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Abstract We use Radial Basis Function (RBF) interpolation to price options in exponential Lévy models by numer-
ically solving the fundamental pricing PIDE. Our RBF scheme can handle arbitrary singularities of the Lévy measure
in 0 without introducing further approximations, making it simpler to implement than competing methods. In numerical
experiments using processes from the CGMY-KoBoL class, the scheme is found to be second order convergent in the
number of interpolation points, including for processes of unbounded variation.
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1. Introduction

This paper investigates a radial basis function-, or RBF, -scheme for numerically solving the
derivative pricing equation of exponential Lévy models. The scheme is simple to implement,
and is capable of handling infinite activity models, including unbounded variation processes.
Exponential Lévy models are extensions of the classical Black and Scholes model in which
the process of log-returns is generalized from an arithmetic Brownian motion to an arbitrary
Lévy process (that is, a continuous-time stochastic process with independent stationary incre-
ments), thereby introducing jumps into the price process. Besides making prices behave more
realistically, exponential Lévy models are capable of modelling the implied volatiltiy smile
observed in the option markets, at least at fixed maturities. They fit certain empirical char-
acteristics of financial time-series, notably excess kurtosis and non-Gaussian financial return
distributions over both large and small time windows (the latter in contrast to a competing
class of models capable of volatility smiles, the stochastic volatility models, which, as diffusion
models, are approximately Gaussian over small time intervals). On the other hand, they retain
the hypothesis of independent returns and do not address the issue of heteroscedasticity.

The introduction of exponential Lévy processes in option price modeling goes back to Mer-
ton’s jump-diffusion model (Merton, 1976), which added an independent compound Poisson
process to the classical Black and Scholes model. In recent years, a number of infinite ac-
tivity Lévy processes, with and without a Brownian motion component, have been proposed
for modeling financial asset returns: see for example (Madan and Seneta, 1990; Madan and
Milne, 1991; Eberlein, 2001; Boyarchenko and Levendorskĭi, 2002a; Carr et al., 2002) and also
(Schoutens, 2003; Cont and Tankov, 2004) for text-book treatments. In an infinite activity
Lévy model the Lévy measure has a non-integrable singularity at the origin. As a consequence,
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infinite activity Lévy models will have infinitely many jumps of small size. They include pure
jump processes whose sample paths a.s. have unbounded variation, and whose numerical
treatment by Finite Difference methods have posed a particular challenge.

Since, in contrast to the classical Black and Scholes case, explicit formulas are in general not
available for Lévy models (a notable exception being (b. Madan et al., 1998)), the problem of
numerically pricing options in such models has attracted a lot of attention. Efficient numer-
ical methods are indispensable for practical applications, such as fast calibration to market
prices. The numerical methods employed till now roughly fall into three categories: Monte
Carlo simulation, Fourier- or characteristic function methods and Finite Difference (FD) and
Finite Element (FE) schemes. Monte Carlo methods require fast numerical simulation of Lévy
trajectories, which is in itself a non-trivial problem. The other methods start from the obser-
vation that option prices prior to exercise satisfy a certain partial integro-differential equation
or PIDE, which generalizes the classical Black and Scholes equation. The PIDE is defined in
terms of the characteristic triple of the underlying Lévy process under a given risk-neutral
measure: see equation (11) below.

Fourier transform methods for European options were introduced in (Carr and Madan,
1999), and extended to American options and weakly path-dependent options such as barrier
options in (Jackson et al., 2008), under the name of Fourier Space Time-stepping or FST
method. They are based on the observation that the option pricing PIDE is of convolution
type, and can therefore be explicitly solved after taking Fourier transforms. The solution is
then obtained by computing the inverse Fourier transform, which is numerically implemented
using the Fast Fourier Transform or FFT. The FST is a flexible method which in numerical
experiments shows second order convergence in the number of nodes used for the FFT. For
an efficient implementation it does however require the characteristic exponent of the Lévy
process to be known explicitly. Although Jackson et al. (2008) observe that the characteristic
exponent, for a given Lévy measure, is always available in the form of the Lévy - Khintchine
formula, this is as an oscillatory integral which would have to be evaluated numerically if it
cannot be computed explicitly, thereby creating a further source of numerical errors. There
therefore remains an interest in alternative methods which ony require knowledge of the Lévy
measure itself1. Of these alternative methods, Finite Difference schemes have in particular
received a lot of attention: see e.g. (Andersen and Andreasen, 2000; Almendral, 2004; Almen-
dral and Oosterlee, 2005; 2006; 2007a;b; Hirsa and Madan, 2004; Tankov and Voltchkova,
2009; Cont and Voltchkova, 2005; d’Halluin et al., 2004; 2005; Hirsa and Madan, 2004; Wang
et al., 2007). Their implementation for infinite activity Lévy processes presents something of
a challenge. In a FD scheme we discretise the operator, and we in particular have to discre-
tise the integral in the pricing PIDE. This is fairly straightforward if the Lévy measure is
integrable, corresponding to a process of finite intensity, but a priori problematic if it has
a non-integrable singularity at 0. In that case, the integral is mostly split into a local part,
containing the singularity of the Lévy measure, and a non-local part, which can be handled
by classical quadrature techniques, such as the trapezoidal rule. The discretisation of the local
part is more delicate, and in the most general case requires a second order Taylor expansion
of the unknown function. The contribution of the small (or smallest) jumps is sometimes
approximated by an effective diffusion terms, cf. (Cont and Voltchkova, 2005; Wang et al.,
2007), although this procedure was criticised in (Levendorskĭi, 2004) and (Kudryavtsev and
Levendorskĭi, 2009), where it was argued that it can lead to sizeable numerical errors. Most of
the cited FD schemes use implicit time-stepping for the local part and explicit time-stepping
for the nonlocal term, with the exception of (Wang et al., 2007) who use a fully impicit
scheme. As far as convergence is concerned, the best results are those of (Wang et al., 2007),

1One can for example imagine a situation in which one would want to do a nonparametric calibration of the Lévy
measure, the latter being given in spline form, or indeed in RBF-form, with unknown coefficients.
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which achieves second order convergence for finite variation Lévy processes, and slower than
second order but better than first order, for infinite variation ones. An alternatives to FD
was proposed by (Almendral and Oosterlee, 2007a), who rewrite the PIDE as a sum of two
weakly singular Volterra operators through an integration by parts, and use established (but
quite involved) numerical techniques to handle the latter. Their method shows second order
convergence in numerical experiments with finite variation Lévy processes from the CGMY
class but, as it stands, does not apply to infinite variation processes.

Finite element (FE) methods provide a viable alternative to FD, but seem for the moment
less popular with practioners; see however (Achdou and Pironneau, 2010) and also (Hilber
et al., 2013) for a recent comprehensive textbook treatment with applications to computational
finance. (Matache et al., 2005a) implement and analyse a FE scheme with a wavelet basis and
prove convergence of order 1 in space and at most 1 in time for the American option pricing
problem, including for Lévy processes of unbounded variation. See also (Matache et al., 2005b)
for a further application of wavelets in this context.

This paper uses an alternative scheme based on RBF-interpolation, in which we approximate
the unknown solution u = u(x, t) of the pricing PIDE ∂tu = L[u] (with the operator L defined
in (11) below) by time-dependent linear combinations

u(x, t) '
∑
j

ρj(t)ϕ(x− xj).

Here (xj)j is a given finite sequence of interpolation points, and ϕ a given radial basis function
or RBF. The coefficients ρj(t) are determined by a system of ODE found by requiring that
our approximate solution exactly solves the PIDE in the points xj . The scheme is therefore a
variant of the classical method of lines. It is clearly not unrelated to the FE approach, though
there are important differences: it uses point evaluations instead of L2-projections, and thus
belongs to the class of collocation methods. More importantly perhaps, unlike FE, where one
uses well-localized basis functions, the radial basis function ϕ can have non-compact support,
and will in many cases even be growing at infinity, as for instance in this paper. For reasons
explained in section 3 below, we will be using a stationary interpolation approach, in which
the RBF will depend on the spacing of the interpolation points, which in this paper will simply
be chosen on a regular grid. One advantage of the RBF approach (which it shares with FE
and other Galerkin-type methods) is that we do not have to discretise the operator, and only
have to compute the action of L on the, explicitly given, basis function ϕ: we are using the
fact that the PIDE is translation invariant. The explicit form of the basis function ϕ can then
be exploited to deal with the singularity of the Lévy measure. This leads to a simpler scheme
than the aforementioned FD ones. As will be seen below, the RBF scheme achieves second
order convergence in numerical examples, including processes whose sample paths are a.s. of
unbounded variation. Establishing this rigorously is an open problem, which is outside of the
scope of the present paper.

RBF schemes of the type used in this paper have been applied to parabolic PDEs such as
the classical Black and Scholes PDE in one and two dimensions, mostly for European options:
cf. (e.g. Fausshauer et al., 2004a;b; Hon and Mao, 1999; Larsson et al., 2008; Pettersson
et al., 2008). (Chan, 2010) and (Chan, 2011) extended these studies to jump-diffusion models,
which are finite activity. The present paper contributes to this growing literature by showing
that the RBF scheme can deal with singular Lévy measures, without needing to make major
modifications to the scheme, and by testing it on an important class of examples, the Lévy-
models of the CGMY-KoBol class. A further aim of this paper is to make RBF-methods
better known to practitioners and to the computational finance community in general. To
make the paper self-contained, we start with a brief review of option pricing in exponential
Lévy processes in section 2, and with a review of basic RBF interpolation theory at the
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beginning of section 3. Section 3 continues with the explanation of how to handle singular
Lévy measures, and with the formal description of the RBF schemes for both European and
American options. Section 4 presents the results of our numerical experiments, and section 5
concludes.

2. Financial modelling with Lévy processes

We briefly review the theory of option pricing in Lévy-models, partly to establish notations.
A standard reference for this material is (Cont and Tankov, 2004). Other references for the
general theory of Lévy processes are (Applebaum, 2004), (Bertoin, 1996) and (Sato, 1999).
We limit ourselves to derivatives written on a single risky asset whose log-return we assume to
be modelled by a one-dimensional Lévy process. As usual, we also assume the existence of a
risk-free bond earning interest at a constant rate of r. For a general Lévy-process, the market
consisting of the risky asset plus the risk-free bond will be incomplete (notable exceptions are
when the Lévy-process is a Brownian motion - the classical Black and Scholes model - or if
it is a Poisson process), and there will exists infinitely many equivalent martingale measures
under which prices of derivative assets are equal to discounted expectations of future pay-offs.
As is customary in the Lévy-pricing literature, we will assume that the market has already
chosen one of the possible risk-neutral measures, and expectations E will always be taken with
respect to this chosen measure. The price of the risky asset is therefore given by

St = S0e
Lt , t ≥ 0, (1)

where Lt, t ≥ 0, is a Lévy process under the given risk-neutral measure. If the asset also pays
out a continuous dividend at a constant rate of q, then risk-neutrality means that

E(St) = S0e
(r−q)t. (2)

Remark 1 : Although it is customary to model dividends as a continuous cash-stream with a
known dividend-rate, in reality dividends are paid discretely. Discrete dividends such that both
the ex-dividend dates and the dividend amounts are known in advance can easily be included
in the usual option pricing models by splitting up the time domain according to the dividend
dates, and then solving the pricing problem between each pair of consecutive dividend dates,
starting with the final period up to maturity, with boundary conditions which are determined
by the requirement that (i) just after the dividend falls, the underlying stock price decreases
by the dividend payed, and (ii) for European options, the option price does not change across
a dividend date (an easy consequence of Absence of Arbitrage). For American options we
might choose to exercise just before or after a dividend is payed. The assumption of known
dividends is reasonable for short-lived options, but (Hull, 2012) observes that for options
with a long time-to-maturity it may be more appropriate to use a model with continuously
payed dividends, with a dividend rate which is estimated from historical data. With stochastic
dividends the modelling becomes more subtle. According to (Korn and Rogers, 2005), naive
models for the joint distribution of stock price and dividends may lead to inconsistencies.
They propose instead to model the discrete dividend process directly, define the stock price as
the (risk-neutral) expected value of all discounted future dividend payments, and from there
on compute option prices as usual, as discounted risk-neutral expectations - cf. 2.2 below.

2.1 Characteristic triplets

The Lévy-process (Lt)t≥0 is fully determined by its characteristic function which, according
to the Lévy–Khinchine theorem, is of the form E(eizLt) = etψ(z), with characteristic exponent
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ψ(z) given by

ψ(z) = iγz − 1

2
σ2z2 +

∫
R

(
eixz − 1− ixz1{|x|≤1}

)
ν(dx). (3)

Here, γ and σ are real constants with σ ≥ 0 and ν is a positive measure on R, called the
Lévy measure, which satisfies the Lévy-condition

∫
R min(x2, 1) ν(dx) <∞. The probabilistic

interpretation of ν is that ν(dx) gives the expected number of jumps with size between x
and x+ dx, which the process makes between time 0 and 1. The triplet (γ, σ, ν) is called the
characteristic triplet, or Lévy - Khintchine triplet, of (Lt)t≥0.

The diffusion constant σ and the Lévy-measure ν(dx) are canonically associated to the
process (Lt)t≥0, but γ will depend on the way in which the (potential) singularity of the
Lévy-measure in x = 0 is regularized. One can for example replace 1{|x|≤1} in (3) by some
other bounded function χ(x) such that χ(0) = 1+O(x): this would change γ by an additional
term of −

∫
R x(1|x|≤1 − χ)ν(dx), which is well-defined because of the Lévy-condition on ν. A

classical choice for χ was χ(x) = (1 + x2)−1.

In this paper all Lévy processes will be such that |x| is ν-integrable on {|x| > 1}:∫
|x|≥1

|x| ν(dx) <∞, (4)

in which case we can rewrite (3) as

ψ(z) = iγcz −
1

2
σ2z2 +

∫
R

(
eizx − 1− izx

)
ν(dx), (5)

with γc = γ +
∫
|x|>1 xν(dx). In case the Lévy measure satisfies the stronger integrability

condition ∫
|x|≤1

|x| ν(dx) <∞, (6)

the Lévy–Khintchine formula can be further simplified to

ψ(z) = iβz − 1

2
σ2z2 +

∫
R

(
eizx − 1

)
ν(dx), (7)

where

β = γc −
∫
R
x ν(dx). (8)

Condition (6) is equivalent to the process’ sample paths being a.s of finite variation; cf. (Sato,
1999, Theorem 21.9.).

It is known that St = eLt is integrable (has finite expectation) for all t > 0 iff this is the
case for t = 1, and that this is equivalent to

∫
|x|≥1 e

xν(dx) <∞ (cf. Cont and Tankov, 2004,

Proposition. 3.14) or (Sato, 1999, Theorem 25.17). In that case (remembering (4)), ψ will
extend to a holomorphic function on the strip {−1 ≤ Imz ≤ 0} and E (St) = exp(tψ(−i)). It
follows that the risk-neutrality condition (2) is equivalent to

ψ(−i) = γc +
1

2
σ2 +

∫
R

(ex − 1− x) ν(dx) = r − q. (9)

This fixes γc for given σ and ν(dx). To specify a risk-neutral model it therefore suffices to
specify the latter two. This paper mostly considers pure jump processes, for which σ = 0.
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2.2 European option pricing

By risk-neutral pricing, the price at time t of a European option paying out G(ST ) at maturity
T ≥ t, given that St = S, is equal to

e−rτE(G(ST )|St = S) = e−rτE
(
G(SeLτ )

)
,

where τ := T − t is the time-to-maturity, and where we used stationarity and independence
of increments of Lt. Writing the option price as a function of the log-price x := logS and of
τ ,

u(x, τ) := e−rτE
(
G(ex+Lτ )

)
, (10)

it can be shown that u satisfies the following Partial Integro-Differential Equation or PIDE

∂τu(x, τ) =
1

2
σ2∂2

xu+ γc∂xu− ru+

∫
R
(u(x+ y, τ)− u(x, τ)− y∂xu(x, τ))ν(dy) (11)

=: L[u](x, τ),

with initial value u(x, 0) = G(ex); cf. (Cont and Tankov, 2004), for a proof based on Ito’s
formula for general semi-martingales, and also (Revuz and Yor, 1999), proposition (1.9) in
Chapter VII, for an elementary proof using only the Lévy–Khinchine formula and the tempered
Fourier transform (observe that the right hand side of (11) commutes with translations). For
a European call or put option, the appropriate initial conditions are u(x, 0) = max (ex −K, 0)
respectively u(x, 0) = max (K − ex, 0) .

Remark 2 : Using the risk-neutrality condition (9), the operator L can be re-written as

1

2
σ2∂2

xu+ (r − q − 1

2
σ2)∂xu− ru+

∫
R

(u(x+ y, τ)− u(x, τ)− (ey − 1)∂xu(x, τ)) ν(dy),

which is the form in which the PIDE is derived in (Cont and Tankov, 2004).

Remark 3 : If the Lévy process has sample paths which are a.s. of finite-variation, then,
using (7), L[u] can be given the simpler expression

L[u](x, τ)− 1

2
σ2∂2

xu+ β∂xu− ru+

∫
R

(u(x+ y, τ)− u(x, τ)) ν(dy), (12)

and the risk-neutrality condition (9) becomes β+ 1
2σ

2 +
∫

(ex−1)ν(dx) = r−q. This situation
covers important Lévy-models such as the Variance-Gamma model, or the CGMY-KoBoL
model with Y < 1.

Remark 4 : A minor technical point is that solutions to parabolic Cauchy-problems such
as (11) need not be unique, unless additional growth conditions in x are imposed on the
solution. In Finance, natural growth conditions are provided by the principle of Absence of
Arbitrage. For example, for a put the latter implies that 0 ≤ u(x, τ) ≤ K, and bounded
solutions of the Cauchy problem (11) with bounded initial value will be unique, as can easily
be shown using the (tempered) Fourier transform. Similarly, for a call, uniqueness is assured
by 0 ≤ u(x, τ) ≤ ex (as can be shown using the complex Fourier transform, assuming, as
we do, that ex and |x| are ν-integrable on {|x| ≥ 1}), which again is implied by Absence of
Arbitrage.

2.3 Pricing American options

American options distinguish themselves from European ones in that the holder can choose
to exercise the option at any time prior to maturity. We will limit our discussion to American
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put options. The arbitrage-free price of the American put at time 0 is given by

V A(S, 0) = sup
0≤T≤T

E
(
e−rT max (K − ST, 0) |St = S

)
= sup

0≤T≤T
E
(
e−rT max

(
K − SeLT , 0

) )
, (13)

T ranging over the stopping times of the Lévy-process L (stopping times are often denoted
by τ , but we already used τ for time-to-maturity, whence the Gothic T).

The American put problem can be reformulated as a variational inequality or as a free
boundary problem. For the latter, care needs to be taken with the pasting condition on the
free boundary: smooth pasting is not always valid for pure jump processes, and sometimes
needs to be weakened to continuous pasting only: see (Boyarchenko and Levendorskĭi, 2002b;
Alili and Kyprianou, 2005) and also (Peškir and Shiryaev, 2006). We will examine this point
numerically in section 4 below. In this paper we will use neither of these reformulations, but
proceed directly from (13) by discretising time and numerically solving the resulting discrete
time optimal stopping problem using backward induction. Specifically, we take a sufficiently
fine partition P := {t0 = 0 < t1 < · · · < tM = T} of [0, T ] and determine the discrete-time
value-functions

V A
P (S, tm) := sup

T∈{tm,...,tM}
E
(
e−rT max

(
K − SeLT , 0

) )
(14)

using the familiar backwards induction procedure:

V A
P (S, tm) = max

(
e−r(tm+1−tm)E

(
V A
P (SeLtm+1

−Ltm , tm+1)
)
,max(K − S, 0)

)
, (15)

starting off with V A
P (S, T ) = max(K − S, 0). It is known (cf. (Zhang, 1997, lemma 3.5)

or (Peškir and Shiryaev, 2006)) that V A
P will converge to V A as the partition’s width

maxm(tm+1 − tm) → 0. We will compute the expectation on the right hand side by (numer-
ically) solving the pricing PIDE on [tm, tm+1] with final pay-off V A(S, tm+1). Transforming
to log-price and time-to-maturity coordinates (x, τ) we arrive at the following scheme for
uA
P(x, τm) := V A

P (ex, T − τm), the (approximate) put-value as function of log-price at time-to-
maturity τm := T − tm:

(i) uA
P(x, 0) = max(K − ex, 0)

(ii) For m = 1, . . . ,M , uA
P(x, τm) = max (um(x, τm),K − ex), where um(x, τ) solves{

∂τum(x, τ) = L[um](x, τ), τ ≥ τm−1

um(x, τm−1) = uA
P(x, τm−1).

(16)

The American put value at time 0 will then be approximated by V A
P (S, 0) = uA

P(logS, tM0
) =

uA
P(x, T ). In section 4, we will numerically solve the sequence of Cauchy problems (16) using

an RBF scheme.

2.4 The CGMY and VG processes

We will test our RBF schemes on Lévy processes from the well-known CGMY-KoBoL class
(Koponen, 1995; Boyarchenko and Levendorskĭi, 2002a; Carr et al., 2002) . These are pure
jump processes (σ = 0) with Lévy measure given, in the notation of (Carr et al., 2002), by

νCGMY (dx) :=
kCGM (x)

|x|Y+1
dx, (17)
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with

kCGM (x) :=

{
C exp(−G|x|), x < 0,

C exp(−Mx), x > 0,
(18)

where C,G,M > 0 and Y < 2 (KoBoL allows the constant C to differ for x > 0 and x < 0.).
The special case of Y = 0 defines the subclass of Variance-Gamma or VG processes, which
were introduced earlier by (Madan and Seneta, 1990) as a time-changed Brownian motion.
The VG process was originally defines as an arithmetic Brownian motion θt+ σWt evaluated
in a random time given by an independent Gamma process Γt(1, υ of mean rate 1 and variance
rate υ, and adding a drift-term βt: LVG

t := βt+θΓt(1, υ)+σWΓt . The characteristic exponent
of the VG-process is known to be iβz− 1

υ log
(
1− iθυz + 1

2σ
2υz2

)
, and its CGMY-parameters

are

C = υ−1, G−1 =
1

2
(
√
θ2υ2 + 2σ2υ − θυ),M−1 =

1

2
(
√
θ2υ2 + 2σ2υ + θυ), Y = 0.

Since Y = 0, the Lévy measure of a VG process satisfies (6), and we can use the simpler form
(12) for L[u] (with σ = 0). The risk-neutrality condition ψ(−i) = r − q translates into

β = r − q +
1

υ
log

(
1− θυ − 1

2
σ2υ

)
.

Amongst numerous other references, VG processes were further studied in (Madan and Milne,
1991; Carr et al., 1998) .

Returning to general CGMY processes, their characteristic functions can be explicitly com-
puted (see for example (Cont and Tankov, 2004), Chapter 4.5). As a consequence, the risk-
neutral drift γc can be expressed in terms of the CGMY-parameters and of r and q, using (9).
We state the result for completeness:

γc =



r − q + C
(
log
(
(1 +G−1)(1−M−1)

)
−G−1 +M−1

)
, Y = 0,

r − q − C
(
(1 +G) log(1 +G−1) + (M − 1) log(1−M−1)

)
, Y = 1

r − q − CΓ(−Y )
(
GY

((
1 +G−1

)Y − 1−G−1Y
)

+MY
((

1−M−1
)Y − 1 +M−1Y

))
,

where Y ∈ (0, 2) \ {1} for the latter, and where we asumed M > 1.

The parameter Y determines the nature of the paths of the CGMY-process: these are a.s.
of bounded variation iff Y < 1, and the process has finite activity (that is, its paths a.s. only
have a finite number of jumps in any finite time interval) iff Y < 0. If Y < 1, L[u] can be
converted to the simplified form (12), with

β = γc −
∫
R
xνCGMY(dx) = γc + CΓ(1− Y )

(
GY−1 −MY−1

)
. (19)

For some of the numerical experiments of section 4 below we used a trivially extended
CGMY-model, obtained by adding an independent Brownian motion σWt (not to be confused
with the Brownian motion underlying the VG process).

3. An RBF Algorithm for Pricing American and European Options

3.1 Radial Basis Function or RBF interpolation

We next briefly review basic RBF interpolation theory. General references for this subsection
are the books (Buhmann, 2003) and (Wendland, 2005). Radial basis function-, or RBF -
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interpolation seeks to interpolate arbitrary real- (or complex-) valued functions f on Rn by
linear combinations of translates of some given basis function ϕ. Specifically, for a given set
of interpolation points X = {x1, . . . , xN} one tries to find constants α1, . . . , αN such that

sX [f ](x) :=
∑N

j=1 αjϕ(x− xj) satisfies:

sX [f ](xi) = f(xi), i = 1, . . . , N. (20)

Regarded as an N ×N system of linear equations in the αj ’s, (20) will have a unique solution
α = (α1, . . . , αN ) iff the N ×N coefficient matrix

ΦX :=
(
ϕ(xi − xj)

)
1≤i,j≤N , (21)

is non-singular. A natural condition under which this is true for any choice of interpolation
points xi is that ϕ be positive definite. If ϕ is integrable this is equivalent, by Bochner’s
theorem, to its Fourier transform being positive. The basis function ϕ is generally assumed
to be radial: this is often not strictly speaking necessary, but is numerically advantageous,
especially in higher dimensions, since it simplifies the numerical evaluation of ϕ(xi − xj). If
we write ϕ(x) = φ(|x|2), where | · | is the Euclidean norm, then ϕ will be positive definite
if φ : R>0 → R is the Laplace transform of a positive finite Borel measure on R>0; the
converse of this statement is also true: cf. (Buhmann, 2003). Examples of RBFs obtained in
this way are the Gaussians and the generalized inverse multi-quadrics (c + |x|2)−α (α > 0),
which correspond to φ(r) = (c + r)−α =

∫∞
0 e−srg(s)ds, with g(s) = Γ(α)−1sα−1e−cs. The

inverse multi-quadric corresponding to α = 1/2 was used in the earlier study (Chan, 2010) of
Merton’s jump-diffusion model using RBF-techniques. RBF-interpolation is an efficient and
easily-to-implement general technique for interpolation and approximation, which can serve as
a flexible alternative to classical interpolation techniques such as polynomial interpolation or
splines, especially in higher dimensions, where more traditional methods either fail or become
more difficult to implement. Its main potential drawback lies in the condition number of the
coefficient matrix ΦX becoming high when X becomes increasingly dense, making the system
(20) ill-conditioned.

One often uses non-integrable basis functions ϕ such as the generalised multiquadric (1 +
|x|2)κ with κ /∈ N (if κ is a positive integer, this reduces to a polynomial). In fact, the use
of such non-integrable RBFs practically imposes itself when performing so-called stationary
interpolation, in which the basis function ϕ is adapted to the scale of the interpolation set X,
as measured for example by the minimum distance between its points. A typical example of
stationary interpolation is interpolation on a regular grid X = hZ ⊂ R with spacing h, using
a basis function of the form ϕh(x) := ϕ1(x/h) with ϕ1 fixed. This choice of basis function
has the advantage of making the coefficient matrix ΦX of the system (20) independent of
the scale h, which adresses conditioning problems which can otherwise occur for small h.
Using integrable ϕ1 would however lead to bad convergence properties of sX [f ] to f when
h → 0: to have convergence, one basically needs the generalised Fourier transform of ϕ1 to
be singular in 0: cf. (Buhmann, 2003), Chapter 4, for further explanations. For interpolation
with a non-integrable RBF, the notion of positive (or negative) definiteness is no longer
the appropriate one, and has to be replaced by that of conditionally positive (or negative)
definiteness: ϕ is called conditionally positive (or negative) definite of degree k if for any subset
X = {x1, . . . , xN} ⊂ Rn, the matrix ΦX is positive (or negative) definite on the subspace of
all α = (α1, · · · , αN ) ∈ RN such that

∑
αjp(xj) = 0 for all polynomials p(x) of degree k − 1.

One then in general has to add a polynomial of order k−1 to the interpolating function sX [f ],
and add further constraints on the xj to keep unique solvability: we refer to Appendix A for
details.

Since our RBF algorithm for solving the pricing PIDE will use stationary interpolation,
and good convergence properties of the basic RBF-interpolation algorithm will be important
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for the convergence of the scheme (if only since the scheme will start off by determining an
RBF-interpolant of the initial value), we need to use a non-integrable basis function, for which
we have chosen the multi-quadric,

ϕ(x) := ϕc(x) :=
√
|x|2 + c2, (22)

where c > 0. The multi-quadric is known to be conditionally negative definite of order 1, and
ΦX will therefore be negative definite on the orthogonal complement of the vector (1, . . . , 1),
which is a subspace of codimension 1. Since the trace of ΦX is strictly positive (it equals Nc),
the remaining eigenvalue of ΦX has to be strictly positive, so that ΦX will be invertible, and
the system (20) will still be uniquely solvable, without having to augment sX [f ] by a 0-th
order polynomial or constant term.

Stationary RBF-interpolation with a multi-quadric on a regular grid has good approxima-
tion properties: one can show that ||sh[f ]−f ||∞ ≤ Ch2 if f ∈ C1(R) such that f ′ is Lipschitz,
as follows by combining theorems 4.2, 4.3 and 4.5 of (Buhmann, 2003). The multi-quadric
provides a good compromise between having good stationary approximation and keeping the
basic RBF-algorithm simple, on account of the invertibility of the ΦX ’s.

The constant c is called the shape parameter of the multi-quadric: it strongly influences the
condition number of the linear system (20). There exists an extensive literature on finding
the optimal shape parameter c for multiquadrics and other RBFs: see for example (Fasshauer
and Zhang, 2007; Fornberg and Wright, 2004; Kansa and Carlson, 1992).

Non-stationary interpolation schemes, in which one fixes the RBF ϕ while letting the set of
interpolation points become dense, can have extremely good approximation properties. De-
pending on the function f , one can even achieve exponential rates of convergence rates on
compact subsets of Rn, for example if f belongs to the so-called native space of ϕ, meaning
that f̂/

√
ϕ̂ is square-integrable (the hat indicating Fourier transform): see Madych (1992);

Buhmann and Dyn (1993). However, the lowest eigenvalue of the coefficient matrix ΦX of
the system (20) can become exponentially small with increasingly dense interpolation sets X,
leading to large condition numbers: see for example (cf Fasshauer, 2007, chapter 16, example
16.2). The so-called uncertainty principle of Shaback, cf. (Schaback, 1994; 1995), shows there
is a reciprocal trade-off between condition number and sup-norm approximation error: they
cannot both be small. We note that Shaback’s uncertainty principle is valid for the standard
formulation of RBF interpolation. There are reformulations which are less sensitive with re-
spect to conditioning: see for example (Fornberg et al., 2011) and (Fasshauer and McCourt,
2012).

Non-stationary RBF algorithms for classical Black and Scholes PDE (in one and two dimen-
sions) have been studied in (Pettersson et al., 2008). In this paper we have limited ourselves
to stationary interpolation.

3.2 An RBF-scheme for Cauchy problems

For a given radial basis function ϕ(x) and a given set of interpolation, or collocation, points
X = {x1, . . . , xN} ⊂ R, we look for an approximate solution to our Cauchy-problem{

∂τu = L[u], τ > 0

u(x, 0) = g(x),
(23)

of the form

UX(x, τ) :=

N∑
j=1

ρj(τ)ϕ(x− xj), (24)
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whee L is given by (11). To determine the vector of coefficients ρρρ(τ) := (ρ1(τ), . . . , ρN (τ)) we
use a variant of the method of lines, and derive a system of ODEs for ρ(τ) by requiring that

∂τUX(xi, τ) = L[UX ](xi, τ) 0 ≤ i ≤ N, τ ≥ 0. (25)

Since L commutes with translations, we find that

L[UX ](x, τ) =

N∑
j=1

ρj(τ)L[ϕ](x− xj). (26)

and since ∂τUX(x, τ) =
∑

j(dρj/dτ)ϕ(x− xj), (25) is equivalent to

ΦX
d

dτ
ρρρ(τ) = (LΦ)X ρρρ(τ), (27)

where ΦX was defined in (21) above, and where the N ×N matrix (LΦ)X is defined by

(LΦ)X :=
(
L[ϕ](xi − xj)

)
1≤i,j≤N . (28)

Assuming that our RBF ϕ is such that ΦX is invertible, we find that ρρρ(τ) has to satisfy the
following system of ODEs:

d

dτ
ρρρ(τ) = Φ−1

X (LΦ)X ρρρ(τ). (29)

It is natural to require that
∑

j ρj(0)ϕ(x−xj) is the RBF interpolant of initial value function

g(x), which leads to the initial condition

ρρρ(0) = Φ−1
X g|X , (30)

where g|X := (g(x1), . . . , g(xN )) . The initial value problem (29), (30) for ρρρ can be solved
numerically using an appropriate ODE solver. The system (29) is a simple linear constant co-
efficient system of ODEs. Its numerical solution requires however some care, since it generally
will be a stiff system: the coefficient matrix can have a large stiffness ratio, defined as the
quotient of its largest and smallest, in absolute value, eigenvalues. For example, the stiffness
ration of Φ−1

X (LΦ)X computed on a set of 200 equally spaced points in the interval [−9, 9]
for a multiquadric with c = 4h (h being the spacing between the points) was found to be of
the order of 2 · 109. For such systems a given numerical method can require extremely small
step-sizes to avoid instability, much smaller than one would normally expect to have to use
to attain a given precision: see for example (Iserles, 2009) for further discussion. Stiff systems
generally have to be solved by an implicit method. We used custom-made matlab software
which implements a backward differentiation (BDF) scheme of order 2 appropriate for stiff
ODEs. We did not explicitly investigate the errors coming from the time-discretisation of the
ODE system (29), since the BDF scheme can in principle handle this to any desired precision,
but have concentrated on the discretisation error in the x-variable, since we foremost wanted
to investigate the performance of the RBF-leg of the algorithm.

Remark 1 : Note that our algorithm applies to any translation-invariant linear operator
L having ϕ in its domain, and that we only need to compute the action of L on ϕ. Also
note that the RBF-scheme does not discretise the operator, in contrast to Finite Difference
schemes (but in common with for example Galerkin-type schemes). This will considerably
simplify the numerical treatment of singularities which may be present in the integral kernel
of the operator L (as for example with infinity activity Lévy models).

Remark 2 : In the more general case of a general conditionally (positive) definite radial
basis functions, ΦX will only be positive definite on a subspace of codimension 1 or more,
and our RBF-ansatz (24), as well as the basic algorithm (29), (30), will have to be modified
accordingly: this is worked out in Appendix A.
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3.3 Singularity of the Lévy measure

The various Finite Difference (FD) schemes which have been proposed in the literature to
solve the PIDE (11) all have to address the problem of how to discretise the operator L in a
neigborhood of the singularity of the Lévy measure, when the Lévy-process is infinite activity.
This is commonly dealt with by splitting the integral into a local part near the singularity, and
a non-local part, and using a Taylor expansion of the unknown function u near the singularity.
The contribution of small jumps |y| ≤ ε is sometimes approximated by an effective diffusion
term σ(ε)2∂2

y . The non-local part is computed using a numerical quadrature scheme, sometimes
using FFT to speed up the computations (note that the integral is of convolution type, making
it amenable to Fourier analysis). See for example (Hirsa and Madan, 2004), (Almendral and
Oosterlee, 2007b), (Almendral, 2004), (Cont and Voltchkova, 2005), (Wang et al., 2007). An
alternative approach is that of (Almendral and Oosterlee, 2007a), where the integral operator
was rewritten as a sum of two weakly singular Volterra operators acting on ∂xu.

An advantage of the RBF method is that we only have to compute the action of the integral
operator on a single function, the radial basis function ϕ. Since ϕ is explicit (in our case,
a multi-quadric) we can exploit its properties to explicitly de-singularise the integral, and
convert it to a form which is amenable to classical quadrature techniques.

Lemma 3.1: Let ϕ(x) := ϕc(x) =
√
x2 + c2. Then

(i) ϕ(x+ y)− ϕ(y) = yf
(1)
MQ(x, y), where

f
(1)
MQ(x, y) =

y + 2x

ϕ(x+ y) + ϕ(x)
. (31)

(ii) ϕ(x+ y)− ϕ(x)− yϕ′(x) = y2f
(2)
MQ(x, y), where

f
(2)
MQ(x, y) =

1

ϕ(x+ y) + ϕ(x)
− 2x2 + xy

ϕ(x)
(
ϕ(x+ y) + ϕ(x)

)2 . (32)

Proof. Straightforward computation. �

The point of this lemma is that the powers of y on the right will cancel out the singularity
in y = 0 of ν(dy) in (11). One can use (ii) for a general Lévy measure, and (i) if ν satisfies
(4); cf. (12). Specifically, for the CGMY-model we get

L[ϕ](x) = γc∂cϕ− rϕ+

∫
R
f

(2)
MQ(x, y) kCGM (y)|y|1−Y dy. (33)

Note that if Y ≤ 1, we have a continuous integrand. Alternatively, if Y ≤ 1, we could also
have used (31) together with (12) to write∫

R
f

(1)
MQ(x, y) kCGM (y)

sgn(y)

|y|Y
dy

for the integral part of L[ϕ](x), which has an integrable singularity at 0. Numerically this
singularity would however need special treatment, while (33) can be dealt with by classical
quadrature methods (note that the integrand is in fact smooth on both the positive and
negative closed half-line, though not in 0). If 1 < Y < 2 we again encounter an integrable
singularity in (33), which we can remove by a simple integration by parts, separately on the
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two intervals R>0 and on R<0. For example,∫ ∞
0

y1−Y f
(2)
MQ(x, y) kCGM dy

= −
∫ ∞

0

y2−Y

2− Y
∂y

[
kCGM (y)f

(2)
MQ(x, y)

]
dy. (34)

where the boundary terms vanish since 2− Y > 0 and since kCGM is exponentially decreasing
at infinity. The remaining integral has a (left-) continuous (and even infinitely differentiable)
integrand on {y ≥ 0} which decays exponentially at ±∞ and which can be handled by classical
quadrature methods. We have used adaptive Gauss-Kronrod quadrature (Shampine, 2008).
Given that kCGM is a (constant times a) negative exponential, Gauss-Laguerre quadrature
would have been a natural alternative.

Remark 3 : If the Lévy measure is explicitly known, as it is for CGMY, one might try to
go one step further, and compute L[ϕ] in terms of special functions. We did not succeed in
doing this here. Even if such a computation can be carried out, the question arises of whether
the special functions in question can be efficiently evaluated, which is not always trivial.

With all elements in place, we can now more formally present our RBF-scheme for European
and American options in an exponential Lévy model.

3.4 RBF-algorithm for Europan options

1. Choose a computational range [xmin, xmax] in log-price space and interpolation points
X = {x1, . . . , xN} ⊂ [xmin, xmax].

2. Choose an RBF ϕ (possibly depending on X) and compute the matrices ΦX and (LΦ)X
given by (21) and (28), using lemma 3.1 if the Lévy measure is singular in 0.

3. Determine the RBF-interpolant
∑

j ρj(0)ϕ(x − xj) of the initial value g(x) = G (ex),
where G is the payoff function.

4. Solve the linear constant coefficient system of ODEs (29) with initial vector ρρρ(0) =
(ρ1(0), . . . , ρN (0)) up to time T , using an ODE-solver for stiff ODEs.

5. Put U(x, T ) := UX(x, T ) :=
∑

j ρj(T )ϕ(x− xj).

UX(x, T ) is then the RBF-approximation of the time-0 option price using the set of interpo-
lation points X (and the RBF function ϕ, which we suppress from the notation).

Similar algorithms have been studied for one- and multi-dimensional Black and Scholes
models (e.g. Fausshauer et al., 2004a;b; Hon and Mao, 1999; Larsson et al., 2008; Pettersson
et al., 2008) In these cases, L is a second order elliptic differential operator, and the computa-
tion of (LΦ)X is straightforward. For jump-diffusions, which are finite activity, this algorithm
(and its companion version for American options below) has been implemented and studied in
(Chan, 2010; 2011) with different choices of basis functions (inverse multi-quadric and cubic
spline, respectively).

Remark 4 : Note that we assumed that ΦX is invertible. If ϕ is conditionally positive
definite with ΦX invertible only on a subspace of positive co-dimension, the algorithm has to
be modified along the lines of Appendix A.

For X we will simply take a set of equidistant points X = XN := {xh1 , . . . , xhN} with

xhj := xmin + jh, j = 0, . . . N, (35)

where h = (xmax−xmax)/N. Other choices are of course possible: (Pettersson et al., 2008) work
with a non-uniform set of points which are more densely (though still uniformly) distributed
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in a subinterval around the strike K of the put or call option, to achieve greater accuracy
in the neighborhood of K, where the pay-off function is non-smooth; (Chan, 2010) uses a
sophisticated adaptive scheme due to (Driscoll and Heryudono, 2007), for the same reason.

We already noted that for ϕ we will take Hardy’s multi-quadric (22). For the choice of
shape parameter we follow (Fausshauer et al., 2004a;b; Hon and Mao, 1999) and put c = 4h.
Note that since ϕc(x) = cϕ1(x/c), this amounts to stationary interpolation, modulo a trivial
multiplicative factor of c = 4h. Also note that ϕ4h(xhi −xhj ) = ϕ4h((i− j)h) = 4hϕ1((i− j), so
that in step 2 of our algorithm we only need to invert ΦX with ϕ = ϕ1 and X = {0, . . . , N}.

As far as we are aware, no general theoretical results are available for convergence and
stability of this type of RBF-scheme. In the next section we report on a set of numerical
experiments for a wide range of VG and CGMY processes, including unbounded variation
processes, finding evidence of a convergence rate of 2 (for the range of N ’s considered), in-
cluding for highly singular Lévy measures. Before turning to these numerical results, we first
formally describe our RBF-scheme for the American put.

3.5 American Put Options

As explained in section 2.3, the idea is to successively solve the ODE on a sequence of small
time-intervals [τm−1, τm] and at the end of each time interval to compare the solution with
the pay-off value at τm, thereby at the same time constructing the initial value for the next
time interval. This leads to the following algorithm (assuming as before that ΦX is invertible
for any X).

1. Choose a computational range [xmin, xmax] in log-price space, interpolation points X =
{x0, x1, . . . , xN} ⊂ [xmin, xmax] and a partition T := { τ0 = 0 < τ1 < · · · < τM = T } of
[0, T ]. Put xxx := (x1, . . . , xN ).

2. Choose an RBF ϕ and compute the matrices ΦX and (LΦ)X from (21) and (28), using
lemma 3.1 if the Lévy measure is singular in 0.

3. Compute the RBF-interpolant
∑

j ρj(0)ϕ(x− xj) of the initial value g(x) = G (ex), G

being the pay-off function, and put ρρρ(0) = (ρ0(0), . . . , ρN (0)).

4. For m = 0, 1, · · · ,M − 1, recursively compute vectors ρρρ(m + 1) = (ρ0(m + 1), . . . ,
ρN (m+ 1)) and UUU(m+ 1) = (U0(m+ 1), . . . , UN (m+ 1)) according to:

(i) ρρρ(m+ 1) is the solution at time τm+1 of the system (29) with initial value ρρρ(m) at
time τm;

(ii)

UUU(m+ 1) := max (K − exxx,ΦX ρρρ(m+ 1)) , (36)

where exxx := (ex1 , . . . , exN ) and where the max of two vectors is defined as the
vector of the component-wise maxima;

(iii) Redefine ρρρ(m+ 1) by putting

ρρρ(m+ 1) := Φ−1
X U(m+ 1). (37)

5. Finally, U(x, T ) := UX,T (x, T ) :=
∑

j ρj(M)ϕ(x− xj).

UX,T (x, T ) is the RBF-approximation of the American put-value at log-price x and time-
to-maturity T , using the interpolation set X and the time-partition T .

Note that ΦX ρρρ(m + 1), with ρρρ(m + 1) as in 4.(i), is the vector whose i-th component is∑
j ρj(m + 1)ϕ(xi − xj), which is the value in xi of the RBF-approximation of the solution,
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at time τm+1, of the Cauchy problem with initial value
∑

j ρj(m)ϕ(x− xj) at time τm. This
corresponds to the continuation value of the option when time-to-maturity is τm+1, and which
we then compare with the exercise value in each of the points xi, taking the point-wise
maximum in (36). This explains (36); equation (37) extracts a new ρρρ(m+ 1) which is used as
initial value for the system (29) on the next time-interval. We continue in this way until we
have reached τM = T.

We will use a simple equally-spaced set of time-points τm = mk, with k := T/M and
m ∈ {0, 1, . . . ,M}. Alternatively, one can try and construct adaptive schemes to achieve
higher accuracy with less time-steps, but this is outside of the scope of the present paper.
The integration of the system (29) from τm to τm+1 will, as before, be done using a stiff ODE
solver from matlab. In the next section we present numerical evidence that this scheme is
convergent of order 2 in N and order 1 in M.

4. Numerical Results

We tested our RBF algorithm by computing American and European put and call prices
under a number of CGMY-processes, including unbounded variation ones (Y > 1). To assess
accuracy, we compared the RBF-prices with prices computed, to high accuracy, using the
Fourier Space Time-stepping or FST algorithm of (Jackson et al., 2008)1. For the VG model
(Y = 0), we used the explicit solution found in (b. Madan et al., 1998) as a comparison.
In our numerical experiments, we took the strike K = 1 and the computational domain
[xmin, xmax] = [−9, 9], corresponding to a comfortably large price range of [e−9, e9] for the
price of the underlying. We computed RBF prices UN (x, T ) using equally spaced interpolation
points XN as in (35), with N varying from 100 to 3600, increasing by steps of 500. The RBF
algorithms of subsection 3.4 and 3.5 were implemented in MATLAB R2007b, using quadgk
to compute the integrals (33) and (34) and ode15s to solve the ODE (29). The FST reference
prices were computed by truncating to the same log-price interval, [−9, 9], as used for the
RBF scheme, and applying the FFT with N = 32768 nodes, which gave a 6-decimal point
accuracy or better in (Jackson et al., 2008).

The RBF-solution was compared with the reference solution V (x, T ) (in log-price coordi-
nates) on a set of Neval equidistant evaluation points

x̂i := x̂ĥi := x̂min + jĥ, j = 0, . . . , Neval,

where [x̂min, x̂max] ⊂ (xmin, xmax) is a, typically small, subinterval and ĥ = (x̂max−x̂min)/Neval,
in both the sup-norm

E∞(N) := max
0≤i≤Neval

|UN (x̂i, T )− V (x̂i, T )| , (38)

and the, smooth, mean square norm,

E2(N) :=

√√√√ 1

Neval

Neval∑
i=1

(UN (x̂i, T )− V (x̂i, T ))2. (39)

Given that, for option trading, the regions of principal interest where to evaluate option
prices are typically those near to the strike, [x̂min, x̂max] should contain the log-strike, 0,
and can be taken much smaller than the interpolation (or collocation) range [xmin, xmax];

1For European options, the FST-algorithm is a variant of Carr and Madan’s FFT algorithm, (Carr and Madan, 1999),
with the Fourier transform of the pay-off being computed numerically using the FFT, instead of being evaluated analyt-
ically; the American problem is reduced to a sequence of European problems using a time-discretisation, similar to what
is done here; (Jackson et al., 2008) also consider other path-dependent options.
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in this context, (Pettersson et al., 2008) refer to (38) as the financial error-norm. We took
[x̂min, x̂max] = [log(0.05), log 2], corresponding to a price range of [0.05, 2] around the strike of
1, and Neval equal to 1950, so that the error is evaluated on a comparatively fine grid with a
spacing of less than 0.002.

Remark 1 : According to (Cont and Voltchkova, 2005, prop. 4.1), the localisation error on
[x̂min, x̂max] caused by localising the pay-off to [xmin, xmax] = [−9, 9] is exponentially small in
the distance min(xmax − x̂max, |xmin − x̂min|) and is therefore expected to be negligible (an
observation which is relevant for both the RBF and to the FST schemes). This was confirmed
numerically by increasing xmax = −xmin while keeping [x̂min, x̂max] = [log(0.05), log 2] fixed.

The convergence rate RE of our RBF-scheme is estimated from E(N) ' CN−RE , where
E = E∞ or E = E2. Thus, RE = log(E(N1)/E(N2))/ log(N2/N1), where N1 and N2 are two
successive choices of number of interpolation points. In the tables below, we will write R∞ if
we use the sup-norm and R2 if we use the mean square norm.

Tables 1 to 4 of appendix B illustrate the performance of the RBF algorithm for computing
European call and put prices under CGMY processes with Y ranging from 0 (Variance-
Gamma) to 1.6. In all cases, we numerically found a convergence rate of 2, valid over the
range of N ’s considered. This is the same rate as found by (Jackson et al., 2008) for the FTS
method. We note, though, that our present implementation of the RBF method underperforms
FST in terms of execution time. This is mostly on account of the adaptive ODE solver we
used, which though very precise, considerably slows down the computation. Using a simpler
ODE scheme could improve performance. Since our main focus in this paper was on the
discretisation error in x, we have left such improvements for future work.

A convergence rate of 2 is also found for the best performing FD methods, at least for finite
variation processes (Y < 1), though not for processes of unbounded variation: cf. (Wang et al.,
2007). The paper of (Almendral and Oosterlee, 2007a) achieves second order convergence for
finite variation processes using reduction to weakly singular Volterra equations, a method
which for the moment does not seem to apply to infinite variation processes.

As mentioned in section 3.1, RBF interpolation can sometimes achieve so-called spectral
rates of approximation on compact sets, that is, approximation errors which are smaller than
any power of d, or even smaller than exp(−c/d) for some c > 0, where d is the ”filling distance”
of the set of interpolation points, which in the case of equidistant points (35), is simply h; cf.
(Buhmann, 2003; Wendland, 2005) and their references. One might therefore have hoped for a
better rate of convergence of the RBF scheme. Note, however, that spectral convergence only
occurs with non-stationary RBF-interpolation. For stationary interpolation, which was used
here, an algebraic convergence rate is the norm: cf. (Buhmann, 2003). In (Pettersson et al.,
2008), the authors also find algebraic convergence rates when letting the shape parameter c
of the multi-quadric vary with the interpolating set (they let c ' hp for p = 1/2, 3/4 or 1, the
stationary case, in a numerical example).

We next examined whether our approximate RBF solution can be used to compute the
option’s Greeks, in particular whether its ∆ and Γ are well approximated by the respective
derivatives of UN (x, τ) with respect to S = ex:

∆N (x) :=
∂UN (x, τ)

∂S
=

N∑
j=1

ρj(τ)
∂ϕ(x− xj)

∂x
e−x (40)

and

ΓN (x) =
∂2UN (x, τ)

∂S2
=

N∑
j=1

ρj(τ)
∂2ϕ(x− xj)

∂x2
e−2x −∆Ne

−x (41)
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Testing these expressions (with N = 3600) against the ∆ and Γ computed by finite differences
from the FST solution or Madan, Carr and Chang’s explicit solution, we found excellent
agreement. See figure B1 for an example.

Tables B5 to B9 in Appendix B gives some of our results for the performance of the RBF-
algorithm for American puts. The reference solution was in all cases computed using the FST
algorithm. Note that at each stage we quadrupled the number of intermediary time steps1 M0

while doubling the number of space-steps N. The results of tables B5 to B9 are compatible
with second order convergence in N and first-order convergence in M0 but do not directly
show this. We therefore also investigated convergence with rspect to M0 and N seperatedly,
and indeed found first order convergence in time and second order convergence in space, over
the range of M0 and N considered. Table B10 gives an example: further results are available
from the authors.

For the remainder of this section, we set N = 3600 and M0 = 2560. Figure B2 plots an
example of the option ∆ and Γ obtained using the RBF-scheme, with an Y > 1. Figure B3
shows the sensitivity of option prices and free boundary with respect to the Y -parameter,
computed using the RBF algorithm, following (Almendral, 2004), and extending the latter to
the Y ≥ 1 range.

As a final test and illustration of our algorithm, we numerically investigate the smooth
pasting principle, following (Almendral, 2004) and (Almendral and Oosterlee, 2007b). The
smooth pasting or smooth fit principle states that the ∆ of an American option is continuous
across the exercise boundary. Equivalently, for an American put, the option value’s right
derivative with respect to the underlying has to be equal to −1 at the exercise boundary
(the right- and left derivative both exist since the value function is a convex function). The
smooth pasting principle is known to hold for infinite variation Lévy models, but can fail
for bounded variation processes: see e.g. (Boyarchenko and Levendorskĭi, 2002b), (Alili and
Kyprianou, 2005) for perpetual puts, and (Almendral and Oosterlee, 2007b; Lamberton and
Mikou, 2012) for the finite maturity case. Figure B4 recomputes an example from (Almendral,
2004) (but with a different strike K) using the RBF scheme, illustrating the possibility of both
non-smooth and smooth fit in the bounded variation case. Figure B5 illustrated the validity
of the smooth fit principle in the infinite variation case (Y ∈ [1, 2)), at least to the accuracy
provided by the RBF algorithm. We note the absence of oscillations close to the jump in
the ∆ in figure B4, contrary to what can happen with a FD algorithm: see (Almendral and
Oosterlee, 2007b).

5. Discussion

We investigated a simple scheme based on RBF interpolation for numerically solving the pric-
ing PIDE of exponential Lévy models. The scheme was numerically found to be second order
convergent for examples of infinite activity Lévy processes from the CGMY-KoBoL class,
including processes of unbounded variation. On this evidence, the RBF scheme performs
comparably to Fourier transform-based schemes such as the FST, and better than current FD
schemes, who to date only achieve second order convergence for Lévy processes of bounded
variation. Contrary to FD methods, no special discretisation procedures or diffusion approx-
imations near the singularity of the Lévy measure are needed, since only the action of the
PIDE on the basis function has to be computed, and the relevant integral can be explicitly
desingularized. This makes the RBF scheme simple to implement.

1We use M0 to avoid confusion with the M -parameter in CGMY.
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A disadvantage of the RBF scheme is that it requires the numerical solution of a full linear
system, which in practice limits the number of interpolation points the scheme can handle. On
the other hand, fewer points are needed to achieve good accuracy than with FST or FD. We
also note that the best performing FD method, that of (Wang et al., 2007), is a fully implicit
scheme leading to non-sparse systems also.

The second order convergence has only been shown in numerical experiments, and the
challenge remains to find a rigorous proof. This is currently an active area for research. We
note in passing that the absence of theoretical justification is shared with other numerical
methods which have been proposed in this area, such as (Jackson et al., 2008) or (Almendral
and Oosterlee, 2007a)): it is only for FD methods that a complete stability and convergence
analysis has been given to this date; cf. (Wang et al., 2007) and its references.

A main potential of the RBF method lies in its applicability to multi-dimensional models and
the possibility of a mesh-free implementation. The present scheme can be straightforwardly
generalized to higher dimensional Lévy models, including its handling of the singularity of
the Lévy measure. This paper limited itself to one-dimensional problems in order to asses the
accuracy of the RBF scheme and compare its performance with other existing methods, as
a necessary preliminary to attacking the multi-dimensional case. The scheme does have an
independent interest even in the one-dimensional case, for fast calibration and, potentially,
for option pricing in non-parametric Lévy models.
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Lévy Models, SIAM Journal on Numerical Analysis, 43, pp. 1596–1626.

d’Halluin, Y., Forsyth, P. and Vetzalz, K. (2005) Robust Numerical Methods for Contingent Claims under Jump Duffusion
Process, IMA J. Num. Anal., 25, pp. 87–112.

d’Halluin, Y., Forsyth, P. A. and Labahn, G. (2004) A Penalty Method for American Options with Jump Diffusion
Processes, Numerische Mathematik, 97, pp. 321–352.

Driscoll, T. A. and Heryudono, A. R. H. (2007) Adaptive Residual Subsampling Methods for Radial Basis Function
Interpolation and Collocation Problems, Comput. Math. Appl., 53, pp. 927–939.

Eberlein, E. (2001) Application of Generalized Hyperbolic Lévy Motion to Finance. In: O. E. Barndorff-Nielsen,
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Appendix A. Modified Algorithm with Conditionally Definite Radial Basis Functions

Let Pkn denote the finite-dimensional vector space of polynomials of degree at most k on
Rn. A function ϕ : Rn → R is called (strictly) conditionally positive definite of order k
(Buhmann, 2003; Wendland, 2005, cf.) if, for any finite set of points X = {x1, . . . , xN}, the
quadratic form

∑
i,j ϕ(xi − xj)αiαj is (strictly) positive definite on the linear subspace of all

α = (α1, . . . , αN ) ∈ RN such that

N∑
j=1

αjp(xj) = 0, ∀p ∈ Pk−1
n .

Examples are the generalized multi-quadrics (|x|2 + c2)k/2, k > 0, which are of order
max(0, dke); in particular, the multi-quadric is of order 1.

Given a conditionally positive definite radial basis function ϕ, of order k, the associated
RBF-interpolants are now of the form

sX(x) =

N∑
j=1

αjϕ(x− xj) +

Q∑
k=1

βkpk(x),

where {pk : 1 ≤ ν ≤ Q}, Q := dim(Pk−1
n ), is some basis of Pk−1

n , and where the coefficients αj
and βk are now determined by the augmented linear system{

sX,ϕ(xi) = f(xi), 1 ≤ i ≤ N∑N
j=1 αjpk(xj) = 0, 1 ≤ k ≤ Q.

where f = f(x) is the function which is to be interpolated. The unique solvability of this
system is an easy consequence of the conditional definiteness of ϕ, if we moreover assume X
to be insolvent for Pk−1

n (meaning that the only polynomial of degree at most k− 1 vanishing
on X is the zero polynomial): cf. (Buhmann, 2003), (Wendland, 2005).



August 2, 2013 20:20 RBF-for-Levy˙revised˙08˙2013

REFERENCES 21

It is now natural to modify our Ansatz (24) as follows: given a ϕ which is conditionally
strictly definite of order k, and a set of collocation points X = {x1, . . . , xN}, univalent for
Pk−1
n , we put

UX(x, τ) :=

N∑
j=1

ρj(τ)ϕ(x− xj) +

Q∑
k=1

γk(τ)pk(x), (A1)

and require that UX satisfies the augmented system{
∂τUX(xi, τ) = L[UX ](xi, τ), 1 ≤ i = 1, . . . , N∑N

j=1
dρj
dτ pk(xj) = 0, k = 1, . . . , Q,

(A2)

for all τ ≥ 0. This then leads to the following system of ODEs for ρ(τ) =
(
ρ1(τ), . . . , ρN (τ)

)
and γ(τ) =

(
γ1(τ), . . . , γQ(τ)

)
: defining ΦX and (LΦ)X as before (cf. (21) and (28)), but now

also introducing the N ×Q matrices

PX :=
(
pk(xj)

)
1 ≤ j ≤ N
1 ≤ k ≤ Q

(A3)

and

(LP)X :=
(
L[pk](xj)

)
1 ≤ j ≤ N
1 ≤ k ≤ Q

, (A4)

where j is the row-index, we now find that(
ΦX PX

Pt
X 0

)(
d
dτ ρ(τ)
d
dτ γ(τ)

)
=

(
(LΦ)X (LP)X

0 0

)(
ρ(τ)
γ(τ)

)
. (A5)

The coefficient matrix of the time-derivative on the right is non-singular. The system (A5) is
to be completed by the initial condition(

ΦX PX

Pt
X 0

)(
ρ(0)
γ(0)

)
=

(
g|X
0

)
, (A6)

were, as before, g|X is the vector
(
g(x1), . . . , g(xN )

)
. We now of course require that L[pk] is

well-defined, that is, that L acts on polynomials of degree less than k. This poses no problem
if the Lévy-measure is exponentially decreasing (or, more generally, if all polynomials in Pk−1

n

are integrable with respect to the Lévy measure), as is the case for the CGMY model.

Appendix B. Numerical results: tables and figures
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N E∞(N) R∞ E2(N) R2

100 1.250133E-02 N/A 2.860813E-03 N/A

600 3.746827E-04 1.958 6.041865E-05 2.153

1100 1.082384E-04 2.049 1.759146E-05 2.036

1600 5.049619E-05 2.035 8.271495E-06 2.014

2100 2.912316E-05 2.024 4.791782E-06 2.008

2600 1.894538E-05 2.013 3.122765E-06 2.005

3100 1.331338E-05 2.006 2.195320E-06 2.003

3600 9.878318E-06 1.996 1.627210E-06 2.003

Table B1. E∞ and E2 for the RBF approximation of a European put with strike K = 1 and maturity T = 0.13972 under a

VG model with parameters σ = 0.17875, ν = 0.13317 and θ = −0.30649 and with r = 0.0533 and q = 0.011. The parameters

were taken from Hirsa and Madan (2004) and the reference solution was computed using the explicit formula of (b. Madan

et al., 1998).

N E∞(N) R∞ E2(N) R2

100 1.007298E-03 N/A 7.105950E-04 N/A

600 2.728381E-05 2.014 1.932604E-05 2.012

1100 8.112433E-06 2.001 5.740643E-06 2.003

1600 3.838466E-06 1.997 2.711727E-06 2.002

2100 2.232595E-06 1.993 1.573655E-06 2.001

2600 1.460368E-06 1.987 1.026391E-06 2.001

3100 1.030620E-06 1.982 7.218958E-07 2.001

3600 7.672202E-07 1.974 5.352399E-07 2.001

Table B2. E∞ and E2 for the RBF-approximation of a European call with strike K = 1 and maturity T = 0.25 under a

CGMY-model with C = 16.97, G = 7.08, M = 29.97 and Y = 0.6442; r = 0.06 and q = 0. The parameters were taken from

Wang et al. (2007). The bench-mark solution was computed by the FFT method.

N E∞(N) R∞ E2(N) R2

100 1.818922E-03 N/A 8.933607E-04 N/A

600 4.801009E-05 2.029 2.407100E-05 2.017

1100 1.426400E-05 2.002 7.148878E-06 2.003

1600 6.745556E-06 1.999 3.376818E-06 2.002

2100 3.922070E-06 1.994 1.959592E-06 2.001

2600 2.564791E-06 1.989 1.278109E-06 2.001

3100 1.809682E-06 1.983 8.989379E-07 2.001

3600 1.346800E-06 1.976 6.665049E-07 2.001

Table B3. E∞ and E2 for the RBF approximation of a European put with strike K = 1 and maturity T = 1 under a CGMY

model with C = 0.42, G = 4.37, M = 191.2 and Y = 1.0102; r = 0.06 and q = 0. The parameters were taken from Wang et al.

(2007) and the reference solution was computed using FFT.
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N E∞(N) R∞ E2(N) R2

100 8.046568E-04 N/A 6.222927E-04 N/A

600 2.187699E-05 2.012 1.693462E-05 2.011

1100 6.504920E-06 2.001 5.030391E-06 2.003

1600 3.077629E-06 1.997 2.376264E-06 2.002

2100 1.789899E-06 1.993 1.379002E-06 2.001

2600 1.170574E-06 1.988 8.994724E-07 2.001

3100 8.260453E-07 1.982 6.326538E-07 2.001

3600 6.147193E-07 1.976 4.691162E-07 2.000

Table B4. E∞ and E2 for the RBF approximation of a European call with strike K = 1 and maturity T = 0.25 under an

extended CGMY model with σ = 0.2, C = 1, G = 8.8, M = 9.2 and Y = 1.6 and with r = 0.01 and q = 0. The parameters were

taken from Wang et al. (2007) and the reference solution was computed using FFT.

N M0 E∞(N,M0) R∞ E2(N,M0) R2

225 10 1.498895E-03 N/A 8.246744E-04 N/A

450 40 3.749387E-04 1.999 1.634605E-04 2.335

900 160 9.374599E-05 2.000 4.072318E-05 2.005

1800 640 2.343723E-05 2.000 1.000968E-05 2.024

3600 2560 5.859308E-06 2.000 2.481692E-06 2.012

Table B5. E∞ and E2 for the RBF approximation of an American put with strike K = 1 and (time-to-) maturity T = 0.25

under a CGMY model with parameters C = 16.97, G = 7.08, M = 29.97 and Y = 0.6442, and with r = 0.06 and q = 0. The

parameters were taken from (Wang et al., 2007), and the reference solution was computed using FST, as for the other American

options below.

N M0 E∞(N,M0) R∞ E2(N,M0) R2

225 10 6.082331E-03 N/A 3.650482E-03 N/A

450 40 1.541366E-03 1.980 9.076575E-04 2.008

900 160 3.832039E-04 2.008 2.281262E-04 1.992

1800 640 9.563667E-05 2.002 5.625294E-05 2.020

3600 2560 2.385950E-05 2.002 1.395642E-05 2.011

Table B6. E∞ and E2 for the RBF approximation of an American put with strike K = 1 and maturity T = 1 under a CGMY

model with parameters C = 0.42, G = 4.37, M = 191.2, and Y = 1.0102, and with r = 0.06 and q = 0. The parameters were

taken from (Wang et al., 2007).
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N M0 E∞(N,M0) R∞ E2(N,M0) R2

225 10 2.499711E-04 N/A 1.504821E-04 N/A

450 40 6.249821E-05 2.000 2.007511E-05 2.906

900 160 1.562534E-05 2.000 5.060301E-06 1.988

1800 640 3.906215E-06 2.000 1.307000E-06 1.953

3600 2560 9.765537E-07 2.000 3.292508E-07 1.989

Table B7. E∞ and E2 for the RBF approximation of an American put with strike K = 1 and maturity T = 0.25 under a

CGMY model with parameters C = 1, G = 8.8, M = 9.2 and Y = 1.6 and with r = 0.01 and q = 0. The parameters are the

ones of Table B4, except that we now deleted the Brownian component, taking σ = 0. Note again that we are in the infinite

variation case: Y > 1.

N M0 E∞(N,M0) R∞ E2(N,M0) R2

225 10 2.752021E-03 N/A 7.132270E-04 N/A

450 40 3.330911E-04 3.047 8.718033E-05 3.032

900 160 8.131372E-05 2.034 2.160410E-05 2.013

1800 640 2.013791E-05 2.014 6.101223E-06 1.824

3600 2560 5.027503E-06 2.002 1.515820E-06 2.009

Table B8. E∞ and E2 for the RBF approximation of an American put with strike K = 1 and maturity T = 0.5 under a VG

model with CGMY parameters C = 5.9311, G = 20.2648, M = 39.783 and Y = 0, and with r = 0 and q = 0.03. The parameters

were taken from (Wang et al., 2007), except for q = 0.03.

N M0 E∞(N,M0) R∞ E2(N,M0) R2

225 10 3.345919E-03 N/A 1.666437E-03 N/A

450 40 1.117774E-03 1.582 3.950589E-04 2.077

900 160 3.259684E-04 1.778 9.872639E-05 2.001

1800 640 9.161985E-05 1.831 2.582561E-05 1.935

3600 2560 2.436247E-05 1.911 6.451929E-06 2.001

Table B9. E∞ and E2 for the RBF approximation of an American put with strike K = 1 and maturity T = 0.25 under a VG

model with CGMY parameters C = 1.25, G = 2.73, M = 5.73 and Y = 0, and with r = 0.1 and q = 0. The parameters are

taken from (Matache et al., 2005a).

N M0 E∞(x̂i, T ) R∞ E2(x̂i, T ) R2

3600 10 5.695862E-04 N/A 2.267973E-04 N/A

3600 40 5.759096E-05 1.653 2.113057E-05 1.712

3600 160 1.478201E-05 0.981 5.275323E-06 1.001

3600 640 3.911633E-06 0.959 1.339096E-06 0.989

3600 2560 9.765537E-07 1.001 3.292508E-07 1.012

Table B10. E1 and E2 for the American put of Table B7. We fixed the number of the interpolation points is fixed to 3600

and let the number of time steps M0 increase. The results indicate first order of convergence in time.
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Figure B1. Delta ∆ (Left) and Gamma Γ (Right) of the European Call of Table B3 with Y = 1.0102. The number of
the interpolation points used was 3600.
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Figure B2. ∆ (Left) and Γ (Right) for the American put option of table B7 with Y = 1.6 . Note that since the
underlying process has infinite variation, smooth pasting holds. This is also apparent from the bottom left part of the
graph for ∆. The number of the interpolation points used was 3600.
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Figure B3. Left picture: American put option prices for different values of the Y -parameter, with r = 0.1, q = 0,
σ = 0, C = 1, G = 7.8, M = 8.2, K = 1 and T = 5. Except for K = 1, all parameters are copied from (Almendral,
2004). Right picture: Corresponding exercise boundaries.
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Figure B4. Left picture: Discontinuous option Delta for G = 7 and M = 9. Right picture: Continuous option Delta
for G = 10 and M = 3; σ = 0, r = 0.1, q = 0, Y = 0.2, C = 1, K = 1 and T = 1. Parameters as in (Almendral, 2004),
except for K = 1.
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Figure B5. Illustration of smooth fit for two infinite variation CGMY processes (Y > 1.) Left picture: r = 0.1, q = 0,
σ = 0, C = 1, G = 8.8, M = 9.2, Y = 1.6, K = 1, and T = 0.5. Right picture: r = 0.4, q = 0, σ = 0.2, C = 1, G = 1.4,
M = 2.5, Y = 1.4, K = 1, and T = 0.5. Except K = 1, all parameters are copied from (Matache et al., 2005a).


