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Abstract

Purpose: To develop and validate a radiomics nomogram for
the preoperative prediction of lymph node (LN) metastasis in
bladder cancer.

Experimental Design: A total of 118 eligible bladder cancer
patients were divided into a training set (n¼ 80) and a validation
set (n¼38). Radiomics featureswere extracted fromarterial-phase
CT images of each patient. A radiomics signature was then con-
structed with the least absolute shrinkage and selection operator
algorithm in the training set. Combined with independent risk
factors, a radiomics nomogram was built with a multivariate
logistic regression model. Nomogram performance was assessed
in the training set and validated in the validation set. Finally,
decision curve analysis was performed with the combined train-
ing and validation set to estimate the clinical usefulness of the
nomogram.

Results: The radiomics signature, consisting of nine LN
status–related features, achieved favorable prediction efficacy.

The radiomics nomogram, which incorporated the radiomics
signature and CT-reported LN status, also showed good
calibration and discrimination in the training set [AUC,
0.9262; 95% confidence interval (CI), 0.8657–0.9868] and
the validation set (AUC, 0.8986; 95% CI, 0.7613–0.9901).
The decision curve indicated the clinical usefulness of
our nomogram. Encouragingly, the nomogram also showed
favorable discriminatory ability in the CT-reported LN-
negative (cN0) subgroup (AUC, 0.8810; 95% CI, 0.8021–
0.9598).

Conclusions: The presented radiomics nomogram, a non-
invasive preoperative prediction tool that incorporates the
radiomics signature and CT-reported LN status, shows favor-
able predictive accuracy for LN metastasis in patients with
bladder cancer. Multicenter validation is needed to acquire
high-level evidence for its clinical application. Clin Cancer Res;
23(22); 6904–11. �2017 AACR.

Introduction
Bladder cancer is the ninth most common cancer and the

thirteenthmost common cause of cancer-relateddeathworldwide
(1). Lymph node (LN) metastasis in patients with bladder cancer
indicates a negative prognosis (2–4). Accurate preoperative infor-
mation about LN metastasis can provide useful information for
making treatment decisions, such as the extent of pelvic LN
dissection (PLND) required and the use of neoadjuvant chemo-
therapy (5, 6). Currently, contrast-enhanced CT plays an impor-
tant role in preoperative nodal staging and is a standard procedure
in clinical practice (7). However, its efficacy in identifying malig-

nant nodes is unsatisfactory, with a sensitivity of 31%–45%. This
low efficacy has led to a considerable proportion of patients being
understaged or overstaged (8–10).

"Radiomics" refers to the high-throughput extraction of large
numbers of imaging features, thus converting medical images
into mineable high-dimensional data; the subsequent quantita-
tive analysis of these data can support decision-making (11, 12).
The radiomics approach has drawn increased attention in recent
years, because radiomics data may aid in disease detection,
diagnosis, evaluation of prognosis, and prediction of treatment
response (12). Currently, radiomics is mainly used in oncology
to facilitate improved clinical decision-making, especially in lung
cancer and in glioblastoma (13, 14). To our knowledge, there has
been no radiomics-based study for the preoperative prediction of
LN metastasis in bladder cancer to date.

Hence, in this study, we sought to develop and validate a
radiomics nomogram that would incorporate a radiomics signa-
ture and clinical risk factors for the preoperative prediction of LN
metastasis in patients with bladder cancer.

Materials and Methods
Patients

This retrospective analysis of anonymous datawas approved by
the institutional review board. A total of 118 consecutive patients
with bladder cancer who were treated between July 2007 and
March2017were enrolled inour study, according to the following
inclusion criteria: (i) patientswhounderwent laparoscopic radical
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cystectomy and extended PLND (up to the aortic bifurcation) for
bladder cancer with tumor tissues that were pathologically con-
firmed as urothelial carcinoma; (ii) contrast-enhanced pelvic
CT performed fewer than 20 days before surgery; and (iii) avail-
ability of clinical characteristics. The exclusion criteria were as
follows: (i) preoperative therapy (neoadjuvant chemotherapy or
radiotherapy), and (ii) suffering from other tumor disease at the
same time. Supplementary Figure S1 shows the patient recruit-

ment pathway.Wedivided thepatients into two independent sets:
80 patients treated between July 2007 and June 2014 constituted
the training set, whereas 38 patients treated between July 2014
and March 2017 constituted the validation set.

Clinical data, such as age and sex, were obtained by reviewing
the medical records. All CT scans were reviewed by two radiol-
ogists with, respectively 15 (Y. Li, reader 1) and 10 years (Zhuo
Wu, Department of Radiology, Sun Yat-Sen Memorial Hospital,
Sun Yat-Sen University, Guangzhou, P.R. China, reader 2) of
experience in pelvic CT interpretation. They recorded the size of
the largest tumor, the number of tumors, T staging, and the size
of all visible LNs. Patients with visible pelvic LN > 8 mm or
abdominal LN > 10mm in the maximal short-axis diameter were
regarded as clinically LN-positive (cNþ; ref. 15). Any disagree-
mentwas resolved by consultation. The 2009 TNMstaging system
(16) and the 2004 WHO classification (17) were used for patho-
logic staging and pathologic grading, respectively.

CT image acquisition, region-of-interest segmentation, and
radiomic feature extraction

The radiomics workflow is presented in Fig. 1. Before receiving
transurethral resection of bladder tumor (TURBT), all patients
underwent contrast-enhanced pelvic CT with a 64-slice spiral CT
scanner (Somatom Sensation 64, Siemens Medical Systems). The
CT scan parameters were as follows: 120 kV, 200 effective mAs,
beam collimation of 64� 0.6mm, amatrix of 512 � 512, a pitch
of 0.8, and a gantry rotation time of 0.5 s. After nonenhanced CT
scanning, a dynamic contrast-enhanced CT scan was performed
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Figure 1.

Radiomics workflow and study flowchart.

Translational Relevance

Radiomics, a promising field, uses computational methods
to convert medical images into mineable high-dimensional
data, whichmay aid indisease detection, diagnosis, evaluation
of prognosis, and prediction of treatment response. In this
study, a radiomics nomogram for the preoperative prediction
of lymph node (LN) metastasis in bladder cancer that incor-
porated the radiomics signature and CT-reported LN status
was developed, which showed good calibration and discrim-
ination in the training and validation set. The nomogram also
showed favorable discriminatory ability with the CT-reported
LN-negative (cN0) subgroup. This radiomics-based study (i)
provides a noninvasive and low cost preoperative prediction
tool to identify the bladder cancer patients with high risk of LN
metastasis; and (ii) provides novel insights into the construc-
tion of a predictive model for bladder cancer patients.
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after intravenous administration of 80–100mL nonionic contrast
material (Iopamidol, 370mg I/mL, Bracco) using power injection
at a rate of 3.5 mL/second followed by saline flush (20 mL).
Arterial-phase and vein-phase images were obtained at 25 and
60 seconds, respectively. The slice thickness of the reconstructed
image was 1.0 mm. Arterial-phase CT images were retrieved for
image feature extraction.

Tumor regions of interest (ROI) were semiautomatically seg-
mented in the largest cross-sectional area using the Materialise
MIMICS 17.0 software (Materialise). Texture extraction was per-
formed using in-house texture extraction software with algo-
rithms implemented in MATLAB 2015b (MathWorks). In total,
150 imaging features were extracted from a single CT image,
including 50 gray-level histogram features and 100 gray-level
cooccurrence matrix features. More information about the ROI
segmentation procedure and radiomics feature extraction meth-
odology can be found in the Supplementary Data.

Intra- and interclass correlation coefficients (ICC) were used to
assess the intra- and interobserver reproducibility of radiomics
feature extraction. We initially chose 25 random CT images for
ROI segmentation and feature extraction. The ROI segmentation
wasperformedby two radiologistswith, respectively, 15 (reader1)
and 10 years (reader 2) of experience in pelvic CT interpretation.
Reader 1 then repeated the same procedure one week later. An
ICC greater than 0.75 indicates good agreement of the feature
extraction. The remaining image segmentation was performed by
reader 1.

LN status–related feature selection and radiomics signature
construction

We used the least absolute shrinkage and selection operator
(LASSO) logistic regression algorithm, which is suitable for the
regression of high-dimensional data, with the training set to select
LN status–related features with nonzero coefficients from among
the 150 imaging features (18). A formula was generated using a
linear combination of selected features that were weighted by
their respective LASSO coefficients; the formula was then used to
calculate a risk score (defined as the radiomics score) for each
patient to reflect the risk of LNmetastasis. The predictive accuracy
of the radiomics signature was quantified by the area under the
receiver–operator characteristic (ROC) curve (AUC) in both the
training and validation sets.

Construction of the radiomics nomogram
The radiomics signature and the clinical variables were tested in

a multivariate logistic regression model to predict LN metastasis
in the training set. Regarding the multivariate logistic regression,
the collinearity diagnosis was performed using the variance infla-
tion factor (VIF). A radiomics nomogramwas then constructed on
the basis of the multivariate logistic regression model.

Assessment of nomogram performance
The calibration of the nomogram was assessed with a calibra-

tion curve. The Hosmer–Lemeshow test was performed to assess
the goodness-of-fit of the nomogram, and the AUCwas calculated
to quantify the discrimination performance of the nomogram.

Internal validation of the radiomics nomogram
Internal validation of the radiomics nomogramwas performed

with the validation set. A radiomics score was calculated for each
patient in the validation set using the formula constructed in the

training set. The calibration and theHosmer–Lemeshow test were
performed, and the AUC was calculated.

Clinical utility of the radiomics nomogram
To estimate the clinical utility of the nomogram, decision curve

analysis (DCA)was performed by calculating the net benefits for a
range of threshold probabilities in the combined training and
validation set.

Statistical analysis
The LASSO logistic regression model was used with penalty

parameter tuning that was conducted by 10-fold cross-validation
based on minimum criteria. The likelihood ratio test with back-
ward step-down selection was applied to the multivariate logistic
regression model. Detailed descriptions of the LASSO algorithm
and DCA are provided in the Supplementary Data.

All statistical tests were performed using R statistical software
version 3.3.1. We used the "glmnet" package to perform the
LASSO logistic regression model analysis. The VIFs were calcu-
lated using the "car" package. The ROC curves were plotted using
the "pROC" package. Nomogram construction and calibration
plots were performed using the "rms" package, and the Hosmer–
Lemeshow test was conducted using the "generalhoslem" pack-
age. DCA was performed using the "dca.R." A two-sided P < 0.05
was considered significant.

Results
The study flowchart is presented in Fig. 1. The patient char-

acteristics in the training and validation sets are shown in Table 1
and Supplementary Table S1. pN1–3 patients formed 21.3%
(17/80) and 18.4% (7/38) of the training and validation sets,
respectively, and there were no significant differences between
them (P ¼ 0.721, c2 test). In total, 58.3% (14/24) of the pN1–3
patients were understaged and 7.4% (7/94) of the pN0 patients
were overstaged according to the CT-reported LN status in our
study.

Table 1. Baseline characteristics of the training and validation sets

Training set
(n ¼ 80)

Validation set
(n ¼ 38)

pN1-3 pN0 Pa pN1–3 pN0 Pa

Gender
Male 16 44 0.083 6 24 1.000
Female 1 19 1 7

Age, years
<65 10 37 0.994 2 17 0.405
�65 7 26 5 14

CT-reported tumor size
�3 cm 7 33 0.412 2 15 0.427
>3 cm 10 30 5 16

CT-reported number of tumors
Single 13 38 0.219 4 16 1.000
Multiple 4 25 3 15

CT-reported T stage
cTa-cT2 4 34 0.026b 0 21 0.002b

cT3-cT4 13 29 7 10
CT-reported LN status
cN1-3 5 4 0.025b 5 3 0.002b

cN0 12 59 2 28
aP values were obtained from the univariate association analyses between the
LN status and each clinical factor.
bP < 0.05.
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A total of 150 imaging features were extracted from each
arterial-phase CT image. The features were classified into two
categories: gray-level histogram features and gray-level cooccur-
rencematrix features. More-detailed information about the imag-
ing features can be found in the Supplementary Methods and
Supplementary Table S2. The intraobserver ICCs ranged from
0.803 to 0.990 and the interobserver ICCs ranged from 0.779 to
0.935, indicating favorable intra- and interobserver feature extrac-
tion reproducibility.

Nine LN status–related features with nonzero coefficients were
screened using a LASSO logistic regression model in the training
set (Fig. 2A and B). The radiomics score calculation formula is
presented in the Supplementary Data, where the selected features
can be found. pN1–3 patients generally displayed a higher radio-
mics score than pN0 patients. There was a significant difference

between the radiomics scores [median (interquartile range)] of
the pN0 and pN1-3 patient groups in the training set [�2.271
(�3.484 to �1.439) vs. 0.113 (�0.722–0.486), respectively, P <
0.001]; this differencewas confirmed in the validation set [�2.505
(�3.056 to�0.811) vs.�0.386 (�0.963–1.247), respectively, P <
0.05]. The radiomics signature showed favorable predictive effi-
cacy, with an AUC of 0.9085 [95% confidence interval (CI),
0.8306–0.9864] in the training set and 0.8525 (95% CI,
0.7180–0.9870) in the validation set (Fig. 2C and D).

The radiomics signature and CT-reported LN status were iden-
tified as independent predictors of LN metastasis in bladder
cancer patients by a multivariate logistic regression model
(Table 2). Regarding the collinearity diagnosis, the VIFs of the
seven predictors ranged from 1.09 to 1.28, indicating that there
was no collinearity. A radiomics nomogram incorporating these

Figure 2.

Texture feature selection using LASSO
logistic regression and the predictive
accuracy of the radiomics signature.
A, Selection of the tuning parameter (l)
in the LASSO model via 10-fold cross-
validation based on minimum criteria.
Binomial deviances from the LASSO
regression cross-validation procedure
wereplottedas a function of log(l). The
y-axis indicates binomial deviances.
The lower x-axis indicates the log(l).
Numbers along the upper x-axis
represent the average number of
predictors. Red dots indicate average
deviance values for each model with a
given l, and vertical bars through the
red dots show the upper and lower
values of the deviances. The vertical
black lines define the optimal values of
l, where the model provides its best fit
to the data. The optimal l value of 0.015
with log(l) ¼ �4.18 was selected.
B, LASSO coefficient profiles of the 150
texture features. The dotted vertical
line was plotted at the value selected
using 10-fold cross-validation in A. The
nine resulting features with nonzero
coefficients are indicated in the plot.
Plots (C) and (D) show the ROC curves
of the radiomics signature in the
training and validation sets,
respectively.

Table 2. Risk factors for LN metastasis in bladder cancer

Univariate logistic regression Multivariate logistic regression
Variable and intercept OR (95% CI) P OR (95% CI) P

The radiomics score (per 0.1 increase) 1.167 (1.081–1.260) <0.001a 1.171 (1.080–1.269) <0.001a

Gender (male vs. female) 0.145 (0.018–1.171) 0.070 NA NA
Age, years (<65 vs. �65) 0.996 (0.335–2.958) 0.994 NA NA
CT-reported tumor size (�3 cm vs. >3 cm) 1.571 (0.531–4.651) 0.414 NA NA
CT-reported number of tumors (single vs. multiple) 0.468 (0.137–1.599) 0.226 NA NA
CT-reported T stage (cTa-cT2 vs. cT3-cT4) 3.810 (1.119–12.975) 0.032a NA NA
CT-reported LN status (cN0 vs. cN1-3) 6.146 (1.436–26.303) 0.014a 10.515 (1.069–103.459) 0.044a

NOTE: NA, not available. These variables were eliminated in the multivariate logistic regression model, so the OR and P values were not available.
aP < 0.05.
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two predictors was constructed (Fig. 3A). Figure 3B illustrates the
calibration curve of the nomogram. The calibration curve and a
nonsignificant Hosmer–Lemeshow test statistic (P ¼ 0.6521)
showed good calibration in the training set. An AUC of 0.9262
(95% CI, 0.8657–0.9868) also revealed good discrimination by
the nomogram (Fig. 3D). The favorable calibration of the radio-
mics nomogram was confirmed with the validation set (Fig. 3C).
The Hosmer–Lemeshow test yielded a nonsignificant P value of
0.5359, and the AUC of the validation set was 0.8986 (95% CI,
0.7613–0.9901; Fig. 3E). Therefore, our nomogram performed
well in both the training and validation sets.

The DCA for the radiomics nomogram is presented in Fig. 4.
The DCA indicated that when the threshold probability for a

doctor or a patient is within a range from 0 to 0.84, the radiomics
nomogram adds more net benefit than the "treat all" or "treat
none" strategies.

In addition, we evaluated the discriminatory efficiency of the
radiomics nomogram in all 118 patients and in the CT-reported
LN-negative (cN0) subgroup (n ¼ 101) using ROC analyses.
Figure 5A shows ROC analyses comparing the discriminatory
efficacy of the radiomics nomogram to those of the radiomics
signature and the CT-reported LN status alone. The radiomics
nomogram yielded the greatest ROC of 0.9109 (95%CI, 0.8538–
0.9680), which suggested that the nomogram achieved better
predictive efficacy than either the radiomics signature or the
CT-reported LN status alone. Notably, the nomogram also

Figure 3.

Radiomics nomogram for the prediction
of LN metastasis (A). Calibration curves
of the radiomics nomogram in the
training set (B) and validation set (C).
Calibration curves depict the calibration
of the nomogram in terms of agreement
between the predicted risk of LN
metastasis and observed pN outcomes.
The 45� blue line represents a perfect
prediction, and the dotted lines
represent the predictiveperformanceof
the nomogram. The closer the dotted
line fit is to the ideal line, the better the
predictive accuracy of the nomogram is.
Plots (D) and (E) show the ROC curves
of the radiomics nomogram in the
training and validation sets,
respectively.
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showed good discriminatory ability in the cN0 subgroup (AUC
0.8810; 95%CI, 0.8021–0.9598; Fig. 5C). After obtaining the risk
scores from the nomogram, we defined an optimal risk score
cutoff value of �1.412, based on the maximum Youden index in
the training set. Thepatientswere classified into low- andhigh-risk
groups according to the optimal cut-off values. Notably, the high-
risk group had a greater possibility of LNmetastasis in all patients
and in the cN0 subgroup (Fig. 5B and D).

Discussion
LN metastasis is a negative prognostic factor in patients with

bladder cancer. Patients with LN metastasis have a lower 5-year
overall survival rate (15–31%) than LN-negative patients (>60%;
refs. 2–4). Preoperative prediction of LN status in patients with
bladder cancer is therefore important for clinical decision-
making.

A phase III randomized trial revealed that patients withmuscle-
invasive bladder cancer (MIBC) show improved 10-year survival
after neoadjuvant chemotherapy (36% vs. 30% without; ref. 19).
In addition, current guidelines recommend offering neoadjuvant
chemotherapy to T2–T4a and cN0M0 bladder cancer patients
(20). However, a large proportion of bladder cancer patients will
not benefit from neoadjuvant chemotherapy, and it is currently
difficult to identify the patients who will benefit (21). Therefore,
neoadjuvant chemotherapy has not been performed regularly
(22). Moreover, because neoadjuvant chemotherapy targets

micrometastasis (including LN metastasis), patients with LN
metastases are likely to benefit from this therapy (23).

Knowledge has grown regarding bilateral PLND at the time of
radical cystectomy in patients with bladder cancer. However,
controversy remains concerning the extent towhich PLND should
be performed. A larger PLND template can provide more accurate
nodal staging and lead to more radical therapy. Dorin and
colleagues reported on a series of 646 patients who received
radical cystectomy and PLND. They found that 23% of the
patients showed LN metastasis, among whom 41% had malig-
nant LNs above the bifurcation of the common iliac arteries,
exceeding the region of the standard PLND template (24). A
systematic review indicated that extended PLND might be super-
ior to lesser degrees of dissection (25). Nevertheless, extended
PLND has not been performed regularly or widely because more
extended PLND has a higher grade of operative difficulty and,
hence, the potential for more harm. Currently, clinicians cannot
identify patients who will benefit from extended PLND.

If patientswhoare at high risk of LNmetastasis canbe identified
preoperatively, then such patients might represent an appropriate
group for neoadjuvant chemotherapy and extended PLND. How-
ever, the accuracy of contrast-enhanced CT, which is the standard
clinical procedure for preoperative nodal staging, is unsatisfacto-
ry, and a considerable proportion of patients are understaged or
overstaged (7–10). Thus, improved predictive tools for preoper-
ative nodal staging are urgently needed.

A nomogram incorporating two items, namely "TUR T stage"
and "TUR tumor grade," has been reported to preoperatively
predict LN stage. The predictive accuracy of this model is only
63.1%, thus suggesting that 36.7% of patients would remain
misclassified (26). With the development of high-throughput
technology and analytical approaches, multimarker analysis has
been increasingly applied. This approach combines individual
markers to generate marker panels for better predictive or diag-
nostic performance and has been a subject of much interest in
recent years (27). For example, a 20 mRNA-based classifier [AUC
(95%CI), 0.67 (0.60–0.75)] and a 51 RNA–based classifier [AUC
(95% CI), 0.82 (0.71–0.93)] have been constructed to predict LN
metastasis in bladder cancer patients (28, 29). Similarly, the
radiomics approach can incorporate individual imaging features
into a radiomics signature. Zhang and colleagues proposed a
radiomics strategy based on the texture features of diffusion-
weighted images for preoperative grading in patients with bladder
cancer (30). That study,which represents thefirst radiomics-based
study of bladder cancer demonstrated the feasibility of applying a
radiomics approach to bladder cancer.

Thus, we attempted to develop a radiomics signature for the
prediction of LN metastasis in patients with bladder cancer. Our
radiomics signature exhibited favorable discrimination, with an
AUC of 0.8901 across all 118 patients. Next, we considered
clinical risk factors. A multivariate logistic regression model
indicated that CT-reported LN status was a significant predictive
factor distinct from the radiomics signature. To provide an easy-
to-use tool for clinicians, we constructed a radiomics nomogram
based on a multivariate logistic regression model that showed
good calibration and discrimination in the training and valida-
tion sets. The AUC of the nomogram was 0.9109, suggesting that
the radiomics nomogram achieved greater predictive efficacy than
either the radiomics signature or the CT-reported LN status alone.
Notably, a valuable feature of our radiomics nomogram is its
discriminatory ability in cN0 patients. Bladder cancer patients

Figure 4.

DCA for the radiomics nomogram. The y-axis represents the net benefit. The
pink line represents the radiomics nomogram. The blue line represents the
hypothesis that all patients had LN metastases. The black line represents the
hypothesis that no patients had LN metastases. The x-axis represents the
threshold probability. The threshold probability is where the expected benefit
of treatment is equal to the expected benefit of avoiding treatment. For
example, if the possibility of LN metastasis involvement of a patient is over the
threshold probability, then a treatment strategy for LN metastasis should be
adopted. The decision curves in the validation set showed that if the
threshold probability is between 0 and 0.84, then using the radiomics
nomogram to predict LN metastases adds more benefit than treating either all
or no patients.
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diagnosed as cN0 are typically considered to be at low risk of LN
metastasis. However, some cN0 patients actually harbor LN
metastases, and it is a formidable challenge to precisely identify
which patients will experience LN metastasis. Encouragingly, our
nomogram showed good discriminatory ability in cN0 patients.
Furthermore, when categorized into low- and high-risk groups on
the basis of the cutoff values of the risk score derived from the
nomogram, the high-risk group had a significantly greater prob-
ability of having LN metastases. Therefore, our nomogram may
serve as an accurate and reliable predictive tool for LN metastasis
in patients with bladder cancer, especially cN0 patients.

Compared with contrast-enhanced CT, which is the standard
clinical nodal staging tool in current clinical practice, the predic-
tive power of our model is clearly superior. For cN0 patients in
particular, our nomogram exhibits superior performance. On the
basis of contrast-enhanced CT, cN0 patients are all diagnosed as
LN-negative, whereas our nomogram showed good discrimina-
tory ability to identify the patients at high risk of LN metastasis.
Notably, the three previousmodels for preoperative nodal staging
were invasive predictive tools. The presented radiomics nomo-
gram consists of only two items, both of which are available from
routine contrast-enhancedCT. Thus, our nomogram can serve as a
noninvasive preoperative predictive tool to assess LN status in
bladder cancer patients. In addition, the predictive power of our
model for nodal staging is superior to the three previous models.

The limitations of our study include the lack external validation
for the model. Multicenter validation with a larger sample size is

needed to acquire high-level evidence for clinical application. In
addition, geneticmarkers have not yet been incorporated into our
nomogram. Because multigene classifiers have reportedly per-
formedwell inbladder cancer preoperative nodal staging (28, 29),
a combination of gene marker panels and a radiomics signature
may improve the ability to predict LN metastasis in patients with
bladder cancer.

Our radiomics nomogram, which is a noninvasive predictive
tool that combines a radiomics signature with CT-reported LN
status, shows favorable predictive accuracy for preoperative LN
metastasis in bladder cancer, especially for cN0 patients. Multi-
center retrospective validation, even prospective randomized
clinical trials should be performed to obtain high-level evidence
for clinical applications in subsequent studies.
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