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Abstract

Background: Silent aspiration or the inhalation of foodstuffs without overt physiological signs presents a serious

health issue for children with dysphagia. To date, there are no reliable means of detecting aspiration in the home

or community. An assistive technology that performs in these environments could inform caregivers of adverse

events and potentially reduce the morbidity and anxiety of the feeding experience for the child and caregiver,

respectively. This paper proposes a classifier for automatic classification of aspiration and swallow vibration signals

non-invasively recorded on the neck of children with dysphagia.

Methods: Vibration signals associated with safe swallows and aspirations, both identified via videofluoroscopy,

were collected from over 100 children with neurologically-based dysphagia using a single-axis accelerometer. Five

potentially discriminatory mathematical features were extracted from the accelerometry signals. All possible

combinations of the five features were investigated in the design of radial basis function classifiers. Performance

of different classifiers was compared and the best feature sets were identified.

Results: Optimal feature combinations for two, three and four features resulted in statistically comparable

adjusted accuracies with a radial basis classifier. In particular, the feature pairing of dispersion ratio and normality

achieved an adjusted accuracy of 79.8 ± 7.3%, a sensitivity of 79.4 ± 11.7% and specificity of 80.3 ± 12.8% for

aspiration detection. Addition of a third feature, namely energy, increased adjusted accuracy to 81.3 ± 8.5% but

the change was not statistically significant. A closer look at normality and dispersion ratio features suggest

leptokurticity and the frequency and magnitude of atypical values as distinguishing characteristics between

swallows and aspirations. The achieved accuracies are 30% higher than those reported for bedside cervical

auscultation.

Conclusion: The proposed aspiration classification algorithm provides promising accuracy for aspiration

detection in children. The classifier is conducive to hardware implementation as a non-invasive, portable

"aspirometer". Future research should focus on further enhancement of accuracy rates by considering other signal

features, classifier methods, or an augmented variety of training samples. The present study is an important first

step towards the eventual development of wearable intelligent intervention systems for the diagnosis and

management of aspiration.
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Background
Dysphagia and aspiration

Dysphagia generally refers to any swallowing disorder.
Impaired swallowing may result from mechanical disor-
ders due, for example, to the removal or reconstruction of
swallowing structures secondary to surgery for cancer [1]
or anatomic abnormalities of the mouth, nose, pharynx,
larynx, trachea and esophagus [2]. Compromised swal-
lowing function can also be neurological in origin. Exam-
ples include lesions in the brain stem or peripheral cranial
neuropathies [3] and cortical lesions [4]. Disorders of
deglutition are common in neurological impairments due
to stroke, cerebral palsy or acquired brain injury. Children
with dysphagia often have heightened risk of aspiration.

Aspiration is entry of foreign material into the airway
below the true vocal cords [5] accompanied by inspiration
[6]. Approximately 25% of individuals at risk of aspira-
tion do so in a "silent" manner [7], with no overt physio-
logical signs (e.g. coughing, face turning red,
uncoordinated breathing) and care-givers may have no
warning that an aspiration has occurred.

Magnitude of problem

Dysphagia afflicts an estimated 15 million people in the
United States [8]. The incidence of dysphagia is particu-
larly significant in acute care settings (25–45%) and long-
term care units (50%) [9]. In the United States, approxi-
mately 50,000 persons die annually from aspiration
pneumonia [10].

Silent aspiration is especially prominent in children with
dysphagia, occurring in an estimated 94% of that popula-
tion [11]. The occurrence of diffuse aspiration bronchioli-
tis in children with dysphagia is generally widespread
[12]. The increased risk of aspiration bears serious health
consequences such as dehydration, malnutrition, chronic
lung disease and acute aspiration pneumonia [2,11]. The
latter is an expensive outcome that often requires
extended hospitalization. Pulmonary aspiration can also
evolve to include systemic complications such as bactere-
mia, sepsis, and end-organ consequences of hypoxia and
death [13]. Chronic aspiration is therefore an insidious
problem that tremendously diminishes quality of life, not
only compromising a child's physical, but social, emo-
tional and psychosocial well-being.

Current aspiration detection methodologies

Only the most prevalent methods of aspiration detection
in the current literature are reviewed. The modified bar-
ium swallow using videofluoroscopy is the current gold
standard for diagnosis of aspiration [14]. Its clinical utility
in dysphagia management continues to be asserted (e.g.,
[15,16]). The patient ingests barium-coated material and
a video sequence of radiographic images is obtained via X-

radiation. The modified barium swallow procedure is
costly both in terms of time and labor (approximately
1,000 health care dollars per procedure in Canada), and
renders the patient susceptible to the nonstochastic effects
of radiation [17].

Fibreoptic endoscopy, an invasive technique in which a
flexible endoscope is inserted transnasally into the laryn-
gopharynx, has also been widely applied, for example, in
the diagnosis of post-operative aspiration [18] and bed-
side identification of silent aspiration [19]. Fibreoptic
endoscopy is generally comparable to the modified bar-
ium swallow in terms of sensitivity and specificity for aspi-
ration identification (e.g., [20,21]), with the advantage of
possible bedside assessment.

Pulse oximetry has also been proposed as a non-invasive
adjunct to bedside assessment of aspiration risk (e.g.,
[22,23]). However, several controlled studies comparing
pulse oximetric data to videofluoroscopic [24] and fibre-
optic endoscopic evaluation [25,26] have raised doubts
about the existence of a relationship between arterial oxy-
gen saturation and the occurrence of aspiration.

Cervical auscultation involves listening to the breath
sounds near the larynx by way of a laryngeal microphone,
stethoscope or accelerometer [27] placed on the neck. It is
generally recognized as a limited but valuable tool for
aspiration detection and dysphagia assessment in long-
term care [27-29]. However, when considered against the
gold standard of videofluoroscopy, bedside evaluation
with cervical auscultation yields limited accuracy in
detecting aspirations [27] and abnormalities of swallow-
ing [30]. Indeed, our recent research shows that aspira-
tions identified by the clinician, represent only 45% of all
aspiration sounds [6].

Swallowing accelerometry [31] is closely related to cervi-
cal auscultation, but has entailed digital signal processing
and artificial intelligence as discrimination tools, rather
than the trained clinical ear. In clinical studies, accelerom-
etry has demonstrated moderate agreement with vide-
ofluoroscopy in identifying aspiration risk [32] while the
signal magnitude has been linked to the extent of laryn-
geal elevation [31]. Fuzzy committee neural networks
have demonstrated extremely high accuracy at classifying
normal and "dysphagic" swallows [33].

Administration of existing procedures, such as videofluor-
oscopy or fibreoptic endoscopy, usually requires expen-
sive equipment and specially trained professionals such as
a speech-language pathologist, radiologist or otolaryngol-
ogist [34]. Further, the invasive nature of procedures such
as fibreoptic endoscopy does not bode well with children
and therefore the method cannot be practically adminis-
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tered for extended periods of feeding. Clearly, there is an
identified but unmet need for an economical [22], non-
invasive and portable method of paediatric aspiration
detection [32], at the bedside [25] and outside of the insti-
tutional setting.

As an important step towards addressing this unmet need,
we present details of a classifier for automatic detection of
aspiration in children with dysphagia. In the next section,
we outline the methods pursued in developing the classi-
fier. Subsequently, we report quantitative classification
results using different candidate feature sets. We also
briefly describe one possible hardware implementation of
the classifier. The paper closes with a discussion of the
merits and limitations of the classification algorithm and
future directions of research. It is anticipated that such a
classifier once implemented in a portable computing plat-
form could assist caregivers in their interventions to man-
age heightened aspiration risk.

Methods
Representation of swallowing activity

Based on the clinical appeal of cervical auscultation and
the recent success of swallowing accelerometry described
above, we decided to represent swallowing activity, in par-
ticular, aspirations and safe swallows, by way of anterior-
posterior vibrations at the neck. This choice of representa-
tion proved meaningful in our previous study of pediatric
aspirations [6].

Data collection for system design and evaluation

In order to construct an automatic classification method,
we required examples of aspiration and swallow vibra-
tions. To this end, one hundred and seventeen children
suspected to be at risk of aspiration were recruited to this
study. Parents or caregivers gave their informed consent
prior to each child's participation. The protocol was
approved by the Research Ethics Board of Bloorview Kids
Rehab (Canada). The mean age of the participants was 6.0
± 3.9 years with 64 males and 53 females. Swallowing dif-
ficulty in all the participants was neurological in origin,
with the overwhelming majority having a primary diagno-
sis of cerebral palsy.

Lateral fluoroscopic video (General Electric X-ray System,
RFX-90) of the cervical region and simultaneous, time-
synchronized accelerometric data were collected from
each child during routine videofluoroscopic examination.
As shown in Figure 1, a small single-axis accelerometer
(EMT 25-C, Siemens) was attached to the child by way of
double-sided tape, infero-anterior to the thyroid notch.
This accelerometer, with a sensitivity of 80 mV/g, was cho-
sen for its flat frequency response, from 30 Hz to 20 kHz,
covering the previously reported range of frequencies rel-
evant to swallowing activities [35,36]. The accelerometer

signal was sampled at 10 kHz. The child was fed a barium-
coated bolus of varying consistencies as per the modified
barium swallow procedure [15]. Categories of consisten-
cies included thick, medium and thin purées, honey, nec-
tar, thin liquid and soup. Video X-rays were recorded on
tape in analog form (Panasonic VCR, model AG-6200),
while accompanying time-synchronized vibration signals
were amplified and recorded onto a laptop computer
(Apple PowerBook G3, 266 MHz) via an external 12-bit
data acquisition unit (Biopac, model MP100). The raw
data were denoised by wavelet soft-thresholding using a
Daubechies-4 filter. Video X-ray recording was triggered
by the initial activation of the X-ray emitter, operated by
the presiding radiologist. Time-stamping of the video
(FORA video timer, model VTG-55) and recording of the
vibration signal were triggered simultaneously, by the pre-
siding pediatrician via a pushbutton switch, upon obser-
vation of swallow initiation. In this manner, the time code
on the analog video corresponded to the time index of the
digital recording of the vibration signal.

The video records were subjected to retrospective blind
review by a committee of three to four clinical experts, for
the purpose of aspiration identification. The vibration sig-
nals associated with the identified instances of aspirations
were carefully extracted, reviewed by committee and
checked for sound quality. Each aspiration sample was
further assigned one of four possible descriptive labels
based on a consensus classification of the sound by the
committee of the clinical experts. These labels are summa-
rized in Table 1. Additional details of aspiration signal
extraction can be found in [6]. By this procedure, 94 aspi-
ration and 100 swallow signals were extracted.

Feature extraction

Critical to any successful classifier is the prudent extrac-
tion and selection of discriminatory features. Stationarity,
normality, dispersion ratio, zero-crossings and energy fea-
tures provided statistically different unidimensional dis-
tributions for swallows and aspirations, by a rank sum test
(p ≤ 8.5 × 10-4 for each of the five features). Note that sta-
tionarity, normality and dispersion ratio can be consid-
ered as capturing time domain information, whereas
energy and zero-crossing features relate to spectral infor-
mation in the signals. Each of the five features is described
below.

Stationarity

Weak stationarity implies that the mean and variance of
the signal do not change over time. Determination of sta-
tionarity is important in selecting the appropriate analyti-
cal method, such as in the fractal characterization of time
series [37]. The reverse arrangement test is a simple, non-
parametric test for stationarity [38]. For convenience, we
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Data collection set-up for the simultaneous acquisition of time-synchronized videofluoroscopic and accelerometric dataFigure 1
Data collection set-up for the simultaneous acquisition of time-synchronized videofluoroscopic and accelerometric data.
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used the associated test statistic as the stationarity feature,
that is,

Here, A is the number of reverse arrangements in the sig-
nal, and μA and σA, defined as in [6], only depend on the
length of the signal.

Under the null hypothesis of stationarity, zA is distributed
as a standard normal with zero mean and unit variance.
Hence, at the 5% significance level, |zA| < 1.96 for a sta-
tionary signal. For a step-by-step procedure for calculating
the number of reverse arrangements, A, please see [38].

Normality

Normality measures the adherence of a signal's amplitude
distribution to that of an ideal normal distribution. Sup-
pose we have a signal of length n. To compute this feature,
the signal's amplitude is first divided into a finite number
of intervals or bins, I, I <<n, over the range of variation.
We then count the number of times the signal's amplitude
falls into each bin, yielding so-called observed frequen-
cies. For each bin, we can also compute an expected fre-
quency, that is the number of observations one would
expect had the signal's amplitude been normally distrib-
uted. From these quantities, we derived a normality fea-
ture, N, on the basis of the Chi-square test for normality
[39], namely,.

In the above, ni is the observed frequency in the ith bin, and

 is the expected frequency in the same bin under the

null hypothesis of a normal amplitude distribution.

Dispersion ratio

Dispersion ratio is the ratio between the mean absolute
deviation and the interquartile range of a signal. The
mean absolute deviation, MAD, can be found by,

where med(x) is the median of the signal. The interquar-
tile range, denoted here as IQR, is defined as

IQR = q0.75 - q0.25  (4)

where q0.25 and q0.75 are the first and third quartiles of the
signal's amplitude distribution. The dispersion ratio is
expressed as,

and can be interpreted as capturing the difference between
a non-robust (mean absolute deviation) and a robust
(interquartile range) estimate of spread. This feature thus
roughly reflects the nature and multiplicity of atypical
observations within the signal. In the absence of such a
typical observations, the ratio would tend to unity. For
further details about the constituent computations for this
feature, please see for example [40].

Zero-crossings

The number of zero-crossings in a signal is an often used
feature which can be easily computed in the time domain,
but loosely reflects the overall frequency content of the
signal. Suppose we have a signal with n samples,
{x1,...,xn}. We estimated the zero-crossing feature by,

Z = card{xi | sign(xi) ≠ sign(xi+1)} - card{xj | sign(xj) = 0}
(6)

for i = 1,...,n - 1 and j = 1,...,n. In the above, card denotes
cardinality of the set while sign(x) is the sign function. We
subtract the actual number of points whose value is zero
(the second term above) to avoid double-counting the
number of zero-crossings.

Energy

Since pediatric aspiration signals are often non-stationary
[6], we adopted a wavelet-based estimate of signal energy,
previously proposed as a discriminatory feature for the
classification of biomechanical signals [41,42]. In particu-
lar, the chosen energy feature was the sum of the squared
detailed coefficients at the fourth level of a five-level
Daubechies-4 wavelet transform [43]. This feature repre-
sents the energy of the low frequency components in the
observed accelerometry signal. Given a 5-level discrete
wavelet decomposition (DWT) of a signal xi into an
approximation (a5) and detail signals (d5,...,d1), i.e.,

DWT [xi] = [a5|d5, d4, d3, d2, d1]  (7)
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Table 1: Descriptive labels of aspiration signals

Label Outstanding quality in signal

squeak Characteristic high frequency inspiratory squeak

crunch Dull crunching sound

click Short single click

clip High amplitude sound with fuzzy quality
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the selected energy feature is simply given as

where due to successive downsampling of the signal, there
are n/16 coefficients at the 4th level of decomposition. The
choice of this feature was motivated by the fact that swal-
lowing signals tend to contain frequency peaks from a few
hundred Hertz to around 1 kHz [36,44], whereas our
observations suggest that aspirations signals have higher
pitched components.

Radial basis classifier design

A radial basis function network, a highly versatile and eas-
ily implementable classifier, was chosen to facilitate the
selection of decisive features. The radial basis function
network is a universal function approximator [45]. In
other words, given sufficient training samples and unlim-
ited hidden units, the network is able to model any con-
tinuous function between the inputs and outputs. It has
also been argued that the radial basis network is suited to
multimodal data [46], sports favourable convergence
rates and provides statistically consistent estimation [47].
Additionally, radial basis function networks can be
trained with standard linear techniques, circumventing
gradient descent training issues that plague conventional
back-propagation trained feedforward networks [48].
Radial basis networks have been deployed frequently in
rehabilitation engineering, for example, in the control of
neural prostheses [49] and in the design of an intelligent
wheelchair guidance system [50].

For our experiments, the number of inputs to the network
equaled the number of features, ranging from 1 to 5. The
network had a single output, coded to represent aspira-
tions by a numerical value of 0.9 and swallows with a
value of 0.1. These values were chosen to mitigate satura-
tion of the basis functions. The gaussian radial basis func-
tion was selected for its proven approximation
capabilities. The number of radial basis units was
increased as necessary during training to achieve the tar-
geted performance. Initially, all networks started with two
basis units and this was increased by five at each training
iteration to a maximum equal to the number of training
exemplars. The termination criterion for training was a
successive error of 0.1. This coarse error margin was con-
sidered sufficient since our target values of 0.1 and 0.9 can
be resolved at this precision. Figure 2 portrays the radial
basis function network architecture for the five input fea-
ture case. All other networks would have a subset of the
five features and hence fewer input nodes. For clarity, we
have intentionally omitted bias factors at each layer and
have used bold arrows to denote full connections between

layers, i.e. every node is connected to every other node in
the next layer. The output function can be written as a lin-
ear summation of the gaussian kernels evaluated at the
current input vector, x,

where wi is the weight from the ith radial basis to the out-
put layer, G(·) is the radial basis kernel, ci is the center of
the ith radial basis function and ||·|| denotes Euclidean
distance. In Figure 2, we have x = [SNDZE]T. For further
details on radial basis network architectures and training
algorithms see [45,51]. The simulation experiments were
conducted in MATLAB.

Evaluation of feature sets

To identify which combinations of the above features

yield the best discriminatory potential with a radial basis

classifier, we formed all possible unique combinations of

one through five features. In total, there were (5,

m) = 31 unique feature combinations, where C(n, m)

means n choose m combinations. For each feature combi-

nation, we performed a 10-fold cross-validation [48] esti-

mate of various classification performance measures

described below. The 90%–10% split was deemed to pro-

vide a reasonably sized test set based on the sample size of

available data (100 swallows + 94 aspirations = 194

instances).

The interfeature correlations were calculated to gauge the
amount of overlapping information captured by each fea-
ture. Additionally, the correlations between each feature
and descriptive aspiration label (Table 1), bolus consist-
ency, participant's age and gender were computed. These
correlations would hopefully help to ascertain the clinical
information, if any, reflected in each feature.

Classifier performance measures

To judge the relative merits of each feature combination,
we computed some standard performance measures.
Before discussing these measures, we need to clarify the
meaning of some terminology in the context of the
present application. Positive and negative detections refer
to classification decisions of aspirations and swallows,
respectively. Therefore, a false positive (FP) is the event of
classifying a vibration signal as an aspiration when a swal-
low has actually occurred, whereas a false negative (FN) is
the event of classifying a vibration signal as a swallow
when an aspiration has actually occurred. Likewise an
aspiration that is correctly classified as such is a true posi-
tive (TP) and a correctly classified swallow is a true nega-
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tive (TN). The most common measure of classifier
performance is accuracy, defined as

where the denominator is simply the total number of
attempted classifications and corresponds to the size of
the test set in the each cross-validation iteration. Accuracy

only gives a global sense of classifier performance and
may not be very meaningful when the number of swal-
lows and aspirations in the test set are unbalanced.

We thus also examine classifier performance on aspira-
tions and swallows individually. Sensitivity is the propor-
tion of actual aspirations that are correctly classified as
aspirations,

Accuracy =
+

+ + +
( )

TP TN

TP FP TN FN
10

Radial basis function architecture for aspiration detection, shown here with all five featuresFigure 2
Radial basis function architecture for aspiration detection, shown here with all five features. S = stationarity, N = normality, D 
= dispersion ratio, Z = zero-crossings, E = energy.
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whereas specificity is the proportion of actual swallows
that are correctly classified as swallows,

Lastly, the adjusted accuracy [52], a measure which
accounts for unbalanced sample sizes of positive (aspira-
tions) and negative (swallows) events was also computed.
The adjusted accuracy, combines sensitivity and specifi-
city into a single measure given simply by

Results
Sample signals

Figure 3 portrays some typical aspiration and swallow sig-
nals recorded from pediatric clients during the modified
barium swallow procedure. Immediately, one notices that
swallow signals are typically longer in duration and dom-
inated by low frequency fluctuations. In contrast, aspira-
tion signals are generally shorter, but can exhibit both
remarkable high frequency components (top and middle
graphs on the right hand side of Figure 3), as well as dom-
inant low frequency trends (bottom right graph of Figure
3).

Optimum combination of features

The classification results with the 31 unique feature com-
binations are tabulated in Table 2. The size of the feature
set ranges from 1 to 5. The best feature combination for
each size of feature set is labeled with an asterisk. Examin-
ing the adjusted accuracy column, the best two-feature
combination is that of dispersion ratio and normality.
This duality is slightly more sensitive but less specific than
the best tripartite combination of dispersion ratio, energy
and normality. However, these differences are not statisti-
cally significant (p > 0.2) due to the large variability in
sensitivity and specificity values.

Going from the best three to four features (dispersion
ratio, energy, normality and stationarity), the classifier
becomes less sensitive but more specific at identifying
aspirations. Again, however the differences are not signif-
icant (p > 0.3).

Also noteworthy, the three-feature combination of disper-
sion ratio, normality, and stationarity yielded sensitivity
and specificity values most comparable to the dispersion-
normality duo. Both these feature combinations would be
particularly amenable to implementation on a standard

workhorse microcontroller as all computations can be
made in the time domain, in real-time.

We note that as the number of features increases, the per-
formance improves initially, but stabilizes, then dimin-
ishes. This behavior is portrayed by the sequence of
notched box plots in Figure 4. Only the cross-validated
adjusted accuracies for the best feature combinations are
shown. There is a statistically significant increase in
adjusted accuracy from 1 to 2 features (p = 0.041) by the
Kruskal-Wallis test. There is no significant difference (p =
0.9) among the accuracies using 2, 3 and 4 features. How-
ever, from 4 to 5 features, there is significant decrease in
adjusted accuracy (p = 10-4). This trend is in agreement
with common wisdom in pattern recognition [48]. Hence,
performance is statistically equivalent with either the best
2, 3 or 4 features. From the perspective of computational
economy, the fewer the features, the more desirable the
solution.

Clinical correlates

Pairwise correlation coefficients among the five features
extracted from the accelerometry signals are given in Table
3. Apart from normality and zero-crossings which appear
to be somewhat positively correlated, the other features
are only weakly correlated. This suggests that the features
are generally representing different pieces of information
about the vibration signals. In conventional regression
analysis, it is usually desirable to have uncorrelated inde-
pendent variables [53]. The general lack of correlation
implies that the selected features could also be exploited
by simpler classifiers based on multivariate regression
modeling.

Pairwise correlations among the extracted features for
aspirations and the four clinical variables are presented in
Table 4. Surprisingly, there were no noteworthy correla-
tions, either positive or negative. This result implies that
the fundamental nature of aspiration signals, as repre-
sented by the extracted features, do not depend on bolus
consistency, age and gender of the participants. Moreover,
the criteria used by clinicians to assign a descriptive label
to the aspiration signal are likely very different from the
identified mathematical features.

Discussion
Features for pediatric aspiration detection

From our experiments, normality and dispersion ratio
form a good feature combination in terms of separating
aspirations and swallows. Figure 5 depicts the feature
space for this optimal 2-dimensional feature combina-
tion. We can visually verify that swallows and aspirations
are roughly quadratically separable in this feature space.

Sensitivity =
+

( )
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TP FN
11

Specificity =
+
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TN FP
12
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To understand the reason for the good separability by the
normality feature, we examine the skewness and kurtosis
of the empirical data. Here we use the convention that
normally distributed data have 0 skewness and 0 kurtosis.
Figure 6 portrays histograms of the skewness and kurtosis
of aspirations in the top 2 figures and the corresponding
statistics for swallows in the bottom 2 figures. While swal-
lows have higher variability in skewness values, we see
that aspirations and swallows exhibit similar skewness
histograms (p = 0.542). These histograms suggest that
amplitude distributions of both aspiration and swallow
signals are generally symmetrical, although there are some
positively and negatively skewed signals. Hence, the dif-
ference in normality is likely not attributable to differ-
ences in skewness.

Moving on to kurtosis, we remark that the right half of Fig-
ure 6 clearly shows that swallows are significantly more
leptokurtic [38] than aspirations (p << 10-5). This marked
difference in kurtosis values is a highly probable reason
for observed statistical difference in normality between
aspirations and swallows. The leptokurtic nature of swal-
lows suggests that they are more peaked than a normally
distributed signal, with thicker tails. In the present appli-
cation, leptokurticity may be due to the heteroscedasticity
of the signals, that is, the changing variance of the signal
over the course of time. Particularly, the combination of
two normal signals with different variances can produce a

leptokurtic signal. This kind of heteroscedastic behaviour
has been identified in speech signals [54].

Examining the value of dispersion ratios in Figure 5, we
note that aspirations tend to have dispersion ratios less
than one. Bearing in mind the influence functions [55] for
mean absolute deviation and interquartile ranges, we
infer that aspiration signals generally sit in the "stable"
region of the influence function, where in fact, the mean
absolute value is less than the interquartile range. Practi-
cally, this means that aspiration signals have fewer atypi-
cal values, leading to a closer agreement between robust
and non-robust spread estimates. On the other hand,
swallows frequently have dispersion ratios in excess of
1.0, suggesting that outlying values are exerting undue
influence on the non-robust mean absolute deviation
value. In short, the normality and dispersion ratio features
seem to capture fundamental differences between aspira-
tion and swallow signals and hence in concert, provide a
good feature space for classification.

In terms of adjusted accuracy, our present results indicate
that statistically, there is no need to include a third fea-
ture, at least, none of the ones we have selected.

It is important to note here that not all features are equally
implementable in hardware. For instance, the energy fea-
ture described in this paper is not easily implementable

Sample swallow signals on the left and aspiration signals on the rightFigure 3
Sample swallow signals on the left and aspiration signals on the right. Note that swallows are typically longer in duration and 
dominated by low frequency components. Aspirations come in many flavours, some with noticeable high frequency elements 
(top and middle graphs on right side), but others with predominantly low frequency components (bottom right graph).
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with a standard microcontroller without digital signal
processing capabilities. In general, features requiring spec-
tral analysis are more difficult to implement in hardware
than those requiring strictly time-domain computations.

Aspiration classifier

The proposed feature combinations and radial basis clas-
sifier achieved approximately 80% adjusted accuracy in
classifying aspirations and swallows. This accuracy level
already exceeds that achievable by the best trained clini-
cian using cervical auscultation at the bedside, where one
typically achieves no better than 40 to 60% accuracy
[22,24]. Recently, in a study involving eleven expert
judges and a small sample of 20 stethoscopic sounds of
"normal" and "abnormal" swallowing, individual rater
specificity and sensitivity for aspiration/penetration detec-
tion were only 66% and 62%, respectively [30]. We thus
argue that the proposed classifier is an important first step

towards developing a non-invasive aspiration detection
method in the paediatric population.

A classifier can make false positive and false negative
errors, each with a potentially different associated cost.
From the medical perspective, clearly missing multiple
aspirations (false negatives) is a costly error bearing seri-
ous health consequences described previously. However,
from a caregiver perspective, rampant false alarms may
unnecessarily limit oral feeding, which in turn may have
negative nutritional impact. In developing a clinically use-
ful system, the tradeoff between these two errors should
be carefully considered and perhaps tailored to the indi-
vidual client and family situation.

While we have elected to use a universal function approx-
imator in the radial basis function network, knowing
some discriminatory features, one could certainly con-

Table 2: Performance comparison of all possible feature combinations

Combination Accuracy Sensitivity Specificity Adjusted Accuracy

*D 0.711 ± 0.090 0.722 ± 0.133 0.698 ± 0.125 0.710 ± 0.089

E 0.521 ± 0.084 0.489 ± 0.170 0.589 ± 0.174 0.539 ± 0.077

Z 0.584 ± 0.115 0.703 ± 0.242 0.536 ± 0.219 0.620 ± 0.120

N 0.695 ± 0.126 0.780 ± 0.173 0.608 ± 0.165 0.694 ± 0.130

S 0.642 ± 0.099 0.557 ± 0.178 0.720 ± 0.090 0.638 ± 0.095

D-E 0.679 ± 0.101 0.656 ± 0.155 0.692 ± 0.137 0.674 ± 0.101

D-Z 0.579 ± 0.082 0.505 ± 0.195 0.673 ± 0.177 0.589 ± 0.077

*D-N 0.800 ± 0.078 0.794 ± 0.117 0.803 ± 0.128 0.798 ± 0.073

D-S 0.642 ± 0.126 0.612 ± 0.183 0.641 ± 0.219 0.627 ± 0.137

E-Z 0.563 ± 0.117 0.452 ± 0.166 0.687 ± 0.109 0.569 ± 0.118

E-N 0.758 ± 0.093 0.738 ± 0.181 0.764 ± 0.180 0.751 ± 0.090

E-S 0.537 ± 0.138 0.456 ± 0.181 0.628 ± 0.200 0.542 ± 0.141

Z-N 0.595 ± 0.134 0.226 ± 0.133 0.958 ± 0.071 0.591 ± 0.085

Z-S 0.574 ± 0.164 0.482 ± 0.304 0.693 ± 0.187 0.588 ± 0.170

N-S 0.742 ± 0.091 0.706 ± 0.146 0.783 ± 0.117 0.745 ± 0.097

D-E-Z 0.568 ± 0.128 0.481 ± 0.217 0.680 ± 0.180 0.581 ± 0.126

*D-E-N 0.821 ± 0.090 0.747 ± 0.160 0.878 ± 0.122 0.813 ± 0.085

D-E-S 0.495 ± 0.097 0.436 ± 0.194 0.532 ± 0.103 0.484 ± 0.102

D-Z-N 0.584 ± 0.139 0.304 ± 0.241 0.868 ± 0.278 0.586 ± 0.090

D-Z-S 0.605 ± 0.127 0.507 ± 0.299 0.737 ± 0.160 0.622 ± 0.143

D-N-S 0.784 ± 0.104 0.760 ± 0.176 0.809 ± 0.078 0.784 ± 0.110

E-Z-N 0.547 ± 0.109 0.071 ± 0.078 1.000 ± 0.000 0.536 ± 0.039

E-Z-S 0.553 ± 0.136 0.185 ± 0.133 0.911 ± 0.095 0.548 ± 0.083

E-N-S 0.805 ± 0.093 0.658 ± 0.168 0.922 ± 0.090 0.790 ± 0.099

Z-N-S 0.542 ± 0.127 0.072 ± 0.091 1.000 ± 0.000 0.536 ± 0.046

D-E-Z-N 0.547 ± 0.109 0.071 ± 0.078 1.000 ± 0.000 0.536 ± 0.039

D-E-Z-S 0.547 ± 0.132 0.172 ± 0.119 0.911 ± 0.095 0.542 ± 0.077

*D-E-N-S 0.811 ± 0.090 0.670 ± 0.160 0.922 ± 0.090 0.796 ± 0.095

D-Z-N-S 0.542 ± 0.127 0.072 ± 0.091 1.000 ± 0.000 0.536 ± 0.046

E-Z-N-S 0.537 ± 0.116 0.052 ± 0.081 1.000 ± 0.000 0.526 ± 0.041

*D-E-Z-N-S 0.537 ± 0.116 0.052 ± 0.081 1.000 ± 0.000 0.526 ± 0.041

Note: S = stationarity, N = normality, D = dispersion ratio, Z = zero-crossings, E = energy.
* denotes the best feature combination for each dimension of feature set.
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sider simpler alternatives such as a piecewise linear discri-
minant classifier [48] or a nearest-neighbour algorithm
[56] as a viable and perhaps more suitable solution for
micro-controller implementation.

Hardware implementation of the aspirometer

We contend that the proposed classifier can be easily real-
ized in hardware as a portable and non-invasive swallow-
safety monitor. In this section, we briefly describe one

Table 3: Correlation among extracted features

Dispersion Ratio Energy Normality Stationarity

Zero-Crossings -0.2486 -0.1331 0.6357 -0.3888

Stationarity -0.1417 -0.0690 -0.3414

Normality 0.3554 -0.0829

Energy 0.1881

Notched boxplots showing change in adjusted accuracy as the number of features are increased from 1 to 5Figure 4
Notched boxplots showing change in adjusted accuracy as the number of features are increased from 1 to 5. Only the best fea-
ture combination for each number of features is shown.
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such implementation, noting that many other variations
are possible. We have coined the term "aspirometer" for
the the hardware device that encapsulates the proposed

classification algorithm. A working prototype of this
aspirometer has been constructed at Bloorview Kids
Rehab in Toronto, Canada.

Normality-dispersion ratio planeFigure 5
Normality-dispersion ratio plane. With these 2 features, swallows and aspirations appear to be well separated. Note that one 
outlying observation was omitted from this plot for the sake of clarity.
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Table 4: Correlation among features and clinical variables

Bolus Consistency Age Gender Clinical Class

Dispersion Ratio -0.0098 0.0971 -0.1012 -0.0968

Energy 0.0190 -0.0223 0.0275 0.0300

Normality 0.0285 0.1064 0.0116 0.0219

Stationarity -0.1808 -0.0954 -0.1019 -0.1817

Zero-Crossings 0.0323 -0.0027 0.0262 0.1676
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Figure 7 is a block diagram of the aspirometer. The proto-
type consists of a single-axis accelerometer (EMT-25C, Sie-
mens), a custom sensory amplifier, a hardware codec
(AD1881A, Analog Devices), a microcontroller (ADSP
21160M, Analog Devices), a flash memory (M29W040B,
St. Microelectronics), a custom power distribution and
low battery indicator board and two LEDs (red and green)
for visual output. The accelerometer is attached to the
child's neck by way of double-sided tape. The amplifier
provides a twenty-times amplification with an anti-alias-
ing filter. The microcontroller performs data acquisition,
feature extraction, classificaiton and output LED control.
The microcontroller's memory is volatile, hence the soft-

ware is stored in the flash memory and retrieved by the
microcontroller each time the device is initialized. The red
and green LEDs indicate aspiration and swallow, respec-
tively. The entire unit is powered by two high energy
nickel metal hydride (NiMh) batteries (2700 mAh, 1.2 V,
Sanyo).

Rehabilitative strategies

Upon aspiration notification by the aspirometer, the car-
egiver may intervene in a variety of different ways, in
accordance with recommendations by the clinical care
team. For example, the caregiver might encourage the
child to attempt a voluntary cough to bring up any residue

Skewness and kurtosis of aspirations (top row) and swallows (bottom row)Figure 6
Skewness and kurtosis of aspirations (top row) and swallows (bottom row).
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Overview of the aspirometer: one possible implementation of the proposed classifierFigure 7
Overview of the aspirometer: one possible implementation of the proposed classifier.
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that may have entered the airway. For subsequent feeding,
the bolus consistency may be appropriately modified or
the the position of the child may be adjusted [21]. The car-
egiver may also reduce the speed and/or volume of pres-
entation of food to facilitate subsequent swallows.
Recurrent aspiration warnings, especially in combination
with clinical evidence such as chest disease particularly if
recurrent, evidence of aspiration on a chest X-Ray, recur-
rent fevers, unexplained choking with feeds, coughing
with feeds, a raspy breathing pattern, wet voice or deterio-
rating breathing pattern while feeding would indicate the
need for videofluoroscopic re-assessment by the clinical
care team.

Potential impact of an aspirometer

It is anticipated that an aspirometer device would have
significant impact in pediatric rehabilitation, primary and
tertiary care, particularly in individuals who tend to aspi-
rate silently. Firstly, reliable, non-invasive aspiration
detection would be available at bedside, at home, at
school and in the community. Neither clinical experts nor
expensive equipment would be required. Caregivers
would have a peace of mind when feeding the child with
dysphagia. Secondly, an aspirometer device could poten-
tially facilitate a better referral strategy for videofluoro-
scopic examinations (VFE). Currently, in many remote or
medically under-serviced communities, radiology suites
are in short supply and waiting lists can be many months
long. The aspirometer might serve as a pre-screening tool
to identify those for whom VFE is warranted. Waiting
times for videofluoroscopy could conceivably be reduced
as a result.

Limitations and future extensions

The current classifier formulates its decision solely on a
unidimensional vibration signal and has no knowledge of
other physiological indications, such as discoordinated
breathing, which may accompany aspiration. Hence, the
addition of other physiological data such as ventilation,
facial muscle activities, and heart rate may further
enhance and temporally advance aspiration detection.
However, it would be technically challenging to integrate
these different information sources into a portable and
self-contained device.

The current classifier was constructed from 94 aspiration
and 100 swallow samples. This sample limits the dimen-
sionality of the feature space in which class densities may
be estimated, as per the curse of dimensionality [57]. The
sample size also constrains the number of folds used in
cross-validation. With larger samples, we may be able to
minimize the variance in the estimated performance indi-
ces. We note however, that as noted in [6], it is extremely
difficult to assemble a large database of pediatric aspira-

tion signals due to their relatively infrequent occurrence
in a clinical setting.

The current results have been obtained only with pediatric
data and can not be generalized to adults. Future studies
employing similar methodology with adults are required
to ascertain the generalizability of automatic aspiration
detection using the proposed features and classifier.

We have discussed five candidate features in this paper.
Further research into discriminatory features may enhance
the dispersion-normality duality to provide even higher
specificity and sensitivity. Further, the generalization of
the swallow class to a generic non-aspiration class which
includes guttural sounds, vocalizations, coughing and cry-
ing noises may help to reduce false positives.

Conclusion
The proposed pediatric aspiration classifier provides
promising accuracies. It is particularly conducive to
implementation as a portable, non-invasive "aspirome-
ter" device. Dispersion ratio and normality prove to be
especially good features for distinguishing aspirations
from safe swallows, while sub-band energy appears to be
a useful additional feature. A radial basis network offers a
versatile architecture for classifier exploration but simpler
classifiers may also be suitable on the basis of the pro-
posed feature spaces. The proposed classifier can be fur-
ther enhanced by considering other features and
expanding the scope of swallowing events for training.
The ultimate application of such a classifier might be a
wearable detection/intervention system for the manage-
ment of aspiration risk.
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