IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

A Radix-10 Digit-Recurrence Division Unit:
Algorithm and Architecture

Tomas Lang, Member, IEEE Computer Society, and
Alberto Nannarelli, Member, IEEE Computer Society

Abstract—In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm. The previous decimal
division designs do not include recent developments in the theory and practice of this type of algorithm, which were developed for
radix-2" dividers. In addition to the adaptation of these features, the radix-10 quotient digit is decomposed into a radix-2 digit and a
radix-5 digit in such a way that only five and two times the divisor are required in the recurrence. Moreover, the most significant slice of
the recurrence, which includes the selection function, is implemented in radix-2, avoiding the additional delay introduced by the
radix-10 carry-save additions and allowing the balancing of the paths to reduce the cycle delay. The results of the implementation of
the proposed radix-10 division unit show that its latency is close to that of radix-16 division units (comparable dynamic range of
significands) and it has a shorter latency than a radix-10 unit based on the Newton-Raphson approximation.

Index Terms—Decimal arithmetic, digit-recurrence division, decimal division, algorithms and architectures for floating-point arithmetic.

1 INTRODUCTION

THE need for floating-point decimal arithmetic in hard-
ware has been reported in several publications (some
recent references being [1], [2], [3], [4]). Moreover, radix-10
units are included in some processors (although not
floating-point) [5] and some recent designs for adders,
multipliers, dividers, and square-root units have been
described in [3], [4], [5], [6], [7].

In this work, we present a radix-10 division unit that is
based on the digit-recurrence algorithm. Digit-recurrence
algorithms for division and square root give probably the
best trade-off in delay area, do not require the use of a
multiplier, and easily provide exact rounding. Previous
designs of decimal dividers are reported in [4], [5] and in
several patents [8], [9], [10], [11], [12], [13]. The previous
digit-recurrence designs are relatively old and do not
include recent developments in the theory and practice of
this type of algorithm. In particular, the recent IBM z900
processor includes a decimal divider using the restoring
algorithm [5]. On the other hand, [4] describes a recent
implementation based on the Newton-Raphson approxima-
tion of the reciprocal. We compare with this implementa-
tion in Section 5 and show that the digit-recurrence
approach might produce a lower latency.

The design described in this paper includes the following
novelties, with respect to previous designs:

o T. Lang is with the Department of Electrical Engineering and Computer
Science, Engineering Tower, Room 602, University of California, Irvine,
CA 92697. E-mail: tlang@uci.edu.

o A. Nannarelli is with the Department of Informatics and Mathematical
Modeling, Technical University of Denmark, Richard Petersens Plads-
Building 321, DK-2800 Kongens Lyngby, Denmark.

E-mail: an@imm.dtu.dk.

Manuscript received 4 apr. 2006 revised 25 Sept. 2006; accepted 8 Jan. 2007;
published online 27 Feb. 2007.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0131-0406.
Digital Object Identifier no. 10.1109/TC.2007.1038.

0018-9340/07/$25.00 © 2007 IEEE

e Adaptation of the techniques developed for radix-2"
dividers such as

signed-digit redundant quotient,
carry-save representation of the residual,
decomposition of the quotient digit,
realization of the quotient-digit selection by
preloading the selection constants and then
comparing them with an estimate of the
residual,
5. overlapped implementation of the selection of
both components of the quotient digit,
6. retiming and separate implementation of the
most significant digits (slice), and
7. on-the-fly conversion, normalization, and
rounding.

e More specifically, decomposition of the quotient
digit into one radix-5 component and one radix-2
component, with the radix-5 component having
values {—2,—1,0,1,2}. This results in a redundancy
factor of 7/9 and requires only multiples of the
divisor d, 2d, and 5d.

e Radix-2 algorithm and implementation of the most
significant slice to reduce the critical path delay. The
retiming ensures that the critical path is in this slice
so that an efficient binary implementation reduces
the cycle time.

With respect to the floating-point format, several recent
papers discuss the issue [1], [2]. Of particular interest is the
specification that has been added to the revision of the
IEEE 754 Standard [14]. In this paper, we assume normal-
ized and fractional significands for operands and result.
Moreover, we use a binary coded decimal (BCD) coding for
the decimal digits. For other representations and/or coding,
it is possible to use conversions or to adapt the algorithm
and implementation. Specifically, [4] describes an imple-
mentation of the modules required for compliance with the
IEEE 754 Standard.

Published by the IEEE Computer Society

o=

2
X d significand I Ex Ed Sx Sd
l l computation |
|
digit - recurrence I
94, = SEL(10»3{,-], d) : exp. difference
wlj+1] = 10wfj] - q 4,,d /)
/
Qj41 . w |r’eXp. |
sign : incr.
conv. norm. sign-zero
& rounding = stect | exp. update
T zero |
| ;
l |
I ! Eq Sq

Fig. 1. Structure of the floating-point radix-10 division.

We show the proposed algorithm and architecture for
the divider unit. We then implement the design by using a
90-nm complementary metal-oxide semiconductor (CMOS)
standard cells library and Synopsys tools. Moreover, we use
the same design tools and cells to implement two radix-16
units, namely, the basic retimed radix-16 and a faster radix-
16 unit, as presented in [15], and show that the radix-10
divider has a latency similar to that of the basic retimed
radix-16 unit.

Finally, we compare with the design based on Newton-
Raphson iterations [4] and conclude that the digit-recur-
rence approach that we propose offers the shortest latency
for decimal division among the units presented so far.

2 OPERATION AND ALGORITHM

We perform the division operation @ = X/D in which
the operands and result have a floating-point represen-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

and Q = (—1)%q-10%. The corresponding structure of the
operation is shown in Fig. 1. We now concentrate on the
digit-recurrence algorithm to obtain the significand of the
quotient. To be specific, we perform decimal fractional
division, with z and d normalized such that 0.1 < z,d <1
(see Table 1 for the notation used). We also produce a
normalized quotient. The modification of the algorithm and
the implementation for other cases are straightforward.

2.1 Background
We now summarize the theory and development of the
radix-r digit-recurrence algorithm, as described in more
detail, for example, in [16]. This will be the basis for the
radix-10 case that we propose.

Given the significands of the dividend z and of the
divisor d, we produce the significand of the quotient ¢
such that

r=gq-d+rem.

If the quotient has a maximum relative error of 1 ulp, then
rem < d - ulp. Moreover, rounding (round-half-even mode)
produces a quotient with a maximum relative error of
0.5 ulp.

In the digit-recurrence algorithm, the quotient is pro-
duced one digit per iteration of the following radix-r
recurrence on the residual:

(1)

with initial condition w[0] = « and with the quotient digit
obtained by the selection function

wlj + 1] = rw[j] — gj41d,

—

gin1 = SEL(rw[j], d), (2)

—

tation such that X = (—1)%z.10%, D=

(=1)%d - 105,

TABLE 1
Symbols and Notation
radix-10 radix-2 name
x dividend
d divisor
q quotient
r=10 radix
qj4+1 quotient digit at iteration j
a gj+1 € [~a,a]
p=a/(r—1) redundancy factor
qaj+1 and qrjp1 4j+1 = 5qmj+1 +qrji+1, g7 = {—1,0,1} and g1, = {-2,-1,0,1,2}
ar, grj+1 € [~ar,ar]
wj] residual at iteration j
Wy, We Wa, We carry-save representation of w
e error in the estimate 0 [4] due to using a carry-save representation
wy;) digit of weight 10~*
ols] olj] = 10w[s] — 5qs151d
Ly, U] selection interval for g;41 =k
mﬂm’) selection constant for ¢; = k and the subinterval [d;, d;41)
(...) estimate of (...)
truncs(...) (...) truncated up to third fractional digit
Wen [7] W3] 103 (trunes(wlj])) = wywayw)
ym 4] Y[4] 10wm [4] + w(g
(grj - 5d)m (au35D) 10%(truncs(qm; - 54))
(arjd)m (qr;D) 10%(truncs(qr;d))
b; BCD digit converted from quotient digit g;

b(iy

BCD digit in position i in normalized quotient Qunorm

where rw[j] and d are estimates of rwlj] and d, respectively.

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 3

Wa(i—1) Ws(i) Ws(it1)
w,lj]: ssss | 8sss8 s8s8
we[7]: o c c c

We(i-1) We(i) Wefit1)

Fig. 2. Radix-10 carry-save representation of w (ssss corresponds to a
digit in BCD representation).

To allow for the use of estimates in the selection function, it
isnecessary to use a redundant digit set for the quotient digit.
For a symmetrical (and continuous) digit set —a < g; < q, the
redundancy factor is defined as p =a/(r —1). To assure
convergence, the selection function should satisfy the range
of the residual, namely, |w[j]| < pd. Moreover, to speed up
the subtraction, a redundant adder is used.

For the selection function, the divisor is partitioned into
subranges [d;,d;+1) such that, for subrange i, the selection
function is defined by the selection constants my () so that
the quotient digit has value k if

mi(i) < rw < my(i +1).

The selection constants are selected so that the range of the
residual is bounded. This is achieved by the condition

Li(diy1) < my(i) < Up1(di) — e,

where [Ly, U;] is the selection interval for ¢; = k, with L (d;) =
(k — p)d; and Uy = (k + p)d;. Moreover, e is the maximum
error introduced by using 7w instead of a truncated rw[j]. This
expression is specific to the case in which the estimate is
obtained by truncating the carry-save representation of rw(j].
In this case, 0 < trunc(rw[j]) — rw[j] <e.

2.2 Proposed Algorithm

We now describe the algorithm that we propose. As is
usually done for algorithms using signed values and an
addition or subtraction-based recurrence, we use a range-
complement (equivalent to two’s complement in radix 2)
representation of these signed values. For the radix-10 case,
to represent a signed value with n decimal digits, the
representation has n decimal digits and one additional digit
(bit) with a value of 0 or 1 so that a negative fraction x is
represented by 2 — |z|.

To reduce the delay of the subtraction in the recurrence,
we use a radix-10 carry-save representation of the residual,
as shown in Fig. 2, with w,;) € [0,9] and w,;) € [0,1]. As a
consequence of this representation, the subtraction is done
using a radix-10 carry-save adder, which adds a carry-save
operand and a conventional operand to produce a carry-
save result, and the delay of the addition corresponds to the
delay of one radix-10 digit.

The direct implementation of the radix-10 recurrence has
two complications: 1) The selection function is complex and
has a large delay and 2) the divisor multiples required for
the recurrence are complicated to generate. To overcome
these issues, we decompose the quotient digit as

4j = 5quj + qLjs
with digit sets

quj € {-1,0,1} and qr; € {—ar,...,ar}

so that the recurrence is performed as follows:

wlj + 1] = 10w[j] — 5qmj+1d] — qrjr1d = v[j] — qrj41d. (3)

We choose aj, =2, which produces —7<¢; <7, and a
redundancy factor p = 7/9. This choice of the digit set of qr,
simplifies the generation of the multiples gz ;d.

Since, for convergence, |w[j]| < (7/9)d, we initialize
w[0] = z/100, which satisfies the range for the worst case,
where z = 1.0 and d = 0.1.

Therefore, the recurrence is performed in the following
steps (we later show how we can implement this faster):

o Compute

quje1 = SELg(10w[j], d),

where 101/0[\]'] and d are estimates of 10w[j] and d,
respectively, as discussed further later.

e Select 5qpji1d = quji1 - (5d) from the precomputed
—5d, 0, and +5d and compute

v[j] = 10w[j] — qmjs1 - (5d),

with v[j] also in radix-10 carry-save format.

e Compute ¢z = SELL(v[/jT, 67)
e Select gz;y1d from the precomputed —2d, —d, 0, +d,
and +2d and compute

wlj+ 1] = vj] = qrjnd.
The above-mentioned recurrence requires the following;:

e selection functions for ¢gjy1 and qrj1 (described in
Section 2.2.1),

e precomputation of 5d and 2d, and

e radix-10 carry-save subtractions.

The multiples 2d and 5d are easy to generate. Specifically,
the generation of 2d requires a carry propagation of only
one digit and the generation of 5d can be performed by
multiplying by 10 (a wired left shift) and dividing by 2,
which requires a carry to the adjacent less significant
position.

Although, in general, the range-complement representa-
tion of w[j] would require an additional bit for the sign, in
this case, since the most significant digit of the magnitude of
w[y] is 7, the most significant bit of the most significant digit
acts as the sign bit.

2.2.1 Selection Function
We now determine the selection functions, namely,

g = SELy (10w, d)
q. =SELL(D,d).

The notation and process follow [16] for the general
radix-r case.

The estimates 10w and © are obtained by using a limited
number of digits of the carry-save representation. Although,
in principle, this number could be different for 10w than for
v, we use the same number because, as described later, we
use a radix-2 representation for this slice of digits. Let us
call ¢ the number of fractional digits of the estimates.

power of 10 o -1 ... -—t
10w
10w,[f]: s ssss .ssss

Ww]j]: ¢ ¢ e

—(t+1) —(t+2)

8855 5888 5888

L1 1 1

11...1-10F < 1.12-10°¢

Fig. 3. Error in carry-save estimate.

Moreover, as we will see in the implementation, we do not
include in the estimate the carry bit of digit ¢. Then, the
error due to the estimate is bounded by 1.12 x 107/, as
shown in Fig. 3. Then, the conditions for the selection
constants my are

Li(di1) < my(i) < Up—i(d;) — 1.12 x 1077, (4)

where [L;, Uy] are the corresponding selection intervals.

To obtain the selection intervals, we need the ranges of
10w[j] and v[j]. The range of 10w[j] is [~10pd, +10pd], which,
for the selected digit set, becomes [—(70/9)d, 4+(70/9)d]. The
range of v[j] is obtained from |v[j] — ¢1d| < pd, which results
in |v[j]| < (p + ar,)d. For the selected digit set (a;, = 2), this is
ol < (25/9)d.

Note that, to simplify the notation, in the development
that follows, we use the same notation, [Lj, Uy, for both gy
and ¢y, although they have different values and the index k
corresponds to different sets.

Selection intervals for g;. We now obtain the selection
intervals [Ly, U] for gy = k, with k€ {—1,0,1}. From the
recurrence,

v[j] = 10w[j] — 5qmj1d

and, since v[j] < (25/9)d, by replacing 10w[j] by the upper
limit of the selection interval, we obtain

(25/9)d = Uy, — k(5d),
resulting in
U, = (5k’ + 25/9)d.

Similarly, since v[j] > —(25/9)d, and Ly is the lower limit of
the interval,
—(25/9)d = Ly, — k(5d) — L, = (5k —25/9)d.

Selection intervals for ¢;. Similarly, we obtain the
interval [Ly, U] for q; = k, with k € {-2,-1,0,1,2}. From
the recurrence,

wj + 1] = v[j] — qrd.

Introducing w[j + 1] < (7/9)d and the upper limit of the
interval Uj, we obtain

(7/9)d = Uy, — kd — U= (k+7/9)d
and, with w[j 4+ 1] > —(7/9)d and the lower limit L,
—(7/9)d =L, — kd — L= (k-"7/9)d.

Bound for ¢. To obtain a bound on ¢, the number of
fractional digits of 10w, we use the minimum overlap
condition:

Up-1(d;) — Li(di1) > 1.12 x 1077,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

which occurs for the first subrange of d and the maximum £.
If this subrange has a width of 1079, then we obtain, for gy,

(25/9) - 0.1 — (20/9) - (0.1 +107°) > 1.12 x 10,

so that, for integer ¢ and for 6 > 2, we obtain t > 2.
Similarly, for ¢z,

(16/9) - 0.1 — (11/9) - (0.1 +107%) > 1.12 x 107,

again resulting in ¢ > 2.

Since the delay of the selection function directly depends
on t, we choose the minimum value ¢ = 2. Moreover, as
explained next, we adjust the interval width Ad =10"° to
reduce the number of intervals of d.

Selection constants. We now determine suitable selec-
tion constants. The usual method is to divide the interval of
d into subintervals of width Ad and then obtain selection
constants for each interval. However, in this design, we
proceed as follows:

e Define selection constants that are integers. That is,
we define the selection function by the integer
selection constants such that

quj1 =k if mg, < 107 x 0wlj] < mmn

and

qrj+1 = k if mrr < 102 X i)\[j] < Mri41-

e Obtain the selection constants from (4) transformed
so that the selection constants are integers and for
t = 2. Moreover, from the possible values satisfying
the condition, select the selection constant that is a
multiple of 27 for the largest possible p. This reduces
the number of bits of the binary representation of the
selection constant, which is convenient for the
radix-2 implementation presented later.

e Make m_j1 = —my (for both H and L) so that only
the constants for positive k have to be determined
from d. This way, for each d, we need to compute
mH(z) = {mHl} and mL(Z) = {mLQ,le}.

e Use the same subintervals for both functions and,
beginning from d=0.1, use the largest possible
subinterval. This minimizes the number of subinter-
vals and, therefore, the number of products in the
implementation.

This procedure produces the constants, as described in
Table 2.

3 DIvIDER ARCHITECTURE

We now describe the architecture of the divider. Of
particular interest are 1) the retiming of the recurrence,
2) the organization of the selection function, and 3) the
radix-2 implementation of the most significant slice. We
now discuss these aspects.

3.1 Retiming of the Recurrence

To be able to reduce the delay of the most significant slice,
we start with a retimed version of the iteration in which g;
and w[j — 1] are inputs and ¢;4; and w[j] are outputs. That

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 5

TABLE 2
Selection Constants for g5 and q;,

iy diys) qu | qr

Mgy | Myo | Meg | ey | Mg | M1
0.100, 0.106 | 26| -26[16 4 -4 -16]
0.106, 0.120 | 28| -28
0.12, 0.13 32| -32) 20 8| -8 =20 |
0.13, 0.14 34| -34
0.14, 0.15 36| -36 | |
0.15, 0.17 a0 40| 24 24 |
0.17, 0.20 46| 46| 28 28|
0.20, 0.22 52| 52| 32 -32 |
0.22, 0.25 58 | -58 | 36 -36
0.25, 0.30 68 | -68 || 40 -40 |
0.30, 0.35 80 | -B0 48 16| -16 -48
0.35, 0.42 96| -96| 56 56 |
0.42, 0.50 114 [-114 | 68 68 |
0.50, 0.60 136 | -136 | &4 84|
0.60, 0.70 164 | -164 || 104 | 32| -32| -104
0.70, 0.84 188 | -188 || 112 112
0.84, 1.00 294 | -224 | 124 2124 |

is, an iteration is described by the following expressions
(see the 16-digit implementation in Fig. 4):

v[j] 10w[j — 1] — qm; - (5d),

wlj] = vb%—?ﬁﬂ |)
Qj1 SEL(10w(j], mpu (7)),

qrjs1 = SEL@[+ 1],mr(i)).

As explained in Section 3.2, 9[j + 1] is computed specula-
tively inside the SEL block (see Fig. 5). It is necessary to
initialize w and ¢. As indicated before, to ensure conver-
gence, we initialize w[0] = x/100. Moreover, from the
recurrence and ¢y =0, we obtain ¢ = SEL(10w[0], m(7)).
Consequently, in Fig. 4, this initialization is performed in
the first cycle by selecting x/100 and initializing
g = qr, = w, = 0. The intialization effectively scales the
dividend by 10~% and therefore produces a quotient in the
range (1073,107'), that is, ¢=qo.qiq2... = 0.0zzx ... or
0.00zzz.... Moreover, in the redundant (signed-digit)
representation of the quotient, since the range of a digit is
—T7 to +7, the first fractional digit needs to be 0 or 1 (the

x/100

Mult/mux
|
radix-10 CSA
-2dd 0 -d2d 1+19%4 L 19
LI | Y
A q Mult/mux
5d L l
3*4
m_m m i radix-10 CSA
10w 1+3%4
| | ‘ l 1 3 1419 f 419
SEL q_ &g
£ i Ws We
i e ey T
"~ Position of registers
-

Fig. 4. Basic implementation of the radix-10 recurrence.

value of 1 is needed when the second fractional digit of the
final quotient is larger than 7). During the conversion to
nonredundant representation (Section 4), this value 1 is
converted to 0.

Table 3 shows some iterations of the division algorithm
executed in the unit in Fig. 4.

3.2 Organization of the Selection Function

We consider now two issues in the organization of the
selection function, namely, 1) the preloading of the selection
constants and selection by comparison and 2) the over-
lapping of a conditional g; with gy. That is, as shown in
Fig. 5,

1. As done in [17] and [15] for the binary case, we
implement the selection function by preloading the
selection constants, depending on the value of d,

54 M, M, 10®s 10""‘\%
| | |
| precomputations |
T o EJE: E'jEJN ES']EEES ES o 1 M,
+ + 110 =+« .
T2 S99 g |[L6FF || .. || 888 |
- - 3 A Lol ¥ T 1
et M _|[gsss ||€49F ||dddd |t
¢ ¢ @ eIl) [oseT e
sign—de -
<3 B 3 <5 SELq (u=-1) | | SELg (u=0) SELq (u=1) i
i . T‘ —* f — | | | ,{' 4 ¥ 4 * 4 S_EL o
csA | csa | csa | csa i q
sign—def| sign—det |sign—det |sign—det | B
coder /
_______ , [N
Y q H

Fig. 5. Implementation of the selection function with overlapping and speculation.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

TABLE 3
Example of Radix-10 Division (Unit in Fig. 4)
x = 0.85884596, d = 0.10637878, q = 8.073470667740310
d= 0.106, T = —Tip = 26, mpe = —mp_1 = 16, mrp1 = —mrLp = 4,
10?(10w(j]) wlj] als]
ws[0] = 755 0008 0.008588459600000000
we[0] 000 0.000000000000000000 ¢[0] = 0.0000000000000000000
8 —qp=0 1021]*=8—qr=1—q =1
10ws 0.085884596000000000
10w, 0.000000000000000000
—qu (5d) 0.000000000000000000
Vg 0.085884596000000000
Ve 0.000000000000000000
—qrd 9.893621219999999999
ws[1] 1 878 9.878405705999999999
we[1] 101 0.101100110000000001 g[1] = 0.1000000000000000000
21 —qp =0, 10%0[2]* = —21 — qp = —2 — g2 = —2
10ws 8.784057059999999990
10w, 1.011001 100000000010
—qp(5d) 0.000000000000000000
s 9.795058159999999900
Ve 0.000000000000000100
—qrd 0.212757560000000000
ws[2] 1907 ~ 9.907705619999999000
we[2] 100 0.100110100000001000 ¢[2] = 0.0800000000000000000
7 —qu=0 1003 =7T—-¢r=1—¢3=1
10ws 9.077056199999990000
10w, 1.001101000000010000
—qu (5d) 0.000000000000000000
Vs 0.078157199999900000
Ve 0.000000000000100000
—qrd 9.893621219999999999
w, [3) 1 861 ~ 9.861778308888090900
we[3] 110 0.110000111111000001 ¢[3] = 0.0810000000000000000
20 —qp=—1, 10%0[d]* =24 — g =2 — g4 = —3
10w, 8.617783088889999990
10w, 1.100001111110000010
—qp(5d) 0.531893900000000000
‘lﬁ[j]* is computed speculatively (see Figure 5)

SEL ¢ (u = —1) : 10w,, 10w,, (—5d + my»),
(=5d +mp1), (=5d — mp1), (—5d — mpy)

SEL qr(u=0): 10w, 10w, (+mp2), (+mg1),
(—le)» (_mLQ)

SEL gz (u = 1) : 10w, 10w, (5d + mys), (5d + mpy),
(gg— le), (5/3_ mL2)~

and we perform the selection of gx;11 and g1 by
comparing the corresponding constants with 10w[j]
and 7[j + 1], respectively.

The preloading of the constants takes the corre-

sponding delay out of the delay of the iteration.
Moreover, the comparisons are done by a carry-save
subtraction and a sign detection. This allows the
balancing of the paths for delay reduction.
As is usually done for radix-16 dividers, we overlap
the computation of a conditional ¢; with the
computation of gy and then select the correct gr.
Therefore, the inputs to the SELs ¢;, are

3.3 Radix-2 Implementation of the Most Significant
Digits
Since the estimate used in the selection function is obtained
from the three most significant digits of w[j], we separately
implement the slice consisting of those digits. This has been
done previously for binary division: first, in the 1960s, when
the recurrence was using a carry-propagate adder [18] and
then recently to be able to reduce the energy consumption
of the not-critical part [19] and/or to reduce the delay by
£ balancing the delay paths [15]. Moreover, we implement the
—u- (5d) —mpk Lo
. . most significant slice by using a radix-2 representation. This
withu = {-1,1} and k = {~1,0,1,2} (eight values), rodqyces the delay of the additions (both carry-save and
carry-propagate) and reduces the width of the slice.

10w, + 10w, —u- (5d) withu={-1,0,1}.

Moreover, we can precompute

and, remembering that m;_; =-m;» and
mro = —mz,, set the inputs for each of the SELs ¢,
as (see Fig. 5):

In the description of the most significant slice, it is
convenient to refer to integer values. Specifically, since the
most significant slice has three fractional digits, we define

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 7

integer variables as follows (and identify them with the
subscript m):

(..),, = 1,000(truncs(. . .)),

where (...) refers to a generic variable and t¢runcs(...)
corresponds to the carry-save representation of (...)
truncated so as to include up to the third fractional digit.

As illustrated in Fig. 6 (upper part), the recurrence for
this slice is then

Ym [] - 1] = 10wm[j - 1} + W(4) [.7 - 1}7
Um []} =Ym [.7 - 1] - (qH] : 5d)m + Ue(3) [.7}7
wm[j] = Un []} - (QLjd)'m + w((3)[]}7

where wy)[j —1] is the integer corresponding to the

fractional digit 4 of w[j — 1], and w,)[j] and we) [j] are the

carries of v[j] and w[j] into the fractional digit 3.
Combining the two previous expressions, we get

wmj] = 10w [j = 1] + w[j — 1] = (qu; - 5d),,, — (qz;d),,
(6)

A block diagram of the implementation of the most
significant slice is shown in the lower part of Fig. 6, also
including the selection function. Note that, in this slice, we
do not explicitly compute (v[j]),, since this value is
computed speculatively in the selection function for g¢r.

The critical path of this implementation is large, mainly
because of the delay of the radix-10 addition in the most
significant slice (most likely implemented by radix-10 carry-
save adders: two in the recurrence, labeled “CSA tree” in
Fig. 6, and one in the selection function). To reduce this
delay, we implement this slice in radix 2. The disadvantages
of this are the multiplication by 10 (which now requires a
4-to-2 adder) and the addition of w)[j— 1] (which now
cannot be done by concatenation). However, we will
perform a retiming of the recurrence so that these
operations are outside the critical path.

The radix-2 recurrence is obtained directly from (6). To
distinguish from the radix-10 case, we use uppercase
notation for the radix-2 variables (and eliminate the sub-
script m). That is,

Wil = 10W[j — 1] + wi[j — 1] = (¢11;5D) — (qz; D) + ve(s)[d]
(7)

where ¢y;5D and qr;D are the binary representation of
(qu; - 5d),, and (qr;d),,, respectively.

Since W{j] is the integer corresponding to the three most
significant digits of the carry-save representation of w[j] and
lwlj]] < 7/9, the range of W{j| is [-779,+777], so it is
represented in radix 2 (two’s complement) by 11 bits.

The corresponding radix-2 implementation is shown in
Fig. 7 and requires

e precomputation of the radix-2 representation of
+d,,, £(2d),, and £(5d),, (that is, £D, +2D, and
+5D, respectively),

e multiplication by 10 (this is implemented as 10z =
8z + 2z by using a 4-to-2 (radix-2) carry-save adder),
and

e additions in the recurrence by using radix-2 carry-
save adders.

There are two paths that potentially are the critical paths,
namely, 1) the path in the radix-2 part corresponding to the
sum of the delays in the multiplication by 10, the addition of
W), the addition of the multiples of the divisor, and the
selection function or 2) the path in the radix-10 part that
produces we [1].

The path in the radix-2 part is reduced by retiming since
the multiplication by 10 and the addition of w(,) are outside
the g; — gj+1 loop. Consequently, they can be performed in
parallel with the (previous) selection function. For the path
in the radix-10 part, we perform the selection without
including w) [j] and add this value after the multiplication
by 10 as 10w [j]. The selection function has already been
designed to accommodate this postponement.

The radix-2 part has to be initialized with the corre-
sponding portion of x/100, namely, 1,000(truncs(z/100).
This is the integer corresponding to the first digit of z, that
iS, Z(1).

The corresponding diagram is shown in Fig. 8 and the
resulting implementation in Fig. 9.

The registers are placed in such a way as to balance the
different paths. Consequently, the best placement depends
on a specific implementation. Fig. 9 shows the placement
obtained for the implementation presented in Section 5. The
registers are called ¢y, ¢, Y, w,, and w.. Furthermore, to
keep the precomputation of 2d, 5d, and their radix-2
equivalents out of the critical path, we latch those values
as well. Note that those precomputed values are not needed
in the first iteration, as explained next.

3.4 Operation Execution

The computation of the 16-digit normalized and rounded
significand of the quotient requires 19 iterations if z > d or
20 iterations if = < d, as explained in Section 4.2.

To summarize, the architecture shown in Fig. 9 imple-
ments the algorithm in Table 4.

4 CONVERSION, NORMALIZATION, AND ROUNDING

4.1 On-the-Fly Conversion
The on-the-fly-conversion algorithm [16] performs the
conversion from the signed-digit representation of the
quotient digit g; to b;, with the conventional representation
in BCD (radix 10). The conversion is done as the digits are
produced and does not require a carry-propagate adder.
The partial quotient is stored in two registers: Q, holding
the converted value of the partial quotient Q[j], and QM,
holding Q[j] — 1077. The registers are updated in each
iteration by shift-and-load operations and the final quotient
is chosen between those two registers during the rounding.
In the radix-10 case, the implementation of the two
registers Q and QM, with a precision of n digits, requires
2 x (n x 4) flip-flops. This results in a large area and a high-
power dissipation due to the shifting during each iteration.
To reduce both power dissipation and area, we modify
the on-the-fly algorithm, as described in [19]. Specifically:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

power of 10 (s = sign) 0o . -1 =2 -3 —4
Wild — 1]
10w[j — 1] nnns . yyyy @ yyyy 2Zzz | Xxxx
C y v Z X
YmlJ — 1]
—qn(5d) nnns . Yyyy YYyy Yyyy | xxxx
"EJ] nmns . yyyy Yy¥y Yy¥y | XXXX
c y N z X
—qrd nmns . yyyy ¥Yy¥y ¥yVy | XX
w(j] nnns . yyyy VYYY YVYY | zzzz
c y y z Z
bits marked n are not implemented W [7]
d x/100
A
d 34 Vwm
|
m . Table precomp.
£ 10w _10w
ot o
R 5d -5d 2d -2d
_5d 0 5d Mux 2:1
S q —w| MSDs Mult/mux
w__w Bw go H
ms mc I
~q,59),
1+2'4/E{ 4/*’ /t radix-10 CSA
r — * * &
| concatenate | 1434 v -2dd 0 —d2d 18 4’:./’" 16
vl I aOn A
y c3) |Ys |Ye
" Mult/mux
1+3*4) T
radix-10 CSA
w
A c(3)
5d
1 1
164 4 A4 16
My Mz My CSA Tree
| 1 | |
1+3"4 A 43
SEL & o ;
B Position of registers w
Wis mc S c
S) 9 = ::5(4) 1
i [—
g | I | = Te(4) [|
Fig. 6. A first implementation of the radix-10 recurrence.
1. We load each digit in its final position. This way, we the load position, we use an n-bit ring counter C, one

avoid shifting digits along the registers. To determine bit for each digit to load.

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE

2.

W[j—1] sssssssssss
cccececceece
x10
zzzz Wy)[j — 1]
z_ wea[j — 1]
Y[j—1] sssssssssss
cceeccceecce
—qubD XXXXAXXXXAX
—qrD XXXXXXXXXKX
z v)J]
z_ we)l]
W14l SSsssSsSsssss
ccceecececce
to selection function
| d x/100
[
a 1 V
) 9|
-2D-D 0 D 2D -5D 0 5D : 4/-5D] l 10w 10w,
My My My ‘ ‘ | | [| ‘ | | |+,r_ 5d 2d
|
| Mult/mux | Mult/mux i.-:. |+i_2D 54 0 54 Mux 2:1
———————— T ———1 i _1i]
IE iitalization | | | pE—— : | g
| Xy Ms@ 10 e~ Multmnx
l V l |<<31 l<<1) [T
t T | | radix-10 CSA
| | Mux 2:1 ” | CSA 4:2 I._Wc(4) | | mixeeioea =
| ' : 16°4 4 | 4 16
| . v | - - v |l |v
E C‘Sé 2 o(3) | 2dd 0 -dzd g s ¢
| e e | w || | [y
| | | = | —5 Mult/mux E I
| - e T
CSA 2/ |-— m m_.m. \
IE l ?4 - @) B e I\ radix-10CSA |
| F====— | I N i
| Mgy 41 I | 5 16*4 1 416
| W wc SEL ki a, & q . |P05|t|on of registers wc(a) A
5
t q_j/k_ Yo |
‘ | ' — v
“““““““ 9y | -~—Ys) / r
Radix-2 | Radix-10 = Woa)
Fig. 7. Implementation of the recurrence with the radix-2 slice.
We reduce the partial-quotient registers from two to
one by eliminating register QM and by including in o T
register Q a digit decrementer controlled by the ring o m'fii 'x'i-o—_--a—
counter C (see [19] for more details). Y[j—1] sssssssssss xxxx 10w[j — 1]
With these modifications, we reduce the number of flip- cecceeccccc x
—qu5l) =2sssssssassz xxxx —qp(5d)
flops in the conversion unit from 2 x (n x 4) to n + (n x 4). —qD ssssssssssz xexx v]j]
Wl 55855585888 -z x
. . CCCCCCCCCeZ. e B xxxx —qpd
4.2 On-the-Fly Normalization 10W[j] ssssssssss0 e O]
The load-digit-in-place mechanism can be used to normal- Selection LA
.1 . . . function 10wz 2020 v
ize’ the quotient during the on-the-fly conversion. When Wiy zzzz 1
o qs Y
dividing x/d (0.1 < z,d < 1), we have two cases: Wi sesemesnn

1. Although normalization is not required in the IEEE standard for
decimal representation if the quotient is exact, even in this case, it might be

better to provide a normalized quotient to the compliance modules. This is

especially true since the normalization has no additional cost.

dashed arrows indicate digit/bit transfers
solid arrows indicate multiply by 10

Fig. 8. Retimed operation of the radix-2 slice.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

d x/100
3 Y
|
I I—T Registers
! +H-5D=—+— [} { 4
initialization L TR 1 | 5d Mux 2:1
+-D - 2d 5d 0 5d UK =
Xy 9. 19
2 +-2D -—I—I a | | l
I. i L} I Mult/mux |
| |
: | radix-10 CSA |
P |
3 i a, 7/ | - VG(3}‘—'”/
e H / I 2dd 0 —d2d 18%4.4 416
i v critical | v v
I CSA 3:2 |" c(3) path lswaw 2W 2w, | a, | | | | ‘ s1 ¢

w,| [w

c | —1——' Mult/mux |
multiply | I
'i CSA 42 | by10
m 2 - |

—m— m OWes) | radix-10 CSA

|
[Gt Tt e | e S—
SEL g (u=—1) [SEL q (u=0)| [SELq (u=1) SEL g |
Al q g 1 Wy Tea f A6
|

|
. L TF_J w, [w,

e : ‘\/‘

SEL Posmon of registers
1 T4
S N ——_ = 9, Radix-2 | Radix-10
(@)
50 o o 50 . ey
IIT‘!.;l |m'..| Im'..l ml: Y%i YC m|.2 |m:.| I-‘-I:.I ml.;
1 1 l [| | ‘ 1 1 I |
2N N 2N 2 SR I 2N ¥ 2 N 2 SR
I ! 1 1 1 1 1 ! t ! b |l ki T ! | s T T ! ? 1 ? |I]
= | 200 8§ | | I 0 1 i | | . | | = | 1 1 ol I O i NN o 1 | I
C5A3:2 | CsA32 | CSA32 | CSA3R Csazz | CsAaz2 | CSA32 | CSA32 CsSAz2 | CsA3z | CsA32 | CsA32 CSA 3:2 | CSA3:2
sign-det. | sign-det. | sign-det. | sign—det. sign—det. | sign—det. | sign-det.(+) | sign-det.(+} sign—det. | sign-det. | sign-det. | sign-det, sign—det. |sign—det.(s)
coder coder coder decoder
4 4
¥ g "
q||
(b)
q.'-l

(*) 2’s complement is done by setting ¢;,, = 1 in sign-det.
Fig. 9. Final implementation of the radix-10 recurrence and selection function. (a) Recurrence. (b) Selection function.

. z>d = 1.0<¢q<10.0 (not normalized).
2. z<d = 0.1<q<1.0 (normalized).

Because of the initialization, the quotient obtained corre-
sponds to @ = ¢/100. Consequently, the converted quotient
is multiplied by 100 (shifted left, two digits), resulting in

Since the quotient obtained by the iterations is redundant
with p=7/9, ¢ of the redundant quotient can be 0 or 1.
Consequently, the normalization is done as follows:

e If ¢ =1, then the conversion changes it to b; = 0.
The result is ¢ > 1.0 (y # 0) = Case A.

e Ifgg=0and ¢ > 1, then ¢>1.0(y#0) = Case A.

e Ifg=0and ¢ =0, then ¢ < 1.0 (y=0) = CaseB.

Q 0.0yzzz. ..

q Y.TXTTTT . . .,

where we indicate with y the digit of weight 1072 in Q.
Therefore, to obtain a normalized result, the two cases are
listed as follows:

1. If(y#0)

2. If(y=0)
This could be achieved by placing y as the first fractional
digit and shifting left one position when y = 0. We now
describe how the normalization is done during the
conversion, in this way avoiding the shifting.

Qnorm = O.yzzzx. ..,
Qnorm = 0.zzxx

increment exponent.

o If g =0 and ¢ =1, then this depends on the first
nonzero digit ¢; (j > 3):

- If positive, then (y # 0) = Case A.
- If negative, then (y =0) = Case B. This situa-
tion is shown in the example in Table 5.

In case A,
0.babsby . ..
whereas, in case B, the converted quotient corresponds to
0.b3bsbs . .. by.

the converted quotient corresponds to
by and the exponent is incremented by 1,

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 11

(x/100 selected by mux)

IUW[N' =3 1] + 101,0(3(3}[}\} — l] + ws(4}IN —]] + We(q) [N = 1]

(x(1) selected by mux)

TABLE 4
Algorithm Implemented by the Unit in Fig. 9
Initialization : gy =0, (w,, w.) =0,Y =0.
Cycle 1 : precomputation of +5d, +2d, £5D, 42D, +D (not needed in first cycle), and
mys (needed in SEL at the end of the cycle).
w[0] = z/100+0-d = z/100
W[O] = I —O-5D—0-D=.’1.'{1)
q = SEL(WI0],my(i),m(i)) =0or 1 — gy =0, g =0o0r1
Y[U] = IOW[{}] + ﬂJ4[U] = 10 Iy + Iya)
Cycle 2 :
w[l] = 10w[0] — q:d
W[1] = Y[0] — ¢gm5D — qr1D + vez)[1]
@ = SEL(W[U],mu(i),ms()
Y[l] — 1DW[1] + lﬂ’wcw)ll] + w5(4)[1] + wc(4}{1]
Cycle N :
w[N—1] = 10w[N —2] — gy_1d
W[N = l] = Y[N = 2] — qH[N_1}5D = QL(N—I)D +’Uc(3}[N — 1]
gy = SELU’V{N = 1],m1;(z).mL(a)}
YIN-1] =
Termination (Cycle N+1): N+1=19ifz > d, or N+1=20if z < d (see Section 4.2).
Remainder computation: w[N] = w,[N] + w.[N]
Rounding (see Section 4.3).

TABLE 5
Example of Conversion and Normalization when ¢ =1 and ¢3 =0

Conversion Conversion and Normalization

q1 = 0 ' Q =0
Q1] = 0.000000000000000000 Q[1] = 0.00000000000000000

2 = 1,Q=01

C = 100000000000000000 C = 10000000000000000
Q2] = 0.100000000000000000 Q2] = 0.10000000000000000

i = 0,Q=010

C = 010000000000000000 C = 01000000000000000
Q3] = 0.100000000000000000 Q[3] = 0.10000000000000000

g = 0,Q=0100

c = 011000000000000000 C = 01100000000000000
Q4] = 0.100000000000000000 QM = 0.10000000000000000

% = 0,Q=01000

¢ = 011100000000000000 Cc = 01110000000000000
Q[5] = 0.100000000000000000 Q5] = 0.10000000000000000

%6 = 3,Q=010001

C = 000010000000000000 C = 00001000000000000 « freeze
Q6] = 0.099970000000000000 Q6] = 0.99970000000000000

& = 1,0=0100011

C = 000001000000000000 C = 00001000000000000
Q7] = 0.099971000000000000 Q[7] = 0.99971000000000000

The control of cases A and B is performed during the 4.3 Rounding

conversion. The normalization is achieved by freezing the
position of the hot 1 in the ring counter (see the example in

Table 5).
Calling L the number of digits of the final quotient, we

produce L + 1 digits (one additional quotient digit for the
rounding). Consequently, the number of cycles (N + 1) is
L+3 for case A and L +4 for case B. Specifically, for
L =16, we get 19 and 20 cycles, respectively.

In the implementation of the unit, we only consider the
round-half-even rounding mode, but the other modes can be
implemented in a similar manner.

For the normalized quotient, the rounding is always
performed in position L + 1 in register Q (see Fig. 10). The
rounding is performed by adding half ulp (5 x 10~*) to
b(z+1) and truncating the representation of Q in position L.
Moreover, when the sign of the remainder is negative
(sign = 1), we have to subtract 1 from b;4. Finally, if the
remainder is zero (zero=1) and b, =5, then we

weight 107 0 . 1 2 ... L1
digits of Q: 0 . bm b('z}

L | L+1
by by | bz

by indicates the BCD digit of weight 107%
Fig. 10. The rounding position in register Q.

increment by by 1 if its least significant bit is 1 (round to
even). In summary, the operation to perform on b is

bir1) + 5 — sign — (zero AND LSB(b))). (8)

Clearly, a borrow (borrowpyp) or a carry (carrypnp)
might be generated into position L. Although the
propagation of the borrow is eliminated by the on-the-
fly conversion, the propagation of the carry (which
occurs, for instance, when, before conversion, we have
...3000—-1gy —...29999b11)) has to be addressed
separately.

This carry propagation can be avoided if the conversion
of digit L is performed including the carry from the
rounding (in this case, in the conflicting situation above,
the converted digit becomes 0). That is, the conversion of
digit L has to be postponed one cycle. This is achieved by
freezing the update of the marked digits when iteration L is
reached. The update of digits in register Q is resumed only
after the outcome of (8) is known. An example is shown in
Table 6.

5 IMPLEMENTATION AND COMPARISONS

In this section, we present the results of the evaluation of
the proposed design and a comparison with a double-
precision radix-16 digit-recurrence division unit which has
roughly the same dynamic range for the normalized
significand (2°% < 10'® < 2°1). Furthermore, we compare
our results with those obtained in [4] for a divider based on
the Newton-Raphson approximation.

We performed a synthesis of the decimal divider, as
shown in Fig. 9, by using the STM 90-nm CMOS standard
cells library [20] and Synopsys Design Compiler. From the
synthesis, we estimated the critical path (including estima-
tions at the netlist level of wire load) and the area. The
critical path is highlighted in Fig. 9 (dotted line) and
reported in detail in Table 7.

The results are compared with those of [15] and reported
in Table 8. The data in Table 8 show that the decimal
divider has a latency close to that of a standard radix-16 and
its area is close to that of the faster radix-16 unit in [15].

With respect to the implementation in [4], it is quite
difficult to compare between the two different algorithms.
However, the implementation in [4] requires 150 cycles to
compute a 16-digit quotient (as in our case) and has a
critical path of 0.7 ns in a 0.11 pum standard cells library.
Assuming a constant field technology scaling® [21], the
critical path of 0.7 ns scales approximately to 0.7-
(90/110) = 0.57 ns. The resulting latency is 150 x 0.57 =
85.5 ns, which is more than four times the latency of the

2. In [4], the supply voltage is Vpp = 1.2 V, whereas, in the library that
we used, it is Vpp = 1.0 V. Therefore, the ratio of the feature lengths
110/90 = 1.2 equals the ratio of the supply voltages.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

TABLE 6
Example of Rounding without the Carry Propagation
when ¢; = —1

-3 -2 L-1 L |L+1
sequence of g;: .03 0 0 -1 gw
iteration Register () Register C
N-4 3 - - - - 1 000 D
N-3 3 0 - - - 11000
N-2 3 0 0 - - 111 00
N-1 3 1] 0o 9 - 11 1 10
N 3 0 0 9| B 1 1111
Rounding® Register comments
(B+R)>10 .3 0 0 0 |ecarrygvp =1, borrow(L) =1
0<(B+R)<10|... 2] 9 9 | carryrnp =0, borrowpyp =0,

borrow(L) =1

(B+R)<0 g 9 9 8 | borrowgyp =1, borrow(L) =1

* R =15— sign — (zero AND LSB(byy,)) as indicated in (8).

TABLE 7
Details of the Critical Path for the Implementation in Fig. 9
blocks in critical path | total delay
|reg. gy buffers muxg, MULT gy CSA32 SELgy setup|
000 004 010 0.08 0.08 050 008 | L00

delays in [ns]

TABLE 8
Summary of Results for the Synthesized Unit and Those of [15]
Unit cycle time n. cycles latency speed-up | area ratio
[ns] [ns] [
Radix-16 (standard) 1.00 16 16.0 1.00 38000 1.00
Radix-16 [15] 0.72 16 11.5 1.40 59600 1.56
Radix-10 (this work) 1.00 20 20.0 .80 59700 1.57

divider presented in this work. Furthermore, the expression
given in [4] for the number of cycles for a generic
implementation of the Newton-Raphson algorithm is
n. cycles = 10 4+ P(3 + 2m), where P is the number of cycles
needed to perform a decimal multiplication and m is the
number of iterations needed for the approximation of 1/d
(Newton-Raphson iterations). Because, to our knowledge,
decimal multiplication requires several cycles (n + 4 cycles,
where n is number of digits, in [3], for example), the digit-
recurrence approach proposed in this work seems quite
advantageous in terms of latency.

6 CONCLUSIONS

In this work, we presented a radix-10 division unit that is
based on the digit-recurrence algorithm. We developed the
algorithm and the divider architecture and implemented it
in standard cells. The unit implemented (16-digit BCD) has
a dynamic range of the significand that is comparable to
that of the IEEE double-precision standard.

Since there were no comparable digit-recurrence radix-10
units, we compared with a radix-16 divider because the
radices are similar. We concluded that the proposed
radix-10 divider has a latency close to that of a basic
retimed radix-16 divider, which a floating-point-unit
designer might use when considering a fast implementation
for medium-range radices. Moreover, we compared the
proposed divider with a recent implementation of a decimal

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 13

divider based on the Newton-Raphson approximation [4].
Although a comparison between such different approaches
depends on too many parameters, considering the timing
reported for the two implementations, we are quite
confident that the design presented here shows a latency
(execution time for a 16-digit division) about four times
shorter than that of the unit based on the Newton-Raphson
approximation.

REFERENCES

[1] M. Cowlishaw, E. Schwarz, R. Smith, and C. Webb, “A Decimal
Floating-Point Specification,” Proc. 15th IEEE Symp. Computer
Arithmetic (ARITH 15), pp. 147-154, June 2001.

[2] M.F. Cowlishaw, “Decimal Floating-Point: Algorithm for Com-
puters,” Proc. 16th IEEE Symp. Computer Arithmetic (ARITH 16),
pp- 104-111, June 2003.

[3] M. Erle, E. Schwarz, and M. Schulte, “Decimal Multiplication with
Efficient Partial Product Generation,” Proc. 17th IEEE Symp.
Computer Arithmetic (ARITH 17), pp. 21-28, June 2005.

[4] L.-K. Wang and M. Schulte, “Decimal Floating-Point Division
Using Newton-Raphson Iteration,” Proc. 15th IEEE Int’l Conf.
Application-Specific Systems, Architectures and Processors (ASAP '04),
pp- 84-95, Sept. 2004.

[5S] F.Busaba, C. Krygowski, W. Li, E. Schwarz, and S. Carlough, “The
IBM 2900 Decimal Arithmetic Unit,” Proc. 35th Asilomar Conf.
Signals, Systems, and Computers (Asilomar '01), vol. 2, pp. 1335-1339,
Nov. 2001.

[6] R. Kenney and M. Schulte, “High-Speed Multioperand Decimal
Adders,” IEEE Trans. Computers, vol. 54, no. 8, pp. 953-963, Aug.
2005.

[7] L.-K. Wang and M. Schulte, “Decimal Floating-Point Square Root
Using Newton-Raphson Iteration,” Proc. 16th IEEE Int’l Conf.
Application-Specific Systems, Architectures and Processors (ASAP '05),
pp- 309-315, July 2005.

[8] S.A. Tague and V.S. Negi, “Data Processor Having Carry
Apparatus Supporting a Decimal Divide Operation,” US patent
4,384,341, Patent and Trademark Office, 1983.

[9] S. Tokumitsu, “Divider Circuit for Dividing n-Bit Binary Data
Using Decimal Shifting and Summation Techniques,” US patent
4,599,702, Patent and Trademark Office, 1986.

[10] H. Yabe et al., “Binary Coded Decimal Number Division
Apparatus,” US patent 4,635,220, Patent and Trademark Office,
1987.

[11] A. Yamaoka et al, “Coded Decimal Non-Restoring Divider,”
US patent 4,692,891, Patent and Trademark Office, 1987.

[12] D.E. Ferguson, “Non-Heuristic Decimal Divide Method and
Apparatus,” US patent 5,587,940, Patent and Trademark Office,
1996.

[13] C.F. Webb et al, “Specialized Millicode Instructions for Packed
Decimal Division,” US patent 6,067,617, Patent and Trademark
Office, 2000.

[14] IEEE Standard for Floating-Point Arithmetic, http://754r.ucbtest.
org/drafts/754r.pdf, Oct. 2005.

[15] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli, “Digit-
Recurrence Dividers with Reduced Logical Depth,” IEEE Trans.
Computers, vol. 54, no. 7, pp. 837-851, July 2005.

[16] M. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations. Kluwer Academic,
1994.

[17] N. Burgess and C. Hinds, “Design Issues in Radix-4 SRT Square
Root and Divide Unit,” Proc. 35th Asilomar Conf. Signals, Systems
and Computers (Asilomar '01), pp. 1646-1650, 2001.

[18] D.E. Atkins, “Design of Arithmetic Units of ILLIAC III: Use of
Redundancy and High-Radix Methods,” IEEE Trans. Computers,
vol. 19, no. 8, pp. 720-733, Aug. 1970.

[19] A. Nannarelli and T. Lang, “Low-Power Divider,” IEEE Trans.
Computers, vol. 48, no. 1, pp. 2-14, Jan. 1999.

[20] STMicroelectronics, 90nm CMOS090 Design Platform, http://
www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm,
2007.

[21] N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI Design.
Addison-Wesley, 1993.

Tomas Lang received the BS degree in electrical
engineering from the Universidad de Chile in
1965, the MS degree from the University of
California, Berkeley, in 1966, and the PhD degree
from Stanford University in 1974. He is a
professor in the Department of Electrical Engi-
neering and Computer Science at the University
of California, Irvine. Previously, he was a
professor in the Department of Computer Archi-
tecture at the Polytechnic University of Catalonia,
Spain, and a faculty member in the Department of Computer Science at
the University of California, Los Angeles. His primary research and
teaching interests are in digital design and computer architecture, with
current emphasis on high-speed and low-power numerical processors
and multiprocessors. He is the coauthor of two textbooks on digital
systems, two research monographs, and one IEEE tutorial and the
author/coauthor of research contributions to scholarly publications and
technical conferences. He is a member of the IEEE Computer Society.

Alberto Nannarelli received the BS degree in
electrical engineering from the University of
Rome La Sapienza, Italy, in 1988 and the MS
and PhD degrees in electrical and computer
engineering from the University of California,
Irvine, in 1995 and 1999, respectively. He is an
associate professor at the Technical University
of Denmark. He worked for SGS-Thomson
2 Microelectronics and for Ericsson Telecom as

it | a design engineer and for Rockwell Semicon-
ductor Systems as a summer intern. From 1999 to 2003, he was with the
Department of Electrical Engineering, University of Rome Tor Vergata,
ltaly, as a postdoctoral researcher. His research interests include
computer arithmetic, computer architecture, and VLSI design. He is a
member of the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

