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In this article, we apply the theory of meshfree methods to the problem of
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1 Introduction

A fast-developing area of research is the application of meshfree methods, using radial
basis functions (RBFs), to find the numerical solution of partial differential equations
(PDEs) [3, 4, 5, 12]. A starting point for many such pieces of work is Poisson’s equa-
tion [1, 6, 13]. In this article, we extend this research to an area of considerable recent
attention, that of PDE constrained optimization (see for example [15, 16, 17, 18]). We in-
vestigate the applicability of RBF collocation methods to the problem of Poisson control
(that is, optimizing a quantity with Poisson’s equation as a constraint), which is prob-
ably the most commonly investigated PDE constrained optimization problem. When
Poisson control is investigated however, the method used is generally that of applying
a finite element method (FEM) to it. To our knowledge, the application of an RBF
method to this problem has not been undertaken. We comment on the solution of a
number of problems using this method with Gaussian kernels, as well as the effect of
altering the RBF parameter, the number of RBFs used, and the penalty constant (which
we will define in Section 3.1) in the control problem.

In Section 2, we give a brief overview of research that has been undertaken in the
field of numerical solution of PDEs, in particular Poisson’s equation, using RBF col-
location methods. In Section 3, we then derive a method to solve problems involving
the distributed control of Poisson’s equation with Dirichlet boundary conditions and
the Neumann boundary control of Poisson’s equation. This involves using a Lagrange
multiplier approach with a similar collocation strategy as one could use to solve the
PDE itself. In Section 5, we test our method on a number of problems to illustrate its
effectiveness. We will also comment on the method’s performance when parameters and
the penalty constant are varied.

2 Meshfree solution of Poisson’s equation

Recently, the application of meshfree methods to solve PDE problems has become a
topic of much research. Literature such as [1, 4, 5, 6] motivate and derive such methods,
and apply them to Poisson’s equation. In [13], three collocation strategies are discussed
for this problem. The first is straight collocation, where the solution is taken to be a
straightforward sum of RBFs multiplied by coefficients, which are found by solving a
matrix system. The ‘centres’ of the RBFs are taken to be inside the domain where
the solution is sought, with some on the boundary. The second method is symmetric
collocation, where one modifies the basis function in the interpolant by including the
operator involved in the PDE being solved. The third method, that of direct collocation,
is similar to the first, but also uses the PDE on the boundary, and takes the centres of
some of the RBFs to be outside the domain.

In [19], convergence proofs and error estimates are shown for meshless Galerkin meth-
ods for a class of PDEs of which Poisson’s equation is an example, and it is shown that
the error bounds obtained in the energy norm are the same as for a finite element ap-
proach. Another useful contribution is the discussion of Domain Decomposition Methods
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for preconditioning such problems, as discussed in [14].
Meshfree methods have also been researched for solving other PDEs; for example in

[3], a meshless method for solving the steady state Navier-Stokes equations has been in-
vestigated. In [12], amongst a number of other issues, a solution procedure for hyperbolic
and parabolic PDEs is also discussed.

If one wishes to solve Poisson’s equation within a domain Ω using straight collocation,
one takes n RBFs with centres at the interior points ξj ∈ Ωinterior, j = 1, ..., n and n∂

RBFs with centres at ξj ∈ ∂Ω, j = n + 1, ..., n + n∂ . We denote the RBF centred at

ξj as φj. Then we approximate our solution variable y by
∑n+n∂

i=1 Yiφi, where Yi are
coefficients to be found. Each RBF takes the form φ = φ(r), with r = ‖x− ξ‖, where x
denotes the position vector and ξ denotes the centre of the RBF.

Now suppose that we wish to solve Poisson’s equation with Dirichlet boundary con-
ditions, that is

−∇2y = g in Ω,

y = f on ∂Ω,

in this way. Then the matrix system that we obtain from straight collocation is
[

A

D1

]

[y] =

[

g

f

]

, (2.1)

where y denotes the vector of coefficients Yi, i = 1, ..., n + n∂ , and A, D1, g and f are
given by

A = {aij}i=1,...,n, j=1,...,n+n∂
, aij = −∇2φj|x=ξi

,

D1 = {d1,ij}i=1,...,n∂ , j=1,...,n+n∂
, d1,ij = φj|x=ξn+i

,

g = {gi}i=1,...,n, gi = g(ξi)

f = {fi}i=1,...,n∂
, fi = f(ξn+i),

with ∇2, as in the rest of this paper, denoting the Laplacian with respect to the position
vector x.

On the other hand, if we are solving Poisson’s equation with Neumann boundary
conditions, that is

−∇2y = g in Ω,

∂y

∂n
= h on ∂Ω,

in this way, then the resulting matrix system that is
[

A

N1

]

[y] =

[

g

h

]

, (2.2)

where A and g are as above, and N1 and h are given by

N1 = {n1,ij}i=1,...,n∂ , j=1,...,n+n∂
, n1,ij =

∂φj

∂n

∣

∣

∣

∣

x=ξn+i

,

h = {hi}i=1,...,n∂
, hi = h(ξn+i).
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Using direct collocation to solve these systems will yield similar systems for the
Dirichlet and Neumann problems. When using symmetric collocation, we instead ap-
proximate y as

∑n
i=1 Yi∇

2
ξφi+

∑n+n∂

i=n+1 Yiφi (where∇ξ denotes the Laplacian with respect
to ξ). When solving the Dirichlet problem for instance, this will yield the following ma-
trix system:

[

Ã

D̃1

]

[y] =

[

h

f

]

, (2.3)

where h and f are as above, and

Ã =
[

Ã1 Ã2

]

,

D̃1 =
[

D̃11 D̃12

]

,

with

Ã1 = {ã1,ij}i=1,...,n, j=1,...,n, ã1,ij = −∇2
ξ(∇

2φj)|x=ξi
,

Ã2 = {ã2,ij}i=1,...,n, j=1,...,n∂
, ã2,ij = −∇2φj|x=ξn+i

,

D̃11 = {d̃11,ij}i=1,...,n∂ , j=1,...,n, d̃11,ij = ∇2
ξφj|x=ξi

,

D̃12 = {d̃12,ij}i=1,...,n∂ , j=1,...,n∂
, d̃12,ij = φj|x=ξn+i

.

It should be noted that in general, more mesh points are needed when using sym-
metric collocation to obtain the same accuracy as when using straight collocation [8, 9].
However, when using the symmetric collocation method, invertibility is guaranteed for
all configurations of (distinct) centres of RBFs [13, 20].

We will find that many of the matrices that appear when deriving the model for
solving Poisson’s equation using an RBF method will also appear when solving the
Poisson control problems discussed in Section 3. The methods we derive in Section 3
will be based on the straight collocation and symmetric collocation methods.

3 Extension to Poisson control

In this Section, we explain how we extend the theory of solving Poisson’s equation using
a collocation method to solving the problem of Poisson control, that is minimizing a
functional such that Poisson’s equation holds (an example of a PDE constrained opti-
mization problem).

3.1 Formulation of the distributed control problem

The problem that we examine is of the form

min
y,u

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω) (3.1)
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such that

−∇2y = u in Ω,

y = f on ∂Ω,

for some penalty constant β > 0. Throughout this work, we take Ω = [0, 1]2. The value
of β is important; if β is small, then y being ‘far away’ from ŷ is penalized heavily,
whereas if β is large, it is more important that u has small L2(Ω)-norm. In this Section,
we consider a method based on straight collocation as defined in Section 2; a method
based on symmetric collocation is given in Section 3.2.

We define y here to be the state and u to be the control. The fact that we are
controlling u inside the entire domain Ω makes this a distributed control problem. Our
theory will be extended in Section 3.3 to a boundary control problem, that is a problem
where we could control u only over the boundary of our domain ∂Ω.

We first turn to interpreting this problem as a matrix system of equations. To do
this, we discretize y, u as yh, uh, and introduce Lagrange multipliers λ, µ, χ, which we
discretize as λh, µh and χh. We collocate our variables as follows:

yh =

n+n∂
∑

i=1

Yiφi, uh =

n+n∂
∑

i=1

Uiφi,

λh =
n

∑

i=1

Λiφi, µh =

n+n∂
∑

i=n+1

Miφi, χh =

n+n∂
∑

i=n+1

Xiφi.

where φ1, ..., φn denote trial functions whose centres are located inside the domain, and
φn+1, ..., φn+n∂

denote trial functions whose centres are on the boundary. These φi are
defined in terms of radial basis functions.

We now define the vectors y, u, λ, µ and χ as

y = {yi}i=1,...,n+n∂
, u = {ui}i=1,...,n+n∂

,

λ = {λi}i=1,...,n, µ = {µi}i=1,...,n∂
, χ = {χi}i=1,...,n∂

,

at which point we can write our discretized problem as

min
yh,uh

1

2
‖yh − ŷ‖2L2(Ω) +

β

2
‖uh‖

2
L2(Ω)

such that

−∇2yh = uh in Ω,

with yh attaining the same values as f at all the radial basis function centres on the
boundary.
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Now, in the L2-norm, the quantities 1
2
‖yh − ŷ‖2L2(Ω) and

β
2
‖uh‖

2
L2(Ω) can be written

as

1

2
‖yh − ŷ‖2L2(Ω) =

1

2

∫

Ω

(yh − ŷ)2dΩ

=
1

2

∫

Ω

y2hdΩ−

∫

Ω

yhŷdΩ +
1

2

∫

Ω

ŷ2dΩ

=
1

2
yTMyy − dTy + C,

β

2
‖uh‖

2
L2(Ω) =

β

2

∫

Ω

u2hdΩ

=
β

2
uTMuu,

where My and Mu are mass matrices (which are equal due to the fact that y and u are
discretized in the same way in our formulation) defined as

My = {my
ij}i,j=1,...,n+n∂

, m
y
ij =

∫

Ω

φiφjdΩ,

d is defined as

d = {di}i=1,...,n+n∂
, di =

∫

Ω

ŷφidΩ,

and C is a constant, the value of which we will see to be unimportant.
We use a straight collocation method similar to the method used for solving the PDE

itself (as discussed in Section 2), to obtain three equations as shown below. The first
guarantees that Poisson’s equation is solved at every point corresponding to a centre of
an RBF, the second ensures that the Dirichlet boundary conditions are satisfied, and
the third ensures that the control is set to zero on the boundary (as for these problems
we only wish to “control” the interior of the domain Ω).

Ay +D2u = 0,

D1y = f ,

D1u = 0,

where

A = {aij}i=1,...,n, j=1,...,n+n∂
, aij = −∇2φj|x=ξi

,

D1 = {d1,ij}i=1,...,n∂ , j=1,...,n+n∂
, d1,ij = φj|x=ξn+i

,

D2 = {d2,ij}i=1,...,n, j=1,...,n+n∂
, d2,ij = −φj|x=ξi

,

f = {fi}i=1,...,n∂
, fi = f(xn+i).

As before, ξi denotes the centre of the i-th RBF we are considering, and f is the vector
containing the boundary values (i.e. the specified values at nodes xn+1, ...,xn+n∂

.
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We are therefore now left with the following Lagrangian L = L(y,u,λ,µ,χ), of
which we wish to find the stationary point:

L =
1

2
yTMyy − dTy + C +

β

2
uTMuu+ λT (Ay +D2u) + µT (D1y − g) + χT (D1u),

where λ, µ and χ denote the vectors of the relevant coefficients for our three Lagrange
multipliers.

Now, differentiating L with respect to y, u, λ, µ and χ and setting the partial
derivatives to be zero gives us the following equations which must be satisfied:

∂

∂y
: Myy + ATλ+DT

1 µ = d,

∂

∂u
: βMuu+DT

2 λ+DT
1 χ = 0,

∂

∂λ
: Ay +D2u = 0,

∂

∂µ
: D1y = f ,

∂

∂χ
: D1u = 0.

Finally, combining these 5 equations gives the system that we wish to solve:













My 0 A DT
1 0

0 βMu DT
2 0 DT

1

A D2 0 0 0
D1 0 0 0 0
0 D1 0 0 0

























y

u

λ

µ

χ













=













d

0

0

f

0













. (3.2)

The system that we obtain is symmetric, and furthermore is of saddle point structure,
which is guaranteed if we use the above ‘discretize-then-optimize’ formulation. This is
useful for proving the conditions for invertibility of this system, as in Section 4.

3.2 An alternative expansion in terms of basis functions

In this Section, we discuss an alternative method for solving (3.1), motivated by the fact
that when solving Poisson’s equation using symmetric collocation, one is guaranteed to
be solving an invertible matrix system, whatever the configuration of RBF centres. The
consequence of this with regard to the distributed control problem is given in Theo-
rem 3, though this methodology could also be extended to Neumann boundary control
problems.
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To carry out this method, we take

yh =
n

∑

i=1

Yi∇
2
ξφi +

n+n∂
∑

i=n+1

Yiφi, uh =
n

∑

i=1

Ui∇
2
ξφi +

n+n∂
∑

i=n+1

Uiφi,

λh =
n

∑

i=1

Λi∇
2
ξφi, µh =

n+n∂
∑

i=n+1

Miφi, χh =

n+n∂
∑

i=n+1

Xiφi.

Using the same method as in Section 3.1, we obtain the matrix system












M̃y 0 ÃT D̃T
1 0

0 βM̃u D̃T
2 0 D̃T

1

Ã D̃2 0 0 0

D̃1 0 0 0 0

0 D̃1 0 0 0

























y

u

λ

µ

χ













=













d

0

0

g

0













, (3.3)

where d and f are as defined in Section 3.1, and

M̃y = M̃u =

[

M̃11 M̃12

M̃21 M̃22

]

,

Ã =
[

Ã1 Ã2

]

,

D̃1 =
[

D̃11 D̃12

]

,

D̃2 =
[

D̃21 D̃22

]

,

with

M̃11 = {m̃11,ij}i=1,...,n, j=1,...,n, m̃11,ij =

∫

Ω

∇2φi · ∇
2φjdΩ,

M̃12 = {m̃12,ij}i=1,...,n, j=1,...,n∂
, m̃12,ij =

∫

Ω

∇2φi · φn+jdΩ,

M̃21 = {m̃21,ij}i=1,...,n∂ , j=1,...,n, m̃21,ij =

∫

Ω

φn+i · ∇
2φjdΩ,

M̃22 = {m̃22,ij}i=1,...,n∂ , j=1,...,n∂
, m̃22,ij =

∫

Ω

φn+i · φn+jdΩ,

Ã1 = {ã1,ij}i=1,...,n, j=1,...,n, ã1,ij = −∇2(∇2
ξφj)|x=ξi

,

Ã2 = {ã2,ij}i=1,...,n, j=1,...,n∂
, ã2,ij = −∇2φj|x=ξn+i

,

D̃11 = {d̃11,ij}i=1,...,n∂ , j=1,...,n, d̃11,ij = ∇2
ξφj|x=ξi

,

D̃12 = {d̃12,ij}i=1,...,n∂ , j=1,...,n∂
, d̃12,ij = φj|x=ξn+i

,

D̃21 = {d̃21,ij}i=1,...,n, j=1,...,n, d̃21,ij = −∇2
ξφj|x=ξi

,

D̃22 = {d̃22,ij}i=1,...,n, j=1,...,n∂
, d̃22,ij = −φj|x=ξn+i

.

For the remainder of this paper, we will be working with the simpler formulation
derived in Section 3.1, along with equally-spaced RBF centres. However, the system
derived in this Section is useful, as we prove in Section 4 that (3.3) is invertible for any
configuration of RBF centres (provided the locations of the centres are distinct).
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3.3 RBF solution of Neumann boundary control problem

In this Section, we describe a method (based on the straight collocation method for
solving Poisson’s equation with Neumann boundary conditions) to solve the Neumann
boundary control problem

min
y,u

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(∂Ω)

such that

−∇2y = g in Ω,

∂y

∂n
= u on ∂Ω.

As well as using φi to denote a basis of RBFs defined within Ω, we now take ψi,
i = 1, ..., n∂ , to be a new basis of RBFs defined solely on the boundary ∂Ω. Then
writing

yh =

n+n∂
∑

i=1

Yiφi, uh =

n∂
∑

i=1

Uiψi, λh =
n

∑

i=1

Λiφi, µh =

n∂
∑

i=1

Miψi,

and proceeding by the same method as in Section 3.2 yields the following matrix system:









My 0 AT NT
1

0 βM̂u 0 NT
2

A 0 0 0
N1 N2 0 0

















y

u

λ

µ









=









d

0

h

0









, (3.4)

where My, A and d are as defined in Section 3.1, and

M̂u = {m̂u
ij}i=1,...,n∂ , j=1,...,n∂

, m̂u
ij =

∫

∂Ω

ψiψjds,

N1 = {n1,ij}i=1,...,n∂ , j=1,...,n+n∂
, n1,ij =

∂φj

∂n

∣

∣

∣

∣

x=ξn+i

,

N2 = {n2,ij}i,j=1,...,n∂
, n2,ij = −ψj|x=ξn+i

= −d1,ij,

g = {gi}i=1,...,n∂
, gi = g(ξn+j).

Theorem 4 in Section 4 gives a result on the invertibility of this matrix system.

3.4 Implementation aspects

When implementing the methods we have derived in Sections 3.1 and 3.3, we need to
consider a number of things. First of all, we need to choose what radial basis functions
we will use in our methods. A number of widely used RBFs are discussed in literature
such as [4, 7, 13]. Throughout this work, we will use Gaussians (which are basis functions
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of the form φ = φ(r) = e−cr2), although our theory could be extended to any positive
definite RBF. We will vary the value of the coefficient c in the Gaussians; as we will
demonstrate in Section 5, it is not a trivial problem to choose the appropriate value of
c to obtain an accurate solution to the matrix systems previously derived.

The choice of the so called ‘shape parameter’ c, when it appears, is likely to be
important, as this feature is observed when solving Poisson’s equation itself [11, 13].
Large values of c result in a well-conditioned problem but poor convergence, whereas
small values of c result in a good approximation, but bad conditioning. We will therefore
vary the values of c in our numerical tests; all plots shown in Section 5 are produced
with values of c seen to be appropriate for the particular problem.

We must also choose the centres of the RBFs (which will be needed to construct the
matrices and vectors in (3.2)), and note their locations. We will proceed using randomly
generated centres inside the domain and along the boundary for simplicity.

When constructing the matrices as defined in Sections 3.1 and 3.3, we note a couple
of things. First, the matrices My (and hence Mu if we use the same number of basis

functions to represent y and u) and M̂u are clearly symmetric. This will save some
computational time when constructing the matrix system (3.2). When constructing the
mass matrices, we will need an effective quadrature rule: we find that using Gauss-
Legendre quadrature with around 50 quadrature points in each direction is sufficient
when Gaussians are used (note that in this case, we may separate the terms along the
individual axes, leaving effectively two 50 point quadrature rules, rather than one 2500
point rule, for a 2D problem). Finally, we note that d will clearly depend on our choice
of ŷ, and f or g will depend on what we choose the boundary terms to be – this will need
to be taken into account when implementing our method. We solve the matrix system
we have constructed using ‘backslash’ in Matlab, and perform standard a posteriori
tests to verify the accuracy of our solutions.

To test our method, we consider four specific problems, listed below. Problems 1,
2 and 3 are all distributed control problems with Dirichlet boundary conditions, which
we will solve using the method derived in Section 3.1, and Problem 4 is a Neumann
boundary control problem, which we will solve using the method discussed in Section
3.3. The problems are all in two dimensions on a domain Ω = [0, 1]2 for illustrative
purposes, but our theory can be easily extended to solving three dimensional problems.
In the problems as stated, x = [x1, x2]

T denote the coordinates we are working with.

• Problem 1: We wish to solve the distributed Poisson control problem

min
y,u

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

such that

−∇2y = u, x ∈ Ω,

y = f, x ∈ ∂Ω,
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where Ω = [0, 1]2, and

ŷ = x1(1− x1)x2(1− x2), x ∈ Ω,

f = 0.

• Problem 2: We consider the same formulation as Problem 1, except that

ŷ =

{

1 if x ∈ Ω1,

0 if x ∈ Ω2,

f =

{

1 if x ∈ ∂Ω1 := ∂Ω ∩ Ω1,

0 if x ∈ ∂Ω2 := ∂Ω ∩ Ω2,

Ω1 =
[

0,
1

2

]2
, Ω2 = Ω\Ω1.

This problem was previously considered using an FEM method in [17].

• Problem 3: We again consider the same formulation as Problem 1, but with

ŷ =

{

1 if x ∈ Ω1,

0 if x ∈ Ω2,

f = 0,

Ω1 =
[

0,
1

2

]2
, Ω2 = Ω\Ω1.

This problem was previously considered using an FEM method in [15].

• Problem 4: We wish to solve the Neumann boundary control problem

min
y,u

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(∂Ω)

such that

−∇2y = g, x ∈ Ω,

∂y

∂n
= u, x ∈ ∂Ω,

where Ω = [0, 1]2, and

ŷ = x1(1− x1)x2(1− x2), x ∈ Ω,

g = g(x1, x2) = x1x2.

Problems 1, 2 and 3 are variants on the Poisson distributed control problem, with
different boundary conditions and target functions, and, as stated above, Problem 4 is
an example of the Neumann boundary control problem. Problems 2 and 3 are interesting
ones specifically because we cannot exactly attain our target solution, no matter how
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Figure 1: Plot of finite element solution (interior points only) to optimal control Problem
3 using Q1-Q1 approximation, step size h = 2−5 and β = 10−6, and the control needed
to obtain this solution.
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Figure 2: Plots of target solution y = ŷ for Poisson control Problems 1 and 4 (left) and
Problems 2 and 3 (right).

small we set β. The reason for this is that we have specified that y must be equal to 0 on

all of ∂Ω, and so the target ŷ = 1 on
[

0, 1
2

]2
cannot be reached. Consequently, for small

β, the control may exhibit a lack of smoothness as y gets closer to ŷ. Figure 1 illustrates
a finite element solution we obtain for the state when β = 10−6, and the non-smooth
control that we require for this to happen. Figure 2 shows the targets ŷ that we hope
the state to be as close to as possible, for each of our 4 problems.

4 Solvability of matrix systems

In order to guarantee the existence of solutions to PDE constrained optimization prob-
lems using our methods, it is necessary to obtain results on the invertibility of the matrix
systems derived in Section 3. We therefore prove a number of such results in this Section.

Theorem 1 is a general result from saddle point theory, see [2]. We will use this
result to prove conditions for invertibility of the matrix systems that we have derived
in Section 3. Theorem 2 gives a result concerning the invertibility of the matrix system
(3.2) for the solution of distributed control problems in terms of the invertibility of the
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matrix system (2.1), that is the matrix system generated by solving Poisson’s equation
with Dirichlet boundary conditions using straight collocation.

Theorem 3 proves the unconditional solvability of the alternative matrix system (3.3)
for distributed control problems, using the fact that the matrix system (2.3) is invertible,
provided that all RBF centres are distinct [13, 20].

Theorem 4 gives a similar result as Theorem 2, this time concerning the invertibility
of (3.4), the matrix system for Neumann boundary control problems, in terms of the
invertibility of (2.2), the matrix system generated by solving Poisson’s equation with
Neumann boundary conditions.

Theorem 1 Any saddle point system of the form

[

Φ ΨT

Ψ 0

]

, where Φ is an m × m

matrix and Ψ is an n×m matrix with m ≥ n, is invertible provided that Φ is invertible
and the Schur complement ΨΦ−1ΨT is invertible.

Theorem 2 The matrix A given by

A =













My 0 AT DT
1 0

0 βMu DT
2 0 DT

1

A D2 0 0 0
D1 0 0 0 0
0 D1 0 0 0













(that is the matrix corresponding to the Poisson distributed control problem as described

in Section 3.1) is invertible, provided

[

A

D1

]

is invertible.

Proof. The matrix A may be written as a saddle point system A =

[

C ET

E 0

]

, where

C =

[

My 0
0 βMu

]

and E =





A D2

D1 0
0 D1



. Now, because of Theorem 1, we simply

need to show that C−1 and (EC−1ET )−1 exist. The fact that mass matrices are

invertible means that we may write C−1 =

[

M−1
y 0
0 1

β
M−1

u

]

to prove the first part.

We prove that EC−1ET is invertible by showing that it is positive definite. To do this,
we note that, for any v ∈ R

n+2n∂ ,

vTEC−1ETv =
(

C−1/2ETv
)T (

C−1/2ETv
)

,

and so vTEC−1ETv > 0 unless C−1/2ETv = 0, which occurs if and only if ETv = 0 as
C−1/2 is invertible.

Now, writing v = [v1 v2 v3]
T , where v1 ∈ R

n, v2 ∈ R
n∂ , v3 ∈ R

n∂ , we obtain

ETv = 0 ⇔

[

A

D1

]T [

v1

v2

]

=

[

0

0

]

, DT
2 v1 +DT

1 v3 = 0.
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By the invertibility of

[

A

D1

]

(and hence also the fact that D1 has full rank), we have

from the first of the above equations that

[

v1

v2

]

=

[

0

0

]

, from which it follows from

the second equation that v3 = 0. We therefore obtain that ETv = 0 if and only if
v = 0, and so EC−1ET is invertible. ✷

Theorem 3 The matrix













M̃y 0 ÃT D̃T
1 0

0 βM̃u D̃T
2 0 D̃T

1

Ã D̃2 0 0 0

D̃1 0 0 0 0

0 D̃1 0 0 0













is invertible.

Proof. This can be proved in the same way as Theorem 2, using Theorem 1, as well

the fact that the matrix

[

Ã

D̃1

]

is always invertible in the case of symmetric

collocation provided that all RBF centres are distinct. ✷

Theorem 4 The matrix









My 0 AT NT
1

0 βM̂u 0 NT
2

A 0 0 0
N1 N2 0 0









is invertible, provided

[

A

N1

]

, the (straight) collocation matrix corresponding to Pois-

son’s equation with Neumann boundary conditions, is invertible.

Proof. This can also be proved in a similar way as Theorem 2 using Theorem 1. ✷

In this Section we have therefore shown that if one proves the invertibility of a matrix
system for solving Poisson’s equation (with Dirichlet or Neumann boundary conditions)
using a particular array of nodes, one has automatically proved the invertibility of the
equivalent PDE constrained optimization problem (that is the distributed conrol problem
and the Neumann boundary control problem respectively). The invertibility of matrix
systems for solving Poisson’s equation will hold almost always, but counterexamples can
be constructed [10, 13].
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Figure 3: Diagrams of the RBF solutions to the distributed Poisson control Problem 1
for the state y and control u, for β = 10−3 and 10−5 with c = 150 and 300 respectively.
Here, we took h = 2−5.

5 Numerical results

In this Section we present numerical results, all of which were generated using equally-
spaced points.

Figures 3, 4, 5 and 6 show solutions obtained for state and control using our RBF
methods with β = 10−3 and β = 10−5, for the distributed control problems (Figures
3–5) and Neumann boundary control problem (Figure 6) stated in Section 3.4. The
figures exhibit many features which we would expect of solutions to a PDE constrained
optimization problem. The state y is close to the target function ŷ for each problem (as
shown in Figure 2), and it is even closer to the target function if we set β to be smaller.
In Figure 5 in particular, our control u exhibits very similar non-smoothness near ∂Ω
for small β, as we saw for the finite element solution in Figure 1.

We observe that the solutions we obtained seemed to depend on the value of c we used
in our Gaussians. We therefore seek to analyze how the values of c, as well as β, affected
the values of ‖y − ŷ‖L2(Ω), ‖u‖L2(Ω) and 1

2
‖y − ŷ‖2L2(Ω) +

β
2
‖u‖2L2(Ω)(the functional our

method has attempted to minimize). As our method merely generates the values of the
state and control at each RBF centre, it is difficult to evaluate any of these functionals
exactly, as they represent integrals. We find that if we approximate ‖y − ŷ‖L2(Ω) by the
ℓ2-norm of the vector of the difference between the RBF solution for y and the target



16 J. W. PEARSON

0

0.5

1

0

0.5

1
0

0.5

1

1.5

x
1

x
2

y

(a) State y, β = 10−3

0

0.5

1

0

0.5

1
−2

0

2

4

6

x
1

x
2

u

(b) Control u, β = 10−3

0

0.5

1

0

0.5

1
0

0.5

1

1.5

x
1

x
2

y

(c) State y, β = 10−5

0

0.5

1

0

0.5

1
−50

0

50

x
1

x
2

u

(d) Control u, β = 10−5

Figure 4: Diagrams of the RBF solutions to the distributed Poisson control Problem 2
for the state y and control u, for β = 10−3 and 10−5 with c = 250 in each case. Here,
we took h = 2−5.

solution ŷ at each point (denoted by ‖y − ŷ‖ℓ2(Ω)), and approximate ‖u‖L2(Ω) by the
ℓ2-norm of the vector of the RBF solution of the control u (denoted by ‖u‖ℓ2(Ω)), these

give an illustration of our success in minimizing 1
2
‖y − ŷ‖2L2(Ω) +

β
2
‖u‖2L2(Ω). Note that

these values will clearly depend on h, but we will keep this value constant when we carry
out this analysis.

In Table 1, we analyze the values of ‖y − ŷ‖ℓ2(Ω), ‖u‖ℓ2(Ω) and 1
2
‖y − ŷ‖2ℓ2(Ω) +

β
2
‖u‖2ℓ2(Ω) for varying β. As we would expect, at first, as β gets smaller, the state y gets

rapidly closer to the target function ŷ, and although ‖u‖ℓ2(Ω) does become much larger,

our approximation of the functional we wish to minimize, 1
2
‖y − ŷ‖2L2(Ω) +

β
2
‖u‖2L2(Ω),

gets smaller and smaller.

In Table 2, we considered a specific case (namely Problem 3 with h = 0.04 and
β = 10−4), and again analyzed the values of ‖y − ŷ‖ℓ2(Ω), ‖u‖ℓ2(Ω) and

1
2
‖y − ŷ‖2ℓ2(Ω) +

β
2
‖u‖2ℓ2(Ω), but this time varying the value of the parameter c. The effects seemed to be

similar as for Poisson’s equation itself; taking a value of c that is too large results in
convergence being a problem, but a value of c that is too small results in ill-conditioning.
In Table 2, we observe that the ‘middle ground’ of values of c (for this case roughly
c ∈ [200, 500]) generate very similar results — the results still vary slightly as h is still
relatively large, and the solution may not have converged to many digits. We recommend
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Figure 5: Diagrams of the RBF solutions to the distributed Poisson control Problem 3
for the state y and control u, for β = 10−3 and 10−5 with c = 250 and 300 respectively.
Here, we took h = 2−5.

taking c to be roughly within this interval, although the ideal values may vary if h is
changed, for example when considering the problems for which the solution is plotted
in Figures 3, 4, 5 and 6, or if β is varied, as in Table 1. We conclude that choosing the
value of c appropriately is important when considering our methods for solving Poisson
control problems. In Table 3, we display the condition numbers for the matrix in (3.2) for
h = 0.04 and a variety of values of c and β; the results demonstrate the ill-conditioning
for the problem when using small values of c. The case h = 0.04 is an interesting one, as
it is a case for which the condition number can be above or below 1016; if the condition
number is above this number, one cannot expect to obtain any digits of accuracy when
implementing the method in double precision arithmetic. The conditioning also becomes
more of a problem as h is decreased, so it would be desirable to find optimal choices of
c for any h and β.

Providing the value of c is chosen appropriately, we can conclude that our methods
are powerful ones for solving the Poisson control problems that we have considered. [For
further details about Poisson control problems and the features of FEM solutions, see for
example [15, 16, 17].] We compare the FEM method and the RBF collocation method
we have presented here in Section 6.
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Figure 6: Diagrams of the RBF solutions to the Neumann boundary control Problem 4
for the state y and control u, for β = 10−3 and 10−5 with c = 500 in each case. Here,
we took h = 2−5.

6 Concluding remarks

In this article, we first reviewed some research that has been undertaken to solve Pois-
son’s equation using meshfree methods, and derived systems of equations that are com-
monly used for Dirichlet and Neumann boundary value problems. We then motivated,
derived, implemented and tested a new radial basis function method for solving optimal
control problems involving Poisson’s equation, and proved a number of solvability results
relating to the resulting matrix systems. The problems considered were the distributed
control problem with Dirichlet boundary conditions and the Neumann boundary control
problem. We found that this method was a powerful one for each of these formulations.

There are clear advantages to using an RBF method for such problems over the more
commonly used finite element method. Most notably, it is not necessary to construct
a mesh for this method, which saves a considerable amount of computational work and
memory. If one did wish to select centres for the RBFs, there would be no restriction
on where these centres could be (provided they did not coincide). There are also good
direct methods for small matrix systems built into programs such as Matlab, so if we
wished to compute an RBF solution to this problem using a relatively small number of
functions, this method would be ideal. In addition, the solutions obtained are infinitely
smooth, provided appropriate RBFs are used in the method, so if a high degree of
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smoothness were required, this would be a method of choice. However, problems arise
when we wish to compute a (highly accurate) solution to the problem using many RBFs,
resulting in a large matrix system. As shown in Figure 7, the resulting matrix system
for such a meshfree method is extremely dense, which makes the sparse matrix system
obtained when an FEM is used preferable, as there have been powerful iterative methods
developed for such systems [15, 16, 17]. Computing the mass matrices in (3.2) is also an
expensive procedure when creating the global matrix system, although we would not
expect the computation time involved to be greater than the time taken to solve the
resulting system. Furthermore, ill-conditioning of the matrix system is a significant
drawback for large systems in particular. It is possible however that this issue, as well
as the denseness of the system, could be resolved by using compactly supported radial
basis functions.
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nz=11094

(a) FEM
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Figure 7: ‘spy’ plots in Matlab for the matrix system needed to be solved for the
distributed Poisson control problem using a Q1-Q1 mixed FEM, and for the matrix
system (excluding entries which have absolute value less than 10−15) using the RBF
method of Section 3.1 using Gaussians with c = 250 to solve the same problem. In each
case h = 2−4 and β = 10−4.

There is much more investigation that could be undertaken based on this work.
For example, other types of RBFs could be tested on these problems, in particular
compactly supported RBFs. This methodology could also be extended to other optimal
control problems: convection-diffusion control, Stokes control and Navier-Stokes control
to name but a few. It is also desirable to provide a theoretical framework for this method,
proving, for example, numerical stability and error bounds, as well as theoretical results
concerning the optimal choices of parameters involved in the method (in particular the
optimal choice of c for any given values of h and β to take when basing the method on
Gaussians of the form e−cr2). Furthermore, it would be helpful to find effective solvers
to the system of equations that this problem leads to, including efficient preconditioning
techniques. Solutions to any of these problems would be highly desirable in order to
develop this new and potentially very useful application of radial basis function theory.
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Problem 1

‖y − ŷ‖ℓ2 ‖u‖ℓ2
1

2
‖y − ŷ‖2ℓ2 + β

2
‖u‖2ℓ2

1 0.5333 9.2368× 10−4 0.1422

10−1 0.5333 0.0092 0.1422

10−2 0.5332 0.0923 0.1422

10−3 0.5318 0.9212 0.1418

β 10−4 0.5187 8.9974 0.1385

10−5 0.4143 72.9537 0.1125

10−6 0.1218 252.3730 0.0393

10−7 0.0125 334.8599 0.0057

10−8 0.0309 346.2321 0.0011

Problem 2

‖y − ŷ‖ℓ2 ‖u‖ℓ2
1

2
‖y − ŷ‖2ℓ2 + β

2
‖u‖2ℓ2

1 7.1264 0.0100 25.3930

10−1 7.1263 0.1004 25.3925

10−2 7.1250 1.0037 25.3878

10−3 7.1121 10.0161 25.3411

β 10−4 6.9860 98.1677 24.8843

10−5 5.9678 819.9132 21.1687

10−6 2.9779 3.1969× 103 9.5439

10−7 1.9906 4.9581× 103 3.2105

10−8 2.0520 5.5134× 103 2.2573

Problem 3

‖y − ŷ‖ℓ2 ‖u‖ℓ2
1

2
‖y − ŷ‖2ℓ2 + β

2
‖u‖2ℓ2

1 9.0000 0.0112 40.4999

10−1 8.9999 0.1124 40.4994

10−2 8.9986 1.1240 40.4938

10−3 8.9861 11.2182 40.4377

β 10−4 8.8639 110.0162 39.8894

10−5 7.8915 924.2282 35.4090

10−6 5.2858 3.7510× 103 21.0047

10−7 4.5766 6.3976× 103 12.5192

10−8 4.6519 7.4407× 103 11.0969

Problem 4

‖y − ŷ‖ℓ2 ‖u‖ℓ2
1

2
‖y − ŷ‖2ℓ2 + β

2
‖u‖2ℓ2

1 0.3018 0.0165 0.0457

10−1 0.2584 0.1220 0.0341

10−2 0.1227 0.4762 0.0087

10−3 0.0546 0.7115 0.0017

β 10−4 0.0506 0.7511 0.0013

10−5 0.0504 0.7553 0.0013

10−6 0.0504 0.7558 0.0013

10−7 0.0504 0.7558 0.0013

10−8 0.0504 0.7558 0.0013

Table 1: Table of solutions to Poisson control problem obtained for Problems 1, 2, 3
and 4 as detailed in Section 3.4, with RBFs evenly distributed with spacing h = 2−4.
Results are given for a variety of β, and we took c = 600 for each Problem except for
Problem 4, for which we took c = 200.
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Problem 3

‖y − ŷ‖ℓ2 ‖u‖ℓ2
1

2
‖y − ŷ‖

2

ℓ2
+ β

2
‖u‖

2

ℓ2

5 8.0592 422.4264 41.3978

10 7.8923 437.0349 40.6940

20 7.8652 488.1549 42.8456

50 7.8795 461.8085 41.7069

100 7.8902 437.9095 40.7158

200 7.9374 438.3183 41.1073

c 300 7.9633 437.8889 41.2945

400 7.9816 437.6609 41.4300

500 8.0088 439.1099 41.7113

1000 11.9402 353.6145 77.5368

2000 12.9930 33.2258 84.4645

5000 12.9992 20.4689 84.5109

10000 12.9998 139.2565 85.2565

Table 2: Table of solutions to Poisson control problem obtained for Problem 3, with
RBFs evenly distributed with spacing h = 0.04, and β = 10−4. Results are given for a
variety of values of c.

β

1 10−2 10−4 10−6 10−8

5 3.8134× 1022 1.8294× 1023 1.0683× 1024 5.9630× 1024 1.2993× 1026

10 1.9574× 1022 2.5474× 1023 9.8843× 1024 2.7701× 1025 6.6535× 1027

20 5.5563× 1022 6.0688× 1023 3.1042× 1025 1.5761× 1026 8.6136× 1026

50 1.1631× 1023 3.6307× 1024 8.6211× 1025 4.1830× 1027 7.7395× 1028

100 2.4438× 1023 2.8896× 1024 5.4541× 1027 1.3888× 1028 3.2053× 1028

c 200 2.5909× 1016 2.5915× 1018 2.5929× 1020 2.5610× 1022 1.5051× 1024

500 3.0687× 109 3.0687× 1011 3.0685× 1013 3.0486× 1015 1.8480× 1017

1000 3.7765× 107 3.7765× 109 3.7762× 1011 3.7511× 1013 2.2645× 1015

2000 1.3916× 107 1.3916× 109 1.3915× 1011 1.3818× 1013 8.2187× 1014

5000 1.2839× 108 1.2839× 1010 1.2838× 1012 1.2807× 1014 1.0300× 1016

10000 1.1905× 1010 1.1905× 1012 1.1905× 1014 1.1898× 1016 1.1205× 1018

Table 3: Approximate condition number of the matrix in (3.2) for the distributed Poisson
control problem on [0, 1]2, with RBFs evenly distributed with spacing h = 0.04, for a
variety of values of c and β. Approximation is obtained by use of the Matlab function
condest.


