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A RADON TRANSFORM ON SPHERES

THROUGH THE ORIGIN IN R" AND

APPLICATIONS TO THE DARBOUX EQUATION

BY

A. M. CORMACK AND E. T. QUINTO

Abstract. On domain C"(R") we invert the Radon transform that maps a

function to its mean values on spheres containing the origin. Our inversion formula

implies that if / e C°°(/?") and its transform is zero on spheres inside a disc

centered at 0, then/is zero inside that disc. We give functions/ € CX(R") whose

transforms are identically zero and we give a necessary condition for a function to

be the transform of a rapidly decreasing function. We show that every entire

function is the transform of a real analytic function. These results imply that

smooth solutions to the classical Darboux equation are determined by the data on

any characteristic cone with vertex on the initial surface; if the data is zero near

the vertex then so is the solution. If the data is entire then a real analytic solution

with that data exists.

In 1917 Radon inverted the first "Radon transform" [18]. This transform, R,

maps a function on i?" to a function on the set of hyperplanes in R". If / is a

continuous function of compact support on R " then Rf evaluated on a hyperplane

is the integral of / over that hyperplane in its natural measure. The case n = 2 has

many applications in science, engineering, and medicine [2], [3], [15], [21] and the

transform on R" (n arbitrary) has many applications to partial differential equa-

tions [13], [14]. Generalizations of this Radon transform to integrations over certain

spheres and ellipsoids have been studied by John and others [13], [19] again in

connection with partial differential equations. Moreover these examples are all

special cases of the generalized Radon transform: given smooth manifolds X, Y,

and a class of submanifolds of A\ (TT^y G Y}, one specifies smooth measures /iy

on each TT^. The generalized Radon transform R from C0XI(X) to functions on Y

takes/ G C0°°(X) to the integrals of/over the manifolds 77^, in the measures fiy [7].

In many cases restrictions on the support of Rf imply restrictions on the support of

/[10]; this fact is useful in applications to partial differential equations [11], [14].

In this article we define a Radon transform over spheres passing through the

origin in R". If / G C(R"), the transform / evaluated on a sphere containing 0 is

the mean value of / over that sphere in its natural measure. Our main result,

Theorem 1, is an inversion formula for this transform: if/ G C°°(Ä") then/(x) is

determined by the values of / on spheres that lie inside the disc of radius |x|
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576 A. M. CORMACK AND E. T. QUINTO

centered at the origin. The theorem is proven by using facts about spherical

harmonics, Gegenbauer polynomials and the classical Radon transform on 7?". Our

theorem implies the following support restriction (Corollary 2). If/ G C°c(Rn) and

/ is zero when evaluated on spheres inside a disc centered at 0 then / is zero in that

disc. To give perspective to this result, for each q E N, we define f E Cq(R") such

tbatfq is identically zero (Example 1). Then we observe other interesting properties

of this transform that help characterize its range (Propositions 4 and 5) and finally

we apply our transform to C°° solutions of the classical D. rboux equation (n > 2)

id2 , (zz - i) a
,+--¿-a-- A, h - 0 (1)

\ dr r       dr        x) v '

where Ax is the Laplacian in 7?" (u(x, r) E CX(R" X R)). If the initial value for

(1) is u(x, 0) = f(x) then it is well known that u(x, r) is the spherical mean off over

the sphere of radius \r\ centered at x [13]. From our results on spherical means we

conclude that a C°° solution to (1) is determined on each compact subset of

R" X R by data on a corresponding compact subset of the characteristic cone

\x — x0| = \r\ for fixed x0 G R"; if the data is zero near x0 then so is the solution.

Finally we show that real analytic data on the cone determines a real analytic

solution for (1).

Rhee and Chen discovered a different inversion formula for this transform that

is valid in odd dimensions on a different class of functions than C°°(7\"). Rhee also

obtained a representation of certain solutions to the Darboux equation [1], [19].

The authors would like to thank Victor Guillemin, Dennis Stanton, and the

reviewer for their help and advice. Jim Dalton and the M.I.T. Mathematics

Department have provided valuable resources for us. Finally we would like to

thank Charles Hamaker for his many valuable suggestions on the form and content

of this article.

We now define our Radon transform. Let y = 2pu where to G S"~\p E R, let

dû be the standard measure on 5"_1 and let un be the volume of S"_l in this

measure. If/ G C(Rn) then

Ay) = - [    äp(" + «)) dm)- (2)

This is just the mean value of f over the sphere with center.y/2 and radius |y\/2 in

its standard measure. The map (2) from C°°(7?") to C°°(R") is a generalized

Radon transform in the sense above; away from the origin it is an elliptic Fourier

integral operator (see (11) and [9], [17]).

Our main theorem will be proved using facts about Gegenbauer polynomials and

spherical harmonics. Let n > 2 and let X = (n — 2)/2. The Gegenbauer poly-

nomial C,x(t) of degree / = 0, 1, 2, ... is orthogonal to all polynomials of degree

less than / on [-1, 1] with weight function (1 - t2)x~l/2. A function on S"'1, Y,(u),

is a spherical harmonic of degree / if Y, is the restriction of a homogeneous

harmonic polynomial of degree / in R". If £ G S"'1 and • denotes the standard

inner product on R ", then Y,(co) = C,x(u • 0 is a spherical harmonic of degree /. If

Y, is a spherical harmonic,/ G C(R"), andp E R define
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f        f(Po>) y,(») rfö(«)
J,.,s= .«»-'

f       | y,(w)l2 </a(w)
'«6S"-'

Then / depends on the choice of y, and /,(-/>) = (-l)///z); for / G C°°(Ä"),

/z(p) = P'g(p) where g G C°°(Ä) is even. In the Hubert space L2(S"~1,dQ) a

spherical harmonic of degree / is orthogonal to any polynomial of lower degree. In

fact one can choose a complete orthonormal system in L2(Sn~1, dil) consisting of

spherical harmonics and having 0(l"~2) elements of degree /. If Y, is a member of

such a system, / G C(R") and p E R then the corresponding coefficient of the

series in this system for f(pu>) is f,(p) and if / G CX(R") this series converges

uniformly absolutely on compact subsets of 7?" to f(pu>) [6], [20].

We can now state our main theorem.

Theorem 1. Let n > 2, X = (n — 2)/2 and let Y¡ be a spherical harmonic of

degree I on S"~l.

(3) Iff E C(R") and s > 0 then

f(s) = (2/5)"-'^i- fSCx(r/s)f,(r)r»(l - (r/s)2f~i/2 dr.

(4) Iff E Cx(R"),p >0andK= T(l + l)/(2"-T(/ + 2X)X) then

f(p) = Kp-^d/dp)"-1 ¡"mc^p/s^p/s)2 - if-i/2s^ ds

= Kp^-1 (\d/<by-l[à«+*to)]cr(p/s){(p/s)2 - i)x-,/25Äds.

Note that if / G C°°(7?") then/is smooth and so f,(p)p~' is in C°°([0, oo)); this

implies that the integrals in (4) are in C^flO, oo)).

For the case n = 2 Cormack [2] proved that

fM = A \Sf,{r)T[n(r/s){l - (r/s)2y1/2 dr, (5)
(its) J0

f,{p) = ^fi(<s)TVx{p/s){{p/sf-\)-l/2 ds (6)

where T¡¡¡ is the Chebychev polynomial of the first kind of degree |/| [6],f,(r) is the

/th Fourier coefficient of f(ru) and w G S '. The other results of this paper are true

in this case as well. Their proofs are as given here for n > 2 except the formulas (5)

and (6) replace (3) and (4).

Proof of Theorem 1. The proof follows from the relation between our trans-

form (2) and the classical Radon dual transform on R". For g(í,p) G

C(S"~ ' X Ä) and j> ER", the classical Radon dual transform is defined by

R*g(y)=(      g&y&dQ®. (7)
•'fes—1
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578 A. M. CORMACK AND E. T. QUINTO

Let w G S"~\ let S be the sphere of radius 1 centered at u and let dQx be its

standard measure. Let T7 = {£ G S"~l\i ■ u> = 0} and define x: S"'1 -> S, £^>

2(| • w)|; then x is a 2 - 1 cover of 5 - {0} by S"'1 - H.

Let dr be the standard measure on //s S"~2. If t G 77 and 9, <j> E [0, it] the

maps

(t, (?) -► (sin 0)t + (cos ö)w = | (8)

and

(t, ¿>) -+ (sin </>)t + (1 + cos ¿>)w = ¿' (9)

give coordinates on 5"_l and 5 respectively in which their measures become

dQ, = (sin 9)"~2 d9 dr and düx = (sin d>)"  2 ̂  ^T respectively. In coordinates (8)

and (9) x(T> 9) = (t, 29);  using these expresssions for dQ,, dQ,x, and x it is

straightforward to check for/ G C(R"),y = 2/>w G R" that

/(>0 = — f    ÄpO dQ,
un ■'fei

= ^-(2/b|)"-2 f /((7 • 1)1)1 y ■ ||-2 ¿ñ. (10)

'fes

•'íes"

If we use (7) and (10) we get the following lemma.

Lemma. IffXlp) = f(PÍ)\p\"~2 then

Ay) = (VO(2/\y\)"-2R*Ay)- (n)
To prove (3) we assume /(y) = f,(s)Y,(y') where s = \y\, y' = y/\y\ and Y,

is a spherical harmonic of degree /. Then /(£, /z) = /(/j) y,(|) where f,(p) =

\p\"~2fi(p) and f,(p) = (-l)'fi(-p). Since / is continuous, a result of Ludwig [14,

Lemma 5.1] establishes that R*Ay) = W(s)Y,(y') where

^*>-^7 f Crt'/*M<')'*0 - ir/stf-"2dr. (12)
C, (1) J -'o

Equation (3) follows by using (12) in (11).

We recall formula (30) of [4] that states for 0 < r < p

LPs»-*CKr/s)C,\p/s)(\ - (r/s)2f-l/\(p/s)2 - l)A-1/2<*

2""3l

r(/ + 2A)   \2(p-r)"-2

T(l+ l)T(X)J    T(n- 1)   ' l    ;

To prove (4) one multiplies (3) by Cx(p / s)((p / s)2 — if'1^^ and integrates from

zero top. Then one simplifies the integral using (13) and finally differentiates n — 1

times with respect top. These manipulations are all legitimate because both f,(p)p~'

and fi(p)p~' are in C°°([0, oo)). The result is the first equality in (4). To prove the

second equality, one changes the first integral in (4) to an integral from zero to one,

brings (d/dp)"~ ' inside the integral and uses Leibnitz's rule. This finishes the proof

of Theorem 1.

Our first two corollaries follow from Theorem 1 and properties of spherical

harmonics.
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A RADON TRANSFORM ON SPHERES 579

Corollary 2. If f E C°°(TT) and A > 0 then the values of Ay) for \y\ <A

determine f(x) for \x\ < A. If Ay) = 0 for \y\ « A then f(x) = 0 for \x\ < A.

Corollary 3. The Radon transform (2) with domain C°°(Ti") is invertible.

It is interesting to compare Corollary 2 to the "hole theorem" for the classical

Radon transform, 7Î, on 7?", if / G C°°(Rn) is rapidly decreasing and Rf = 0 when

evaluated on hyperplanes not intersecting a disc in R " then / = 0 outside of that

disc [10, Theorem 2.1].

To give perspective to our results we now define functions/such that/ = 0.

Example 1. Given natural numbers q and n let integers k and / satisfy: k > q; if

n is even (respectively odd) then k is even (respectively odd); / is even and

/ > k + n — 2. Let Y, be a spherical harmonic of degree / on S"-1 and define

/ G Cq(R") by f(x) = \x\kY,(x/\x\). Using (3) and orthogonality properties of the

Gegenbauer polynomials one sees that/ s 0.

Our next proposition will help determine the range of (2) on rapidly decreasing

functions. Condition (14) is quite similar to the integrals that characterize the range

of the classical Radon transform on these functions [10, Theorem 4.1] (see also [14,

Theorem 2.1(d)]).

Proposition 4. Let f be a rapidly decreasing function on R".

(i) If 1 < k + n — 1 </ and k + n — 1 and I are both even or both odd then

rf,(s)/sk ds = 0. (14)
-'o

(ii) Iff, is a real function not identically zero then it changes sign at least I times in

R.

Proof. Part (i) is proved by first using (3) to express /, in terms of /. One can

then use Fubini's theorem to switch the integrals because of the restrictions on k

and since / is rapidly decreasing. Finally by changing variables in the inner integral

one sees that

f°°fi(s)/sk ds= K' rf,(r)rk Ccx(t)(l - r2y\~1/V+"-3 dt dr

for a suitable constant K'. Using the hypotheses on k and orthogonality relations

of the Gegenbauer polynomials one sees that the inner integral is zero. This proves

(*>•
To prove (ii) we recall that f, is odd (respectively even) if / is odd (respectively

even) and show that there are at least [1/2] connected components of the zero set

of / at which / changes sign in [0, oo) (not including, if / is odd, the component

containing zero). Here [1/2] is the largest integer not greater than 1/2. Choose an

element s, from each such component, y = 1, . . . , m, where m is the number of

components. If m < [1/2], then

QO m

(  fl(s)s-'+'-1 II {s2 - s2) ds (15)
•'0 7=1
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580 A. M. CORMACK AND E. T. QUINTO

is zero by (i). However, the integrand of (15) is either nonpositive or nonnegative

and not identically zero. This implies that the integral in (15) is nonzero. This

contradiction shows m > [1/2] and proves the proposition.

We define a real analytic function on R" to be entire if its power series at zero

converges everywhere.

Proposition 5. If g is an entire function on R" then there is a unique real analytic

function f such that f = g.

Addendum. The authors have recently shown that / is entire. The proof uses

bounds on spherical harmonics on R" when extended to C".

Proof. If/ exists, it is unique by Corollary 3. If h(x) = \x\'+2kY,(x/\x\) then (3)

and integral 7.311 #2 of [8, p. 826] show that

to-(f)'+»    T(n/2)T(2k + / + zz - 1)

T(k + zz/2)r(z< + / + n - 1) ' V    '

Choose a complete orthonormal system of spherical harmonics for L2(S"~\ dSl).

Here the "spherical harmonic series" for a function q E C°°(7?") will be the series

in this system for q(su>).

Let g be entire. If g¡ is a coefficient of a spherical harmonic of degree / in the

spherical harmonic series for g then g,(s) = ~S,f=oaks'+2k is an entire function.

Standard convergence results for analytic functions [12, pp. 27, 34] and properties

of spherical harmonics [20] show that the spherical harmonic series for g converges

uniformly, absolutely on compact subsets of R" even when each coefficient ak in

each g, is replaced by its absolute value. Using (16) one can formally invert the

equation g, = f¡ term by term getting a formal power series for /. Because g¡ is

entire and the "inversion factors"

2l+2kT(k + n/2)T(k + I + n - 1)

T(n/2)r(2A: + / + n - 1)

are bounded by 2'+2* the power series for f,(p) is term by term majorized by the

series for g,(2p). Therefore, if / is the function that has spherical harmonic series

with coefficients f, given above then / is real analytic and / = g. This proves the

proposition.

Our final theorem applies the theory developed above for our Radon transform

(2) to the classical Darboux equation (1). An equation related to (1) was used by

Poisson to solve the equation of propagation of sound in R3 [5], [16], [22]. It is well

known [13] that if u(x, r) solves (1) and w(x, 0) = f(x) then u(x, r) is the mean

value of/over the sphere of radius |r| centered at x. Therefore

u(x, |*|) = /(2x). (17)

Equation (1) has been studied in the case when the constant (n — 1) is replaced

by an arbitrary complex number [5], [22] and in this case, too, the solution u(x, r) is

related to the spherical means off.

Our final theorem proves that solutions to (1) are determined by data on a

characteristic cone with vertex on the initial surface.
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A RADON TRANSFORM ON SPHERES 581

Theorem 6. Let x0E R" and A > 0.

(i) If u is a C°° solution of (1) then its values on the set B = ((x, r) E R" X R\

|x — x0| + |r| < 2^4} are determined by its values on the truncated characteristic

cone \x — x0| = \r\ < A. In particular if u = 0 on the truncated cone then u = 0 on

B.

(ii) If g(x) is an entire function on R" then there is a unique real analytic solution

to (1) with data u(x, r) = g(x) on the characteristic cone \x — x0| = \r\.

The proof of Theorem 6 follows from Corollaries 2 and 3 as well as Proposition 5

and the relation (17).
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