
A Radix-10 Digit-Recurrence Division Unit:
Algorithm and Architecture
Tomás Lang, Member, IEEE Computer Society, and

Alberto Nannarelli, Member, IEEE Computer Society

Abstract—In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm. The previous decimal

division designs do not include recent developments in the theory and practice of this type of algorithm, which were developed for

radix-2k dividers. In addition to the adaptation of these features, the radix-10 quotient digit is decomposed into a radix-2 digit and a

radix-5 digit in such a way that only five and two times the divisor are required in the recurrence. Moreover, the most significant slice of

the recurrence, which includes the selection function, is implemented in radix-2, avoiding the additional delay introduced by the

radix-10 carry-save additions and allowing the balancing of the paths to reduce the cycle delay. The results of the implementation of

the proposed radix-10 division unit show that its latency is close to that of radix-16 division units (comparable dynamic range of

significands) and it has a shorter latency than a radix-10 unit based on the Newton-Raphson approximation.

Index Terms—Decimal arithmetic, digit-recurrence division, decimal division, algorithms and architectures for floating-point arithmetic.

Ç

1 INTRODUCTION

THE need for floating-point decimal arithmetic in hard-
ware has been reported in several publications (some

recent references being [1], [2], [3], [4]). Moreover, radix-10
units are included in some processors (although not
floating-point) [5] and some recent designs for adders,
multipliers, dividers, and square-root units have been
described in [3], [4], [5], [6], [7].

In this work, we present a radix-10 division unit that is
based on the digit-recurrence algorithm. Digit-recurrence
algorithms for division and square root give probably the
best trade-off in delay area, do not require the use of a
multiplier, and easily provide exact rounding. Previous
designs of decimal dividers are reported in [4], [5] and in
several patents [8], [9], [10], [11], [12], [13]. The previous
digit-recurrence designs are relatively old and do not
include recent developments in the theory and practice of
this type of algorithm. In particular, the recent IBM z900
processor includes a decimal divider using the restoring
algorithm [5]. On the other hand, [4] describes a recent
implementation based on the Newton-Raphson approxima-
tion of the reciprocal. We compare with this implementa-
tion in Section 5 and show that the digit-recurrence
approach might produce a lower latency.

The design described in this paper includes the following
novelties, with respect to previous designs:

. Adaptation of the techniques developed for radix-2k

dividers such as

1. signed-digit redundant quotient,
2. carry-save representation of the residual,
3. decomposition of the quotient digit,
4. realization of the quotient-digit selection by

preloading the selection constants and then
comparing them with an estimate of the
residual,

5. overlapped implementation of the selection of
both components of the quotient digit,

6. retiming and separate implementation of the
most significant digits (slice), and

7. on-the-fly conversion, normalization, and
rounding.

. More specifically, decomposition of the quotient
digit into one radix-5 component and one radix-2
component, with the radix-5 component having
values f�2;�1; 0; 1; 2g. This results in a redundancy
factor of 7/9 and requires only multiples of the
divisor d, 2d, and 5d.

. Radix-2 algorithm and implementation of the most
significant slice to reduce the critical path delay. The
retiming ensures that the critical path is in this slice
so that an efficient binary implementation reduces
the cycle time.

With respect to the floating-point format, several recent
papers discuss the issue [1], [2]. Of particular interest is the
specification that has been added to the revision of the
IEEE 754 Standard [14]. In this paper, we assume normal-
ized and fractional significands for operands and result.
Moreover, we use a binary coded decimal (BCD) coding for
the decimal digits. For other representations and/or coding,
it is possible to use conversions or to adapt the algorithm
and implementation. Specifically, [4] describes an imple-
mentation of the modules required for compliance with the
IEEE 754 Standard.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007 1

. T. Lang is with the Department of Electrical Engineering and Computer
Science, Engineering Tower, Room 602, University of California, Irvine,
CA 92697. E-mail: tlang@uci.edu.

. A. Nannarelli is with the Department of Informatics and Mathematical
Modeling, Technical University of Denmark, Richard Petersens Plads-
Building 321, DK-2800 Kongens Lyngby, Denmark.
E-mail: an@imm.dtu.dk.

Manuscript received 4 apr. 2006 revised 25 Sept. 2006; accepted 8 Jan. 2007;
published online 27 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0131-0406.
Digital Object Identifier no. 10.1109/TC.2007.1038.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

We show the proposed algorithm and architecture for
the divider unit. We then implement the design by using a
90-nm complementary metal-oxide semiconductor (CMOS)
standard cells library and Synopsys tools. Moreover, we use
the same design tools and cells to implement two radix-16
units, namely, the basic retimed radix-16 and a faster radix-
16 unit, as presented in [15], and show that the radix-10
divider has a latency similar to that of the basic retimed
radix-16 unit.

Finally, we compare with the design based on Newton-
Raphson iterations [4] and conclude that the digit-recur-
rence approach that we propose offers the shortest latency
for decimal division among the units presented so far.

2 OPERATION AND ALGORITHM

We perform the division operation Q ¼ X=D in which
the operands and result have a floating-point represen-
tation such that X ¼ ð�1ÞSxx � 10Ex , D ¼ ð�1ÞSdd � 10Ed ,

and Q ¼ ð�1ÞSqq � 10Eq . The corresponding structure of the

operation is shown in Fig. 1. We now concentrate on the
digit-recurrence algorithm to obtain the significand of the

quotient. To be specific, we perform decimal fractional

division, with x and d normalized such that 0:1 � x; d < 1

(see Table 1 for the notation used). We also produce a

normalized quotient. The modification of the algorithm and

the implementation for other cases are straightforward.

2.1 Background

We now summarize the theory and development of the

radix-r digit-recurrence algorithm, as described in more

detail, for example, in [16]. This will be the basis for the
radix-10 case that we propose.

Given the significands of the dividend x and of the
divisor d, we produce the significand of the quotient q

such that

x ¼ q � dþ rem:

If the quotient has a maximum relative error of 1 ulp, then

rem � d � ulp. Moreover, rounding (round-half-even mode)

produces a quotient with a maximum relative error of

0.5 ulp.
In the digit-recurrence algorithm, the quotient is pro-

duced one digit per iteration of the following radix-r

recurrence on the residual:

w½jþ 1� ¼ rw½j� � qjþ1d; ð1Þ

with initial condition w½0� ¼ x and with the quotient digit

obtained by the selection function

qjþ1 ¼ SELð drw½j�; bdÞ; ð2Þ

where drw½j� and bd are estimates of rw½j� and d, respectively.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Fig. 1. Structure of the floating-point radix-10 division.

TABLE 1
Symbols and Notation

To allow for theuse of estimates in the selection function, it
is necessary to use a redundant digit set for the quotient digit.
For a symmetrical (and continuous) digit set�a � qj � a, the
redundancy factor is defined as � ¼ a=ðr� 1Þ. To assure
convergence, the selection function should satisfy the range
of the residual, namely, jw½j�j � �d. Moreover, to speed up
the subtraction, a redundant adder is used.

For the selection function, the divisor is partitioned into
subranges ½di; diþ1Þ such that, for subrange i, the selection
function is defined by the selection constants mkðiÞ so that
the quotient digit has value k if

mkðiÞ � crw < mkðiþ 1Þ:

The selection constants are selected so that the range of the
residual is bounded. This is achieved by the condition

Lkðdiþ1Þ � mkðiÞ � Uk�1ðdiÞ � e;

where ½Lk; Uk� is the selection interval for qj ¼ k,withLkðdiÞ ¼
ðk� �Þdi and Uk ¼ ðkþ �Þdi. Moreover, e is the maximum
error introducedbyusing crw insteadof a truncated rw½j�. This
expression is specific to the case in which the estimate is
obtained by truncating the carry-save representation of rw½j�.
In this case, 0 � truncðrw½j�Þ � drw½j� � e.

2.2 Proposed Algorithm

We now describe the algorithm that we propose. As is
usually done for algorithms using signed values and an
addition or subtraction-based recurrence, we use a range-
complement (equivalent to two’s complement in radix 2)
representation of these signed values. For the radix-10 case,
to represent a signed value with n decimal digits, the
representation has n decimal digits and one additional digit
(bit) with a value of 0 or 1 so that a negative fraction x is
represented by 2� jxj.

To reduce the delay of the subtraction in the recurrence,
we use a radix-10 carry-save representation of the residual,
as shown in Fig. 2, with wsðiÞ 2 ½0; 9� and wcðiÞ 2 ½0; 1�. As a
consequence of this representation, the subtraction is done
using a radix-10 carry-save adder, which adds a carry-save
operand and a conventional operand to produce a carry-
save result, and the delay of the addition corresponds to the
delay of one radix-10 digit.

The direct implementation of the radix-10 recurrence has
two complications: 1) The selection function is complex and
has a large delay and 2) the divisor multiples required for
the recurrence are complicated to generate. To overcome
these issues, we decompose the quotient digit as

qj ¼ 5qHj þ qLj;

with digit sets

qHj 2 f�1; 0; 1g and qLj 2 f�aL; . . . ; aLg

so that the recurrence is performed as follows:

w½jþ 1� ¼ ½10w½j� � 5qHjþ1d� � qLjþ1d ¼ v½j� � qLjþ1d: ð3Þ

We choose aL ¼ 2, which produces �7 � qj � 7, and a
redundancy factor � ¼ 7=9. This choice of the digit set of qL
simplifies the generation of the multiples qLjd.

Since, for convergence, jw½j�j � ð7=9Þd, we initialize
w½0� ¼ x=100, which satisfies the range for the worst case,
where x ¼ 1:0 and d ¼ 0:1.

Therefore, the recurrence is performed in the following
steps (we later show how we can implement this faster):

. Compute

qHjþ1 ¼ SELHð d10w½j�; bdÞ;

where d10w½j� and bd are estimates of 10w½j� and d,
respectively, as discussed further later.

. Select 5qHjþ1d ¼ qHjþ1 � ð5dÞ from the precomputed
�5d, 0, and þ5d and compute

v½j� ¼ 10w½j� � qHjþ1 � ð5dÞ;

with v½j� also in radix-10 carry-save format.

. Compute qLjþ1 ¼ SELLð cv½j�; bdÞ.

. Select qLjþ1d from the precomputed �2d, �d, 0, þd,
and þ2d and compute

w½jþ 1� ¼ v½j� � qLjþ1d:

The above-mentioned recurrence requires the following:

. selection functions for qHjþ1 and qLjþ1 (described in
Section 2.2.1),

. precomputation of 5d and 2d, and

. radix-10 carry-save subtractions.

The multiples 2d and 5d are easy to generate. Specifically,
the generation of 2d requires a carry propagation of only
one digit and the generation of 5d can be performed by
multiplying by 10 (a wired left shift) and dividing by 2,
which requires a carry to the adjacent less significant
position.

Although, in general, the range-complement representa-
tion of w½j� would require an additional bit for the sign, in
this case, since the most significant digit of the magnitude of
w½j� is 7, the most significant bit of the most significant digit
acts as the sign bit.

2.2.1 Selection Function

We now determine the selection functions, namely,

qH ¼SELHðd10w; bdÞ

qL ¼SELLðbv; bdÞ:

The notation and process follow [16] for the general
radix-r case.

The estimates d10w and bv are obtained by using a limited
number of digits of the carry-save representation. Although,
in principle, this number could be different for 10w than for
v, we use the same number because, as described later, we
use a radix-2 representation for this slice of digits. Let us
call t the number of fractional digits of the estimates.

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 3

Fig. 2. Radix-10 carry-save representation of w (ssss corresponds to a

digit in BCD representation).

Moreover, as we will see in the implementation, we do not
include in the estimate the carry bit of digit t. Then, the
error due to the estimate is bounded by 1:12� 10�t, as
shown in Fig. 3. Then, the conditions for the selection
constants mk are

Lkðdiþ1Þ � mkðiÞ � Uk�1ðdiÞ � 1:12� 10�t; ð4Þ

where ½Lk; Uk� are the corresponding selection intervals.
To obtain the selection intervals, we need the ranges of

10w½j� and v½j�. The range of 10w½j� is ½�10�d;þ10�d�, which,
for the selected digit set, becomes ½�ð70=9Þd;þð70=9Þd�. The
range of v½j� is obtained from jv½j� � qLdj � �d, which results
in jv½j�j � ð�þ aLÞd. For the selected digit set ðaL ¼ 2Þ, this is
jv½j�j � ð25=9Þd.

Note that, to simplify the notation, in the development
that follows, we use the same notation, ½Lk; Uk�, for both qH
and qL although they have different values and the index k
corresponds to different sets.

Selection intervals for qH . We now obtain the selection
intervals ½Lk; Uk� for qH ¼ k, with k 2 f�1; 0; 1g. From the
recurrence,

v½j� ¼ 10w½j� � 5qHjþ1d

and, since v½j� � ð25=9Þd, by replacing 10w½j� by the upper
limit of the selection interval, we obtain

ð25=9Þd ¼ Uk � kð5dÞ;

resulting in

Uk ¼ ð5kþ 25=9Þd:

Similarly, since v½j� � �ð25=9Þd, and Lk is the lower limit of
the interval,

� ð25=9Þd ¼ Lk � kð5dÞ ! Lk ¼ ð5k� 25=9Þd:

Selection intervals for qL. Similarly, we obtain the
interval ½Lk; Uk� for qL ¼ k, with k 2 f�2;�1; 0; 1; 2g. From
the recurrence,

w½jþ 1� ¼ v½j� � qLd:

Introducing w½jþ 1� � ð7=9Þd and the upper limit of the
interval Uk, we obtain

ð7=9Þd ¼ Uk � kd ! Uk ¼ ðkþ 7=9Þd

and, with w½jþ 1� � �ð7=9Þd and the lower limit Lk,

� ð7=9Þd ¼ Lk � kd ! Lk ¼ ðk� 7=9Þd:

Bound for t. To obtain a bound on t, the number of
fractional digits of d10w, we use the minimum overlap
condition:

Uk�1ðdiÞ � Lkðdiþ1Þ � 1:12� 10�t;

which occurs for the first subrange of d and the maximum k.
If this subrange has a width of 10��, then we obtain, for qH ,

ð25=9Þ � 0:1� ð20=9Þ � ð0:1þ 10��Þ � 1:12� 10�t;

so that, for integer t and for � � 2, we obtain t � 2.
Similarly, for qL,

ð16=9Þ � 0:1� ð11=9Þ � ð0:1þ 10��Þ � 1:12� 10�t;

again resulting in t � 2.
Since the delay of the selection function directly depends

on t, we choose the minimum value t ¼ 2. Moreover, as
explained next, we adjust the interval width �d ¼ 10�� to
reduce the number of intervals of d.

Selection constants. We now determine suitable selec-
tion constants. The usual method is to divide the interval of
d into subintervals of width �d and then obtain selection
constants for each interval. However, in this design, we
proceed as follows:

. Define selection constants that are integers. That is,
we define the selection function by the integer
selection constants such that

qHjþ1 ¼ k if mHk � 102 � d10w½j� < mHkþ1

and

qLjþ1 ¼ k if mLk � 102 � bv½j� < mLkþ1:

. Obtain the selection constants from (4) transformed
so that the selection constants are integers and for
t ¼ 2. Moreover, from the possible values satisfying
the condition, select the selection constant that is a
multiple of 2p for the largest possible p. This reduces
the number of bits of the binary representation of the
selection constant, which is convenient for the
radix-2 implementation presented later.

. Make m�kþ1 ¼ �mk (for both H and L) so that only
the constants for positive k have to be determined
from d̂. This way, for each bd, we need to compute
mHðiÞ ¼ fmH1g and mLðiÞ ¼ fmL2;mL1g.

. Use the same subintervals for both functions and,
beginning from d ¼ 0:1, use the largest possible
subinterval. This minimizes the number of subinter-
vals and, therefore, the number of products in the
implementation.

This procedure produces the constants, as described in
Table 2.

3 DIVIDER ARCHITECTURE

We now describe the architecture of the divider. Of
particular interest are 1) the retiming of the recurrence,
2) the organization of the selection function, and 3) the
radix-2 implementation of the most significant slice. We
now discuss these aspects.

3.1 Retiming of the Recurrence

To be able to reduce the delay of the most significant slice,
we start with a retimed version of the iteration in which qj
and w½j� 1� are inputs and qjþ1 and w½j� are outputs. That

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Fig. 3. Error in carry-save estimate.

is, an iteration is described by the following expressions
(see the 16-digit implementation in Fig. 4):

v½j� ¼ 10w½j� 1� � qHj � ð5dÞ;

w½j� ¼ v½j� � qLjd;

qHjþ1 ¼ SELðd10w½j�;mHðiÞÞ;

qLjþ1 ¼ SELðbv½jþ 1�;mLðiÞÞ:

ð5Þ

As explained in Section 3.2, bv½jþ 1� is computed specula-
tively inside the SEL block (see Fig. 5). It is necessary to
initialize w and q. As indicated before, to ensure conver-
gence, we initialize w½0� ¼ x=100. Moreover, from the
recurrence and q0 ¼ 0, we obtain q1 ¼ SELðd10w½0�;mðiÞÞ.
Consequently, in Fig. 4, this initialization is performed in
the first cycle by selecting x=100 and initializing
qH ¼ qL ¼ wc ¼ 0. The intialization effectively scales the
dividend by 10�2 and therefore produces a quotient in the
range ð10�3; 10�1Þ, that is, q ¼ q0:q1q2 . . . ¼ 0:0xxx . . . or
0:00xxx Moreover, in the redundant (signed-digit)
representation of the quotient, since the range of a digit is
�7 to þ7, the first fractional digit needs to be 0 or 1 (the

value of 1 is needed when the second fractional digit of the
final quotient is larger than 7). During the conversion to
nonredundant representation (Section 4), this value 1 is
converted to 0.

Table 3 shows some iterations of the division algorithm
executed in the unit in Fig. 4.

3.2 Organization of the Selection Function

We consider now two issues in the organization of the
selection function, namely, 1) the preloading of the selection
constants and selection by comparison and 2) the over-
lapping of a conditional qL with qH . That is, as shown in
Fig. 5,

1. As done in [17] and [15] for the binary case, we

implement the selection function by preloading the

selection constants, depending on the value of bd,

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 5

TABLE 2
Selection Constants for qH and qL

Fig. 4. Basic implementation of the radix-10 recurrence.

Fig. 5. Implementation of the selection function with overlapping and speculation.

and we perform the selection of qHjþ1 and qLjþ1 by
comparing the corresponding constants with d10w½j�

and bv½jþ 1�, respectively.

The preloading of the constants takes the corre-

sponding delay out of the delay of the iteration.

Moreover, the comparisons are done by a carry-save

subtraction and a sign detection. This allows the

balancing of the paths for delay reduction.
2. As is usually done for radix-16 dividers, we overlap

the computation of a conditional qL with the

computation of qH and then select the correct qL.

Therefore, the inputs to the SELs qL are

d10ws þ d10wc � u � ðc5dÞ with u ¼ f�1; 0; 1g:

Moreover, we can precompute

� u � ðc5dÞ �mLk

with u ¼ f�1; 1g and k ¼ f�1; 0; 1; 2g ðeight valuesÞ;

and, remembering that mL�1 ¼ �mL2 and

mL0 ¼ �mL1, set the inputs for each of the SELs qL
as (see Fig. 5):

SEL qLðu ¼ �1Þ : d10ws; d10wc; ð�c5dþmL2Þ;

ð�c5dþmL1Þ; ð�c5d�mL1Þ; ð�c5d�mL2Þ

SEL qLðu ¼ 0Þ : d10ws; d10wc; ðþmL2Þ; ðþmL1Þ;

ð�mL1Þ; ð�mL2Þ

SEL qLðu ¼ 1Þ : d10ws; d10wc; ðc5dþmL2Þ; ðc5dþmL1Þ;

ðc5d�mL1Þ; ðc5d�mL2Þ:

3.3 Radix-2 Implementation of the Most Significant
Digits

Since the estimate used in the selection function is obtained
from the three most significant digits of w½j�, we separately
implement the slice consisting of those digits. This has been
done previously for binary division: first, in the 1960s, when
the recurrence was using a carry-propagate adder [18] and
then recently to be able to reduce the energy consumption
of the not-critical part [19] and/or to reduce the delay by
balancing the delay paths [15]. Moreover, we implement the
most significant slice by using a radix-2 representation. This
reduces the delay of the additions (both carry-save and
carry-propagate) and reduces the width of the slice.

In the description of the most significant slice, it is
convenient to refer to integer values. Specifically, since the
most significant slice has three fractional digits, we define

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

TABLE 3
Example of Radix-10 Division (Unit in Fig. 4)

integer variables as follows (and identify them with the
subscript m):

ð. . .Þm ¼ 1; 000ðtrunc3ð. . .ÞÞ;

where ð. . .Þ refers to a generic variable and trunc3ð. . .Þ

corresponds to the carry-save representation of ð. . .Þ

truncated so as to include up to the third fractional digit.
As illustrated in Fig. 6 (upper part), the recurrence for

this slice is then

ym½j� 1� ¼ 10wm½j� 1� þ wð4Þ½j� 1�;

vm½j� ¼ ym½j� 1� � ðqHj � 5dÞm þ vcð3Þ½j�;

wm½j� ¼ vm½j� � ðqLjdÞm þ wcð3Þ½j�;

where wð4Þ½j� 1� is the integer corresponding to the
fractional digit 4 of w½j� 1�, and vcð3Þ½j� and wcð3Þ½j� are the
carries of v½j� and w½j� into the fractional digit 3.

Combining the two previous expressions, we get

wm½j� ¼ 10wm½j� 1� þ wð4Þ½j� 1� � ðqHj � 5dÞm � ðqLjdÞm

þ vcð3Þ½j� þ wcð3Þ½j�:

ð6Þ

A block diagram of the implementation of the most
significant slice is shown in the lower part of Fig. 6, also
including the selection function. Note that, in this slice, we
do not explicitly compute ðv½j�Þm since this value is
computed speculatively in the selection function for qL.

The critical path of this implementation is large, mainly

because of the delay of the radix-10 addition in the most
significant slice (most likely implemented by radix-10 carry-
save adders: two in the recurrence, labeled “CSA tree” in
Fig. 6, and one in the selection function). To reduce this
delay, we implement this slice in radix 2. The disadvantages
of this are the multiplication by 10 (which now requires a
4-to-2 adder) and the addition of wð4Þ½j� 1� (which now
cannot be done by concatenation). However, we will
perform a retiming of the recurrence so that these
operations are outside the critical path.

The radix-2 recurrence is obtained directly from (6). To
distinguish from the radix-10 case, we use uppercase

notation for the radix-2 variables (and eliminate the sub-
script m). That is,

W ½j� ¼ 10W ½j� 1� þ wð4Þ½j� 1� � ðqHj5DÞ � ðqLjDÞ þ vcð3Þ½j�

þ wcð3Þ½j�;

ð7Þ

where qHj5D and qLjD are the binary representation of
ðqHj � 5dÞm and ðqLjdÞm, respectively.

Since W ½j� is the integer corresponding to the three most
significant digits of the carry-save representation of w½j� and
jw½j�j � 7=9, the range of W ½j� is ½�779;þ777�, so it is
represented in radix 2 (two’s complement) by 11 bits.

The corresponding radix-2 implementation is shown in
Fig. 7 and requires

. precomputation of the radix-2 representation of
�dm, �ð2dÞm, and �ð5dÞm (that is, �D, �2D, and
�5D, respectively),

. multiplication by 10 (this is implemented as 10z ¼
8zþ 2z by using a 4-to-2 (radix-2) carry-save adder),
and

. additions in the recurrence by using radix-2 carry-
save adders.

There are two paths that potentially are the critical paths,
namely, 1) the path in the radix-2 part corresponding to the
sum of the delays in the multiplication by 10, the addition of
wð4Þ, the addition of the multiples of the divisor, and the
selection function or 2) the path in the radix-10 part that
produces wcð3Þ½j�.

The path in the radix-2 part is reduced by retiming since
the multiplication by 10 and the addition of wð4Þ are outside
the qj � qjþ1 loop. Consequently, they can be performed in
parallel with the (previous) selection function. For the path
in the radix-10 part, we perform the selection without
including wcð3Þ½j� and add this value after the multiplication
by 10 as 10wcð3Þ½j�. The selection function has already been
designed to accommodate this postponement.

The radix-2 part has to be initialized with the corre-
sponding portion of x=100, namely, 1; 000ðtrunc3ðx=100Þ.
This is the integer corresponding to the first digit of x, that
is, xð1Þ.

The corresponding diagram is shown in Fig. 8 and the
resulting implementation in Fig. 9.

The registers are placed in such a way as to balance the
different paths. Consequently, the best placement depends
on a specific implementation. Fig. 9 shows the placement
obtained for the implementation presented in Section 5. The
registers are called qH , qL, Y , ws, and wc. Furthermore, to
keep the precomputation of 2d, 5d, and their radix-2
equivalents out of the critical path, we latch those values
as well. Note that those precomputed values are not needed
in the first iteration, as explained next.

3.4 Operation Execution

The computation of the 16-digit normalized and rounded
significand of the quotient requires 19 iterations if x � d or
20 iterations if x < d, as explained in Section 4.2.

To summarize, the architecture shown in Fig. 9 imple-
ments the algorithm in Table 4.

4 CONVERSION, NORMALIZATION, AND ROUNDING

4.1 On-the-Fly Conversion

The on-the-fly-conversion algorithm [16] performs the
conversion from the signed-digit representation of the
quotient digit qj to bj, with the conventional representation
in BCD (radix 10). The conversion is done as the digits are
produced and does not require a carry-propagate adder.

The partial quotient is stored in two registers: Q, holding
the converted value of the partial quotient Q½j�, and QM,
holding Q½j� � 10�j. The registers are updated in each
iteration by shift-and-load operations and the final quotient
is chosen between those two registers during the rounding.

In the radix-10 case, the implementation of the two
registers Q and QM, with a precision of n digits, requires
2� ðn� 4Þ flip-flops. This results in a large area and a high-
power dissipation due to the shifting during each iteration.

To reduce both power dissipation and area, we modify
the on-the-fly algorithm, as described in [19]. Specifically:

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 7

1. We load each digit in its final position. This way, we

avoid shifting digits along the registers. To determine

the load position, we use an n-bit ring counter C, one

bit for each digit to load.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Fig. 6. A first implementation of the radix-10 recurrence.

2. We reduce the partial-quotient registers from two to
one by eliminating register QM and by including in
register Q a digit decrementer controlled by the ring
counter C (see [19] for more details).

With these modifications, we reduce the number of flip-

flops in the conversion unit from 2� ðn� 4Þ to nþ ðn� 4Þ.

4.2 On-the-Fly Normalization

The load-digit-in-place mechanism can be used to normal-

ize1 the quotient during the on-the-fly conversion. When

dividing x=d ð0:1 � x; d < 1Þ, we have two cases:

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 9

Fig. 7. Implementation of the recurrence with the radix-2 slice.

Fig. 8. Retimed operation of the radix-2 slice.

1. Although normalization is not required in the IEEE standard for
decimal representation if the quotient is exact, even in this case, it might be
better to provide a normalized quotient to the compliance modules. This is
especially true since the normalization has no additional cost.

1. x � d) 1:0 � q < 10:0 (not normalized).
2. x < d) 0:1 < q < 1:0 (normalized).

Because of the initialization, the quotient obtained corre-

sponds to Q ¼ q=100. Consequently, the converted quotient

is multiplied by 100 (shifted left, two digits), resulting in

Q 0:0yxxx . . .

q y:xxxxx . . . ;

where we indicate with y the digit of weight 10�2 in Q.

Therefore, to obtain a normalized result, the two cases are

listed as follows:

1. If ðy 6¼ 0Þ Qnorm ¼ 0:yxxx . . . , increment exponent.
2. If ðy ¼ 0Þ Qnorm ¼ 0:xxxx

This could be achieved by placing y as the first fractional

digit and shifting left one position when y ¼ 0. We now

describe how the normalization is done during the

conversion, in this way avoiding the shifting.

Since the quotient obtained by the iterations is redundant

with � ¼ 7=9, q1 of the redundant quotient can be 0 or 1.

Consequently, the normalization is done as follows:

. If q1 ¼ 1, then the conversion changes it to b1 ¼ 0.
The result is q � 1:0 ðy 6¼ 0Þ) Case A.

. If q1 ¼ 0 and q2 > 1, then q � 1:0 ðy 6¼ 0Þ) Case A.

. If q1 ¼ 0 and q2 ¼ 0, then q < 1:0 ðy ¼ 0Þ) Case B.

. If q1 ¼ 0 and q2 ¼ 1, then this depends on the first
nonzero digit qj ðj � 3Þ:

- If positive, then ðy 6¼ 0Þ) Case A.
- If negative, then ðy ¼ 0Þ) Case B. This situa-

tion is shown in the example in Table 5.

In case A, the converted quotient corresponds to

0:b2b3b4 . . . bN and the exponent is incremented by 1,

whereas, in case B, the converted quotient corresponds to

0:b3b4b5 . . . bN .

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Fig. 9. Final implementation of the radix-10 recurrence and selection function. (a) Recurrence. (b) Selection function.

The control of cases A and B is performed during the

conversion. The normalization is achieved by freezing the

position of the hot 1 in the ring counter (see the example in

Table 5).
Calling L the number of digits of the final quotient, we

produce Lþ 1 digits (one additional quotient digit for the

rounding). Consequently, the number of cycles ðN þ 1Þ is

Lþ 3 for case A and Lþ 4 for case B. Specifically, for

L ¼ 16, we get 19 and 20 cycles, respectively.

4.3 Rounding

In the implementation of the unit, we only consider the
round-half-even rounding mode, but the other modes can be
implemented in a similar manner.

For the normalized quotient, the rounding is always
performed in position Lþ 1 in register Q (see Fig. 10). The
rounding is performed by adding half ulp ð5� 10�ðLþ1ÞÞ to
bðLþ1Þ and truncating the representation of Q in position L.
Moreover, when the sign of the remainder is negative
ðsign ¼ 1Þ, we have to subtract 1 from bðLþ1Þ. Finally, if the
remainder is zero ðzero ¼ 1Þ and bðLþ1Þ ¼ 5, then we

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 11

TABLE 4
Algorithm Implemented by the Unit in Fig. 9

TABLE 5
Example of Conversion and Normalization when q2 ¼ 1 and q3 ¼ 0

increment bðLÞ by 1 if its least significant bit is 1 (round to
even). In summary, the operation to perform on bðLþ1Þ is

bðLþ1Þ þ 5� sign� ðzero AND LSBðbðLÞÞÞ: ð8Þ

Clearly, a borrow ðborrowRNDÞ or a carry ðcarryRNDÞ
might be generated into position L. Although the
propagation of the borrow is eliminated by the on-the-
fly conversion, the propagation of the carry (which
occurs, for instance, when, before conversion, we have
. . . 3 0 0 0 �1 qN ! . . . 2 9 9 9 9 bðLþ1Þ) has to be addressed
separately.

This carry propagation can be avoided if the conversion
of digit L is performed including the carry from the
rounding (in this case, in the conflicting situation above,
the converted digit becomes 0). That is, the conversion of
digit L has to be postponed one cycle. This is achieved by
freezing the update of the marked digits when iteration L is
reached. The update of digits in register Q is resumed only
after the outcome of (8) is known. An example is shown in
Table 6.

5 IMPLEMENTATION AND COMPARISONS

In this section, we present the results of the evaluation of
the proposed design and a comparison with a double-
precision radix-16 digit-recurrence division unit which has
roughly the same dynamic range for the normalized
significand ð253 < 1016 < 254Þ. Furthermore, we compare
our results with those obtained in [4] for a divider based on
the Newton-Raphson approximation.

We performed a synthesis of the decimal divider, as
shown in Fig. 9, by using the STM 90-nm CMOS standard
cells library [20] and Synopsys Design Compiler. From the
synthesis, we estimated the critical path (including estima-
tions at the netlist level of wire load) and the area. The
critical path is highlighted in Fig. 9 (dotted line) and
reported in detail in Table 7.

The results are compared with those of [15] and reported
in Table 8. The data in Table 8 show that the decimal
divider has a latency close to that of a standard radix-16 and
its area is close to that of the faster radix-16 unit in [15].

With respect to the implementation in [4], it is quite
difficult to compare between the two different algorithms.
However, the implementation in [4] requires 150 cycles to
compute a 16-digit quotient (as in our case) and has a
critical path of 0.7 ns in a 0.11 �m standard cells library.
Assuming a constant field technology scaling2 [21], the
critical path of 0.7 ns scales approximately to 0:7 �
ð90=110Þ ¼ 0:57 ns. The resulting latency is 150� 0:57 ¼
85:5 ns, which is more than four times the latency of the

divider presented in this work. Furthermore, the expression
given in [4] for the number of cycles for a generic

implementation of the Newton-Raphson algorithm is
n: cycles ¼ 10þ P ð3þ 2mÞ, where P is the number of cycles

needed to perform a decimal multiplication and m is the
number of iterations needed for the approximation of 1=d
(Newton-Raphson iterations). Because, to our knowledge,

decimal multiplication requires several cycles (nþ 4 cycles,
where n is number of digits, in [3], for example), the digit-
recurrence approach proposed in this work seems quite

advantageous in terms of latency.

6 CONCLUSIONS

In this work, we presented a radix-10 division unit that is

based on the digit-recurrence algorithm. We developed the
algorithm and the divider architecture and implemented it
in standard cells. The unit implemented (16-digit BCD) has

a dynamic range of the significand that is comparable to
that of the IEEE double-precision standard.

Since there were no comparable digit-recurrence radix-10

units, we compared with a radix-16 divider because the
radices are similar. We concluded that the proposed
radix-10 divider has a latency close to that of a basic

retimed radix-16 divider, which a floating-point-unit
designer might use when considering a fast implementation

for medium-range radices. Moreover, we compared the
proposed divider with a recent implementation of a decimal

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

2. In [4], the supply voltage is VDD ¼ 1:2 V, whereas, in the library that
we used, it is VDD ¼ 1:0 V. Therefore, the ratio of the feature lengths
110=90 ¼ 1:2 equals the ratio of the supply voltages.

Fig. 10. The rounding position in register Q.

TABLE 6
Example of Rounding without the Carry Propagation

when qL ¼ �1

TABLE 7
Details of the Critical Path for the Implementation in Fig. 9

TABLE 8
Summary of Results for the Synthesized Unit and Those of [15]

divider based on the Newton-Raphson approximation [4].
Although a comparison between such different approaches
depends on too many parameters, considering the timing
reported for the two implementations, we are quite
confident that the design presented here shows a latency
(execution time for a 16-digit division) about four times
shorter than that of the unit based on the Newton-Raphson
approximation.

REFERENCES

[1] M. Cowlishaw, E. Schwarz, R. Smith, and C. Webb, “A Decimal
Floating-Point Specification,” Proc. 15th IEEE Symp. Computer
Arithmetic (ARITH 15), pp. 147-154, June 2001.

[2] M.F. Cowlishaw, “Decimal Floating-Point: Algorithm for Com-
puters,” Proc. 16th IEEE Symp. Computer Arithmetic (ARITH 16),
pp. 104-111, June 2003.

[3] M. Erle, E. Schwarz, and M. Schulte, “Decimal Multiplication with
Efficient Partial Product Generation,” Proc. 17th IEEE Symp.
Computer Arithmetic (ARITH 17), pp. 21-28, June 2005.

[4] L.-K. Wang and M. Schulte, “Decimal Floating-Point Division
Using Newton-Raphson Iteration,” Proc. 15th IEEE Int’l Conf.
Application-Specific Systems, Architectures and Processors (ASAP ’04),
pp. 84-95, Sept. 2004.

[5] F. Busaba, C. Krygowski, W. Li, E. Schwarz, and S. Carlough, “The
IBM z900 Decimal Arithmetic Unit,” Proc. 35th Asilomar Conf.
Signals, Systems, and Computers (Asilomar ’01), vol. 2, pp. 1335-1339,
Nov. 2001.

[6] R. Kenney and M. Schulte, “High-Speed Multioperand Decimal
Adders,” IEEE Trans. Computers, vol. 54, no. 8, pp. 953-963, Aug.
2005.

[7] L.-K. Wang and M. Schulte, “Decimal Floating-Point Square Root
Using Newton-Raphson Iteration,” Proc. 16th IEEE Int’l Conf.
Application-Specific Systems, Architectures and Processors (ASAP ’05),
pp. 309-315, July 2005.

[8] S.A. Tague and V.S. Negi, “Data Processor Having Carry
Apparatus Supporting a Decimal Divide Operation,” US patent
4,384,341, Patent and Trademark Office, 1983.

[9] S. Tokumitsu, “Divider Circuit for Dividing n-Bit Binary Data
Using Decimal Shifting and Summation Techniques,” US patent
4,599,702, Patent and Trademark Office, 1986.

[10] H. Yabe et al., “Binary Coded Decimal Number Division
Apparatus,“ US patent 4,635,220, Patent and Trademark Office,
1987.

[11] A. Yamaoka et al., “Coded Decimal Non-Restoring Divider,”
US patent 4,692,891, Patent and Trademark Office, 1987.

[12] D.E. Ferguson, “Non-Heuristic Decimal Divide Method and
Apparatus,” US patent 5,587,940, Patent and Trademark Office,
1996.

[13] C.F. Webb et al, “Specialized Millicode Instructions for Packed
Decimal Division,” US patent 6,067,617, Patent and Trademark
Office, 2000.

[14] IEEE Standard for Floating-Point Arithmetic, http://754r.ucbtest.
org/drafts/754r.pdf, Oct. 2005.

[15] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli, “Digit-
Recurrence Dividers with Reduced Logical Depth,” IEEE Trans.
Computers, vol. 54, no. 7, pp. 837-851, July 2005.

[16] M. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations. Kluwer Academic,
1994.

[17] N. Burgess and C. Hinds, “Design Issues in Radix-4 SRT Square
Root and Divide Unit,” Proc. 35th Asilomar Conf. Signals, Systems
and Computers (Asilomar ’01), pp. 1646-1650, 2001.

[18] D.E. Atkins, “Design of Arithmetic Units of ILLIAC III: Use of
Redundancy and High-Radix Methods,” IEEE Trans. Computers,
vol. 19, no. 8, pp. 720-733, Aug. 1970.

[19] A. Nannarelli and T. Lang, “Low-Power Divider,” IEEE Trans.
Computers, vol. 48, no. 1, pp. 2-14, Jan. 1999.

[20] STMicroelectronics, 90nm CMOS090 Design Platform, http://
www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm,
2007.

[21] N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI Design.
Addison-Wesley, 1993.

Tomás Lang received the BS degree in electrical
engineering from the Universidad de Chile in
1965, the MS degree from the University of
California, Berkeley, in 1966, and the PhD degree
from Stanford University in 1974. He is a
professor in the Department of Electrical Engi-
neering and Computer Science at the University
of California, Irvine. Previously, he was a
professor in the Department of Computer Archi-
tecture at the Polytechnic University of Catalonia,

Spain, and a faculty member in the Department of Computer Science at
the University of California, Los Angeles. His primary research and
teaching interests are in digital design and computer architecture, with
current emphasis on high-speed and low-power numerical processors
and multiprocessors. He is the coauthor of two textbooks on digital
systems, two research monographs, and one IEEE tutorial and the
author/coauthor of research contributions to scholarly publications and
technical conferences. He is a member of the IEEE Computer Society.

Alberto Nannarelli received the BS degree in
electrical engineering from the University of
Rome La Sapienza, Italy, in 1988 and the MS
and PhD degrees in electrical and computer
engineering from the University of California,
Irvine, in 1995 and 1999, respectively. He is an
associate professor at the Technical University
of Denmark. He worked for SGS-Thomson
Microelectronics and for Ericsson Telecom as
a design engineer and for Rockwell Semicon-

ductor Systems as a summer intern. From 1999 to 2003, he was with the
Department of Electrical Engineering, University of Rome Tor Vergata,
Italy, as a postdoctoral researcher. His research interests include
computer arithmetic, computer architecture, and VLSI design. He is a
member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LANG AND NANNARELLI: A RADIX-10 DIGIT-RECURRENCE DIVISION UNIT: ALGORITHM AND ARCHITECTURE 13

