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Abstract

In this paper we present the algorithm and architecture
of a radix-10 floating-point divider based on an SRT non-
restoring digit-by-digit algorithm. The algorithm uses con-
ventional techniques developed to speed-up radix-2k divi-
sion such as signed-digit (SD) redundant quotient and digit
selection by constant comparison using a carry–save esti-
mate of the partial remainder. To optimize area and latency
for decimal, we include novel features such as the use of al-
ternative BCD codings to represent decimal operands, es-
timates by truncation at any binary position inside a dec-
imal digit, a single customized fast carry propagate deci-
mal adder for partial remainder computation, initial odd
multiple generation and final normalization with rounding,
and register placement to exploit advanced high fanin mux-
latch circuits. The rough area-delay estimations performed
show that the proposed divider has a similar latency but
less hardware complexity (1.3 area ratio) than a recently
published high performance digit-by-digit implementation.

1. Introduction

The design of high–performance decimal floating-point
units (DFUs) is becoming a topic of interest [6]. Moreover,
the recent approval of the IEEE-754R standard [1] includes
specifications for decimal arithmetic. In this paper we de-
sign a new algorithm and architecture for radix-10 division.
We focus our attention to the class of SRT non-restoring
digit-by-digit methods. Digit-by-digit methods have the
characteristic of producing one digit per iteration. Good ex-
amples of radix-2k based division algorithms can be found
in [2, 7]. On the other hand, radix-10 division algorithms,
which are found recently in the literature, can be classified
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as follows: Newton Raphson based [15] and restoring [4] or
non-restoring digit-by-digit methods [8, 10]. The paper is
organized as follows: in Section 2 we present the proposed
algorithm and determine the selection constants and the best
BCD digit coding for a fast and a simple implementation of
the selection function. In Section 3 we describe the archi-
tecture and the operation sequence of the divider. Also, the
decimal adder used for residual assimilation, normalization
and rounding is fully detailed. In Section 4 we present the
area–delay evaluation results for the proposed divider using
a rough model based on logical effort [12]. We compare
our design with two recent radix-10 SRT designs [8, 10]
and with a software implementation [5]. In Section 5 we
summarize the main conclusions of this work.

2. Radix-10 Digit-Recurrence Division

The starting point of this work is the application of
well-known radix-2k methods to improve radix-10 division.
Among these methods are the use of a symmetrical redun-
dant digit set for the quotient digits (−a ≤ qi ≤ a, with
a ∈ {5, . . . , 10}), quotient digit selection using estimates
of the residual and the divisor and preloaded constants, and
the use of a carry-save format to represent the residual. In
principle, it is not certain that the well-known methodolo-
gies currently found in the literature are the best solution,
and even if they were, their application is not simple. To
adapt these radix-2k techniques to radix-10 division we fol-
low a different approach than [8] (the best up-to-date im-
plementation). Instead of splitting the digit selection and
residual updating into two overlapped stages, we opt for a
digit set that minimizes the complexity of generating divi-
sor multiples. Specifically, this work presents the following
contributions:

• Implementation with a suitable digit set that minimizes
the complexity of generating divisor multiples.

• A study of alternative BCD codings to represent dec-
imal digit operands. The dividend x, divisor d and quo-
tient Q require a decimal range-complement non redundant
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representation, while the residual w[i] requires a redundant
representation (carry-save or signed digit). The preferred
coding leads to the simpler implementation of the selection
function and divisor multiples generation in terms of area-
latency trade-offs.

• Obtention of the selection constants as estimates of dif-
ferent truncated multiples of the divisor, avoiding tables.

• Design of a decimal adder to compute the required odd
divisor multiples, the assimilation of the previous residual
(in parallel with the selection of the next quotient digit), and
normalization and rounding, thus sharing the same hard-
ware for different parts of the floating-point division.

2.1. Proposed Algorithm

We assume that the dividend x, the divisor d and the quo-
tient Q are in the range1 [1, 10) . The radix-10 division al-
gorithm implements the following recurrence

w[i + 1] = 10w[i] − qi+1 d (1)

where w[i] is the partial remainder at iteration i, d is the
divisor and qi+1 is the digit of the quotient with weight
10−(i+1). In order to converge, it is necessary to select qi+1

so that the resulting residual is bounded by

−ρd ≤ w[i + 1] ≤ ρd (2)

where ρ = a/9 is the redundancy factor.
The main drawback of recurrence (1) is the generation

of odd multiples of d. One simple approach consists of im-
plementing the recurrence as two simpler overlapped recur-
rences of lower radix [8]. In this work we explore an al-
ternative, a direct implementation of (1) with the minimally
redundant set {−5, . . . , 0, . . . , 5} (ρ = 5/9). This choice
minimizes the complexity of the generation of decimal di-
visor multiples while having a single recurrence. We only
need to compute the odd multiple 3d using a decimal carry-
propagate adder. The other multiples can be generated with
simple recodings.

Since we need a carry-propagate adder for multiple gen-
eration, we designed the algorithm and the architecture to
reuse this adder. Specifically, the addition required by the
recurrence (1) is implemented with this adder, so that we
keep the residual in non-redundant form. To make the de-
termination of qi+1 independent of this carry-propagate ad-
dition (which would result in a large cycle time) we perform
the digit selection using an estimation of w[i] obtained from
the leading digits of 10w[i−1] and −qid (this is allowed by
the redundancy of the digit set for qi+1). From the point of
view of the estimation, this is similar to the standard prac-
tice of keeping the residual in carry-save.

1The IEEE-754r standard does not require normalized operands, and
therefore a pre-processing stage is necessary to have the values of the
operands normalized.

For convergence it is necessary to assure −(5/9)d ≤
w[0] ≤ (5/9)d. This is achieved by the following initial-
ization

w[0] =
{

x/20 if (x − d) ≥ 0
x/2 else

(3)

and q0 = 0. Under this initialization 0.05 ≤ q < 0.5,
so it is necessary to multiply the resultant quotient by 20
to produce the normalized quotient in the appropriate in-
terval [1, 10). For a n-digit precision rounded quotient the
algorithm requires n + 2 quotient digits qi (i > 0) (includ-
ing a guard and round digit). This initialization requires
the computation of the sign of x − d, which is performed
by the decimal carry-propagate adder. Moreover, the same
adder is also used for the final conversion from redundant
to non-redundant representation and rounding of the result
quotient.

The coding of decimal digits is a key issue to provide fast
redundant decimal arithmetic. A decimal digit Zi is repre-
sented in a 4-bit weighted number system (BCD-r3r2r1r0)
as

Zi =
3∑

i=0

zi,j · rj (4)

where zi,j is the jth bit of the BCD ith digit and rj is the
weight of the jth bit. Recent work [13] suggests the use
of alternative BCD codes (BCD-4221 and BCD-5211) in-
stead of the more conventional BCD code (BCD-8421) to
improve decimal carry-save addition by using binary carry-
save arithmetic. Moreover, the negative value of a decimal
number coded in BCD-4221 or BCD-5211 can be obtained
by bit-inversion and addition of one ulp (unit in the last
place). Thus, negative divisor multiples are obtained from
the corresponding positive ones (d, 2d, 3d, 4d,5d) as a two’s
complement over the bit-vector representation. The genera-
tion of divisor multiples is detailed in Section 3.

The choice of the representation for the operands is di-
rectly related to the value of the truncation error in the esti-
mations used to obtain the quotient digits. In this way, the
BCD-5211 coding presents certain advantage with respect
to BCD-4221 or BCD-8421 (see Section 2.2).

Finally, to convert the n + 2 signed-digit quotient into
the n-digit rounded non-redundant form each qi value is re-
coded as qi = −10 · si + q∗i where

(si, q
∗
i ) =

{
(0, qi) qi ≥ 0
(1, 10 − qi) else

(5)

(si, q
∗
i ) ∈ ({0, 1}, {0, . . . , 9}). This digit recoding is per-

formed after each digit selection, so after n+2 iterations of
(1) we have Q∗ =

∑n+2
i=1 q∗i · 10i and S =

∑n+3
i=2 si · 10i,

where sn+3 = sign(w[n + 2]) is introduced to correct the
quotient when the last residual is negative. The quotient is
obtained as Q = round(Q∗ − 10 · S)n, which requires a
decimal subtraction and rounding to n digits according to
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the rounding specifications. This operation is performed by
the decimal carry-propagate adder, adapted to include the
rounding.

2.2. Selection Function

As mentioned before, the quotient digit qi+1 is obtained

from an estimation ̂10w[i] of 10w[i] by truncating 10w[i−1]
and −qid and input them to the digit selection. This esti-
mation is compared to selection constants (mk, with k =
−4, ..., 5) which are dependent on the leading digits of d.
Specifically,

qi+1 = k if mk ≤ ̂10w[i] < mk+1 (6)

As in [8] we implement the selection function by comparing
the estimation of the residual with each of the selection con-
stants. Since the estimation is composed of two words, the
comparisons are performed by obtaining the sign of the dif-
ference between the estimation and the selection constant.
This is performed by a three to two reduction using a deci-
mal carry-save adder and a decimal sign detector.

The method used to obtain the selection constants is
well-known [8]. However, in this work, we introduce two
innovations:

• New BCD codings to reduce the estimation error.
• Estimations by truncating at the bit level instead of

digit level (number of bits multiple of four), to reduce the
number of bits of the estimations.

The process to obtain the number of bits of the estima-
tions and the selection constants is not described here due
to the lack of space and because it is a standard process.
We obtained that by using BCD-5211 coding, one less frac-
tional bit is needed for the estimation of the residual com-
pared to BCD-8421 or BCD-4221. Moreover, the deci-
mal carry-save adder is effectively implemented with BCD-
5211 (very similar to the simple implementation with BCD-
4221 [13]). Therefore we used BCD-5211 for representing
the operands.

For BCD-5211 representation, the selection constants
are obtained from the leading 12 bits of d (one integer and
two fractional decimal digits). The estimation of the resid-
ual requires 9 integer (including sign) and 6 fractional bits.
The selection constants require the following number of bits
(integer+fractional): m1 and m0 → 3+6, m2 and m−1 →
5+6, m3 and m−2 → 6+6, m4, m5, m−3 and m−4 → 7+6.

A straightforward implementation to obtain the con-
stants consists in using a look-up table with the 12 bits of d
as input. Our synthesis results indicated that this approach
was very costly in terms of area and time (we want to de-
termine the constants in just one cycle). An efficient im-
plementation is obtained by computing the constants as fol-
lows:

• For mk with k = 1, 2, 3, 4, 5 compute (k − 0.5) × d̂
rounded up to six fractional bits. Since the sign detectors
require the addition of −mk, it is necessary to complement
the digits of mk (bit inversion for BCD-5211 code) and add
a 1 in the least significant position (this 1 is incorporated as
the carry bit in the least significant position of the resultant
three to two reduction).

• For mk with k = −4,−3,−2,−1,−0, we obtain
−mk = m−k+1 + 1. The addition of 1 is performed us-
ing the carry bit of the least significant position of the three
to two reduction.

Therefore we compute the constants using arithmetic
methods, avoiding large and slow look-up tables.

3. Divider Architecture

To represent the signed decimal operands x,d,Q and w[i]
we use a 10’s complement representation of length l = 4 ·
n+6 bits (including a sign bit and 5 guard bits for the initial
scaling by 20) for a n-digit precision quotient with decimal
digits coded in BCD-5211.

The architecture for IEEE-754R Decimal64 format (n =
16 digits, l = 70 bits) is shown in Fig. 1. We only detail the
architecture for significand computation, since other issues
of floating-point division such as packing and unpacking
from IEEE-754R floating–point format and sign and expo-
nent calculations are straightforward. The division unit con-
sists mainly of a 70-bit decimal adder and rounding unit (see
Section 3.2), a module implementing the selection func-
tion with quotient digit recoding (detailed in Section 3.3)
and a generator of divisor multiples and selection constants
shown in Fig. 2. Fig. 2(a) shows the generation of posi-
tive full length divisor multiples (d, 2d, 3d, 4d, 5d). These
multiples are precomputed and are not needed until after
the selection of the first quotient digit q1. We assume that
the divisor d is unpacked in BCD-5211, so multiplication
by 2 consists of a 1–bit wired left shift (L1shift does not re-
quire logic) followed by a digit recoding from BCD-4221 to
BCD-5211 using combinational logic with no carry propa-
gation between digits [14]. The 4d multiple is obtained by
performing this sequence twice. Multiple 5d is generated
first recoding from BCD-5211 to BCD-4221 and then per-
forming a L3-shift. The generation of 3d = 2d + d requires
a decimal carry-propagate addition that is performed in the
70–bit decimal adder. The result is stored in a latch to be
available for the next iterations. The negative multiples are
obtained from the corresponding positive multiples by bit
inversion. This is performed by the level of XOR gates con-
trolled by the sign of qi (obtained in the previous cycle) and
placed before the decimal adder and the selection function
block in Fig. 1. In Section 2.2 we obtained that the selec-
tion function requires 15 leading bits of −qid and so they
need to be buffered. For a reduced latency implementation,
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Figure 2. Generation of divisor multiples and selection constants.

the datapath (latches and multiplexes) for these leading bits
is replicated and the sign bit of qi is buffered and latched.
The implementation of the precomputation of the selection
constants described in Section 2.2 is shown in Fig. 2(b).
The positive integer multiples of an estimate of the divisor
are obtained as described before, but now one 11-bit and
two 13-bit decimals adders (see Section 3.2) compute 3d̂,
7d̂ and 9d̂. Selection constants {m1, . . . , m5} are obtained
in BCD-5211 code from the integer multiples of d̂ (in BCD-
4221 code) performing a 1-bit right wired shift (equivalent
to ×0.5). Other key components are the mux-latches that

combine a wide multiplexer and a latch [11]. They are used
to select and store the corresponding divisor multiples for
the next iteration, the results coming from the decimal adder
and the different values of initialization. The architecture
was designed to fit the latches after the multiplexes to re-
duce latency. We now describe the operation of the divider.

3.1. Operation Sequence

The sequence of operations of the proposed architecture
is as follows:
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• Cycle 1. We assume q0 = 0. We preloaded the narrow
mux-latches with 0 and x̂/20 and the wide mux-latches with
d and x. First, the decimal adder performs x− d. Then, the
narrow mux-latch load 0 and x̂/20 (if x−d ≥ 0, determined

by examining the carry-out of the adder) or x̂/2 in other
case. The wide mux-latches load 2d and d.

• Cycle 2. The selection function obtains q1 as (q∗1 , s1)
while the decimal adder performs 2d+d = 3d. The 3d mul-
tiple is stored in a dedicated latch. The wide mux-latches
load |q1|d and x/20 (x − d ≥ 0) or x/2 (x − d < 0). The

narrow mux-latches load ̂|q1|d and ŵ[0].
• Cycle 3 to n + 3 (recurrence iterations i = 1 to i =

n + 1). In each iteration, the selection function performs
qi+1 = selection( ̂100w[i− 1], ̂−10qid) while in parallel
the decimal adder computes w[i] = 10w[i − 1] − qid. At
the end of the cycle n + 3, the quotient digits (q∗1 , s1) to
(q∗n+2, sn+2) are available .

• Cycle n + 4. The residual w[n + 2] = 10w[n + 1] −
qn+2d is assimilated in the decimal adder. This cycle could
be avoided by implementing a sign and zero detector at the
expense of an additional hardware cost.

• Cycle n + 5. The decimal adder performs the sub-
traction Q = Q∗ − 10 · S and rounds the result to n–digit
precision (the round position is known). The rounding logic
determines the +1 ulp conditional increment from the round
digit, the rounding mode and the sticky bit. The BCD-
5211 quotient is multiplied by 20 (5–bit left wired shift) to
produce the normalized decimal quotient Q in BCD-4221.
Note that only the most significant bit of q∗n+2 is needed , so
the subtraction fits in the 70-bit wide format of the adder.

In summary, a n-digit decimal division is performed in
n + 5 cycles. For the 16-digit divider of Fig. 1 a division is
completed in 21 cycles. In the remaining Section we detail
the implementation of the decimal adder and the selection
function.

3.2. Architecture of the decimal adder

The algorithm for decimal addition is based on the con-
ditional speculative method [13], but with digits in a BCD-
5421 code instead of the more conventional BCD-8421. We
use BCD-5421 code since recoding between BCD-5211 and
BCD-5421 is much simpler than between BCD-5211 and
BCD-8421 codings. A decimal digit coded in this BCD-
5421 code has the following expression

Zi = zi,3 · 5 +
2∑

j=0

zi,j · 2j (7)

with the constraint zi,3 = 1 if Zi ≥ 5. Moreover, we adapt
the architecture to operate with BCD-5211 coded numbers.
Decimal adders implemented in the precomputation of the

selection constants work with BCD-4221 decimal operands
but its structure is basically similar to that described here.
The adder performs both two-operand addition and subtrac-
tion Z = X ± Y = X + Y ∗, where Y ∗ is in 10’s com-
plement form for subtraction operations. The complement
operation is performed by inverting the bits of Y coded in
BCD-5211 and setting up the carry input to 1. Since the al-
gorithm operates with BCD-5421 operands, input digits are
first recoded. Then, a +3 increment is performed at each
decimal digit position. This operation is carried out as a
digit recoding (BCD-5421 to BCD-5421 excess3) of one
input operand. This allows the computation of the decimal
carries using conventional 4-bit binary carry–propagate ad-
ditions, since decimal carries are equal to the binary carries
at decimal positions. To obtain the decimal sum digits we
compute a control signal AL

i for each digit position i given
by

AL
i =

{
1 If XL

i + (Y ∗
i )L ≥ 5

0 Else
(8)

where XL
i , (Y ∗

i )L represents the 3 less significant bits of
Xi and Y ∗

i . Sum digit Zi (coded in BCD-5421) is com-
puted speculatively by using a 4-bit binary carry-propagate
addition and conditionally adding +3 as

Zi =
{

Xi + Y ∗
i + 3 + Ci If(AL

i == 1)
XU

i + Y ∗
i + Ci Else

(9)

where Ci is the decimal carry input into digit position i.
This speculation produces a wrong sum digit for Ci = 0
and mod8

(
XL

i +(Y ∗
i )L

)
= 7 (the correct decimal sum digit

is 4). The decimal correction is performed by removing the
+3 value incorrectly speculated for this case. But instead of
implementing this correction, we simultaneously perform a
decimal correction and a digit recoding from BCD-5421 to
BCD-5211. This consists of detecting the condition Ci = 1
and mod8

(
XL

i + (Y ∗
i )L

)
= 3 and adding +3. We im-

plement it by replacing the binary carry-propagate sum ex-
pressions Z∗

i = mod16(Xi + Y ∗
i + Ci) with the following

expressions for Ci = 1:

zi,0 = pi,0 ∨ pi,2 · pi,1

zi,1 = z∗i,2
zi,2 = pi,2 · pi,1 · ai,0 ∨ pi,1ai,0

zi,3 = z∗i,3

where ∨ is the logical OR, · the logical AND, pi,j , ai,j are
the binary carry propagate and carry alive functions and the
decimal sum digit is coded in BCD-5211. A digit slice of
the 70-bit decimal adder implementing this algorithm is de-
tailed in Fig. 3(a).

We have implemented the algorithm in a quaternary pre-
fix tree (Q-T) topology [9]. Decimal carries are computed
in a sparse prefix tree of 7 levels of logic depth. Sum digits
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Figure 3. Diagram block of the Q–T decimal adder.

are precomputed in parallel with carry evaluation using the
array of two-conditional decimal sum cells shown in Fig.
3(b). The right sum digit is then selected by the correspond-
ing decimal carry. These two–conditional cells are conven-
tional 4-bit carry-select adders modified to obtain the cor-
rect BCD-5211 sum digits as described before. The black
gates of Fig. 3(b) perform this decimal correction.

The architecture also implements a +1 conditional incre-
ment of the result for rounding operations. To avoid a new
carry propagation, we implement a decimal late carry LCi,
which accounts for a decimal carry Ci or an input carry due
to an increment operation. These late carries then select
the appropriate sum digit computed in the array of two-
conditional digit adders as Zi = Z1i · LCi ∨ Z0i · LCi. A
carry due to an increment operation is propagated from the
less significant position to digit position i if the group alive
function Ai−1,0 =

∏i−1
j=0 Aj is true 2. The prefix adder

only requires a minor modification to compute the carry
alive groups Ai:0 [3]. Thus, LCi carries are implemented
as

LCi = Ci · Ai−1:0 · inc ∨ Ci = Ai−1:0 · inc ∨ Ci (10)

using the level of And-Or-Inverter (AOI) gates placed after
the prefix tree, where signal inc controls a request from the
rounding logic to increment the sum.

2For decimal speculative addition decimal group alive functions are
computed as binary group alive functions.

3.3. Selection function implementation

Fig. 4(a) shows the detail corresponding to the selec-
tion function part. The selection function is directly imple-
mented using 10 decimal comparators. Each one compares
the estimate of the residual 10ŵ[i] ( ̂100w[i − 1],−10q̂id)

with one selection constant. If ̂10w[i] ≥ mk then the out-
put of the comparator is 1. The value of qi+1 is obtained
decoding the output of the comparators.

The decoder produces a sign bit si+1 = sign(qi+1) and
the absolute value of qi+1 (|qi+1|) in hot-one code for the
control signals of the mux-latches. It also provides the q∗i+1

quotient digits coded in BCD-5211. The implementation
of a decimal comparator is shown in Fig. 4(b). A level
of binary 3 to 2 CSAs reduces the three input operands (in
BCD-5211) to a two operand, a sum word vk[i] and carry
word hk[i] coded in BCD-5211, that is

100 ̂w[i − 1] − 10q̂id + mk = vk[i] + 2hk[i] (11)

The 2 hk[i] is performed by a L1-shift and a digit recod-
ing from BCD-4221 to BCD-5211. The digits of vk[i] and
2hk[i] are recoded to BCD–5421 and BCD-5421-excess3
to generate and propagate the decimal carries using a prefix
tree and decimal speculative addition as explained in Sec-
tion 3.2. The sign of the comparison is determined by the
xor of the carry output of the prefix tree and the sign bits of
the input operands.
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(b) Bit level implementation of a decimal comparator.

Figure 4. Implementation of the digit selection function.

4. Evaluation and Comparison

In this Section we present the area-delay figures for
the proposed architecture and compare it with two recent
proposals of decimal dividers based on a radix-10 digit-
recurrence algorithm [8, 10]. The delays are estimated in
FO4 units (delay of an inverter with a fanout of 4 inverters)
using a model based on logical effort [12]. The total stage
delay is obtained as the sum of the delays of the gates on the
critical path assuming equal input and output capacitances
for the pipelined stage. Delay estimations take into account
the buffering and the different gate loads, but not the wire
delay. The hardware complexity is given as the number of
equivalent minimum size NAND2 gates. The cost related to
the area of a gate is a function of the number of transistors
and its size (width). Although this is a rough area-delay
model, it is good enough for making design decisions at
gate level. Table 1 summarizes the evaluation results for

Block Area Stage delay
(NAND2) (FO4)

Sel. function (Fig. 4) 3200 22.3
Mult. generator (Fig. 2) 2000 18.4
Adder datapath (Fig. 3) 2600 21.8
Mux/latch 2700 3.0
Total 10500 25.3∗
∗Critical path delay (sel. function +mux/latch)
Precision digits = 16
Bits datapath=70
Cycles/division= 21

Table 1. Delay and area of the proposed divider.

the IEEE-754r Decimal64 divider using this model. Table
2 presents the area-delay figures for the architectures an-
alyzed. We also include the delay figures of a software
implementation of the IEEE-754R decimal64 FP division
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Divider Cycle time Cycles Latency Area
(FO4) # (FO4) (NAND2)

Proposed 25.3 21 531 10500
Ref. [10] 35.8 19 680 22600
Ref. [8] 26.8 20 536 13500
Ref. [5]∗ ≈ 22 294 6468 –
∗Software library running in an Itanium 2 @ 1.4 GHz

Table 2. Comparison results for area-delay (decimal64).

[5]. Since the area-delay figures for [8] are comparable to
ours we have estimated its critical path delay using our area-
delay model in order to provide fair comparison results. The
hardware complexity in NAND2 gates was provided by the
authors. For the other reference we use the figures provided
by its synthesis results and expressed in terms of equivalent
FO4 gate delays and number of equivalent NAND2 gates.
Although the implementation proposed in [10] is for Dec-
imal128 (n=34) we extrapolate the area figures assuming
linear scaling, which is rather optimistic. From this compar-
ison we conclude that our proposal is comparable in terms
of latency to the best up-to-date implementation [8] and is
more advantageous in terms of hardware complexity (about
1.3 area ratio). In addition, the software implementation
analyzed [5] is an order of magnitude slower than the SRT
radix-10 hardware implementations. With respect to hard-
ware implementations based on multiplicative algorithms
such as Newton-Raphson [15], comparison is difficult, since
different issues should be taken into account: the use of a se-
rial or a parallel decimal multiplier, the reuse of an existent
multiplier or replication and the impact on the performance
of other instructions that shares the same multiplier. How-
ever, since efficient decimal parallel multipliers have been
recently reported [14], we expect that the design decisions
for decimal division are close to those considered for binary
division.

5. Conclusions

In this paper we present the algorithm and the architec-
ture of a decimal division unit. The proposed radix-10 al-
gorithm is based on the SRT digit-recurrence methods with
a minimally redundant signed-digit set (ρ=5/9). The resul-
tant implementation combines conventional methods used
for high-performance radix-2k division (SD redundant quo-
tient and digit selection using selection constants and an es-
timate of the carry-save residual) with novel techniques de-
veloped in this work to exploit the particularities of radix-10
division. Among these new techniques are the use of non-
conventional BCD codings to represent decimal operands,
estimates by truncation at any binary position of a decimal
digit and a customized decimal adder for several computa-

tions. We have implemented a 16 decimal digit divider that
fits the IEEE-754R decimal64 format. Evaluation results
show that our implementation presents comparable delay
figures with respect to the best up-to-date implementation of
a radix-10 digit-recurrence divider [8] but using less hard-
ware complexity (1.3 area ratio).
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