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Abstract—In this paper, we develop a system for the low-
cost indoor localization and tracking problem using radio sig-
nal strength indicator, Inertial Measurement Unit (IMU), and
magnetometer sensors. We develop a novel and simplified prob-
abilistic IMU motion model as the proposal distribution of the
sequential Monte-Carlo technique to track the robot trajectory.
Our algorithm can globally localize and track a robot with a
priori unknown location, given an informative prior map of the
Bluetooth Low Energy (BLE) beacons. Also, we formulate the
problem as an optimization problem that serves as the Back-
end of the algorithm mentioned above (Front-end). Thus, by
simultaneously solving for the robot trajectory and the map of
BLE beacons, we recover a continuous and smooth trajectory of
the robot, corrected locations of the BLE beacons, and the time-
varying IMU bias. The evaluations achieved using hardware show
that through the proposed closed-loop system the localization
performance can be improved; furthermore, the system becomes
robust to the error in the map of beacons by feeding back the
optimized map to the Front-end.

Index Terms—Localization, SLAM, Particle Filtering, Nonlin-
ear Filtering, Probability and Statistical Methods, Range Sensing,
Radio-Inertial Localization and Tracking.

I. INTRODUCTION

Indoor positioning systems are crucial for applications such

as asset tracking and inventory management. Such systems can

also increase the performance of first responders. The Visual-

Inertial Navigation Systems (VINS) provide reliable solutions

in both indoors and outdoors [1], [2]. However, VINS often

rely on proper lighting and rich visual information streams.

Furthermore, using cameras can raise privacy concerns [3]

which can limit the application of such systems. As an

alternative or (as we prefer) a complementary solution, indoor

positioning systems based on standard wireless communica-

tion technologies have also been studied extensively [4], [5]. In

indoors, radio signals are severely impacted due to shadowing

and multipathing effects [6], [7] which make the available

wireless-based positioning systems less accurate (1−10m) [4],

[8].

Wireless Local Area Network (WLAN) and Bluetooth Low

Energy (BLE) technologies are widespread and ubiquitous.
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Fig. 1: The localization and tracking results in an office environment pop-
ulated with BLE beacons. The Front-end outputs are the PF estimates and
discrete. The Back-end trajectory is continuous and smooth due to the motion
constraints enforced by IMU measurements. Google Tango [13] is used as a
proxy for the ground truth trajectory. The total traveled distance is more than
100m. The map of the BLE beacons is known a priori. The Map dimensions
are in meters.

Thus, we focus our attention on Radio Signal Strength In-

dicator (RSSI) available through WLAN and BLE broadcasts.

In our previous work [9], we developed an RSSI-based indoor

localization framework embedded with an online observation

classifier to localize a smartphone user or a robot in a

given environment. Similar to [9], we use Sample Importance

Resampling (SIR) filter (or particle filter) embedded with the

systematic resampling algorithm as it is suitable to deal with

global uncertainty, nonlinear observation space, and multi-

modal posterior densities [10], [11], [12].

In this paper, we propose a radio-inertial localization and

tracking system that exploits BLE, Inertial Measurement Unit

(IMU), and magnetometer sensors with the quality available in

standard smartphones; an illustrative example of the achieved

results is shown in Figure 1. This paper offers the following

contributions. We propose a novel and simplified probabilistic

IMU motion model that serves as the proposal distribution

of the Particle Filter (PF) algorithm. The probabilistic IMU

motion model enables the localization algorithm to exhibit

a probabilistically sound predictive behavior and track the



robot trajectory (Front-end). We then simultaneously solve for

the robot trajectory, the map of BLE beacons, and the time-

varying IMU bias using incremental Smoothing And Mapping

(iSAM) [14], [15], [16] and IMU-preintegration technique [2]

(Back-end); and develop the entire radio-inertial localization

and tracking framework and show that by a closed-loop

architecture, Figure 2, the overall system performance can be

improved according to the cumulative distribution function of

the localization error [8]. In addition, the system becomes

robust to the error in the map of beacons by feeding back

the optimized map to the Front-end. Finally, we provide

experimental evaluations along reasonably long trajectories for

indoor environments.

A. Outline

A review of related works is given in the following section.

Section III describes the problem statement and formulation.

The proposed system overview is explained in Section IV;

followed by presenting the probabilistic IMU motion model

in Section V. Experimental results as well as discussions

on limitations of the proposed framework are presented in

Section VI. Finally, Section VII concludes the paper and

provides ideas as future work.

B. Notation

Matrices are capitalized in bold, such as in X, and vectors

are in lower case bold type, such as in x. Vectors are column-

wise and 1: n means integers from 1 to n. The Euclidean

and Frobenius norms are shown by ‖·‖ and ‖·‖F, respectively.

‖e‖2
Σ

, eTΣ−1e. Random variables, such as X , and their

realizations, x, are sometimes denoted interchangeably. x[i]

denotes a reference to the i-th element of the variable. An

alphabet such as X denotes a set. The n-by-n identity and zero

matrices are denoted by In and On, respectively. 0n denotes a

vector of zeros of size n. vec(x[1], . . . , x[n]) denotes a vector

such as x constructed by stacking x[i], ∀i ∈ {1: n}.

II. RELATED WORK

WiFi or radio signal fingerprint-based indoor positioning has

become the standard approach for commercial applications [4],

[5], [17], [18], [19]. Such systems provide accuracies from

1 − 10m while they require an offline survey of the radio

signal strength map. Furthermore, these systems enforce strong

assumptions such as static environment and limited or slow

user movements. For a recent survey see [18] and references

therein. Another common technique is the angle of arrival

estimation using a phased array. In [20], multiple WiFi access

points compute angle of arrival information and aggregate

them to estimate the client’s location. Angle of arrival esti-

mation is also used for localizing RFID transponders [21], but

only in areas measuring a few meters. Utilizing a phased array

to determine the angle of arrival is challenging for smartphone-

based hardware devices as the orientation of the antennas is

unknown and not accessible.

On the other end of the spectrum, Pedestrian Dead Reckon-

ing (PDR) is a popular technique which senses user motion to

perform navigation. In PDR systems, either IMU sensors are

handheld [22], [23] or mounted on different body parts, e.g.

foot mounted [24], or torso-waist mounted [25]. Unfortunately,

these systems cannot offer a generalized solution and, for

example, a person in a wheelchair cannot benefit from them.

In [26], [27], [28], to overcome the drawbacks encountered

when using Radio Frequency (RF) or IMU sensors individually

for localization, the combination of both RF and IMU sensors

has been used. In [28], PDR and WiFi fingerprinting is

fused. Beacon scans occasionally correct the PDR drift. It

appears that the PDR results dominate this approach with

WiFi fingerprinting and Beacon scans to correct the drift.

In [26], a step-detection strategy is used as the motion model

of an Extended Kalman Filter (EKF) while WiFi signals

provide measurements. EKF is a single hypothesis filter and

cannot solve the global localization or the so-called kidnapped

robot problem [12, page 274]. Furthermore, the radio signal

propagation is more likely to follow a log-normal distribution

than a Gaussian [6], [7], [9].

In this work, we bring the advances in Simultaneous Lo-

calization And Mapping (SLAM) [29] to efficiently solve

the indoor localization and tracking problem using sensors

available in smart handheld devices. The main features that

distinguish this work from the available radio signal-based

indoor positioning literature are as follows. We develop an

adaptive (online) system that does not require the tedious

process of fingerprinting (site survey); hence, our approach

is more scalable. We use the underlying dynamical system of

the IMU sensor as the motion model, and our system is robust

to outliers and occasional lack of informative observations,

due to the multi-hypothesis nature of the proposed Front-end.

Moreover, the system is robust to the error in the map of

beacons due the SLAM back-end.

III. PROBLEM FORMULATION

Let xt ∈ SE(3) be the device/robot pose at time t which

consists of a rotation matrix Rt ∈ SO(3) and a position vector

pt ∈ R
3; and ṗt ∈ R

3 denotes the corresponding velocity.

The device is initially located at x0 which is unknown. Let

L , {l[j] ∈ R
3 |j = 1 : nl} be a set of BLE beacons loca-

tions where an informative prior over any l[j] is given. Let

Zt ⊂ R≥0 be the set of possible range measurements (con-

verted RSSI) at time t. The probabilistic measurement model

p(zt|xt, l) is a Gaussian conditional probability distribution

that represents the likelihood of range measurements. The IMU

and magnetometer measurements at time t include a vector of

angular velocity ωt ∈ R
3 and an acceleration vector at ∈ R

3,

and a vector of local magnetic field mt ∈ R
3, respectively.

Furthermore, the control action ut ∈ Ut and the action

set Ut have to be defined possibly based on the IMU and

magnetometer measurements. Note that the purpose of control

actions here is the prediction of the device motion rather

than actively controlling its behavior. Therefore, here, control

actions are proprioceptive measurements. The ultimate goal

is to estimate the device initial pose (global localization) and

trajectory including its position and orientation, given noisy
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Fig. 2: The proposed radio-inertial localization and tracking system architecture. The Front-end position and velocity estimates are used to initialize the
back-end graph nodes. Back-end provides feedback to the AHRS and Front-end in the form of time-varying IMU bias estimates and the optimized map of
BLE beacons, respectively.

range, IMU, and magnetometer measurements. To this end, we

break the original problem into the following sub-problems.

Problem 1 (Probabilistic motion model): Given the action

set Ut and ut ∈ Ut, find the discrete stochastic dynamics that

describes transition equation p(xt|xt−1,ut−1).

Problem 2 (Global localization and tracking): Let

z1:t , {z1, ..., zt} be a sequence of range measurements up

to time t. Let xt be a Markov process of initial distribu-

tion p(x0) and transition equation p(xt|xt−1,ut−1). Given

p(zt|xt, l), estimate recursively in time the posterior distri-

bution p(x0:t|z1:t, l).

Problem 3 (Radio-inertial SLAM): Given all measure-

ments up to time t, estimate the joint smoothing distribution

p(x0:t, l,θ1:t|z1:t,u1:t); where θ1:t are the, possibly time-

varying, system calibration parameters.

We solve Problem 1 by developing the probabilistic IMU

motion model and embed it into the SIR filter as the proposal

distribution to solve Problem 2. In Problem 3, we solve the

SLAM problem to estimate the smoothing distribution of the

device trajectory, the optimized map, as well as time-varying

IMU bias. We note that solving the SLAM problem has the

following advantages:

1) We relax the need for an exact prior map of beacons and,

given sufficient range measurements, any misalignment in

the beacon placement can be recovered.

2) Through joint parameter and state estimation, we can re-

cover system calibration parameters in a computationally

affordable manner.

Remark 1: The magnetometer sensor is almost available

on all smart handheld devices alongside the IMU. However, it

is possible to remove magnetometer measurements from the

problem formulation, while the problem remains solvable. In

this case, the attitude estimation accuracy might degrade.

IV. SYSTEM OVERVIEW AND ARCHITECTURE

The proposed localization system is suitable for GPS-denied

indoor environments and consists of two main layers which

we call them Front-end and Back-end. The entire system

architecture is shown in Figure 2. The necessary modules can

be split up into four parts; in the following, we describe each

module.

A. Sensors and Raw Signals

Standard and commercially available smartphones typically

are equipped with Bluetooth transceiver, IMU, and magne-

tometer sensors. This module receives raw signals. The BLE

operates in the 2.4GHz license-free band and uses 40 channels

each with a width of 2MHz; the ideal sampling rate of

RSSI is about 10Hz [17]. The IMU sensor includes a 3-

axis accelerometer, which measures the linear acceleration,

and a 3-axis gyroscope, that measures the angular velocity,

and typically has a sampling rate higher than 100Hz. The

magnetometer measures the strength and direction of the local

magnetic field and has a sampling rate of about 50Hz.

B. Signal Processing and Attitude Estimation

In this module, we apply median filter to IMU and mag-

netometer signals to remove noise. However, the BLE signals

depend on the availability of a link between the beacon and the

receiver; as such, the filtering is only possible when there is a

sufficient sequence of the RSSI. After this pre-processing step,

we use the simplified free space path-loss model to convert

RSSI to range measurements. For details of this step see [9].

In this work, we clamp range measurements by discarding any

range value greater than 10m. This is the known effective

range of the BLE technology [30], [9].

Using IMU and magnetometer measurements, we solve

the Attitude and Heading Reference System (AHRS) [31],

[32] problem to estimate the device orientation. Ideally, the



magnetometer senses the direction of the Earth gravitational

field which provides the North-East-Down coordinate system.

However, if the local gravitational field is affected by external

disturbances such as the structure of the building, this ref-

erence system might not be valid anymore and needs to be

verified. Upon availability of the Back-end module, as shown

in Figure 2, AHRS can compensate IMU bias which improves

the orientation estimation.

C. Front-end

In the Front-end we use the sequential Monte-Carlo or

PF technique known as SIR filter to solve the problem of

global localization and tracking the device trajectory. Given the

current device orientation, we sample from the IMU dynamics

to generate particles along the moving direction. Given a

prior map of the BLE beacons and using range measurements

converted from BLE RSSI, we compute importance weights

of particles. In this work, we use a range-only measurement

model with additive white Gaussian noise. Finally, in the

Resampling step particles with higher weights are replicated

and all weights are set uniformly. The Sample, Importance,

and Resampling steps are repeated sequentially.

Since the IMU has a higher frequency than the BLE re-

ceiver, the AHRS solver runs with a higher frequency to use all

available measurements which in turn improves the orientation

estimation accuracy. We sample from the IMU motion model

using the latest device orientation with a frequency that is

adaptable to the available computational resources (usually

the BLE RSSI sampling rate). In this way, without discarding

any sensory information, we can track the device within the

Particle Filter framework.

D. Back-end

The Back-end includes an incremental optimization

(smoothing) algorithm to minimize the error in Front-end

estimates as well as estimation of the system calibration

parameters. Let Xt , (xt, ṗt, l,θt) be the state variables tuple

at any time step t. Let Dt be the set of all range measurements

at time step t and all IMU measurements from time step t−1
to t. The joint probability distribution of the SLAM problem,

Problem 3, by assuming the measurements are conditionally

independent and are corrupted by additive zero mean white

Gaussian noise can be written as follows [33]:

p(X0:T ,D1:T ) = p(X0)
T
∏

t=1

p(Dt|Xt) (1)

log p(X0:T ,D1:T ) = log p(X0) +
T
∑

t=1

log p(Dt|Xt) (2)

Given that p(X0:T |D1:T ) ∝ p(X0)
∏T

t=1 p(Dt|Xt), the

maximum-a-posteriori estimate of X0:T can be computed by

solving the following nonlinear least-squares problem:

X ⋆
0:T =arg min

X0:T

− log p(X0:T |D1:T )

= arg min
X0:T

‖r0‖
2
Σ0

+ ‖r0:T ‖
2
Σr

(3)

where rt denotes the residual term which is the error between

measurements and their corresponding nonlinear models, i.e.

range-only measurement model and preintegrated IMU mea-

surement model as described in [2]; Σ0 and Σr denote the

corresponding measurement noise covariances.

Therefore, the optimization algorithm simultaneously solves

for time-varying IMU bias, the feature map of BLE beacons,

and the entire device trajectory. The resultant trajectory is

smooth and continuous, unlike PF output, due to the motion

constraints enforced by the IMU measurements. Furthermore,

the estimated IMU bias is fed to the AHRS algorithm to

improve the attitude estimation; and the optimized BLE map

is used in the measurement update step of the SIR filter in the

Front-end. This closed-loop architecture improves the Front-

end performance as we will see in Section VI. In this work,

we use iSAM2 algorithm [15] and the GTSAM library [16]

as the Back-end solver.

V. PROBABILISTIC IMU MOTION MODEL

In this section, we describe the proposed simplified method

to incorporate the IMU dynamics into the PF that does not

require sampling from the full 6-dimensional state (pose).

In general, sampling methods tend to become inefficient and

computationally intensive as the dimension of the state grows.

The key idea is to sample the tangential acceleration mag-

nitude along the direction of movement and evolve the state

estimate using a discrete-time stochastic dynamical system that

corresponds to the IMU dynamics.

At any time t, using the AHRS solver the current orientation

estimate, R̂t, is given. Therefore, by knowing the orientation,

the system dynamics can be expressed using the following

linear system:

x̄t+1 = Ftx̄t +Gtut (4)

where x̄t , vec(pt, ṗt) ∈ R
6 is the state vector (of Front-

end), and Ft ∈ R
6×6 and Gt ∈ R

6×6 are system and input

matrices, respectively, and using a sampling time, ts, can be

derived as follows.

Ft =

[

I3 tsI3
O3 I3

]

, Gt =

[

0.5t2sI3 tsI3
tsI3 I3

]

(5)

We can compute the current tangential acceleration direc-

tion, ât, as follows.

ãt = R̂tat + g (6)

ât =
ãt

‖ãt‖
‖ãt‖ 6= 0 (7)

where ãt is the acceleration vector in the global coordinates

after compensating the gravity g. Let ζt ∼ N (0, σa) be the

sampled tangential acceleration magnitude where σa is a

sufficiently large linear acceleration standard deviation that



covers a typical range of activities from slow walking to

sudden movements. Furthermore, to maintain the diversity of

the particles, let νt ∼ N (0, σvI3) be the sampled velocity

vector with the isotropic covariance matrix, σvI3, that perturbs

the position of the particles. We can then construct the input

vector, ut ∈ R
6, as ut = vec(ζtât,νt).

Therefore, we addressed Problem 1 using the proposed

stochastic dynamical system that can serve as the transition

equation p(x̄t|x̄t−1,ut−1). The proposed transition equation

enables PF algorithm to track the device trajectory by pre-

dicting its motion. To address Problem 2 and 3, we use the

described Front-end and Back-end, respectively. We then inte-

grate all modules into a unified closed-loop system (Figure 2).

Remark 2: We note that upon availability of the Back-

end for online system calibration task, the proposed IMU

motion model, and therefore the Front-end can benefit from

it. Consequently, the acceleration bias, θa,t, can be included

in (6), i.e., ãt = R̂t(at − θa,t) + g. However, as we will

show later in the presented evaluations, the model at its basic

form does not depend on this parameter to provide comparable

results as it is used for the sampling purpose.

One might consider sampling ζt from a normal distribu-

tion centered at the current measured acceleration magnitude.

However, we empirically observed that this method degrades

the performance of the system as the measured magnitude,

without calibration, is not reliable. Another reason to sample

from a zero mean distribution is the fact that the variance can

be sufficiently large to cover all possible values. Theoretically

speaking in particle filtering, a sampling strategy is well-

behaved as long as the proposal distribution’s support includes

that of the true posterior distribution. Therefore, the claim

for better tracking using the proposed simplified IMU model

is connected to the fact that it provides a tighter support

while still covers the support of the posterior distribution.

Finally, we note that the proposed probabilistic IMU motion

model follows the standard IMU dynamics as discussed in [2].

However, by providing the orientation, we propose a sampling

strategy that is more computationally attractive for online

applications.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the proposed system using

hardware experiments. In the first experiment, the focus is

on the localization problem where an accurate map of the

beacons is given. We compare localization techniques using

PF with the random walk motion model (labeled as RW),

PF embedded with the proposed probabilistic IMU motion

model (labeled as IMU), PF with the robot dead reckoning

motion model (labeled as DR), and our proposed closed-

loop system including the Front-end (labeled as F.-end) and

the Back-end (labeled as B.-end). We note that the Front-

end is the same as PF with the probabilistic IMU motion

model and the improvement in the results is due to the

proposed closed-loop architecture and exploiting the Back-

end for online system calibration. In the second experiment,

using the same experimental dataset, we run a Monte Carlo

simulation to study the effect of map error on the performance

of each system.

A. Experimental Setup

We employ a wheeled mobile robot equipped with a Google

Tango device [13] which provides the robot trajectory estimate

using visual-inertial odometry. We use Tango’s output as a

proxy for ground truth. The mobile robot is also equipped

with a Nexus6P smartphone1 which collects BLE, IMU, and

magnetometer sensors data. The data is published as Robot

Operating System (ROS) [34] topics through a customized

Android application developed in-house. The IMU and mag-

netometer sensors are sampled at 200Hz and 50Hz, respec-

tively. The BLE scans are sampled at 10Hz; however, in

practice, we experienced an average sampling rate of 7Hz.

The environment is populated with BLE beacons, as shown

by the Bluetooth logo in Figure 1. Furthermore, the prior map

accuracy and the density of BLE beacons are sufficiently high

to make initialization and tracking possible. The experiments

are conducted in a research office environment partitioned

into separate offices cabins and consists of traditional office

furniture. The data is collected by maneuvering the robot

over 100m in an office space of 40 × 50m2. Note that data

is collected in a natural setting on a normal working day

and in presence of office staff members with no movement

restrictions to staff members 2.

B. System Configuration and Initialization

To detect the degeneracy of PF, we calculate the effective

sample size, neff = (
∑np

i=1 w
[i]
t )−1, and perform (systematic)

resampling when neff < nthr; where np is the number

of particles, w
[i]
t is the i-th particle’s weight, and nthr is a

threshold 1 < nthr < np. The explanation and details of the

used parameters are summarized in Table I; and the random

walk (constant velocity with random input) motion model is

explained in [9]. The DR motion model assumes a constant

incremental movement along the AHRS estimated direction

at each time step. This is because the wheel encoder data

is not available in smartphones; however, this model does not

maintain the diversity of the particles. Therefore, we introduce

small velocity noise to perturb the position of the particles. The

velocity noise standard deviation is set to the smallest value

that leads to achieving comparable results.

Our empirical observation showed that slight variations of

the parameters, about 5 − 10%, do not alter the trend of the

results; however, finding suitable parameters for all motion

models and the path-loss model is an important part of the

setup. In particular, the path-loss model parameters can be

estimated as explained in [9]. We tuned all motion models pa-

rameters manually, except the acceleration standard deviation

which can be justified by considering that the average walking

speed is about 1.5m sec−1 and a person can reach that speed

in one second. The velocity standard deviation is tuned as the

1https://www.google.com/nexus/6p/
2The dataset is available upon request. Please contact the authors.



Fig. 3: The experimental localization results from 100 independent runs. From top left, respectively, figures show position RMSE (with 99% confidence
bounds), orientation RMSE (with 99% confidence bounds), boxplot showing the statistical summary of position RMSE. From bottom left, respectively, figures
show the empirical cumulative distribution functions of the compared algorithms for position error and orientation error where each curve illustrates the
median of 100 CDF. The bottom right figure shows an example of the Front-end position error and velocity estimate together with 99% confidence bounds.
Note that unlike the position error, the velocity uncertainty bounds are around the estimated value since we do not have access to the ground truth velocities.
The computational time for processing the entire dataset in MATLAB using a laptop with an Intel Core i5 CPU is on average 42, 60, 66, and 92 seconds for
RW, DR, IMU, and combined Front-end and Back-end, respectively, which are all well below the entire experiment’s duration, i.e., 384 seconds.

secondary motion model parameter to ensure the diversity of

the particles are maintained. We note that this is an important

factor in all particle filtering frameworks. The first 1 − 2 sec
is sufficient for all the compared techniques to initialize, i.e.,

global localization. The particles are drawn uniformly within

the known map area. The robot starts from the bottom left

corner and moves upwards.

We clamp range measurements by discarding any range

value greater than 10m. This is the effective range of the

BLE technology [30]. However, even using a smaller range

does not prevent receiving non-line-of-sight RSSI measure-

ments. In general, it is difficult to deal with non-line-of-sight

observations in a computationally attractive manner, and this

is the main challenge in radio signal-based indoor positioning.

Therefore, we set the unusually large range standard deviation

of 5m for maximum range of 10m to enforce the fact that

range measurements are highly noisy and inaccurate.

C. Localization Comparison under Accurate Map

In this experiment, given an accurate map of the BLE

beacons, we compare the performance of the localization

techniques. We evaluate the results from 100 independent

runs on the collected dataset. Figure 3 shows the summary

of results for all techniques. The evaluation consists of Root

Mean Square Error (RMSE) to show the performance of

each technique as well as the empirical cumulative distri-

bution function (CDF) of the position and orientation error.

The position error is computed using the Euclidean norm

of the three-dimensional position error. The orientation error

is computed as the misalignment angle between the ground

truth rotation matrix, Rgt, and the estimated rotation matrix,

TABLE I: Parameters used in the experiments.

Parameter Symbol Value

− Path-loss model parameters [9]:
Attenuated transmission power aX -64.53
The path-loss exponent γ 1.72
Reference distance d0 1.78 m

− Range-only measurement model (Gaussian noise):
standard deviation σn 5 m

− Random walk motion model:
Position standard deviation σp 0.1 m

Velocity standard deviation σv 0.05 msec−1

− Probabilistic IMU motion model:

Acceleration standard deviation σa 1.5 m2 sec−1

Velocity standard deviation σv 0.005 msec−1

− Dead reckoning motion model:
Motion increment size − 0.075 m

Velocity standard deviation σv 0.03 msec−1

− Particle filter:
Number of particles np 300
Resampling threshold nthr 60
− BLE Beacon Parameters:
Transmission Power − +4 dBm

Broadcasting Frequency − 10 Hz

R̂, using ‖log(RT

gtR̂)‖F, where log(R) computes the matrix

logarithm. The empirical CDF is an unbiased estimate of the

population CDF and is a consistent estimator of the true CDF.

Note that faster rise from zero to one along the vertical axis

is a desirable outcome.

The proposed probabilistic IMU motion model improves

the localization accuracy in all scenarios as it is a better

proposal distribution to sample from. This model can predict

the robot/device motion using IMU measurements, therefore,

the drawn samples are more likely to be near the actual robot



Fig. 4: The evaluation results showing the effect of map perturbations on each technique. From left, respectively, the figures show position RMSE (with 99%

confidence bounds), orientation RMSE (with 99% confidence bounds), boxplot showing the statistical summary of position RMSE from 100 independent
runs. The performance of the proposed system is near the case where an accurate prior map was given which confirms the system is robust to map errors.

pose. Furthermore, the proposed radio-inertial localization and

tracking system improves the overall system performance by

decreasing the localization error.

However, the random walk motion model also provides

comparable results and show that, given an accurate map, it

can be a simple yet useful motion model. This model essen-

tially explores the entire state space without any knowledge

of actual actions. The DR motion model is based on counting

motion increments; therefore, it cannot generalize the motion

of the device. It is worth mentioning that by increasing the

velocity noise variance in DR, the motion model’s behavior

approaches that of the random walk.

D. Effect of Map Perturbation and Radio-inertial SLAM

In the second experiment, we study the effect of large errors

in the prior map of BLE beacons. We use a Monte Carlo

simulation over 100 independent runs using the same collected

dataset. In each run, the location of each beacon is randomly

perturbed by drawing noise from N (03, 3I3). This means the

beacon can be located from near its initial position to 3 ×
3m away from its true position along each axis. Figure 4

shows the position and orientation RMSE evolution over the

experiment time as well as the statistical summary of position

RMSE using a boxplot. Figure 5 shows the CDF plots of the

position and orientation errors. The curves show the median

of 100 independent runs.

By definition, localization algorithms assume such a prior

map is perfect; therefore, the expectation is to observe lower

performance. However, in the closed-loop system, where the

Back-end solves the SLAM problem, the Back-end simul-

taneously solves for the beacons’ map and the trajectory,

while jointly estimating the system calibration parameters. The

feedback to the Front-end results in better localization and

tracking outcome from the PF (Front-end). Consequently, the

more accurate position and velocity estimates from the Front-

end provide better initial values for the Back-end optimization.

Moreover, the proposed system does not discard any measure-

ments and fuses all available data which reduces the estimation

error.

Nevertheless, this test confirms that the proposed system, as

expected, is robust to the error in the map. This property is

highly desirable in practice since the exact measurements of

the map can be challenging, or the map can be modified over

time.

Fig. 5: The empirical cumulative distribution functions of the compared
algorithms under map perturbations. Each curve illustrates the median of 100
CDF from 100 independent runs.

E. Discussion and Limitations

The qualitative results on a larger dataset is shown in

Figure 6. The robot starts from the bottom left corner and

moves upwards. In this experiment, there are no beacons on

the top and right sides of the rectangular path. Therefore, the

system relies on its tracking ability. The error increases when

beacons are sparse, as seen in Figure 6. The algorithm recovers

the robot location as soon as the robot reaches near BLE

beacons at about (25, 10) horizontal and vertical coordinates,

respectively. Each beacon has a unique MAC address which

solves the data association problem. Therefore, assuming there

are sufficient beacons along the path, the proposed localization

and tracking system error on average is fixed. A video showing

the results is available on here: https://www.youtube.com/watch?v=

kEDGSnFvz8A

VII. CONCLUSION AND FUTURE WORK

We studied and developed a localization and tracking system

that performs real-time and is robust to map errors. We

developed a suitable motion model (proposal distribution) for

the sequential Monte-Carlo algorithms that exploits the IMU

dynamics to constrain the samples while improving the track-

ing ability. The proposed system has a closed-loop architecture

and uses all available measurements for estimation.

https://www.youtube.com/watch?v=kEDGSnFvz8A
https://www.youtube.com/watch?v=kEDGSnFvz8A


Fig. 6: The localization and tracking results in an office environment populated
with BLE beacons. The Robot Path is only for the guidance.

Future work includes joint state and parameters estimation

of radio signal measurements (RSSI factors) as done for IMU

factors to extend the ranging to more than 10m. This approach

enables the system to accept any type of RSSI signals, e.g.

WiFi or BLE, regardless of the transmission power. Adopting

the idea in [9] for robust observation selection can also be

a step towards improving the system robustness as well as

increasing the ranging to more than 10m. Finally, we think a

visual-radio-inertial SLAM technique is an attractive research

direction to follow. The radio signals nicely complement visual

measurements, while using visual data increases the estimation

accuracy significantly.
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