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Abstract Meshfree methods based on radial basis function (RBF) approximation are of

interest for numerical solution of partial differential equations (PDEs) because they are flex-

ible with respect to geometry, they can provide high order convergence, they allow for local

refinement, and they are easy to implement in higher dimensions. For global RBF methods,

one of the major disadvantages is the computational cost associated with the dense linear

systems that arise. Therefore, research is currently directed towards localized RBF approxi-

mations such as the RBF partition of unity collocation method (RBF–PUM) proposed here.

The objective of this paper is to establish that RBF–PUM is viable for parabolic PDEs of

convection-diffusion type. The stability and accuracy of RBF-PUM is investigated partly

theoretically and partly numerically. Numerical experiments show that high-order algebraic

convergence can be achieved for convection-diffusion problems. Numerical comparisons

with finite difference and pseudospectral methods have been performed, showing that RBF–

PUM is competitive with respect to accuracy, and in some cases also with respect to compu-

tational time. As an application, RBF–PUM is employed for a two-dimensional American

option pricing problem. It is shown that using a node layout that captures the solution fea-

tures improves the accuracy significantly compared with a uniform node distribution.
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1 Introduction

Convection-diffusion equations are ubiquitous in physics and chemistry as models for flow

problems or heat transfer, but they also arise in other non-physical application fields. The so-

lution of a convection-diffusion problem can be interpreted as the probability distribution of

one or more underlying stochastic processes. This is the view taken in financial applications

where convection-diffusion problems therefore are abundant.

There are two main classes of financial problems in this category. The first problem

class is valuation of financial derivatives such as options. Assuming that the underlying asset

prices are modeled by Brownian motion together with a (positive) drift under a no arbitrage

assumption leads to the original Black–Scholes equation [6]. In the one-dimensional case,

with one underlying asset, this problem has a closed form solution. However, for several un-

derlying assets the corresponding partial differential equation (PDE) is a high-dimensional

generalization [8,23] of the Black–Scholes equation, which needs to be solved by numerical

methods. This is the test case that we will consider in this paper. However, more advanced

valuation models involve jump diffusion in the asset price processes [29,22,7] or jumps in

the (stochastic) volatility of the assets [5]. This leads to partial integro-differential equations

or fractional PDEs instead of PDEs, which require special numerical treatment.

The second problem class is calibration or parameter inference, where appropriate prob-

lem parameters describing drift and diffusion are sought from observed market data. Given

one market observation, the forward Kolmogorov equation (of convection-diffusion type)

describes the transition probability density for the next observation (in time) under a given

model. The forward Kolmogorov equation needs to be solved many times for each observa-

tion with different model parameters. These solutions form the basis for, e.g., a maximum

likelihood estimate of the model parameters [9].

Meshfree methods based on radial basis functions (RBFs) are of general interest for

solving PDEs because they can provide high-order or spectral convergence for smooth solu-

tions in complex geometries. In finance, geometries are mostly of hypercube type, meaning

that ordinary spectral methods would easily apply. However, it has been shown in [33] that

for some types of options, solving the pricing problems on a simplex domain instead of

a hypercube leads to significant savings in computational time. If a (quasi) uniform node

distribution is used, the number of unknowns is reduced by a factor of d! in d dimensions.

Furthermore, another important advantage of meshfree methods is that adaptive refinement

can be applied locally without the necessity of preserving the integrity of an underlying grid.

Typically, in valuation problems, the features of the solution are located in the vicinity of a

lower dimensional manifold determined by the contract function of the financial derivative.

Similarly for the Kolmogorov problems, the probability density is concentrated to certain

regions. Finally, RBF-based methods are easy to implement in any number of dimensions

as the only geometrical information they use is pairwise distances between node points.

In [10,33,4], meshfree methods based on RBF approximation have been shown to per-

form better than finite difference methods for option pricing problems in one and two spatial

dimensions. Similar problems have also been solved in [44,17]. Forward Kolmogorov prob-

lems have been solved in [2,3] with promising results. However, all of these papers employ

global RBF collocation methods, leading to dense linear systems, and computational costs

that become prohibitive as the number of dimensions increase [25]. This problem is partly

addressed in [4] where a tensor product formulation is exploited. However, a tensor product

approach also limits the opportunity for local adaptivity.

In a partition of unity (PU) scheme, local approximations on overlapping patches that

form a cover of the computational domain are weighted together by compactly supported
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partition of unity weight functions to form the global approximation. The convergence prop-

erties of the local approximations can be leveraged, while local couplings between approxi-

mations on different patches are enforced through the PU framework. When RBFs are used

locally instead of globally, the computational cost is reduced because the previously dense

linear systems then become sparse at the patch level.

PU schemes have been used for interpolation since around 1960 [38,28,15], and more

recently, they have also been combined with RBFs in [42] and [11]. PU methods for solving

PDEs were introduced and analyzed by Babuška and Melenk [1] in the late 1990’s. In the

forthcoming paper [26] by Larsson and Heryudono, an RBF-based PU collocation method

(RBF–PUM) is introduced for elliptic (time-independent) PDEs. High order algebraic or

spectral convergence rates, depending on the type of refinement, are predicted theoretically

and confirmed by numerical experiments.

In this paper, we investigate the capability of RBF–PUM for numerical solution of

parabolic (time-dependent) PDEs. We will show that the method is viable through analy-

sis and numerical experiments, and compare the results with those of other methods. How-

ever, strategies for automatic adaptive node refinement are not pursued here, but left for

future work. As a general test problem, we use the two-dimensional convection-diffusion

equation, and as a specific test problem in finance, we consider a multi-asset American put

option pricing problem.

2 Radial basis function collocation schemes

RBF methods are meshfree and work with data given at scattered node points. Given N
distinct points x1, . . . ,xN ∈ R

d and corresponding scalar function values u(x1), . . . ,u(xN),
the standard RBF interpolation problem is to find an interpolant of the form

s(x) =
N

∑
j=1

λ jφ(‖x− x j‖), (2.1)

where ‖ · ‖ is the Euclidean norm, λ j ∈ R for j = 1, . . . ,N, and φ is a real-valued function

such as the inverse multiquadric φ(r) = 1√
ε2r2+1

or the Gaussian φ(r) = e−ε2r2
. The param-

eter ε is called a shape parameter and governs the flatness of the RBFs. It has a significant

effect on the accuracy of the RBF approximation. The coefficients λ1, . . . ,λN are determined

by enforcing the conditions s(xi) = u(xi), i = 1, . . . ,N. Imposing these conditions leads to a

symmetric linear system of equations

Aλ = u, (2.2)

where Ai j = φ(‖xi −x j‖), i, j = 1, . . . ,N, u = [u(x1) . . .u(xN)]
T , and λ = [λ1 . . .λN ]

T . When

λ is known, we can with this notation evaluate the RBF interpolant at a point x as

s(x) = φ̄(x)λ , (2.3)

where φ̄(x) = [φ(‖x− x1‖), . . . ,φ(‖x− xN‖)].
In the following derivations, we have chosen to express the interpolant in Lagrange

form, using cardinal basis functions. The cardinal basis functions, ψ j(x), j = 1, . . . ,N, have

the property

ψ j(xi) =

{

1 if i = j,
0 if i 6= j,

j = 1, . . . ,N, (2.4)
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leading to the alternative formulation for the interpolant

s(x) = ψ̄(x)u, (2.5)

where ψ̄(x) = [ψ1(x), . . . ,ψN(x)]. Combining (2.3), (2.5), and (2.2) leads to the following

relation between the cardinal basis and the original radial basis:

s(x) = ψ̄(x)u = φ̄(x)λ = φ̄(x)A−1u ⇒ ψ̄(x) = φ̄A−1. (2.6)

This transformation is valid whenever A is non-singular. This holds for distinct node points

x1, . . . ,xN and commonly used RBFs such as Gaussians, inverse multiquadrics and multi-

quadrics.

For a linear operator L , we have

L s(x) =
N

∑
j=1

L ψ j(x)u(x j). (2.7)

To evaluate L s(x) at the node points, i.e., to evaluate sL = [L s(x1), . . . ,L s(xN)]
T , we

need the differentiation matrix ΨL = [L ψ j(xi)]i, j=1,...,N . Using relation (2.6), this leads to

sL =ΨL u = ΦL A−1u, (2.8)

where ΦL = [L φ(‖x− x j‖)|x=xi ]i, j=1,...,N .

When the Lagrangian form of the RBF interpolation method is used in the context of

solving a time-dependent PDE problem, the solution u(x, t) is approximated by

s(x, t) =
N

∑
j=1

ψ j(x)u j(t), (2.9)

where u j(t)≈ u(x j, t) are the unknown functions to determine.

3 The radial basis function based PUM

This section defines the RBF–PUM collocation method for time-dependent PDEs in terms

of its weight functions and local RBF approximations.

3.1 The partition of unity weight functions

Let Ω ⊂ R
d be an open set, and let {Ωi}M

i=1 be an open cover of Ω satisfying a pointwise

overlap condition and that

∀x ∈ Ω I(x) = { j|x ∈ Ω j}, card(I(x))≤ K, (3.1)

where the constant K is independent of the number of patches M. In the RBF–PUM, the

global approximation function s(x) in Ω to the solution function u(x) is constructed as

s(x) =
M

∑
j=1

w j(x)s j(x), (3.2)
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where s j is an RBF approximation of u(x) on patch Ω j and w j : Ω j → R are compactly

supported, non-negative weight functions subordinate to the cover. The partition of unity

weight functions w j, which also occur under the name shape functions, are constructed

using Shepard’s method

w j(x) =
ϕ j(x)

∑k∈I(x)ϕk(x)
, j = 1, . . . ,M, (3.3)

where ϕ j(x) are compactly supported functions with support on Ω j. Here, we select com-

pactly supported Wendland functions [41] such as

ϕ (r) =
{

(1− r)4(4r+1) if 0 ≤ r ≤ 1,
0 if r > 1,

(3.4)

for the construction of the weight functions. Let {X j}M
j=1 be the center points, and {R j}M

j=1

be the radii of the circular, spherical, or hyper-spherical patches Ω j, j = 1, . . . ,M. Non-

negativity and compact support are guaranteed if the weight functions are generated using

ϕ j(x) = ϕ
(‖x−X j‖

R j

)

, j = 1, . . . ,M. (3.5)

It follows from (3.3) that the weight functions w j(x) satisfy the partition of unity property

∑
j∈I(x)

w j(x) = 1. (3.6)

Moreover, the equations (3.4)-(3.5) show that w j(x)= 0, ∀ j /∈ I(x). Therefore, equation (3.2)

can be rewritten as

s(x) = ∑
j∈I(x)

w j(x)s j(x). (3.7)

If the functions s j(x), j = 1, . . . ,M from equation (3.7) are local interpolants with s j(xi) =
u(xi) for each node point xi ∈ Ω j, then the global PU approximant inherits the interpolation

property of the local interpolants, i.e.

s(xi) = ∑
j∈I(xi)

w j(xi)s j(xi) = u(xi) ∑
j∈I(xi)

w j(xi) = u(xi). (3.8)

The patches can be of any (regular enough) geometrical shape such as squares, cubes, cir-

cles, and spheres. The common requirement for all shapes of patches is that they cover the

domain and the boundary. In this paper, circular and elliptic patches will be employed. In the

case of elliptic patches, the functions used for generating the weight functions are modified

to have support on an ellipse instead of a circle. Exactly how this is done is described in

Section 7.1.

When we use these types of patches, the overlap between patches can be regulated,

and covering ensured, by adjusting the radius of the patches. Flexibility in selection of the

radius of the patches is another advantage of the local properties of the PUM. Figures 4

and 16 demonstrate the discretization of a square domain with circular and elliptic patches.
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3.2 RBF–PUM for time-dependent problems

In RBF–PUM, the solution u(x, t) for a time-dependent problem is approximated by

s(x, t) = ∑
j∈I(x)

w j(x)s j(x, t), (3.9)

where s j(x, t) is an RBF approximant of the type (2.9) on Ω j, i.e.

s j(x, t) = ∑
k∈J(Ω j)

ψk(x)uk(t), (3.10)

where J(Ω j) = {k|xk ∈ Ω j} is the set of node points in Ω j. Combining (3.9) and (3.10), we

can express the global approximant as

s(x, t) = ∑
j∈I(x)

w j(x) ∑
k∈J(Ω j)

ψk(x)uk(t) = ∑
j∈I(x)

∑
k∈J(Ω j)

(

w j(x)ψk(x)
)

uk(t), (3.11)

Note that by interpolating the initial condition we get s(xk,0)= u(xk,0) for all k, but s(xk, t)≈
u(xk, t) for t > 0.

3.3 Differentiating the RBF–PUM approximant

In order to use the RBF–PU approximation (3.11) for a PDE problem, we need to compute

the effect of applying a spatial differential operator L at the interior node points. Let α and

β be multi-indices and adopt common rules for multi-index notation. Then, using Leibniz’

rule, a derivative term of order α in the differential operator can be applied to the global

approximation (3.11) as

∂ |α |

∂xα s(x, t) = ∑
j∈I(x)

∑
k∈J(Ω j)

∂ |α |

∂xα (w j(x)ψk(x))uk(t)

= ∑
j∈I(x)

∑
k∈J(Ω j)

(

∑
β≤α

(

α
β

)

∂ |α−β |w j

∂xα−β (x)
∂ |β |ψk

∂xβ (x)

)

uk(t), (3.12)

Fixing x = xi and k in equation (3.12) gives us the ik-element of the global differentiation

matrix corresponding to the α -derivative. For composite linear operators, we sum up the

contributions from each term. We denote the global differentiation matrix under operator L

by WL .

3.4 Computational cost for RBF–PUM

In all linear time-dependent PDE test cases we provide here, the two main parts of the com-

putational cost for RBF–PUM are the cost to form and assemble RBF-PUM differentiation

matrices and the cost for matrix–vector multiplications to advance solutions in time. De-

pending on the type of solver, this may be a matrix–vector multiplication for an explicit

time step, as part of an iterative solver, or solving the factorized linear system in an implicit

method, all with the same order of cost.



A radial basis function partition of unity collocation method 7

Given M patches, each with nloc local nodes, the cost to form and assemble differenti-

ation matrices is O(Mn3
loc), where the n3

loc factor comes from the factorization of the local

interpolation matrices, see equations (2.8) and (3.12). This process is embarrassingly par-

allel in terms of the patches. For the time-stepping process, the sparsity of the resulting

differentiation matrix operators results in a cost O(Mn2
loc) for the matrix–vector multiplica-

tion. This operation is also embarrassingly parallel.

Moreover, if we are given a global unstructured set of N node points initially, we need to

determine which nodes fall into which patch. A direct computation of the distance between

each node points and the center points of the patches comes with a cost O(MN). This may

become expensive for large node sets. If the N node points are instead organized with a

suitable data structure (e.g. a k-d tree), the cost of associating nodes with patches becomes

O(Mnloc logN).

3.5 Characterizing the RBF–PUM approximation

When we later discuss the approximation errors of RBF-PUM, we will do it terms of two

levels of discretization parameters. Let Ω̃ j = Ω j ∩Ω . At the node level, we define the local

fill distance

h j = sup
x∈Ω̃ j

min
k∈J(Ω j)

‖x− xk‖, (3.13)

which can be explained as measuring the radius of the largest ball empty of nodes in the part

of patch j that falls within Ω . We also define the global fill distance

h = max
1≤ j≤M

h j. (3.14)

At the patch level, we define the patch diameter H j and the patch fill distance

H = sup
x∈Ω

min
1≤ j≤M

‖x−X j‖, (3.15)

which similarly measures how densely the patch centers X j cover the domain. For uniform

discretizations, h is proportional to the node distance and H to the patch size.

Furthermore, to discuss results, the chosen type of RBF and its shape parameter ε (see

equation (2.1)) needs to be stated. The shape parameter can influence both the approximation

accuracy and the conditioning of the linear systems that arise. If not otherwise declared, ε is

assumed to be the same for all basis functions, but it can also be varied according to location.

4 The unsteady convection-diffusion equation

Consider an unsteady convection-diffusion equation of the form

∂u(x, t)
∂ t

= κ∆ u(x, t)+ v · ∇ u(x, t)≡ L u(x, t), x ∈ Ω ⊂ R
d , t > 0, (4.1)

where κ is the diffusion coefficient, v is a constant velocity vector, and u(x, t) may repre-

sent concentration or temperature for mass or heat transfer, respectively. This equation also

serves as a simplified model problem for the Black–Scholes equation and other equations in
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financial mathematics. The equation (4.1) must be supplemented with an initial condition of

the form

u(x,0) = f0(x), (4.2)

and boundary conditions

Bu(x, t) = f (x, t), x ∈ ∂Ω , t > 0, (4.3)

where B can be a Dirichlet, a Neumann or a mixed boundary operator. In the case of Dirich-

let boundary conditions, if we use equation (3.12) for the differentiation matrices, and col-

locate the PDE (4.1) at the interior node points, we get the system of ODEs

S′(t) =
(

κW∆ ,I + v ·W∇ ,I
)

S(t)+
(

κW∆ ,b + v ·W∇ ,b
)

F(t), (4.4)

where W·,I contains the columns of the differentiation matrix corresponding to interior nodes

and W·,b contains the columns of the differentiation matrix corresponding to the boundary

nodes. The vector S(t) = [u1(t), . . . ,uNI (t)]
T contains the unknown functions at the interior

node points and the vector F(t) = [ f (xNI+1, t), . . . , f (xN , t)]T contains the known boundary

values. The matrices W∇ ,· are vector valued and the dot product with the velocity v should

be taken for each node point.

The system of ODEs in equation (4.4) can be solved in MATLAB for example with the

ODE solver command ode15s, which is suitable for stiff ODEs, or with any other common

time stepping method.

4.1 Error estimate

In the calculation of an upper bound for the semidiscrete error, we need the following three

functions: the exact solution u(x, t), the RBF approximation s(x, t) from (3.11), and the

auxiliary function z(x, t), which interpolates the exact solution at each time

z(x, t) = ∑
j∈I(x)

∑
k∈J(Ω j)

(w j(x)ψk(x))u(xk, t). (4.5)

The initial conditions for all three functions coincide at the collocation points. That is,

s(xi,0) = z(xi,0) = u(xi,0), 1 ≤ i ≤ NI . (4.6)

We define the error function e(x, t) = u(x, t)−s(x, t) and the interpolation error E (x, t) =
u(x, t)− z(x, t). We will derive an estimate for the semidiscrete error. Therefore, we de-

fine the vectors E(t) = [e(x1, t), . . . ,e(xNI , t)]
T and EL (t) = [L E (x1, t), . . . ,L E (xNI , t)]

T ,

as well as U(t) = [u(x1, t), . . . ,u(xNI , t)]
T and Z(t) = [z(x1, t), . . . ,z(xNI , t)]

T . We also define

the discrete spatial operator Q = κW∆ ,I + v ·W∇ ,I and the associated matrix multiplying the

boundary points, B = κW∆ ,b + v ·W∇ ,b. For the error function evaluated at the collocation

points we have

E ′(t) =U ′(t)−S′(t)

= LU(t)− (QS(t)+BF(t))

= L Z(t)− (QS(t)+BF(t))+LU(t)−L Z(t)

= Q(Z(t)−S(t))+L (U(t)−Z(t))

= QE(t)+EL (t), (4.7)
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where we have used the fact that Z(t) = U(t) because of the evaluation at the node points,

and that both Z(t) and S(t) are PU approximations of the forms (4.5) and (3.11). The system

of ODEs (4.7) can be formally integrated to yield

E(t) =
∫ t

0
eQ(t−τ )

EL (τ )dτ . (4.8)

A simple worst case estimate for the semidiscrete error becomes

‖E(t)‖∞ =

∥

∥

∥

∥

∫ t

0
eQ(t−τ )

EL (τ )dτ
∥

∥

∥

∥

∞
≤
∥

∥

∥

∥

∫ t

0
eQ(t−τ )dτ

∥

∥

∥

∥

∞
max

0≤τ≤t
‖EL (τ )‖∞. (4.9)

If we then assume that Q can be diagonalized with eigenvector matrix V and (diagonal)

eigenvalue matrix Λ , and use eQt =VeΛ tV−1 together with
∫

eΛ t dt =Λ−1eΛ t , we can eval-

uate the norm of the integral to

EQ ≡
∥

∥

∥

∥

∫ t

0
eQ(t−τ )dτ

∥

∥

∥

∥

∞
=
∥

∥

∥
−VΛ−1(I − eΛ t)V−1

∥

∥

∥

∞
=
∥

∥Q−1(eQt − I)
∥

∥

∞ . (4.10)

Combining (4.9) and (4.10) we get the estimate

‖E(t)‖∞ = EQ max
0≤τ≤t

‖EL (τ )‖∞. (4.11)

In order to understand the behavior of EQ over time, we will investigate its asymptotic

behavior. For small enough t, we can Taylor expand the matrix exponential as eQt = I +

tQ+ t2

2
Q2 +O(t3Q3), which leads to

Q−1(eQt − I) = t +
t2

2
Q+O(t3Q2).

For large enough values of t, we instead use the form

Q−1(eQt − I) =VΛ−1(eΛ t − I)V−1. (4.12)

Numerical experiments indicate that all eigenvalues have a negative real part. In this case, the

exponential in (4.12) approaches zero as time increases, and the limit value of EQ becomes

‖Q−1‖∞. In Figures 1 and 2, we investigate numerically how EQ varies with time, with the

problem parameters, and with the RBF-PUM parameters. In all cases, inverse multiquadric

RBFs have been used. We can see that EQ < 1 in all the performed experiments. However,

the value becomes larger for convection dominated problems and will grow further as κ → 0.

A smaller shape parameter value (see equation (2.1)) leads to a larger value of EQ, although

the differences are not large in the range of ε -values we can explore without running into

ill-conditioning. There is some variation with the discretization parameters, but no strong

trend.

In light of the numerically observed decay of eQt , we can incorporate the damping effect

of the parabolic operator on the error over time. Let ts represent the the time scale over which

the matrix exponential becomes negligible. Then we can split the integral in (4.9) into two

parts as

‖E(t)‖∞ ≤
∥

∥

∥

∥

∫ t−ts

0
eQ(t−τ )dτ

∥

∥

∥

∥

∞
max

0≤τ≤t−ts
‖EL (τ )‖∞+

∥

∥

∥

∥

∫ t

t−ts
eQ(t−τ )dτ

∥

∥

∥

∥

∞
max

t−ts≤τ≤t
‖EL (τ )‖∞.
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The first integral can be made arbitrarily small by increasing ts, and to emphasize this, we

write the estimate as

‖E(t)‖∞ ≤ EQ

(

δ max
0≤τ≤t−ts

‖EL (τ )‖∞ +(1−δ) max
t−ts≤τ≤t

‖EL (τ )‖∞

)

, (4.13)

indicating that a large initial error loses importance over time. The relevant time scale ts can

be observed in Figure 1 as the time it takes for EQ(t) to approach its asymptotic value. In

the following, when working with the spatial error, we will start from (4.11) for simplicity,

but we will keep in mind that we can also combine the spatial estimates with (4.13).
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Fig. 1 Left: The variation of EQ with time for a convection diffusion problem with κ = 1 and v = (1,1).
The discretization parameters are h = 0.05 and H = 0.2. Initially the value is close to t and then approaches

the asymptotic value of ‖Q−1‖. The asymptotic results are indicated by the dashed trend lines. Right: The

variation of the maximum value of EQ with the diffusion coefficient κ for a fixed v = (1,1) and the same

discretization.
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Fig. 2 The dependence of the maximum value of EQ on the fill distance h when H = 0.2 (left) and the

dependence on the patch fill distance H when h = 0.05 (right) for different values of the shape parameter ε
and the diffusion coefficient κ . In both cases, the convection speed is v = (1,1).
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We change the focus to the second part of the error estimate (4.11) and expand the

interpolation error to get

‖E(t)‖∞ ≤ EQ

(

κ max
0≤τ≤t

‖E∆ (τ )‖∞ +d‖v‖∞ max
0≤τ≤t

‖E∇ (τ )‖∞

)

. (4.14)

The approximation errors of RBF–PUM are discussed extensively in the forthcoming

paper [26]. Here, we briefly recapitulate the parts that relate to the interpolation error to

make the present paper self contained. A similar derivation, but with a focus on finitely

smooth RBFs can be found in [42]. Assuming that we have constructed a k-stable partition

of unity according to the definition in [42]. Then the derivatives of the weight functions

satisfy

‖Dα w j‖L∞(Ω j) ≤
Cα

H |α |
j

, |α | ≤ k, (4.15)

where H j is the diameter of Ω j. For the local interpolation errors, we rely on the sam-

pling inequalities derived in [36]. Assume that the domains Ω̃ j = Ω j ∩Ω are bounded by

a Lipschitz boundary and satisfy an interior cone condition. Then we can use the following

estimates from [36] for the local interpolation errors and their derivatives when using inverse

multiquadrics:

‖Dα (z j −u j)‖L∞(Ω̃ j)
≤ cα , jh

m j− d
2 −|α |

j ‖u j‖N (Ω̃ j)
, (4.16)

‖Dα (z j −u j)‖L∞(Ω̃ j)
≤ e−γα , j/

√
h j‖u j‖N (Ω̃ j)

, (4.17)

where u j is the global solution restricted to the local domain Ω̃ j, and z j is the local RBF

interpolant. The norm in the right hand side denoted by ‖ · ‖N (·) is the native space norm

(cf. [11,36]) associated with the type of RBFs employed in the approximation.

Using Leibniz’ rule we can express a derivative of the global interpolation error as

Eα = Dα (z−u) =
M

∑
j=1

∑
|β |≤|α |

(

α
β

)

Dβ w jD
α−β (z j −u j). (4.18)

Together with the overlap condition (3.1) this yields the estimate

‖Eα ‖L∞(Ω) ≤ K max
1≤ j≤M

∑
|β |≤|α |

(

α
β

)

‖Dβ w j‖L∞(Ω j)‖Dα−β (z j −u j)‖L∞(Ω̃ j)
. (4.19)

We choose to consider two different modes of refinement in order to separate the de-

pendence on h and H in the error estimates. For the first refinement mode, we require the

number of nodes per patch to remain constant while we refine the patches, meaning that

H j/h j = c. Then, applying (4.16), we get

‖Eα ‖L∞(Ω) ≤ K max
1≤ j≤M

CH/h, jH
m j− d

2 −|α |
j ‖u‖

N (Ω̃ j)
. (4.20)

For the other refinement mode, we fix the patches and then change the number of node

points locally or globally. We can then apply (4.17) to get

‖Eα ‖L∞(Ω) ≤ K max
1≤ j≤M

CH, je
−γj/

√
h j‖u‖

N (Ω̃ j)
. (4.21)
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When the estimates are expressed on this form, we clearly see the potential for adaptive

refinement in relation to the local behavior of the solution. However, when performing nu-

merical convergence studies in the following sections, we work with (quasi) uniform dis-

cretizations, in which case H j can be replaced by H and h j by h.

Inserting (4.20) or (4.21) into (4.11) and assuming a uniform discretization we get the

global error estimates for the convection diffusion problem as

‖E(t)‖∞ ≤CEQHm− d
2 −2 max

0≤τ≤t
max

j
‖u(τ )‖

N (Ω̃ j)
, (4.22)

‖E(t)‖∞ ≤CEQe−γ/
√

h max
0≤τ≤t

max
j

‖u(τ )‖
N (Ω̃ j)

, (4.23)

where the constants m and γ that determine the order of or rate of convergence, are taken

as the minimum values over all patches. We conclude that we expect to observe algebraic

convergence in H, when the number of nodes per patch is fixed, and spectral convergence in

h when the patches are fixed.

Remark: When the shape parameter ε is small, the local RBF approximation is close to

polynomial [24], and assuming that the node set is polynomially unisolvent, the rate constant

m approximately relates to the multi-variate polynomial degree J supported by the number

of node points within the patch as m = J+1. As an example, ten degrees of freedom/nodes

in two dimensions corresponds to a polynomial of degree 3, leading to m = 4 and an overall

convergence rate of H1.

Remark: The spectral estimate involves
√

h instead of h. This has to do with boundary

effects and can be mitigated if the nodes are distributed more densely near the boundary of

the approximation domain [37]. This is not practical in the PU case, since it would mean

refining nodes near all patch boundaries. However, the errors at the interior boundaries are

in the PU case suppressed by two effects. The weight functions and their derivatives are

small near the patch boundaries, and hence the errors at patch boundaries are weighted with

small numbers. Furthermore, the problems at boundaries in general are related with lack of

information, but in the PU formulation, the boundary values of one patch are connected with

the interior values in another patch and actually ’receive’ information also from outside the

patch.

Remark: For most realistic problems, there are parts of the solution for which u 6∈
N (Ω̃ j). For smooth solutions, the experience is that approximation works well anyway.

See for example [34], where convergence of RBF interpolants to analytic functions is in-

vestigated. However, for solutions of limited smoothness, the convergence rates will also be

limited accordingly.

5 Numerical results for the convection-diffusion equation

With appropriate initial condition and Dirichlet boundary conditions, the following function

is a solution to the unsteady convection-diffusion equation (4.1) in d = 2 space dimensions

u(x,y, t) = aexpbt(exp−cx+exp−cy), (5.1)

where a and b can be chosen freely, and c = v±
√

v2+4bκ
2κ > 0. The experiments below have

been performed with a = 1 and b = 0.1. The convection velocity is chosen to be v = (1,1) in

most experiments, and κ = 1 is used as default diffusion strength, but other values are used

as well.
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We discretize the domain Ω = [0,1]× [0,1] both uniformly by N = n2 nodes and non-

uniformly with a similar number of Halton node points [16]. The discretizations of the

square domain Ω are shown in Figure 3. The PU cover consists of M = m2 circular patches.

We let the overlap of the patches be 20% of the distance between the centers. An example

of patches for the square domain Ω is shown in Figure 4.
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Fig. 3 Uniform and quasi random node distributions.
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Fig. 4 Partitioning of the square domain with circular patches.

Unless otherwise stated, inverse multiquadric RBFs have been used. The shape param-

eter ε has not been optimized for accuracy. Instead the range of ε -values has been chosen

such that ill-conditioning is avoided. In some cases this has a negative effect on the results.

The conditioning problem can be avoided by using a stable method for evaluation of RBF

approximations such as the RBF-QR method [13,27], which allows computations for any

small value of ε . This will be further discussed and implemented in the forthcoming pa-

per [26].
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For the time-stepping, the MATLAB function ode15s is used. The MATLAB codes for

the two- and three-dimensional convection-diffusion problems can be downloaded from the

authors’ web sites.

5.1 Properties of the RBF–PUM discretization matrices

Using a partition based approach instead of a global RBF approximation introduces sparsity

in the discretization matrices. In Figure 5, the sparsity patterns of the convection-diffusion

RBF–PUM matrix Q for two different numbers of patches are shown. More patches lead to

more sparsity, but with the same number of nodes, the global convergence is also lower. Even

if only the diffusion term is present, the matrices are non-symmetric due to the collocation

involving the partition of unity weight functions.
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Fig. 5 Sparsity structure of Q = κW∆ ,I +νW∇ ,I with 21×21 uniform nodes and 5×5 patches (left) and 7×7

patches (right).

A numerical study of the stability of the semidiscrete problem has been performed, by

investigating the spectra and pseudospectra [40] of the RBF–PUM discretization matrices.

We define the µ-pseudospectrum of the matrix Q as

Λµ =
{

z ∈ C |‖(zI −Q)−1‖ ≥ µ−1
}

, µ ≥ 0.

We identify the eigenvalues (spectrum) Λ of Q with the 0-pseudospectrum Λ0. We denote

the µ-pseudospectral abscissa, the largest real part of the µ-pseudospectrum, by

λ ∗
µ = sup

z∈Λµ

(Re(z)).

As the stability for a linear problem is typically not affected by forcing terms(here due to

the boundary conditions), we consider the homogeneous semidiscrete problem

U ′(t) = QU(t),

where n and m are the discretization parameters, which has the solution

U(t) = eQtU(0).
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Following Reddy and Trefethen [35], we first define stability of the semidiscrete problem as

‖eQt‖ ≤ g(t), ∀t ≥ 0,

where the function g(t) does not depend on the discretization parameters m and n. Then,

again from [35], there is a theorem stating that log(‖eQt‖) grows linearly in t if and only if

the µ-pseudospectral abscissas grow linearly with µ . Specifically, if

λ ∗
µ ≤ ω+Cµ, ∀µ ≥ 0, (5.2)

where ω and C are constants, then

‖eQt‖ ≤ eC(n−1)2eωt , (5.3)

where (n− 1)2 is the size of the matrix Q. Figure 6 shows examples of spectra and pseu-

dospectra of Q for a convection dominated problem with κ = 0.001 and for a problem with

strong diffusion κ = 1. The plots have been generated using EigTool [43].

−200 −150 −100 −50 0 50 100 150 200

−150

−100

−50

0

50

100

150

dim = 1521

Re(λ)

Im
(λ

)

−2.5 −2 −1.5 −1 −0.5 0

x 10
4

−500

−400

−300

−200

−100

0

100

200

300

400

500

Re(λ)

Im
(λ

)

dim = 361
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Fig. 6 Pseudospectra (contour lines) and eigenvalues (dots) for the RBF–PUM coefficient matrix Q for κ =
0.001, n = 41, m = 8, ε = 3 (left), and κ = 1, n = 21, m = 5, ε = 1.5 (right).

The eigenvalue with the largest real part λ ∗
0 only changes marginally with the discretiza-

tion, but does depend on κ . For a well resolved problem, λ ∗
0 < 0, but approaches zero as

κ → 0. However, it should be noted that for convection dominated problems, we have ob-

served eigenvalues in the right half plane if the resolution in terms of nodes and/or patches

is too low.

If we approximate ω with λ ∗
0 , then the requirement for stability becomes

λ ∗
µ −λ ∗

0 ≤Cµ.

In the left part of Figure 7, we plot the growth of λ ∗
µ − λ ∗

0 . If the slope of these curves

asymptotically is less than or equal to one, we can find a constant C such that (5.2) and (5.3)

are satisfied. Numerically, this holds for the range of µ and the different problem parameters

that have been tested. The variation with the shape parameter, the number of nodes, and the

number of patches is small, but the amount of diffusion κ has a clearly visible effect.

In the right part of Figure 7, we investigate if the numerically estimated value of C for

a fixed problem, but with different discretizations stays bounded. There does not seem to be

an increasing trend with node refinement or with patch refinement.
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Fig. 7 Left: The growth of the pseudospectral abscissa of Q as a function of the pseudospectrum level µ for

different parameter combinations. The three groups correspond to κ = 0.001 (solid line), κ = 0.1 (dashed

lines), and κ = 1 (dash-dot lines). In the first case, M = m2 = 64 patches and n2 = 412 nodes were used, and

the shape parameter was ε = 3. For the other cases, discretizations combining n = 11, . . . ,21 with m = 5, and

combining m = 5, . . . ,8 with n = 21 have been tested for ε = 1.25, 1.5, 2. The three dashed lines that deviate

somewhat from the pattern correspond to m = 7 and n = 21, which is an unlucky combination in the sense

that some overlap regions between ’diagonal’ neighbor patches are empty of nodes. Right: The estimated

constant C in the bound on the growth of the pseudospectral abscissa for κ = 1 for different discretizations.

In the top subplot ε = 1.5 and n = 21, and in the bottom subplot ε = 3 and m = 5.

5.2 Errors and convergence

First, we test how RBF–PUM responds to the type of node distribution and the geometry

of the computational domain. Figure 8 displays the absolute error for the uniform and quasi

random node distributions shown in Figure 4 with ε = 1.25 at t = 1. The errors are of a

similar magnitude in both cases, and there are no obvious artifacts due to the geometry of

the patches and their overlaps.
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Fig. 8 Absolute error in the solution of the unsteady convection-diffusion equation with 21× 21 uniform

node and 400 non-uniform node points.

To illustrate the capability of the proposed method for irregularly shaped domains, the

same convection-diffusion problem (4.1) as in the previous experiment is solved over the

non-convex domain in the left part of Figure 9. The absolute error of the approximation is

plotted in Figure 9 at time t = 1 with ε = 0.75. The error is again of a similar magnitude,
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Table 1 L∞ error of RBF–PUM for 21× 21 uniformly distributed nodes and 400 non-uniformly distributed

nodes with ε = 1.25 in the square domain and 325 nodes with ε = 0.75 in the non-convex domain at different

times.

t non-uniform points uniform points non-convex domain

0.1 3.0139e−005 9.3965e−006 3.4108e−005

0.5 3.2595e−005 1.0554e−005 3.7100e−005

1.0 3.4275e−005 1.1100e−005 3.9008e−005

3.0 4.1867e−005 1.3554e−005 4.7640e−005

10.0 8.4308e−005 2.7307e−005 9.5952e−005

and apart from generating the nodes and patches for the domain, there is no added difficulty

in applying RBF–PUM for this problem.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−8

−7

−6

−5

−4

x
y

lo
g

1
0
(E

rr
o
r)

Fig. 9 Left: the partitioning of the non-convex domain with circle patches for 325 points. Right: absolute

error in the solution of the unsteady convection-diffusion equation for the node distribution shown in the left

figure, at time t = 1.

In Table 1, the errors over time for the two discretizations of the square, and for the

discretization of the non-convex domain are listed. It can be seen that the error growth with

time is slow, and that the accuracy of the three different solutions is similar, with a slight

advantage for the uniform distribution.

The convergence of RBF–PUM has been investigated numerically for the two refinement

modes described and analyzed in section 4.1 In the first scenario, for a fixed number of

patches, uniformly distributed nodes with varying fill distance are employed. In the second

scenario, different numbers of patches, ranging from 2× 2 to 6× 6, with a close to fixed

number of local nodes per patch are considered. For the experiment, a fixed shape parameter

ε = 1.25 was used.

As shown in Figure 10, increasing the number of local points for a fixed number of

patches results in spectral convergence. The rate constants γ from (4.23) are estimated from

the experimental results. For the second scenario we get algebraic convergence with respect

to H for a fixed number of local nodes. The slopes of the lines in the right figure represent

the approximate convergence rates, and show that we can attain high order convergence. The

results are even a little better than expected from (4.22).
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Fig. 10 The convergence as a function of h for three different patch sizes H (left). Convergence as a function

of H when the number of nodes per patch is kept (almost) fixed. The three curves correspond to approximately

21, 28, and 36 nodes per interior patch (right). The theoretically expected convergence rates are H2, H3, and

H4.

5.3 Comparison with other methods

For a square domain, both finite difference methods (FD) and pseudospectral methods (PS)

are easy to implement. Therefore, we will compare the accuracy of RBF–PUM with FD

and PS for such a domain, while keeping in mind that RBF–PUM is directly applicable

also for other domains. We do not compare timings here, since the implementations are

not optimized and the times are quite short. However, generally for the problem sizes and

implementations considered here, FD and PS take approximately the same time for a given

resolution, while RBF–PUM is about 3 times slower.

Figure 11, shows the error as function of h for the case ν = (1,1) and κ = 0.1. The
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Fig. 11 Error as a function of h for FD, PS, and RBF–PUM with problem parameters ν = (1,1) and κ = 0.1
at time t = 1. For the RBF-PU method ε = 0.1

h and H = 0.2 were used.

accuracy for PS and RBF–PUM is almost the same, while FD is less accurate.

Figure 12, shows the error as function of κ for ε = 1.25, H = 0.2, and h = 0.05 for

two different values of ν . In the left subfigure, the error of the RBF–PUM method tapers

off at around 10−5. This is a typical behavior of RBF approximations in the presence of
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ill-conditioning, and may not be the true behavior of the method. For convection dominated

problems, RBF–PUM is more accurate than PS (and FD).
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Fig. 12 Error as a function of κ for ν = (1,1) (left) and ν = (5,5) (right) at t = 1. For RBF–PUM h = 0.05,

H = 0.2, and ε = 0.1
h were used.

We conclude that RBF–PUM shows as good as or better approximation properties than

PS, at least in convection dominated cases. It is a bit more computationally expensive, but

can be applied to arbitrary geometries, and allows for local adaptivity.

5.4 Experiments in three dimensions

We have also solved the convection-diffusion problem (4.1) in three space dimensions in a

solid domain bounded by the surface

x2 + y2 + z2 − sin(2x)2 sin(2y)2 sin(2z)2 = 1, (5.4)

as shown in Figure 13. Boundary conditions at the surface are chosen based on the exact

solution

u(x,y,z, t) = ebt−c(x+y+z) (5.5)

where b = 1
10

and c =
√

b/6. With that particular choice of exact solution, the vector v in

equation (4.1) can be exactly determined as v = (−c,−c,−c).
The solid domain is discretized with a total of N = 2046 node points and covered by

M = 512 patches. Initially, all node points are distributed uniformly. Interior nodes are then

slightly perturbed in a random way in the direction towards the boundary. Non-overlapping

boxes that cover the domain, which form the basis for constructing the ball cover, are shown

in Figure 13.

As in the two-dimensional case, ode15s is used for the time-stepping. Figure 14 shows

the distribution of the eigenvalues of the three-dimensional convection-diffusion operator

with the number of nodes per patch nloc = 26. Gaussian RBFs with shape parameter ε =
0.75R̄, where R̄ is the average radius of the ball patches, are used. All eigenvalues lie in the

left half of the complex plane. The right subfigure in Figure 14 shows how the error evolves

in time for three different values of nloc. The growth in time is very limited and as expected

the error decreases with increasing numbers of local nodes.
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Fig. 13 The solid domain bounded by the surface equation (5.4) (left). The layout of the non-overlapping

boxes which form the skeleton for the ball cover. The dots illustrate the node points (right).

Fig. 14 Eigenvalues of the three-dimensional convection-diffusion operator discretized with Gaussian RBFs

in the partition of unity setting with 26 nodes per patch (left). Error of the numerical solutions compared with

the exact solution as a function of time (right).

6 Multi-asset American option pricing

The multi-dimensional version [8,23] of the Black–Scholes equation [6] takes the form

∂P
∂ t

+
1

2

d

∑
i=1

d

∑
j=1

ρi jσiσ jSiS j
∂ 2P

∂Si∂S j
+

d

∑
i=1

(r−di)Si
∂P
∂Si

− rP = 0, 0 ≤ t ≤ T, (6.1)

where P is the value of the contract, Si is the value of the ith underlying asset, T is the time

to expiry, d is the number of underlying assets, ρi j is the correlation between asset i and

asset j, σi is the volatility of asset i, r is the risk-free interest rate and di is the (continuous)

dividend yield paid by the ith asset. Equation (6.1) is a final value problem, i.e., the solution

is known at time T and the PDE is integrated backwards in time.
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The payoff function of the American basket put option is given by

FT (S) = max(E −
d

∑
i=1

αiSi,0), (6.2)

where E is the exercise price of the option and αi, i = 1, . . . ,d are given constants. The final

condition is given by

P(S,T ) = FT (S), S ∈ Ω = R
d
+. (6.3)

The boundary of the computational domain can be divided into two parts. The near-field

boundary, where one or more asset prices are zero, and the far-field boundary, where one or

more asset-prices tend to infinity.

For the near-field boundary, it can be noted that if one of the asset prices is zero at time

t∗, then the asset will be worthless for any t ≥ t∗, i.e., the solution remains at the boundary.

We denote the d near-field boundaries by Γi = {S ∈ Ω |S 6= 0,Si = 0}, i = 1, . . . ,d. Then the

boundary values at Γi can be propagated by solving a (d − 1)-dimensional Black–Scholes

problem. We denote the solutions of the reduced problems by hi and use the boundary con-

ditions

P(S, t) = hi(S, t), S ∈ Γi, i = 1, . . . ,d. (6.4)

However, already in [12] it was shown that the problem is well posed without boundary con-

ditions at the near-field boundaries, assuming the Fichera condition on the relative strength

of the drift and diffusion term holds. For a more recent discussion of the well-posedness of

the problem, see also [20]. In the numerical experiments here, we will use (6.4) as in [10]

even if it is not needed. For an example where near-field conditions are not used, see [33].

For put options, the contract becomes worthless as the price of any of the underlying as-

sets tends to infinity. Therefore, we employ the following far-field boundary conditions [21]:

lim
Si→∞

P(S, t) = 0, S ∈ Ω , i = 1, . . . ,d. (6.5)

The American option allows early exercise, which means that at some values of S, where

it is more profitable to use the option than to keep it until the expiry date, this will be done.

Mathematically, this corresponds to a free boundary problem. This issue can be treated in

different ways. Ito and Toivanen [19] as well as Persson and von Sydow [32] use an operator

splitting approach. The approach we will use here employs a penalty term as described

in [45] and later refined in [30]. The penalty term takes the form

δC
P+δ −q

, (6.6)

and ensures that the solution stays above the payoff function as the solution approaches

expiry. Here 0 < δ ≪ 1 is a small regularization parameter, C ≥ rE is a positive constant.

The so called barrier function q(S) is defined as

q(S) = E −
d

∑
i=1

αiSi, (6.7)

see [45] for a motivation of this choice. Adding the penalty term to the Black–Scholes equa-

tion (6.1) for the American option converts it to a fixed domain problem. The penalty term is

small enough so that the PDE still resembles the Black–Scholes equation closely. The error
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introduced by the penalty term is expected to be of the order of δ. The penalty term (6.6)

together with equation (6.1) lead to

∂P
∂ t

+
1

2

d

∑
i=1

d

∑
j=1

ρi jσiσ jSiS j
∂ 2P

∂Si∂S j
+

d

∑
i=1

(r−di)Si
∂P
∂Si

− rP

+
δC

P+δ −q
= 0, S ∈ Ω , 0 ≤ t ≤ T. (6.8)

The terminal and boundary conditions on the fixed domain are just like before

P(S,T ) = FT (S), S ∈ Ω , (6.9)

P(S, t) = hi(S, t), S ∈ Γi, i = 1, . . . ,d, (6.10)

lim
Si→∞

P(S, t) = 0, S ∈ Ω , i = 1, . . . ,d. (6.11)

6.1 RBF–PUM for American option pricing

Using the RBF–PUM approximation (3.12) and collocating the PDE (6.8) at the node points

we get the system of ODEs

P′
I (t) =−1

2

d

∑
i=1

d

∑
j=1

ρi jσiσ jSiIS jIWi j,IPI(t)−
d

∑
i=1

(r−di)SiIWi,IPI(t)+ rPI(t)

− δC
PI(t)+δ −q

+F(t), (6.12)

where W·,I contains the columns of the differentiation matrix corresponding to interior points,

SiI are diagonal matrices containing the respective coordinates of the interior node points,

PI(t) = [P1(t), . . . ,PNI (t)]
T , and

F(t) =−1

2

d

∑
i=1

d

∑
j=1

ρi jσiσ jSiIS jIWi j,bFb(t)−
d

∑
i=1

(r−di)SiIWi,bFb(t), (6.13)

where W·,b contains the columns of the differentiation matrix corresponding to boundary

points and Fb(t) = [P(xNI+1, t), . . . ,P(xN , t)]T contains the known boundary values.

Going back to the theoretical convergence estimates in section 4.1, there are some fea-

tures of the American option pricing problem that can degrade the convergence. The jump

in the derivative of the initial condition limits the accuracy with which it can be approxi-

mated. However, if we perform a split in time of the error terms as suggested in (4.13), we

see that the initial error looses importance for the error at later times. A worse problem is

the free boundary, where the solution itself is only C1. With the penalty formulation of the

problem, the modified solution is smooth, and we can expect high order convergence with

RBF–PUM. However, for the error in relation to the true solution, the convergence order is

limited in the patch(es) where the free boundary is located.
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7 Numerical experiments for two-asset American option pricing

The option prices are approximated using uniform and non-uniform discretizations of the

domain Ω = [0,S1,∞]× [0,S2,∞]. For the numerical illustrations throughout this section, we

use the parameter values from [10,31] given by r = 0.1, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, α1 =
0.6, α2 = 0.4, d1 = 0.05, d2 = 0.01. The time interval, the computational domain, and the

penalty term are defined by T = 1, E = 1, Si,∞ = 4E, δ = 0.00001 and C = 0.1. In all

experiments, inverse multiquadric RBFs are used, and the arising system of ODEs (6.12)

is solved in MATLAB using the ode solver command ode15s. The MATLAB code for the

American option pricing problem can be downloaded from the authors’ web sites.

7.1 A non-uniform space discretization

We note that the payoff function (6.2) possesses a discontinuity in its first derivative at the

exercise price, see Figure 15. In practice, the region near the exercise price in the (S1,S2)
domain is the financially most interesting. Along the Si-directions we want to have a distri-

bution of node points which is clustered in a neighborhood of the exercise price. By using a

tailored node distribution we aim to increase the accuracy of the approximation in the region

of interest as well as to capture the initial discontinuity in the solution better. We would like

to apply the non-uniform discretization that has recently be employed, e.g., in [39,18].
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Fig. 15 The payoff function of the two-dimensional American put option (left). Contour lines of the function

ω(S) used for the evaluation of the weighted error norm (right).

In order to cluster nodes around the exercise price E, we define the node coordinates in

each direction i through

Si, j = E + l sinh(ξ j), 0 ≤ j ≤ m, (7.1)

where ξ j ∈ [ξ0, ξm] are equidistant values and l is a parameter that determines the amount

of clustering. By the requirement that the nodes should fall in the interval [0, Si,∞] we can

compute the range of ξ to

ξ0 = sinh−1(−E/l)

ξm = sinh−1((Si,∞ −E)/l).



24 A. Safdari-Vaighani, A. Heryudono, and E. Larsson

Note that the centers of the patches are defined with a similar pattern as for the node dis-

tribution. In our numerical experiments we have used l = E/2 for both nodes and patch

centers. When the patch centers are non-uniformly distributed, circular patches do not have

a suitable shape. Instead, we use elliptic patches, as illustrated in Figure 16. The Wendland
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Fig. 16 Discretization of the computational domain for the two-dimensional American option pricing prob-

lem with elliptic and circular patches.

function (3.4) is used for constructing the partition of unity weights, but here the argument

is scaled anisotropically such that for a point x = (x1,x2) in patch Ω j with center point

X j = (X j,1,X j,2)

ϕ j(x) = ϕ

(√

(x1 −X j,1)2

R2
j,1

+
(x2 −X j,2)2

R2
j,2

)

, j = 1, . . . ,M, (7.2)

where R j,· are the radii of the elliptic patches in the different coordinate directions. The

resulting function is compactly supported on the elliptic patch. The shape parameters for the

radial basis functions used for the local approximations are scaled with respect to the node

density in the patch such that

ε j = ε
h
δj

, (7.3)

where h is the uniform node distance corresponding to the number of nodes used, and δj is

the actual minimum node distance within the patch. This makes sense because the adjust-

ment of the node distribution is based on the local smoothness of the solution. Where there

are higher derivatives, the shape parameter is larger and the nodes more dense, see also [14].

7.2 Errors and convergence

As mentioned earlier, the region around the strike price is where the solution is of financial

interest. Our computational objective is to make the error small in that region. Therefore, we
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use a weighted error norm of the form

Eω =
∫

Ω
ω(S)|E(S)|dS,

where the function ω(S) is normalized such that
∫

Ω ω(S)dS = 1. A similar approach was

taken in [33]. Here, we have used a function ω(S) ∝ e−9(S1+S2−2)2
e−9((S1−S2)/2)2

. In Fig-

ure 15, the contour lines of the function are shown.

We have compared the accuracy and convergence of RBF–PUM for the American option

pricing problem with two different FD implementations. In the left part of Figure 17, RBF–

PUM with uniform nodes and non-uniform nodes is compared with an FD implementation

that uses a penalty term. This means that the same (fixed domain) PDE is solved by all

methods. In the right part of Figure 17 the same comparison is performed while instead

using an FD implementation with an operator splitting approach [19,32]. In this case, the

reference solution is closer to the actual solution, as the error introduced by the penalty term

is eliminated.

From the figures, it can be seen that the convergence rates for the uniform RBF–PUM

and uniform FD seem to be quite similar in all cases, but with a smaller error for RBF–PUM.

Using the non-uniform RBF–PUM discretization, we achieve significantly better results for

the same number of node points. The differences between the two sets of plots are small,

but with the penalty reference the error can falsely continue to decrease because the penalty

error is not measured.
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Fig. 17 Convergence with respect to n in the weighted error norm for RBF–PUM with a uniform discretiza-

tion, RBF–PUM with a tailored non-uniform discretization, compared with a uniform FD implementation

using a penalty approach (left) and a uniform FD implementation using an operator splitting approach (right).

The shape parameter ε in equation (7.3) is chosen as ε = 2 in the tailored case and ε = 1.5 in the uniform

case. In both cases, errors are computed against an FD reference solution of the corresponding type with

n = 101 discretization points per dimension.

7.3 Time comparison

To really compare the performance of different methods, we need to consider the execution

times for a given problem and required accuracy. Figure 18 shows runtime comparisons

for the different RBF–PUM discretizations and the two FD implementations. For the FD–

penalty implementation, the MATLAB routine ode45 is used for time-stepping, while the
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operator splitting approach uses the Crank–Nicholson scheme. The non-uniform RBF–PUM

discretization is fastest for the range of tolerances considered here. It should be noted that

the implementations used in this comparison have not been optimized for performance.
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Fig. 18 Error as a function of runtime for the same experimental setup as in Figure 17 with FD–penalty as

reference (left) and FD–operator splitting as reference (right).

8 Conclusions

We have implemented and tested RBF–PUM for convection-diffusion problems such as

those typically arising in valuation and calibration problems in computational finance. A

combination of theoretical and experimental analysis indicates that the method is stable for

a wide range of problem parameters, and that we can achieve both spectral and algebraic

convergence rates depending on the mode of refinement.

Different comparisons with FD and PS methods show that with sufficient smoothness of

the solution to the problem, RBF–PUM is as accurate or more accurate than the PS method,

but about three times slower for the problem sizes considered here. However, RBF–PUM

provides a different level of flexibility, where local approximations can easily be varied both

with respect to resolution and type, in arbitrary geometries.

A main advantage of RBF–PUM is that it allows for local adaptivity. Patches can be

locally refined and have shapes adapted to the local solution behavior as in our option pricing

example. Furthermore, the node density in each partition can be locally adjusted. To develop

support for automatic adaptivity will be part of our future work, and we will also consider

larger and higher-dimensional computational problems.

Acknowledgments

The authors would like to thank Victor Shcherbakov, Uppsala University who provided the

FD–operator splitting implementation for the American option pricing problem.

References
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