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Abstract

An r-edge-coloring of a graph is an assignment of r colors to the edges of the
graph. An exactly r-edge-coloring of a graph is an r-edge-coloring of the graph that
uses all r colors. A matching of an edge-colored graph is called rainbow matching,
if no two edges have the same color in the matching. In this paper, we prove that
an exactly r-edge-colored complete graph of order n has a rainbow matching of size
k(≥ 2) if r ≥ max{

(2k−3
2

)

+2,
(

k−2
2

)

+(k−2)(n−k+2)+2}, k ≥ 2, and n ≥ 2k +1.
The bound on r is best possible.

Keyword(s): edge-coloring, matching, complete graph, anti-Ramsey, rainbow, het-
erochromatic, totally multicolored

1 Introduction

We consider finite, undirected, simple graphs G with the vertex set V (G) and the edge
set E(G). An r-edge-coloring of a graph G is a mapping color : E(G) → C, where C is
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a set of r colors. An exactly r-edge-coloring of a graph is an r-edge-coloring of the graph
such that all r colors is used, namely, every color appears in the r-edge-colored graph. A
subgraph H of an edge-colored graph is said to be rainbow (or heterochromatic, or totally
multicolored) if no two edges of H have the same color, that is, if color(e) 6= color(f) for
any two distinct edges e and f of H . A matching of size k is called a k-matching. Let Pk

and Ck are the path and the cycle of order k, respectively.
We begin with a brief introduction of the background concerning anti-Ramsey num-

bers. Let hp(n) be the minimum number of colors r such that every exactly r-edge-colored
complete graph Kn contains a rainbow Kp. The pioneering paper [2] by Erdős, Simonovits
and Sós proved the existence of a number n0(p) such that hp(n) = tp−1(n)+2 for n > n0(p),
where tp−1(n) is the Turán number. Montellano-Ballesteros and Neumann-Lara [5] proved
that for all integers n and p such that 3 ≤ p < n, the corresponding anti-Ramsey function
is such. Along a slightly different line, Eroh [3, 4] studied rainbow Ramsey numbers for
matchings, which is a certain generalization of the Ramsey and anti-Ramsey numbers.
For two graphs G1 and G2, let RM(G1, G2) be the minimum integer n such that any
edge-coloring of Kn contains either a monochromatic G1 or a rainbow G2. In [3], the case
where G1 is a star and G2 is a matching is discussed. Also, in [4], the case where each
Gi with i = 1, 2 is a ki-matching is treated. There, in particular, it is conjectured that
RM(G1, G2) = k2(k1 − 1) + 2, and a proof in the case where k2 ≤

3
2
(k1 − 1) is given.

In this paper, we study anti-Ramsey numbers for k-matchings. Given an exactly r-
edge-colored complete graph of order n, is there a rainbow k-matching? Since the case
k = 0 and k = 1 is trivial, we assume k ≥ 2. For example, if n = 7 and r ≥ 2 then we can
find easily a rainbow 2-matching, but we may not find a rainbow 3-matching. Generally,
if n ≥ 2k + 1 then the following colorings do not allow a rainbow k-matching to exist.
(See Figure 1.)

Figure 1: Colorings without rainbow k-matchings.

In the coloring (a) of Figure 1, a complete subgraph K2k−3 of G is rainbow and the
other edges are colored with exactly one color, namely, monochromatic. In the coloring
(b), a complete subgraph Kn−(k−2) of G is monochromatic and the other edges are rainbow.
In each coloring, it is clear that there is no rainbow k-matching. However, if there are
more colors than in these colorings, is there a rainbow k-matching ? Schiermeyer [6]
solved this problem affirmatively for k ≥ 2 and n ≥ 3k + 3. In this paper, we solve this
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problem for n ≥ 2k + 1.

Theorem 1.1. An exactly r-edge-colored complete graph of order n has a rainbow k-
matching, if r ≥ max{

(

2k−3
2

)

+ 2,
(

k−2
2

)

+ (k − 2)(n− k + 2) + 2}, k ≥ 2, and n ≥ 2k + 1.

If n = 2k then there exists an exactly r-edge-coloring with r =
(

2k−3
2

)

+ 2 for k ≥ 3 or

r =
(

2k−3
2

)

+ 3 for k = 2 such that there is no rainbow k-matching. (See Figure 2.)

Figure 2: (
(

2k−3
2

)

+ 2 or +3)-Colorings without rainbow k-matchings.

In the coloring (a) of Figure 2, a complete subgraph K2k−3 of G is rainbow and the
other edges are colored with exactly two colors red and blue, so that ab, ac and the edges
between {b, c} and G−{a, b, c} are red, and bc and the edges between a and G−{a, b, c}
are blue. Thus, the number of colors is

(

2k−3
2

)

+ 2, but there is no rainbow 1-factor. In

the coloring (b) of Figure 2, K4 is colored with three colors. Then, k = 2,
(

2k−3
2

)

+ 3 = 3,

and
(

k−2
2

)

+ (k − 2)(n − k + 2) + 2 = 2, but any 1-factor is monochromatic. We propose
the following conjecture.

Conjecture 1.2. An exactly r-edge-colored complete graph of order 2k(≥ 6) has a rainbow
1-factor, if r ≥ max{

(

2k−3
2

)

+ 3,
(

k−2
2

)

+ k2 − 2}.

We have proved that this conjecture holds for 3 ≤ k ≤ 4 in our preprint (we can send
the proof upon request), but for k ≥ 5 this is still open.

The concept of rainbow matchings is linked with the relationship between the maxi-
mum number of edges and the edge independence number in graphs. In 1959, Erdős and
Gallai [1] proved the following theorem.

Theorem 1.3 ([1]). Let G be a graph of order n ≥ 2k+1 with edge independence number
at most k. Then |E(G)| ≤ max{

(

2k+1
2

)

,
(

k

2

)

+ k(n − k)}.

In fact, Theorem 1.1 nearly implies Theorem 1.3, that is, the following corollary is
obtained by Theorem 1.1.

Corollary 1.4. If n ≥ 2k + 5, then the assertion of Theorem 1.3 follows from Theorem
1.1.
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Proof. Color the edges of the complete graph Kn of order n ≥ 2k + 5 = 2(k + 2) + 1, so
that, a spanning subgraph H isomorphic to G is rainbow and the other edges are colored
with one new color. Then the number of colors r is |E(H)| + 1 = |E(G)| + 1. Since the
edge independence number of H is at most k, H has no rainbow (k + 1)-matching. Thus,
Kn has no rainbow (k + 2)-matching. Hence, by Theorem 1.1, r ≤ max{

(

2(k+2)−3
2

)

+

1,
(

(k+2)−2
2

)

+ ((k + 2) − 2)(n − (k + 2) + 2) + 1} = max{
(

2k+1
2

)

+ 1,
(

k

2

)

+ k(n − k) + 1}.

Therefore, |E(G)| = r − 1 ≤ max{
(

2k+1
2

)

,
(

k

2

)

+ k(n − k)}.

In the next section, we give the proof of Theorem 1.1. In the rest of this section, we
introduce some notation for the proof of the theorem. For a graph G and a vertex subset
M of V (G), let G[M ] denote the induced subgraph by M . For an element x of a set S,
we denote S −{x} by S −x. For a matching M and edges e1, . . . , ek, f1, . . . , fl, we denote
(M −{e1, . . . , ek})∪ {f1, . . . , fl} by M − e1 − · · ·− ek +f1 + · · ·+ fl. We often denote an
edge e = {x, y} by xy or yx. For an edge-colored graph G and an edge set E ⊆ E(G), we
define color(E) = {color(e) | e ∈ E}.

2 Proof of Theorem 1.1

Proof. Let G be an exactly r-edge-colored complete graph of order n ≥ 2k + 1 with no
rainbow k-matchings. We may assume that r is chosen as large as possible under the
above assumption. To prove the theorem, it suffices to show that

r < max{

(

2k − 3

2

)

+ 2,

(

k − 2

2

)

+ (k − 2)(n − k + 2) + 2}.

We begin with the following basic Claim.

Claim 1. G has a rainbow (k − 1)-matching.

Proof. We may assume that G is not rainbow, because the complete graph of order at
least 2k has a k-matching. Hence, there are two edges e, f such that color(e) = color(f).
Change the color of e into the (r+1)-th new color. Then, by the maximality of r, there is
a rainbow k-matching Mk. Therefore, Mk −e is a desired rainbow matching of G, because
|Mk − e| ≥ k − 1.

Let M = {e1, e2, . . . , ek−1} be a rainbow (k − 1)-matching of G. Let xi and yi be the
end vertices of ei, namely ei = xiyi. Remove these vertices xi and yi, and let H be the
resulting graph, namely H = G−

⋃

1≤i≤k−1{xi, yi}. Since n ≥ 2k+1, we have |V (H)| ≥ 3.
Hence E(H) 6= ∅.

Claim 2. color(E(H)) ⊆ color(M).

Proof. If color(E(H)) 6⊆ color(M), then we have a rainbow k-matching M +e of G where
e is an edge of H with color(e) ∈ color(E(H)) − color(M), which is a contradiction.
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Without loss of generality, we may assume color(E(H)) = {color(e1), color(e2), . . .,
color(ep)} for some positive integer p ≤ k − 1. Since E(H) 6= ∅, note that 1 ≤ p. Let
M1 = {e1, e2, . . . , ep} and M2 = M − M1. (See Figure 3.)

Figure 3: H and M = M1 ∪ M2.

Let G′ be a rainbow exactly r-edge-colored spanning subgraph of G that contains M .
Since G′ is rainbow and G′ contains M , note that E(G′) ∩ E(H) = ∅ (i.e., H induces
isolated vertices in G′). Here, we would like to count the number of colors in G. It is
enough to count the number of edges of G′ because |color(E(G))| = |color(E(G′))| =
|E(G′)|. Below, we consider only G′ and the edges of H . Here, we give some notation.
For two disjoint vertex sets A and B, we define E ′(A, B) = {ab ∈ E(G′) | a ∈ A, b ∈ B}.
In the rest of the proof, for an edge e = ab, ab is often regarded as its vertex set {a, b}
when there is no fear of confusion.

Claim 3. For any two distinct edges ei ∈ M1 and ej ∈ M , |E ′(ei, ej)| ≤ 2.

Proof. By the definition of M1, there exists an edge f1 ∈ E(H) such that color(f1) =
color(ei). If |E ′(ei, ej)| ≥ 3 then there are two independent edges f2 and f3 in E ′(ei, ej).
Since G′ contains M and G′ is rainbow, color(f2), color(f3) /∈ color(M) and color(f2) 6=
color(f3). Since color(f1) = color(ei), color(f1) 6= color(f2) and color(f1) 6= color(f3).
Hence, we have a rainbow k-matching M−ei−ej+f1+f2+f3, which is a contradiction.

Claim 4. For any edge ei ∈ M1, let gi be an edge in E(H) such that color(ei) = color(gi).
Then E ′(ei, V (H)) = E ′(ei, gi) holds.

Proof. Suppose that for some edge f1 ∈ E(H) with color(ei) = color(f1) and for some
edge f2 ∈ E ′(ei, V (H)), these edges f1, f2 are independent. (See Figure 4.) By the
definition of G′, color(f2) /∈ color(M). Thus, we have a rainbow k-matching M − ei +
f1 + f2, which is a contradiction. From this observation, the claim follows.

Claim 5. If E ′(ei, V (H)) 6= ∅ for an edge ei ∈ M1, then the color of ei induces a star in
the graph H.
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Figure 4: f1, f2 are independent.

Proof. Let ab ∈ E ′(ei, V (H)) such that b ∈ V (H). By Claim 4, all the edges of H which
have color(ei) in common are adjacent to the vertex b. Hence, the color of ei induces a
star with the center b in the graph H .

Claim 6. If H has a rainbow 2-matching f1 and f2 then E ′(ei, ej) = ∅ for some edges
ei, ej ∈ M1 such that color(f1) = color(ei) and color(f2) = color(ej).

Proof. By Claim 2, there are some edges ei, ej ∈ M1 such that color(f1) = color(ei) and
color(f2) = color(ej). Suppose that E ′(ei, ej) 6= ∅. Let f3 ∈ E ′(ei, ej). Then we have a
rainbow k-matching M − ei − ej + f1 + f2 + f3, which is a contradiction.

Claim 7. For any edge ei ∈ M1, |E
′(ei, V (H))| ≤ 2.

Proof. By the definition of M1, there exists an edge f1 ∈ E(H) such that color(f1) =
color(ei). By Claim 4, E ′(ei, V (H)) = E ′(ei, f1). If |E ′(ei, V (H))| ≥ 3, that is, |E ′(ei, f1)|
≥ 3, then there are two independent edges f2 and f3 in E ′(ei, f1) By the definition of
G′, color(f2), color(f3) /∈ color(M) and color(f2) 6= color(f3). Hence, we have a rainbow
k-matching M − ei + f2 + f3, which is a contradiction.

Let V1 =
⋃

xy∈M1
{x, y} and V2 =

⋃

xy∈M2
{x, y}. (See Figure 5.) We count the number

of edges in G′ − V2.

Figure 5: H and V1, V2.

Claim 8. |E(G′ − V2)| ≤ 2
(

p

2

)

+ 3p − 2.
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Proof. By the definition of G′, G′ has no edges of H . Hence, by Claim 3 and Claim 7, we
have |E(G′ − V2)| = |E(G′[V1])| + |E ′(V1, V (H))| ≤ |M1| + 2

(

p

2

)

+ 2p = 2
(

p

2

)

+ 3p. Then,
in view of the above inequality, it suffices to show that there exists some edge ei ∈ M1

such that E ′(ei, ej) = ∅ for some edge ej ∈ M1 with j 6= i or E ′(ei, V (H)) = ∅.
Suppose that for any edges ei, ej ∈ M1, E ′(ei, ej) 6= ∅ and E ′(ei, V (H)) 6= ∅. If

|V (H)| ≥ 4 then by Claim 5, H has a rainbow 2-matching. Thus, by Claim 6, there exist
some edges ei, ej ∈ M1 such that E ′(ei, ej) = ∅, which is a contradiction. Therefore, we
have |V (H)| = 3. Then, H is a triangle {a, b, c}. Hence it follows that p = |M1| = 1, 2,
or 3 because color(E(H)) = color(M1).

If p = 1 then H is a monochromatic triangle. The color of the triangle H is color(e1).
Since E ′(e1, V (H)) 6= ∅, the monochromatic triangle H contradicts Claim 5.

If p = 2 then we may assume that color(ab) = color(e1) and color(ac) = color(bc) =
color(e2). By Claim 4, we may assume that x1a ∈ E ′(e1, V (H)) and x2c ∈ E ′(e2, V (H)).
(See Figure 6.) If there exists an edge f ∈ E ′(y1, e2) then we have a rainbow k-matching

Figure 6: The case p = 2.

M−e1−e2 +ax1 +bc+f , which is a contradiction. Thus, E ′(y1, e2) = ∅. If there exists an
edge f ∈ E ′(y2, e1) then we have a rainbow k-matching M − e1 − e2 + cx2 + ab + f , which
is a contradiction. Thus, E ′(y2, e1) = ∅. Hence, E ′(e1, e2) = {x1x2}, which implies that
we could decrease one edge in the above counting argument. Therefore, we may assume
that |E ′(e2, V (H))| = 2. By Claim 4, E ′(e2, V (H)) = {cx2, cy2}. Then we have a rainbow
k-matching M − e1 − e2 + ab + cy2 + x1x2, which is a contradiction.

If p = 3 then we may assume that color(ab) = color(e1), color(bc) = color(e2),
and color(ac) = color(e3). (See Figure 7.) Without loss of generality, we may as-

Figure 7: The case p = 3.

sume that |E ′(e1, V (H))| = 2, |E ′(e2, V (H))| = 2, |E ′(e3, V (H))| ≥ 1, otherwise we can
decrease two edges in the counting argument. By Claim 4, E ′(e1, V (H)) = E ′(e1, ab),
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E ′(e2, V (H)) = E ′(e2, bc), and E ′(e3, V (H)) = E ′(e3, ac). If the two edges in E ′(e1, V (H))
are independent, say, if ax1, by1 ∈ E ′(e1, V (H)), then we have a rainbow k-matching
M − e1 + ax1 + by1, which is a contradiction. Suppose that ax1, ay1 ∈ E ′(e1, V (H)).
Without loss of generality, we may assume x1x2 ∈ E ′(e1, e2). Then we have a rainbow
k-matching M − e1 − e2 + x1x2 + ay1 + bc, which is a contradiction. Hence, we may
assume that ax1, bx1 ∈ E ′(e1, V (H)). Similarly for e2, we may assume that bx2, cx2 ∈
E ′(e2, V (H)). If there exists an edge f ∈ E ′(y1, e2) then we have a rainbow k-matching
M − e1 − e2 + ax1 + bc + f , which is a contradiction. Thus, E ′(y1, e2) = ∅. If there exists
an edge f ∈ E ′(y2, e1) then we have a rainbow k-matching M − e1 − e2 + cx2 + ab + f ,
which is a contradiction. Thus, E ′(y2, e1) = ∅. Hence, E ′(e1, e2) = {x1x2}, which
implies we can decrease one color in counting colors. Therefore, we may assume that
|E ′(e1, e3)| = |E ′(e2, e3)| = |E ′(e3, V (H)| = 2. Similarly as for e1, e2, we may assume
that ax3, cx3 ∈ E ′(e3, V (H)). If there exists an edge f ∈ E ′(y2, e3) then we have
a rainbow k-matching M − e2 − e3 + bx2 + ac + f , which is a contradiction. Thus,
E ′(y2, e3) = ∅, which implies x2x3, x2y3 ∈ E ′(e2, e3). Then we have a rainbow k-matching
M − e2 − e3 + ax3 + bc + x2y3, which is a contradiction.

Here, we classify the edges of M2 as follows:

M2,1 = {e ∈ M2 | |E ′(e, V (H) ∪ V1)| ≥ 2p + 1},

M2,2 = M2 − M2,1.

Note that by Claim 3, for any edge e ∈ M2,1, E ′(e, V (H)) 6= ∅. Let V2,1 =
⋃

xy∈M2,1
{x, y}

and V2,2 =
⋃

xy∈M2,2
{x, y}. (See Figure 8.)

Figure 8: H , M1, M2,1, and M2,2.

Claim 9. |E ′(V (H) ∪ V1, V2,1)| ≤ (2p + |V (H)|)|M2,1|.

Proof. By Claim 3, for any edge e ∈ M2,1, |E
′(e, V1)| ≤ 2p. If there are two independent

edges f1, f2 ∈ E ′(e, V (H)) then we have a rainbow k-matching M − e + f1 + f2. Thus,
|E ′(e, V (H))| ≤ |V (H)| because |V (H)| 6= 1. Therefore |E ′(V2,1, V1 ∪ V (H))| ≤ (2p +
|V (H)|)|M2,1|.
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Claim 10. Let ei, ej be two distinct edges in M2. If both E ′(ei, V (H)) and E ′(ej, V (H))
are non-empty, and |E ′(ei, ej)| = 4, then all edges in E ′(ei, V (H)) and E ′(ej , V (H)) are
incident to exactly one vertex of V (H).

Proof. Suppose that for two distinct vertices a, b ∈ V (H), axi, bxj ∈ E(G′). Then we
have a rainbow k-matching M − ei − ej + axi + bxj + yiyj, which is a contradiction.

Claim 11. Let ei, ej be two distinct edges in M2. If |E ′(ei, V1)| ≥ 2p−1 and E ′(ej, V (H))
6= ∅, then |E ′(ei, ej)| ≤ 3.

Proof. Let a ∈ V (H), and without loss of generality, we may assume axj ∈ E ′(ej, V (H)).
Since |V (H)| ≥ 3, E(H − a) 6= ∅. Let bc ∈ E(H − a). Without loss of generality, we may
assume that color(bc) = color(e1). (See Figure 9.) By Claim 3 and our assumption that

Figure 9: Proof of Claim 11.

|E ′(ei, V1)| ≥ 2p − 1, E ′(ei, e) 6= ∅ for any e ∈ M1. Hence, without loss of generality, we
may assume that xix1 ∈ E ′(ei, e1). Suppose that |E ′(ei, ej)| = 4. Then we have a rainbow
k-matching M − ei − ej − e1 + bc + axj + xix1 + yiyj, which is a contradiction.

Claim 12. For any two distinct edges ei, ej ∈ M2,1, |E
′(ei, ej)| ≤ 3.

Proof. By Claim 3 and the definition of M2,1, E ′(ei, V (H)) and E ′(ej , V (H)) are not
empty. Suppose that |E ′(ei, ej)| = 4. By Claim 10, all edges in E ′(ei, V (H)) and
E ′(ej , V (H)) are incident to exactly one vertex of V (H). Thus, |E ′(ei, V (H))| ≤ 2.
Since |E ′(ei, V1 ∪ V (H))| ≥ 2p + 1 by the definition of M2,1, we have |E ′(ei, V1)| ≥ 2p− 1.
Hence by Claim 11, |E ′(ei, ej)| ≤ 3.

Claim 13. For any edge ej ∈ M2,2, there is at most one edge e ∈ M2,1 such that
|E ′(e, ej)| = 4.

Proof. Suppose that there are two distinct edges es, et ∈ M2,1 such that |E ′(es, ej)| = 4
and |E ′(et, ej)| = 4. By Claim 3 and the definition of M2,1, E ′(es, V (H)) and E ′(et, V (H))
are not empty. Let xsv ∈ E ′(es, V (H)) and xtv

′ ∈ E ′(et, V (H)). If v 6= v′ then we have a
rainbow k-matching M−es−et−ej+vxs+v′xt+ysxj+ytyj, which is a contradiction. Thus,
v = v′ and |E ′(es, V (H))| ≤ 2. Then by the definition of M2,1, we have |E ′(es, V1)| ≥ 2p−1.
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Hence, for any edge e ∈ M1, E ′(e, es) 6= ∅. Let ab ∈ E(H − v). There is an edge e ∈ M1,
say e1, such that color(e1) = color(ab). (See Figure 10.)

Figure 10: Proof of Claim 13.

Recall E ′(e1, es) 6= ∅. Utilizing this fact, we can easily find a rainbow k-matching.
To see this, say, assume that x1xs ∈ E ′(e1, es). Then we have a rainbow k-matching
M − es − et − ej − e1 + ab + vxt + x1xs + ysxj + ytyj, which is a contradiction. We can
similarly get a contradiction in other cases. Thus the claim holds.

Claim 14. |E ′(V2,2, V (H) ∪ V1 ∪ V2,1)| ≤ (2p + 3|M2,1|)|M2,2|.

Proof. Let ej ∈ M2,2. By the definition of M2,2, |E
′(ej , V (H)∪V1))| ≤ 2p. If for any edge

ei ∈ M2,1, |E
′(ei, ej)| ≤ 3 holds, then we have |E ′(ej , V (H) ∪ V1 ∪ V2,1)| ≤ 2p + 3|M2,1|.

By Claim 13, there is at most one edge ei ∈ M2,1 such that |E ′(ei, ej)| = 4. Suppose
that there exists exactly one edge ei ∈ M2,1 such that |E ′(ei, ej)| = 4. By Claim 3 and the
definition of M2,1, E ′(ei, V (H)) 6= ∅. Let xiv ∈ E ′(ei, V (H)). Suppose E ′(ej , V (H)) 6= ∅.
Then by Claim 10, all edges in E ′(ei, V (H)) and E ′(ej , V (H)) are incident to v. Thus,
|E ′(ei, V (H))| ≤ 2. By the definition of M2,1, |E ′(ei, V (H) ∪ V1)| ≥ 2p + 1. Hence
|E ′(ei, V1)| ≥ 2p − 1. Therefore, by Claim 11, |E ′(ei, ej)| ≤ 3, which is a contradiction.
Hence we may assume that E ′(ej, V (H)) = ∅. Then, by Claim 11, |E ′(ej , V1)| ≤ 2p − 2.
Thus, |E ′(ej , V (H) ∪ V1 ∪ V2,1)| ≤ 2p − 2 + 3(|M2,1| − 1) + 4 = 2p + 3|M2,1| − 1.

Consequently, for any ej ∈ M2,2, we have |E ′(ej, V (H) ∪ V1 ∪ V2,1)| ≤ 2p + 3|M2,1|.
Hence, the Claim holds.

Recall that r = |color(G)| = |color(G′)| = |E(G′)|. We prove that

|E(G′)| < max{

(

2k − 3

2

)

+ 2,

(

k − 2

2

)

+ (k − 2)(n − k + 2) + 2}

by the above Claims.
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Now, we have

|E(G′)| = |E(G′[V (H) ∪ V1])| + |E ′(V (H) ∪ V1, V2,1)| + |E(G′[V2,1]))|

+|E ′(V (H) ∪ V1 ∪ V2,1, V2,2)| + |E(G′[V2,2]))|.

By Claim 8, |E(G′[V (H) ∪ V1])| ≤ 2
(

p

2

)

+ 3p − 2. By Claim 9, |E ′(V (H) ∪ V1, V2,1)| ≤

(2p + |V (H)|)|M2,1|. By Claim 12, |E(G′[V2,1]))| ≤ 3
(

|M2,1|
2

)

+ |M2,1|. By Claim 14,
|E ′(V (H) ∪ V1 ∪ V2,1, V2,2)| ≤ (2p + 3|M2,1|)|M2,2|. Also, the number of edges of G′[V2,2]
is upper bounded by the number of edges of the complete graph on V2,2. Since |V2,2| =

2|M2,2|, it follows that |E(G′[V2,2])| ≤
(

2|M2,2|
2

)

. Therefore, we have

|E(G′)| ≤ 2

(

p

2

)

+ 3p − 2 + (2p + |V (H)|)|M2,1| + 3

(

|M2,1|

2

)

+ |M2,1|

+(2p + 3|M2,1|)|M2,2| +

(

2|M2,2|

2

)

.

Let q = |M2,1| and h = |V (H)|, then |M2,2| = |M | − |M1| − |M2,1| = k− 1− p− q. Hence,

|E(G′)| ≤ 2

(

p

2

)

+ 3p − 2 + (2p + h)q + 3

(

q

2

)

+ q

+(2p + 3q)(k − 1 − p − q) +

(

2(k − 1 − p − q)

2

)

=
1

2
q2 + (h − k + p +

3

2
)q + p2 + (5 − 2k)p + 2k2 − 5k + 1 (1)

=
1

2
(q + h − k + p +

3

2
)2 −

1

2
(h − k + p +

3

2
)2 + p2 + (5 − 2k)p + 2k2 − 5k + 1

=
1

2
(q + h − k + p +

3

2
)2 +

1

2
p2 + (

7

2
− h − k)p

−
1

2
h2 + (k −

3

2
)h +

3

2
k2 −

7

2
k −

1

8
.

Let F (q, p) be a function with two parameter q and p as follows:

F (q, p) =
1

2
(q + h − k + p +

3

2
)2 +

1

2
p2 + (

7

2
− h − k)p

−
1

2
h2 + (k −

3

2
)h +

3

2
k2 −

7

2
k −

1

8
. (2)

For this function F (q, p), we do quadratic optimization by fixing the parameter p, that
is, we assume F (q) = F (q, p) is a quadratic function with the parameter q. Note that
0 ≤ q = |M2,1| ≤ |M2| = |M | − |M1| = k − 1 − p. Then, this function is maximum when
q = 0 or q = k − 1 − p. From (2), the corresponding value to the axis of symmetry of
F (q) is q = −h + k − p − 3

2
.

If the middle value of the range 0 ≤ q ≤ k− 1− p is less than the corresponding value
to the axis of symmetry, that is,

0 + k − 1 − p

2
≤ −h + k − p −

3

2
, (3)
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then F (q) is maximum when q = 0. Since h = |V (H)| ≥ 3, this together with (3) shows
p ≤ k − 2 − 2h ≤ k − 8. Hence, if 1 ≤ p ≤ k − 8 then F (q) is maximum when q = 0.
From (1),

F (0, p) = p2 + (5 − 2k)p + 2k2 − 5k + 1 = (p +
5 − 2k

2
)2 + k2 −

21

4
.

This is a function with the parameter p whose axis of symmetry is p = (2k− 5)/2. Since,
the middle value of the range 1 ≤ p ≤ k − 8 is less than the corresponding value to the
axis of symmetry, F (0, p) is maximum when p = 1.

F (0, 1) = 2k2 − 7k + 7 < 2k2 − 7k + 8 =

(

2k − 3

2

)

+ 2.

Hence |E(G′)| < max{
(

2k−3
2

)

+ 2,
(

k−2
2

)

+ (k − 2)(n − k + 2) + 2}. Therefore, we may
assume that F (q, p) is maximum when q = k − 1 − p.

F (k − 1 − p, p) =
1

2
p2 + (

7

2
− h − k)p + (k − 1)h +

3

2
k2 −

7

2
k

=
1

2
(p +

7

2
− h − k)2 +

1

2
(
7

2
− h − k)2 + (k − 1)h +

3

2
k2 −

7

2
k.

This is a function with the parameter p whose axis of symmetry is p = k +h− 7/2. Since
the middle value of the range 1 ≤ p ≤ k − 1 is less than the corresponding value to the
axis of symmetry, F (k − 1 − p, p) is maximum when p = 1.

F (k − 1 − p, 1) =
3

2
k2 −

9

2
k + 4 + (k − 2)h.

Since n = |V (H)| + 2|M | = h + 2(k − 1), that is h = n − 2k + 2, we have

F (k − 1 − p, 1) =
3

2
k2 −

9

2
k + 4 + (k − 2)(n − 2k + 2)

=
1

2
k2 −

5

2
k + 4 + (k − 2)(n − k + 2)

<
1

2
k2 −

5

2
k + 5 + (k − 2)(n − k + 2)

=

(

k − 2

2

)

+ (k − 2)(n − k + 2) + 2.

Hence |E(G′)| < max{
(

2k−3
2

)

+ 2,
(

k−2
2

)

+ (k − 2)(n − k + 2) + 2}.
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