð�; iÞ, if it has
the highest priority among all the pending requests in Si.

Note that a request may be involved in two kinds of wait
relationships: 1) It may bewaiting on a request with a smaller
time stamp than its own, or 2) it may be waiting on a request
with a larger time stamp than its own. Intuitively, the former
kind of wait is desirable, whereas the latter kind of wait is
undesirable. The notions of the “waiting-on relation” and
“wait-for graph” capture the undesirable wait relationships.
On the other hand, the notions of “potence” and “omnipo-
tence” capture the desirable wait relationships.

Our liveness proof consists of the following steps: First,
we show that the wait-set of a pending request eventually
becomes permanently empty (that is, eventually, all un-
desirable wait relationships of a pending request disappear
permanently). Second, we show that a pending request
eventually becomes potent and then omnipotent (that is,
eventually, all desirable wait relationships of a pending
request also disappear permanently). Finally, we show that
once a request becomes omnipotent, and its wait-set
becomes permanently empty, it is eventually satisfied.

5.2.1 Wait Set Eventually Becomes Permanently Empty

A process that has entered a forum as a leader may send
INVITE messages to other processes. If a process receives an
INVITE message for a request that has already been
fulfilled, then it simply ignores the message. If that
happens, then the quorum members of the leader will not
be able recover their locks, and no request will be fulfilled
thereafter. Therefore, we first show that INVITE messages
are never sent to stale requests.

Lemma 3. Surrogate does not generate any stale INVITE
messages.

Proof. From the intersection property of a quorum system,
there exists a causal path consisting of RELEASED
followed by LOCKED messages from all the requests
satisfied in some forum to the leader of every subsequent
forum. Through this causal path, the stale requests vector
of a leader is updated with the requests that have already
been satisfied in all earlier forums. Therefore, a leader
does not send any stale INVITE message. tu
We now show that the quorum members of a satisfied

request eventually recover their locks.

Lemma 4. Once a request has been satisfied, all its quorum
members eventually recover their locks. Formally,

forumð�; iÞ ^ lockedðx; �; iÞ) h9j : j � i : :lockedðx; �; jÞi:

Proof. There are two cases to consider, depending on
whether request � is satisfied as a leader or a follower.

First, assume the former. Note that a leader has only a
finite number of followers. The leader, on leaving the
forum, sends its weight to all its quorum members via a

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Fig. 2. Formal description of Surrogate for a process (continued from

Fig. 1).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RELEASED message. Further, each of its followers, on
leaving the forum, sends the weight that it received
through an INVITE message to the members of its
leader’s quorum, again via a RELEASED message. A
quorum member recovers its lock once it has received all
these RELEASED messages.

Now, assume the latter. A follower, on receiving an
INVITE message, sends a CANCEL message to all its
quorum members. A quorum member recovers its lock
once it has received the CANCEL message. tu

The next two lemmas establish that no edge in a wait-for
graph is permanent.

Lemma 5. If a request eventually either receives a FAILED
message or is satisfied, then no request can (directly) wait on it
forever. Formally,

� 2 wait-setð�; iÞð Þ ^
�

forumð�; iÞ _ ðfailcountð�; iÞ > 0Þ
�

)
h9j : j � i : � =2 wait-setð�; jÞi:

ATREYA ET AL.: A QUORUM-BASED GROUP MUTUAL EXCLUSION ALGORITHM FOR A DISTRIBUTED SYSTEM WITH DYNAMIC GROUP SET 9

Fig. 3. Formal description of Surrogate for a node (continued in Fig. 4).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Proof. Consider a node x 2 quorumð�Þ \ quorumð�Þ such
that, when x receives the request �, it had granted its
lock to the request �. Clearly, x, on receiving �, sends an
INQUIRE message to � if it has not done so already.
On receiving the INQUIRE message, � waits until it
either receives a FAILED message or is satisfied. By

assumption, one of the two conditions eventually holds.
If the first condition holds before the other, � sends a
RELINQUISH message to node x. Otherwise, if the
second condition holds, from Lemma 4, x eventually
recovers its lock that it had granted to �. Therefore, by
universal generalization, eventually, every quorum

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Fig. 4. Formal description of Surrogate for a node (continued from Fig. 3).

Fig. 5. Notation used in the safety proof.

Fig. 6. Additional notation used in the liveness proof.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

member of � that had granted the lock to � recovers its
lock. Once that happens, � leaves the wait-set of �. tu
We define the level of a request � in a global state Si,

denoted by levelð�; iÞ, as the maximum length of any path
starting from � in WFGðiÞ. From Lemma 2, the level of a
request is upper bounded by j�j. Further, we define the
rank of � in Si, denoted by rankð�; iÞ, as the maximum value
attained by its level in any global state including and
following Si. Formally,

rankð�; iÞ ¼� max
j�i

flevelð�; jÞg:

Note that the rank of a request is monotonically
nonincreasing unlike its level, which is not. We use the
notion of rank to prove the following lemma.

Lemma 6. Every request eventually either receives a FAILED

message or is satisfied. Formally,

pendingð�; iÞ)
h9j : j � i : ðfailcountð�; jÞ > 0Þ _ forumð�; jÞi:

Proof. Consider a request that never receives a FAILED
message. Clearly, when it is inserted in the queue of its
quorum member, it is inserted at the front. Further, it
continuously stays in the front at least until the quorum
member sends a LOCKEDmessage to it. As a result, once
its wait-set becomes permanently empty, it eventually
receives LOCKED messages from all its quorum mem-
bers and gets satisfied. Therefore, we can conclude that
once the wait-set of a request becomes permanently
empty, it either receives a FAILEDmessage or is satisfied.
Formally,

h8u : u � i : wait-setð�; uÞ ¼ ;i)
h9j : j � i : ðfailcountð�; jÞ > 0Þ _ forumð�; jÞi: ð6Þ

The lemma can now be proved using mathematical
induction on the rank of a request. tu

Combining (5), Lemma 5, and Lemma 6, we can
conclude that, eventually, the wait-set of a request becomes
permanently empty. Formally,

pendingð�; iÞ)
h9j : j � i : h8u : u � j : wait-setð�; uÞ ¼ ;ii: ð7Þ

5.2.2 An Omnipotent Request Is Eventually Satisfied

Lemma 7. Every omnipotent request is eventually satisfied.
Formally,

omnipotentð�; iÞ) h9j : j � i : forumð�; jÞi:

Proof. From (7), the system eventually reaches a state in
which the wait-set of � is empty and stays empty
thereafter. Consider a quorum member x of �. Any
request that is before � in the queue of x is a stale
request. All stale requests are eventually removed from
the queue. As a result, � eventually reaches the front of
x’s queue and, moreover, stays in the front. Once that
happens, x sends a LOCKED message to � and never
sends an INQUIRE message after that. By universal

generalization, every quorum member of � eventually

sends a LOCKED message to � and never sends an

INQUIRE message after that. On receiving these

LOCKED messages from all its quorum members, �

enters the forum and is satisfied. tu

5.2.3 A Pending Request Eventually Becomes

Omnipotent

We first show that a pending request eventually becomes

potent (unless it is satisfied).

Lemma 8. Every pending request eventually becomes potent or is

satisfied. Formally

pendingð�; iÞ) h9j : j � i : potentð�; jÞ _ forumð�; jÞi:

Proof. Assume that � is never satisfied. Thus, we need to

show that it eventually becomes potent. We say that a

pending request � is potent with respect to a process x in a

global state Si if x never generates a request with a

higher priority than � in any global state following Si.

Clearly, to prove the lemma, it suffices to show that �

eventually becomes potent with respect to every process

in the system.
Consider a process x. There are two cases to consider:

after Si, x either generates an infinite number of requests
or generates only a finite number of requests. First,
assume the former. Note that the logical clock value at x
strictly increases every time x generates a request. As a
result, eventually, every request generated by x has a
higher time stamp than �, and therefore, � eventually
becomes potent with respect to x. Now, assume the
latter. In this case, � becomes potent with respect to x as
soon as x generates its last request. tu
We now show that a potent request eventually becomes

omnipotent (unless it is satisfied).

Lemma 9. Every potent request eventually becomes omnipotent
or is satisfied. Formally,

potentð�; iÞ) h9j : j � i : omnipotentð�; jÞ _ forumð�; jÞi:

Proof. We define the compete set of a pending request � in a
global state Si, denoted by compete-setð�; iÞ, as the set of
all pending requests in global state Si that have a higher
priority than �. Formally,

compete-setð�; iÞ ¼� f� j pendingð�; iÞ and tsð�Þ < tsð�Þg:
Assume that � is potent in Si and is never satisfied.

Note that the compete set of � cannot grow after Si.
Formally,

h8u; v : i � u � v :

compete-setð�; uÞ � compete-setð�; vÞi: ð8Þ

Therefore, it suffices to prove that, starting from any
global state following (and including) Si, the compete set
of � eventually shrinks. Formally,

h8u : u � i :

h9v : v > u :

compete-setð�; uÞ �0 compete-setð�; vÞii:
ð9Þ

ATREYA ET AL.: A QUORUM-BASED GROUP MUTUAL EXCLUSION ALGORITHM FOR A DISTRIBUTED SYSTEM WITH DYNAMIC GROUP SET 11

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

By applying (9) repeatedly, we can show that the
compete set of � eventually becomes empty. At that time,
� becomes omnipotent. To prove (9), observe that once a
request becomes potent, it stays potent until it is satisfied.
Moreover, if � is potent in Su, then every request in
compete-setð�; uÞ is also potent in Su. Consider the request
� with the smallest time stamp in compete-setð�; uÞ.
Clearly, � is omnipotent in Su. Using Lemma 8, � is
eventually satisfied and, therefore, eventually leaves the
compete set of �. tu

5.2.4 Combining the Three

Following from Lemma 7, Lemma 8, and Lemma 9,

Theorem 10 (Liveness property). Every request is eventually
fulfilled. Formally,

pendingð�; iÞ) h9j : j � i : forumð�; jÞi:

6 COMPLEXITY ANALYSIS

In this section, we analyze the performance of our algorithm
with respect to the following metrics: message complexity,
bit-message complexity amortized over all messages,
synchronization delay, and maximum concurrency. As
usual, q denotes the maximum size of a quorum.

Theorem 11. The worst case message complexity of Surrogate is
OðqÞ.

Proof. For each type of message, we count the maximum
number of messages that are exchanged of that particular
type due to a given request. Clearly, the number of
REQUEST, FAILED, and CANCEL messages are each
bounded by q. We call a LOCKED message from a
quorum member as successful if the locking request does
not send any RELINQUISH message to the member after
receiving that LOCKED message. Clearly, the number of
successful LOCKED messages is bounded by q. An
INQUIRE message is only generated for a new request.
Hence, at most one INQUIRE message can be generated
per request at a given node. Therefore, the number of
INQUIRE, RELINQUISH, and unsuccessful LOCKED
messages are each bounded by q per request. All that
remains to be bounded are the numbers of INVITE and
RELEASED messages. Since a follower, upon leaving its
forum, sends RELEASED messages to all the nodes in its
leader’s quorum, the number of RELEASED messages is
equal to q times the number of INVITE messages. From
Lemma 4, a process can receive at most one INVITE
message per request because no INVITE messages are
sent for stale requests. Hence, the number of RELEASED
messages is bounded by q per request. tu

We next analyze the worst case bit-message complexity
of Surrogate. Note that all messages carry one or more
requests. Some messages such as INVITE and RELEASED
also carry a weight. A leader sends at most one INVITE
message to any process. Therefore, using the weight
distribution and recovery scheme described in [24], the
amount of space required to store a weight is given by
OðlognÞ, which is OðrÞ. Therefore, all messages except

LOCKED messages have a size of OðrÞ. The worst case size

of LOCKED messages is OðnrÞ. This implies that the worst

case bit-message complexity of our algorithm is OðnqrÞ. We

show that the bit-message complexity of our algorithm is

only OðbqrÞ when amortized over all requests. This, in turn,

implies that only a small number of LOCKED messages are

large and have a size of �ðnrÞ.
Theorem 12. The bit-message complexity of Surrogate is OðbqrÞ

when amortized over all requests.

Proof. All messages except LOCKED messages have a size

of OðrÞ. A LOCKED message carries two separate kinds

of requests: compatible requests and stale requests. Since

a node can only receive requests from processes in its

membership set, the number of compatible requests

piggybacked over a single LOCKED message is bounded

by b per request. We now bound the overhead due to

stale requests.
A request can be inserted into a list of stale requests of

at most q nodes. This is because a node inserts a request
into its list of stale requests only on receiving a
RELEASED message from that request, and a request
sends at most q RELEASED messages. Now, a node
sends a LOCKED message to at most b processes.
Therefore, a node piggybacks a request as a stale request
on at most b LOCKED messages . This implies that each
request generates at most OðbqrÞ bits piggybacked as a
stale request on LOCKED messages.

Let t denote the total number of requests generated in
the system. Clearly, the total number of bits exchanged
over all messages, when summed over all requests, is
given by OðbqrtÞ. Hence, the amortized bit-message
complexity of Surrogate is given by OðbqrÞ per request.tu
Note that a follower has to send a RELEASEDmessage to

the nodes in its leader’s quorum. Depending on the quorum

system used, a leader may need to piggyback its entire

quorum on any INVITEmessage that it sends to its followers.

However, this does not increase the bit-message complexity

ofSurrogate because there is atmost one INVITEmessage per

request. To analyze the synchronization delay of Surrogate,

observe that once a session terminates, the next session is

initiated as soon as RELEASED messages for the current

session have been received by the quorummembers and the

leader for the next session has received LOCKED messages

fromall its quorummembers. Therefore, the synchronization

delay ofSurrogate is given by twomessage hops correspond-

ing to a RELEASED message followed by a LOCKED

message.As far as thewaiting time ofSurrogate is concerned,

if a process generates a requestwhen there is no other request

in the system, then it can enter the requested forum within

two message hops corresponding to a REQUEST message

followedbyaLOCKEDmessage (note thatwhen the system is

lightly loaded, all requests are satisfied as leaders). Finally, if

all processes make compatible requests, then all of them can

be in the forum at the same time.

Theorem 13. Surrogate has a minimum synchronization delay

of two message hops, a minimum waiting time of two message

hops, and a maximum concurrency of n.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

7 EXPERIMENTAL EVALUATION

We experimentally compare the performance of Surrogate

with Joung’s first algorithm Maekawa_M by using discrete-

event simulation. We compare the performance of the two

algorithms with respect to three metrics, namely, message

complexity, waiting time, and system throughput. To make

it easier to compare the two algorithms, we report the ratio
Surrogate0s performance

Maekawa M0s performance

� �

for each metric. Note that for the

message complexity and waiting time, a ratio of less than 1

would imply that Surrogate has better performance than

Maekawa_M. On the other hand, for the system throughput,

a ratio of greater than 1 would imply that Surrogate has

better performance than Maekawa_M.
Our experimental study has the following parameters:

There are n processes requesting entry into m different
forums. A process, on generating a request, randomly
selects a forum to join. The interrequest delay (that is, the
duration of the noncritical section) at each process is
exponentially distributed with mean �ncs. Once a process
enters a forum, it departs after a delay that is uniformly
distributed in the range ½0; 2 � �cs� (the duration of the
critical section). The message transmission delay (or
channel delay) is modeled to follow an exponential

distribution with mean �cd. In our experiments, parameters
that have fixed values throughout are the number of
processes n, which is set to 25, and the number of requests
per process, which is set to 1,000. All other parameters are
varied one by one to study their effect on the relative
performance of the two algorithms.

For Surrogate, we use the grid quorum system [22]. For

Maekawa_M, the maximum number of simultaneous locks

that a node can grant is set to the maximum, which is n.

This maximizes the average concurrency of Maekawa_M,

which, in turn, lowers the average waiting time of a request.

To construct the surficial quorum system,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
mðm�1Þ

q

has to be

an integer. If not, then we add processes until
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2�n
mðm�1Þ

q

becomes an integer, where �n is the new value for n. The

new processes are mapped onto existing processes in a

round-robin manner.

7.1 Simulation Results

Fig. 7 depicts the variation in the ratios for the three metrics
as a function of various parameters. The ratios are averaged
over several runs to obtain a 95 percent confidence level.

As our simulation results demonstrate, when the number
of forums is small, or the mean channel delay is very low,
Maekawa_M has better performance than Surrogate. In

ATREYA ET AL.: A QUORUM-BASED GROUP MUTUAL EXCLUSION ALGORITHM FOR A DISTRIBUTED SYSTEM WITH DYNAMIC GROUP SET 13

Fig. 7. Relative performance of the two algorithms as a function of various parameters. (a) Varying the number of forums ðmÞ with �ncs ¼ 4 time units,

�cs ¼ 2 time units, and �cd ¼ 4 time units. (b) Varying the mean inter-request delay ð�ncsÞ with m ¼ 20, �cs ¼ 2 time units, and �cd ¼ 4 time units. (c)

Varying the mean time in the critical section ð�csÞ with m ¼ 100, �ncs ¼ 4 time units, and �cd ¼ 4 time units. (d) Varying the mean channel delay ð�cdÞ
with m ¼ 20, �ncs ¼ 4 time units, and �cs ¼ 2 time units.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

almost all other cases, Surrogate has better performance
than Maekawa_M. Specifically, the message complexity and
waiting time decrease by as much as 40 percent, and the
system throughput increases by as much as 48 percent.
Further, the performance gap between the two algorithms
increases (in favor of Surrogate) as either 1) the number of
forums increases (Fig. 7a) or 2) the ratio of the mean channel
delay to the mean time in the critical section increases
(Figs. 7c and 7d).

The reasons for the relative behavior of the two
algorithms are given as follows: When the number of
forums is small, the surficial quorum system has smaller
quorums than the grid quorum system and, moreover, has a
high degree. For example, when m ¼ 2, each quorum in the
surficial quorum system is of size

ffiffiffi

n
p

, whereas each
quorum in the grid quorum system is of size 2

ffiffiffi

n
p � 1.

Also, when m ¼ 2, the degree of the surficial quorum
system is

ffiffiffi

n
p

. Not surprisingly, Maekawa_M has better
performance than Surrogate for a small number of forums.

As the number of forums increases, the degree of the
surficial quorum system decreases. Further, the fraction of
requests with which a request conflicts also increases. For
example, when m ¼ 2, a request conflicts with only
50 percent of the requests on the average. On the other
hand, when m ¼ 10, a request conflicts with as many as
90 percent of the requests on the average. In Surrogate, a
process with an outstanding request enters the forum as a
leader once it has successfully locked all its quorum
members. It then invites other processes with compatible
requests to enter the forum. Intuitively, only requests
satisfied as leaders compete with other requests to lock their
respective quorum members. Requests satisfied as fol-
lowers stop competing with other requests once they
receive an INVITE message. In Maekawa_M, on the other
hand, every request is satisfied as a “leader” in the sense
that a process with an outstanding request can enter the
forum only after it has successfully locked all its quorum
members. Clearly, there is a higher contention among
conflicting requests to lock their respective quorum
members in Maekawa_M as compared to Surrogate. As a
result, Maekawa_M has a higher probability of “priority
inversion,” in which a request with a smaller time stamp is
forced to wait on a request with a larger time stamp.
Whenever priority inversion occurs, Maekawa_M ex-
changes deadlock avoidance messages (namely, INQUIRE
and RELINQUISH), which may force a large number of
processes to relinquish their locks. This translates into a
higher average delay between the termination of a session
and the commencement of the next session in Maekawa_M
due to this exchange of deadlock avoidance messages.
Furthermore, this delay increases as the ratio of the mean
channel delay to the mean time in the critical section
increases. Another reason for the better performance of
Surrogate may be the addition of new (logical) processes so
that the surficial quorum system can actually be con-
structed. However, even when Maekawa_M is used with
the grid quorum system (Toyomura et al.’s algorithm), our
simulation results show that Surrogate still continues to
have much better performance, especially when the mean
channel delay is large.

8 DISCUSSION

In this section, we discuss several extensions to Surrogate
for improving its performance.

8.1 Achieving Concurrent Entry

Surrogate does not satisfy the concurrent entry property.
Once a requesting process enters a forum as a leader, any
request generated thereafter has to wait until the current
forum is dissolved even if all the requests are of the same
type. However, we can achieve a concurrent entry by
making the following modifications. Whenever a locked
(quorum) node receives a request that is compatible with its
locking request, it simply forwards that request to the
locking process (via a FORWARD message), unless it is
aware of a conflicting request that has not yet been fulfilled.
A leader, on receiving a forwarded request, sends an
INVITE message to the requesting process. In case a process
receives a forwarded request before it has successfully
locked all its quorum members, the request is stored, along
with other requests that it has received (or is going to
receive) with LOCKED messages.

This forwarding of requests by a quorum member to the
locking process continues until the node learns about a
pending conflicting request. Specifically, a node, on receiv-
ing a request that conflicts with that of the locking process,
sends a STEPDOWN message to the process. If, at the time
of sending a LOCKED message to a request, the node is
aware of a conflicting request, then the STEPDOWN
message is piggybacked on the LOCKED message itself.
The purpose of the STEPDOWN message is to instruct the
process to stop inviting followers into the forum. Other-
wise, a conflicting request may get starved. This is because
some other quorum member may continue forwarding
compatible requests to the process, due to which the current
forum may never dissolve. A leader stops inviting followers
into the forum after either 1) receiving a STEPDOWN
message from some quorum member sent on behalf of a
conflicting request that has not yet been fulfilled or
2) leaving the critical section without inviting any follower.

Note that, once a quorum node has recovered its lock,
it can safely assume that any request that is still in its
queue of outstanding requests was not sent an INVITE
message and, therefore, is still pending, even if that
request was piggybacked on a FORWARD message. If the
request was indeed sent an INVITE message, then the
quorum node can recover its lock only after receiving a
RELEASED message from that request, which, in turn,
causes the request to be removed from the queue. Clearly,
with the above modifications, our algorithm satisfies the
concurrent entry property. If all the requests in the system
are of the same type as the current forum, and no
conflicting request is ever generated, then each request is
fulfilled within three message hops. Starvation freedom is
guaranteed because a leader stops sending INVITE
messages after it has received any STEPDOWN message.
Once a conflicting request is generated, the leader of the
current forum receives a STEPDOWN message within two
message hops.

As regards the message complexity, note that a FOR-
WARD or a STEPDOWN message is generated only for a

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

new request arriving at a node and never for an old request
already present in the queue. Therefore, at most one
FORWARD or STEPDOWN message is sent by a quorum
member for every request that it receives, implying that the
message complexity is still OðqÞ. The synchronization delay
remains at two message hops because when the system is
heavily loaded, the STEPDOWN message is piggybacked
on the LOCKED message itself. The waiting time also does
not increase. When the system is lightly loaded, all the
requests are satisfied as leaders. Specifically, a process
entering the forum as a leader does not have any followers
and releases its locks on quorum members soon after
leaving the forum. However, with the above-described
modification, a leader may invite a process into its forum
more than once, which implies that the amount of space
required to store a weight is no longer OðrÞ. Therefore, the
bit-message complexity is now given by Oððbrþ wÞqÞ,
where w denotes the maximum amount of space required
to store a weight. Our experimental results show that the
modification for the concurrent entry does not result in a
significant improvement in the performance.

8.2 Achieving Unnecessary Blocking Freedom

Consider the CD jukebox example. Suppose some data is
replicated on multiple CDs. Therefore, any request for such
data can be satisfied using any one of the CDs on which the
data has been replicated. In the traditional GME, a process
has to specify the type of the critical section that it wants to
execute at the time of the request, which translates into
specifying the CD that it wants to access for satisfying its
request. This may lead to an unnecessary delay (or blocking) in
satisfying a request. To eliminate this unnecessary delay,
Manabe and Park extend the GME problem in [23] to allow
a process to specify more than one type when making a
request. The request can be satisfied by allowing a process
to execute the critical section for any one of those types
(specified at the time of the request).

Surrogate can be easily modified to achieve unneces-
sary blocking freedom as follows. For a request �, let
type-setð�Þ denote the set of types that can be used to
satisfy �. A quorum member, on sending a LOCKED
message to a request �, piggybacks all requests � on the
LOCKED message, for which type-setð�Þ \ type-setð�Þ 6¼ ;.
As before, once a request has successfully locked all its
quorum members, it enters the forum as a leader.
However, at the time of entry, it still has to select a type
for the forum (which translates into selecting a CD to be
loaded into the jukebox). For a request � satisfied as a
leader, let intersecting-setð�Þ denote the set of requests
that it has received from its quorum members, along with
LOCKED messages. Note that intersecting-setð�Þ may
contain two requests � and � such that 1) type-setð�Þ \
type-setð�Þ 6¼ ;, 2) type-setð�Þ \ type-setð�Þ 6¼ ;, a nd
3) type-setð�Þ \ type-setð�Þ ¼ ;. Clearly, � cannot send
INVITE messages to both � and �. To maximize the
concurrency, � chooses a type t 2 type-setð�Þ for which the
number of requests in intersecting-setð�Þ that are “com-
patible” with t is maximized. All the complexity measures
remain the same except for the bit-message complexity,
which increases by a factor of s, where s is the maximum
number of types that a process can specify at the time of
making a request.

9 CONCLUSION

We have proposed an efficient distributed algorithm
Surrogate for solving the GME problem based on the
notion of surrogate-quorum. Unlike the existing quorum-
based algorithms for GME [12], our algorithm achieves a
low message complexity of OðqÞ while, at the same time,
maintaining both synchronization delay and waiting time at
two message hops. This is achieved at the expense of the
bit-message complexity, which increases to OðbqrÞ per
request. Further, unlike the algorithms in [12], which
assume that the number of groups does not change during
runtime, our algorithm can adapt without performance
penalties to dynamic changes in the number of groups. Our
experimental results indicate that Surrogate has better
performance than Maekawa_M, which is another quorum-
based GME algorithm, in almost all cases except when the
number of forums is small, and the mean channel delay is
low. We have also presented two extensions to our basic
algorithm for achieving other desirable properties.

A natural extension of GME is to allow up to k forums to
be in session simultaneously, where k � 1. This corresponds
to the scenario when the CD jukebox has more than one
player, and therefore, multiple CDs can be loaded simulta-
neously. As a future work, we plan to devise an efficient
distributed algorithm for solving this problem.

APPENDIX

OMITTED PROOFS

Proof of Lemma 2. The first property follows from the fact
that the time stamp value along any path increases
monotonically. The second property follows from the
first property. The third property follows from the
definition of the waiting-on relation (for a request to
have an outgoing edge, it should still be pending).
Finally, the fourth property follows from the third
property, and the fact that a process does not generate
the next request until its current request has been
fulfilled. tu

Proof of Lemma 6.We prove the lemma by using mathema-

tical induction on the rank of a request:

. Base case ðrankð�; iÞ ¼ 0Þ. Clearly, wait-setð�; uÞ
is empty for all u � i. Using (6), the property
holds.

. Induction step ðrankð�; iÞ ¼ k with k > 0Þ. From
(5), eventually, the system reaches a global state
Su, after which the wait-set of � stops growing.
Consider a request � in wait-setð�; uÞ. We claim
that, eventually, � leaves the wait-set of �.
Assume the contrary, that is, � never leaves the
wait-set of �. This implies that rankð�; uÞ <
rankð�; uÞ � rankð�; iÞ. By induction hypothesis,
� eventually either receives a FAILED message or
is satisfied. From Lemma 5, � eventually leaves the
wait-set of �. By repeatedly using this argument,
we can conclude that the wait-set of � eventually
becomes empty. Therefore, using (6), the property
holds.

This establishes the lemma. tu

ATREYA ET AL.: A QUORUM-BASED GROUP MUTUAL EXCLUSION ALGORITHM FOR A DISTRIBUTED SYSTEM WITH DYNAMIC GROUP SET 15

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ACKNOWLEDGMENTS

A preliminary version of this paper appeared in 2005 in the

Proceedings of the 25th IEEE International Conference on

Distributed Computing Systems (ICDCS) [1].

REFERENCES

[1] R. Atreya and N. Mittal, “A Dynamic Group Mutual Exclusion
Algorithm Using Surrogate-Quorums,” Proc. IEEE Int’l Conf.
Distributed Computing Systems (ICDCS ’05), pp. 251-260, June 2005.

[2] E.W. Dijkstra, “Solution of a Problem in Concurrent Programming
Control,” Comm. ACM, vol. 8, no. 9, p. 569, 1965.

[3] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[4] G. Ricart and A.K. Agrawala, “An Optimal Algorithm for Mutual
Exclusion in Computer Networks,” Comm. ACM, vol. 24, no. 1,
pp. 9-17, Jan. 1981.

[5] I. Suzuki and T. Kasami, “A Distributed Mutual Exclusion
Algorithm,” ACM Trans. Computer Systems, vol. 3, no. 4, pp. 344-
349, 1985.

[6] K. Raymond, “A Tree Based Algorithm for Distributed Mutual
Exclusion,” ACM Trans. Computer Systems, vol. 7, no. 1, pp. 61-77,
1989.

[7] M.J. Fischer, N.A. Lynch, J.E. Burns, and A. Borodin, “Resource
Allocation with Immunity to Limited Process Failure (Preliminary
Report),” Proc. 20th Ann. Symp. Foundations of Computer Science
(FOCS ’79), pp. 234-254, Oct. 1979.

[8] E.W. Dijkstra, “Hierarchical Ordering of Sequential Processes,”
Acta Informatica, vol. 1, no. 2, pp. 115-138, Oct. 1971.

[9] K.M. Chandy and J. Misra, “The Drinking Philosophers Problem,”
ACM Trans. Programming Languages and Systems, vol. 6, no. 4,
pp. 632-646, 1984.

[10] K.M. Chandy and J. Misra, Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[11] Y.-J. Joung, “Asynchronous Group Mutual Exclusion,” Distributed
Computing, vol. 13, no. 4, pp. 189-206, 2000.

[12] Y.-J. Joung, “Quorum-Based Algorithms for Group Mutual
Exclusion,” IEEE Trans. Parallel and Distributed Systems, vol. 14,
no. 5, pp. 463-475, May 2003.

[13] M. Toyomura, S. Kamei, and H. Kakugawa, “A Quorum-Based
Distributed Algorithm for Group Mutual Exclusion,” Proc. Fourth
Int’l Conf. Parallel and Distributed Computing, Applications and
Technologies (PDCAT ’03), pp. 742-746, Aug. 2003.

[14] P. Keane and M. Moir, “A Simple Local-Spin Group Mutual
Exclusion Algorithm,” Proc. 18th ACM Symp. Principles of
Distributed Computing (PODC ’99), pp. 23-32, 1999.

[15] V. Hadzilacos, “A Note on Group Mutual Exclusion,” Proc. 20th
ACM Symp. Principles of Distributed Computing (PODC ’01), Aug.
2001.

[16] K. Vidyasankar, “Brief Announcement: A Highly Concurrent
Group Mutual L-Exclusion Algorithm,” Proc. 21st ACM Symp.
Principles of Distributed Computing (PODC ’02), p. 130, July 2002.

[17] K. Vidyasankar, “A Simple Group Mutual L-Exclusion Algo-
rithm,” Information Processing Letters, vol. 85, no. 2, pp. 79-85, 2003.

[18] K.-P. Wu and Y.-J. Joung, “Asynchronous Group Mutual Exclu-
sion in Ring Networks,” IEE Proc.—Computers and Digital
Techniques, vol. 147, no. 1, pp. 1-8, 2000.

[19] S. Cantarell, A.K. Datta, F. Petit, and V. Villain, “GroupMutual Ex-
clusion in TokenRings,”Computer J.,vol. 48, no. 2, pp. 239-252, 2005.

[20] J. Beauquier, S. Cantarell, A.K. Datta, and F. Petit, “Group Mutual
Exclusion in Tree Networks,” J. Information Science and Eng.,
vol. 19, no. 3, pp. 415-432, May 2003.

[21] Y.-J. Joung, “The Congenial Talking Philosophers Problem in
Computer Networks,” Distributed Computing, pp. 155-175, 2002.

[22] M. Maekawa, “A
ffiffiffiffiffi

N
p

Algorithm for Mutual Exclusion in
Decentralized Systems,” ACM Trans. Computer Systems, vol. 3,
no. 2, pp. 145-159, May 1985.

[23] Y. Manabe and J. Park, “A Quorum-Based Extended Group
Mutual Exclusion Algorithm without Unnecessary Blocking,”
Proc. 10th Int’l Conf. Parallel and Distributed Systems (ICPADS ’04),
pp. 341-348, 2004.

[24] F. Mattern, “Global Quiescence Detection based on Credit
Distribution and Recovery,” Information Processing Letters, vol. 30,
no. 4, pp. 195-200, 1989.

Ranganath Atreya received the bachelor’s
degree, with distinction, from Bangalore Univer-
sity, India, in 2000 and the MS degree in
computer science from the University of Texas
at Dallas in 2004. He has been working at
Amazon.com since January 2005. He was the
recipient of the National Award for the Best
Bachelor of Engineering Project in 2000.

Neeraj Mittal received the BTech degree in
computer science and engineering from the
Indian Institute of Technology, Delhi, in 1995
and the MS and PhD degrees in computer
science from the University of Texas at Austin in
1997 and 2002, respectively. He is currently an
assistant professor at the Department of Com-
puter Science and a codirector of the Advanced
Networking and Dependable Systems Labora-
tory (ANDES), University of Texas at Dallas. His

research interests include distributed systems, mobile computing,
networking, and databases.

Sathya Peri received the MCSA degree in
computer science from Madurai Kamaraj
University, India, in 2001. He worked as a
software engineer at HCL Technologies,
India, for one year from 2001 to 2002. He
is currently pursuing the PhD degree in
computer science at Advanced Networking
and Dependable Systems Laboratory (AN-
DES), University of Texas at Dallas. His
research interests include peer-to-peer com-

puting and dynamic distributed systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

