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regional dynamics and sustainability re-
main largely unknown.

Information on woody cover variabil-
ity across southern Africa savannas is 
available only from products developed 
globally, such as the 30 m global for-
est cover maps derived from LandSAT 
7 ETM+ data (Hansen et al., 2013) or 
the 25 m ALOS PALSAR global forest/
non-forest JAXA datasets (Shimada et 
al., 2014). These products were devel-
oped primarily to track tropical forest 
losses, and they largely underestimate 
the distribution of open forests (Bastin 
et al., 2017). As a result of the lack of 

tributions to the land carbon storage pool 
(Grace et al., 2006). Savannas are threat-
ened in some regions by clearing for cul-
tivation or degradation through timber 
and fuelwood extraction, but there is 
mounting scientifi c evidence of a global 
trend of increasing woody vegetation, or 
bush encroachment (Eamus & Palmer, 
2007; Lehmann et al., 2009; Mitchard & 
Flindtrop, 2013), possibly driven by an 
atmospheric CO2 level increase. Bush en-
croachment is a signifi cant risk for live-
stock production (Skowno et al., 2017). 
Savannas are critical to food and energy 
security of rural communities, but their 

Abstract: In southern Africa, landscapes are dominated by savannas, i.e., mixed tree-grass communities. These savannas are 
threatened by land clearing and degradation, as well as the densifi cation of woody plants, a process known as bush encroach-
ment. There is, however, very limited spatial information on woody cover distribution and changes. Here, we report on the 
development of an operational system designed to map and monitor woody vegetation cover at a regional scale. This system 
is based on the combined use of freely available airborne light detection and ranging (LiDAR) data and synthetic aperture 
radar (SAR) satellite imagery. The integration of these two datasets provides an eff ective solution for assessing woody frac-
tional cover in southern Africa beyond the level of details and accuracy previously available. Woody fractional cover was 
mapped at a national scale for South Africa and Namibia in 2010 and 2015 at 1 ha (100 × 100 m) pixel size.

Resumo: Na África Austral, as paisagens são dominadas por savanas, isto é, por comunidades de herbáceas e de lenhosas. 
Estas são ameaçadas pelo desmatamento e a degradação da terra, mas também, em muitas áreas, pela densifi cação de espé-
cies lenhosas, conhecida por bush encroachment (invasão de lenhosas). Existe, porém, informação espacial muito limitada 
sobre a distribuição e as alterações da cobertura de espécies lenhosas. Neste artigo, relatamos o desenvolvimento de um 
sistema operacional desenhado para mapear e monitorizar a cobertura vegetal lenhosa à escala regional. Baseia-se no uso 
combinado de dados aéreos da tecnologia LiDAR (Light Detection and Ranging) disponíveis gratuitamente, e de imagens 
de satélite de SAR (Radar de Abertura Sintética). A integração destes dois conjuntos de dados fornece uma solução efi caz 
para avaliar a distribuição da savana e cobertura fracionada de lenhosas no Sul de África, para além do nível de detalhe e 
precisão actualmente disponíveis. A cobertura de lenhosas foi mapeada à escala nacional para a África do Sul e Namíbia em 
2010 e 2015, com o tamanho de pixel de 1 ha (100 × 100 m).
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Introduction

Southern African landscapes are domi-
nated by savannas, or mixed tree-grass 
communities with a woody cover varying 
between 10% and 70%, which occupy 
close to half of the land mass (Scholes, 
1997). Savannas provide a large number 
of ecosystem services and goods to mil-
lions of predominantly poor, rural people 
(e.g., fi rewood, charcoal, grass, construc-
tion timber, edible fruits) (Shackleton et 
al., 2007; Fig. 1), host a unique suite of 
fl oral and animal biodiversity, and are 
the third largest biome in terms of con-



356                                                C         A

La
nd

 c
ov

er
 d

yn
am

ic
s

quantitative data on the distribution of 
and changes in southern Africa’s woody 
vegetation component, regional authori-
ties are unable to monitor, manage, and 
therefore use this resource sustainably. 
Here, we report on the development of 
an operational system designed to map 
and monitor woody vegetation cover at 
a national scale for South Africa and Na-
mibia (Task205). This system is based on 
the combined use of airborne light detec-
tion and ranging (LiDAR) and synthetic 
aperture radar (SAR) satellite imagery.

LiDAR and SAR: 3D re-
mote sensing technologies

Active remote sensing sensors such as Li-
DAR and SAR are highly suited for meas-
uring woody vegetation structure because 
these systems penetrate the canopy foli-
age and interact with the vertical shrub/
tree profi le. LiDAR instruments use air-
borne lasers systems to produce detailed 
3D point clouds depicting the vertical 

woody vegetation profile and the under-
lying ground (Fig. 2). The processing of 
the point cloud enables the derivation of 
a wide range of structural woody metrics 
such as canopy cover, height, volume, and 
biomass. The spatial coverage of airborne 
LiDAR data is generally limited, mainly 
because of the high cost of acquisition. 
SAR sensors, on the other hand, are hosted 
on satellite platforms and the data cover 
vast areas suitable for regional mapping. 
Naidoo et al. (2016) demonstrated that 
winter (low-moisture) L-band SAR imag-
es were more eff ective at mapping woody 
cover in deciduous southern African sa-
vannas than were optical Landsat data. 

Woody vegetation mapping 
and monitoring system

The woody cover mapping system uses 
large tracks of high-resolution airborne 
LiDAR data that are acquired for planning 
and monitoring of infrastructure such as 
roads, railway lines and power lines, as 

well as conservation areas and commercial 
forest. The LiDAR data are processed to 
generate LiDAR-based woody cover maps 
with a 25 × 25 m pixel size and then use 
these as training and validation for predic-
tive models (Random Forest models) to 
map woody cover using satellite SAR data. 
For national- and regional-scale mapping, 
the system used the JAXA 25 m L-band 
ALOS PALSAR backscatter annual mo-
saics produced for 2007–2010 and 2015–
2016. Ample existing LiDAR data (Fig. 3) 
were collected from multiple providers at 
no cost (e.g., ESKOM, Peace Park Foun-
dation, Southern Mapping Company) and 
processed to produce canopy height mod-
els. The mapping system architecture was 
designed to be fl exible and integrates the 
following capabilities: (1) ingesting large 
amounts of LiDAR-based woody cover or 
biomass data; (2) ingesting SAR satellite 
and environmental data sets (e.g., rainfall 
or temperature, topography) as explana-
tory variables; (3) creating large amounts 
of training and validation samples from 
LiDAR data; (4) integrating machine 

Figure 1: (a) Deciduous savannas in the South African Lowveld; (b) rural communities rely extensively on savanna goods for energy and 
food securities, including fuelwood; (c) subsistence cultivation; (d) grazing resources.

a b

c d
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learning models such as Random Forests, 
which learn from training samples in or-
der to predict woody cover; (5) producing 
maps of cover and biomass at a user-de-
fi ned pixel size (e.g., 25 m, 50 m, and 75 
m resolution); and (6) validating the output 

maps with i ndependent LiDAR data sets. 
Aggregation at larger pixel sizes reduces 
spatial details but decreases errors by av-
eraging noise; the system therefore allows 
the user to select the scale at which the 
map will be produced. For more details on 

methods, see Main et al. (2016), Mathieu 
et al. (2013), Naidoo et al. (2015), Naidoo 
et al. (2016), and Urbazaev et al. (2015).

Outcome

Spatial patterns of woody 
vegetation
The regional patterns of woody vegeta-
tion cover were reliably mapped and cor-
respond with the expected rainfall and 
vegetation type patterns (Fig. 4). Highest 
woody cover values are found in the east-
ern part of South Africa, where rainfall 
is the highest (following a north-to-south 
gradient from 350 to 1500 mm/year) 
and along the coast from Mozambique 
to Cape Town. Coastal forests are a mix 
of savannas, thickets, commercial plan-
tations, patches of invasive alien plants 
(Pinus spp., Eucaliptus spp.), and rem-
nants of dense indigenous forests. The 
Highveld in the South African central 
plateau is typically grassland and shows 

Figure 2: Example of LiDAR point cloud data for a typical savanna landscape in the South 
African Lowveld. Blue colours represent the ground, green and yellow colours represent 
shrubs, and orange and red colours represent small and tall trees, respectively.

Figure 3: LiDAR coverage (red) amassed in southern Africa, including South Africa, Namibia, and Zambia. LiDAR data sets are sourced at 
no cost from a variety of providers including power utilities, conservation bodies, municipalities, and private plantations.
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encroached areas was easily detected 
(Fig. 5). Extensive burned areas as a result 
of severe wildfi res also caused detectable 
reductions in woody cover. An increase in 
woody cover was most prevalent in his-
torically debushed areas. Banding eff ects 
were present in the woody cover products 
retrieved from the global 2015 ALOS 
PALSAR mosaics. These stripes result 
from having constructed the mosaic with 
single ALOS PALSAR scenes acquired at 
diff erent seasons and with variable scene 
moisture or leaf conditions. They com-
plicate the detection of gradual changes 
linked to long-term bush encroachment. 
Overall, the project successfully demon-
strated that the system can map and moni-
tor woody vegetation in dryland savannas 
in order to inform policy and management 
initiatives, such as Namibia’s Debushing 
Advisory Service and National Range-
land Management Policy and Strategy, or 
South Africa’s Working for Ecosystems 
programme and State of Forests report. 

very low woody cover. The overall ac-
curacy of the woody cover maps, ex-
pressed as coeffi  cient of determination 
R2, ranged from 0.64 to 0.76 for the 25 
m to 75 m resolution. The corresponding 
root mean square error (RMSE) was 0.16 
to 0.13, indicating an absolute fractional 
cover error of 16%–13%.  Beyond the 
independent map validation with LiDAR 
data, fi eld visits were conducted in South 
Africa and Namibia to investigate local 
scale patterns. Visual assessments found 
that signifi cant details were captured (for 
example, natural variations across the 
landscape) in addition to management 
impacts such as fence-line contrasts. 
Although the backscatter of the ALOS 
PALSAR global mosaics were pre-pro-
cessed to correct for terrain variation, 
the woody cover on steep slopes (steeper 
than 25%) was overestimated and will 
require additional processing or correc-
tion of topographic eff ects on backscat-
ter. Aboveground biomass (AGB) maps 

were also produced in South Africa, but 
only for the savanna biome. The LiDAR-
based AGB maps need to be calibrated 
with fi eld AGB data acquired at the same 
time as the LiDAR imagery. Concurrent 
fi eld data were available only for savanna 
vegetation, and thus could not yet be ex-
tended to the other regional vegetation 
types such as thicket or dense indigenous 
forests. This limitation is currently being 
addressed by CSIR, which is embarking 
on a large-scale fi eld and airborne Li-
DAR campaign for a variety of vegeta-
tion types in South Africa, an undertak-
ing that should lead to the development 
of national ABG maps in the near future. 

Change detection
Woody cover change maps were calculat-
ed by subtracting an earlier woody cover 
map from a later map. Changes in com-
mercial forestry (growth and clearing) 
areas were captured very eff ectively. In 
Namibia, large-scale debushing of bush 

Figure 4: South African woody cover map produced from the predictive modelling exercise using airborne LiDAR and L-band ALOS PAL-
SAR-2 mosaics acquired in 2010.
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datasets at retrieving woody fractional cover 
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