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SUMMARY

In biomedical research with longitudinal designs, missing values due to intermittent

nonresponse or premature withdrawal are usually ’nonignorable’ in the sense that un-

observed values are related to the patterns of missingness. When missing values are

simply ignored, analyses based on observed-data likelihood may yield biased estimates

or invalid inferences. By drawing the framework of a shared-parameter mechanism,

the process yielding the repeated count measures and the process yielding missing val-

ues can be modelled separately, conditionally on a group of shared parameters. For

chronic diseases, Markov transition models can be used to study the transitional fea-

tures of the pathologic processes. In this paper, Markov chain Monte Carlo (MCMC)

algorithms are developed to fit a random-effects Markov transition model (REMTM)

for incomplete count repeated measures, within which random effects are shared by

the counting process and the missing-data mechanism. Assuming a Poisson distribu-

tion for the count measures, the transition probabilities are estimated using a Poisson

linear regression model. The missingness mechanism is modeled with a multinomial-

logit regression to calculate the transition probabilities of the missingness indicators.

The method is demonstrated using both simulated data sets and a practical data set

from a smoking cessation clinical trial.

Key words: Repeated Measures, Markov Transition Models, Nonignorable Missing

Values, Poisson Regression Model, Shared-Parameter Missingness
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1 Introduction

1.1 Background

Longitudinal designs are commonly used to conduct biomedical research, especially

for clinical trials. The defining feature of a longitudinal study is that large numbers of

repeated measures are collected on study participants. Special statistical methods are

required for the data analysis because observations collected on the same participant

are correlated to each other [5]. For complete data sets or for those with ignorable

missing values, three longitudinal strategies are most popular in biomedical research:

(i) generalized linear mixed models (GLMM; [2]), where intra-subject correlations

are introduced via random effects; (ii) marginal models using generalized estimat-

ing equations (GEEs) [10] where parameters on group means are estimated using

quasi-likelihood method assuming a working correlation structure; and (iii) Markov

transition models (MTM; [23]) where current measures are modelled by conditioning

on the previous observations and covariates. In social-economical sciences, there are

other forms of longitudinal modelling, e.g., hierarchical models, latent variable mod-

els, and structure equation models [19, 3, 9]. Compared to time-naive analysis using

aggregate markers of outcomes(e.g., T-test, ANOVA, and GLM), longitudinal models

are capable of modelling intra-correlation structures and drawing inferences on time-

trends, thus more closely reflecting the nature of longitudinal design. Longitudinal

models are also able to handle certain types of missing data problems encountered in
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practical data sets. Many statistical packages (e.g., SAS, SPSS, STATA, S-Plus and

R) have implemented the above models for longitudinal data analysis.

In longitudinal studies for chronic health problems, such as drug dependence, res-

piratory diseases, and cancers, there are usually large vectors of Poisson-distributed

repeated measures that count the numbers of adverse events. For a participant of

such a study, the current states are usually dependent on the previous observations

in addition to the explanatory variables of interest, e.g., dummy variables indicating

the treatment assignment in a clinical trial. For such a data set, a Markov transition

model could be applied for statistical analysis, since it models dynamic features of

transition patterns of the counting process. Markov chains can describe the phenom-

ena that evolves through time, with applications ranging from biomedical research to

many other scientific fields such as physics, engineering, sociology, and economics [6].

A noticeable problem with longitudinal data analysis is introduced by missing val-

ues. Within certain areas of biomedical research, e.g., drug dependence, HIV, and

cancer, the statistical analysis is plagued by a large amount of missing items. The

feature of incompleteness is related to the chaotic nature of the clinical disorders. For

example, drug abusers in a study frequently missed their scheduled clinic visits or

dropped out of studies prematurely, leading to proportions of missing values as large

as 70% toward the termination of the study period [7]. High levels of incomplete-

ness usually falsify assumptions that missing data may be ignored [22]. Even in a

randomized-controlled clinical trial, the presence of missing values after randomiza-
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tion can complicate standard complete-data analysis approaches; missing responses

can occur at different rates and with different reasons for different conditions. Data

analyses that ignore missing data are apt to introduce biases during significance test-

ing.

In Albert and Follmann [1], an extended version of the above Markov transition

model was proposed to handle nonignorable missing values in a binary longitudinal

data set. This model introduced shared random-effects in order to link the propen-

sity of transition between measurement states and the probability of being observed,

intermittently missed, or dropped out. By jointly modelling the transitional features

for observed binary repeated measures and the 3-category missingness indicators,

random-effects Markov transition models (REMTMs) provide meaningful clinical in-

terpretations on the dynamic change of cocaine dependence and useful inferences on

the patterns and mechanisms of missing data. Recently, we conducted some simula-

tion studies that jointly supported the superior performance of REMTM over tradi-

tional,yet inadequate, Markov transition models in analyzing binary longitudinal data

with nonignorable missing values. For certain practical binary data sets with large

amounts of missing data, REMTM seems to be the only applicable choice with accept-

able performance. Considering that Poisson-distributed repeated measures are also

frequently encountered in biomedical research, REMTMs are sufficient for analyzing

incomplete count repeated measures in the presence of nonignorable missing values.

In drug dependence studies, for example, such count measures indicate numbers of
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drug use within a certain period.

1.2 A Motivating Study

Before describing the fitting algorithms for REMTM, a brief description of a mo-

tivating example is offered. In Shoptaw et al. [18], a smoking cessation clinical

trial was conducted to study the relative efficacy of contingency management and

relapse prevention types of behavioral therapies when optimizing outcomes using

nicotine replacement therapy. In this 2 (contingency management or not) × 2 (re-

lapse prevention or not) 12-week study, 175 methadone-maintained tobacco smokers

were randomized to receive one of the four resulting conditions; all received nicotine

replacement therapy.The number of smoking episodes during the previous week was

evaluated through self report. Thus, there are at most 12 weekly-reported counts for

each participant. Main analyses using carbon monoxide levels from breath samples

established that there was a significant treatment effect for contingency management

but no effect fore relapse prevention and no interaction during the study period [22].

The four conditions were then collapsed into two: the contingency management group

(n = 90) with smokers who received contingency management and the control group

(n = 85) with smokers who did not receive contingency management. As a secondary

statistical analysis in this article, we compared the numbers of smoking episodes be-

tween the treatment and control groups. As noticeable from the data matrix, there is

moderate amount of missing values due to dropout: 43 subjects dropped out during
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the study period (24.6%), causing 296 missing values. The proportion of intermittent

missingness is very low: 20 total intermittent missing values (about 1%) observed on

six subjects (3.4%).

<INSERT FIGURE 1 HERE>

In Figure 1, the numbers of smoking episodes in the treatment (i.e., contingency

management) and control groups are plotted separately. The two groups have similar

distributions of the response variable at the beginning period of the study, however the

average number of smoking episodes in the treatment group decreased more quickly

and to a lower level than the control group. This typical clinical trial data set shows

the treatment assignment is an important predictor variable. The repeated count

measures and incomplete observations are all common in clinical trials when testing

treatment effects. The REMTM will be applied to this 2-group set of data.

2 Method and Model

2.1 Analysis of Incomplete Longitudinal Data

Given a longitudinal data set, the repeated measures are denoted by a matrix Y = [yit]

where yit indicates the tth measure (t = 1, . . . , T ) collected on the ith subject (i =

1, .., n). For the discussion, we restrict the longitudinal data to a balanced design

with time-independent covariates (i.e., those measured at baseline). The matrix of
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covariates, thus, can be denoted by X = [xij] where xi1, ..., xip indicate p predictors

collected at baseline for the ith subject. In the presence of missing values, missingness

patterns are denoted as R = [rit], a matrix with elements:

rit =































0 if yit observed

1 if yit intermittently missing

2 if yit missing after dropout

Further, θ is used to denote the parameters modeling the repeated measures and φ

is used to represent the parameters modeling the missingness mechanism. For each

subject, the full likelihood function is the joint distribution of observed repeated

measures (i.e., yi = (yi1, . . . , yiT )T ) and the vector of missingness indicators (i.e.,

ri = (xi1, . . . , xip)
T ), i.e.,

L(θ, φ|yi, ri, Xi) ∝ P (yi, ri|Xi, θ, φ)

When determining the influence of missing data, a primary interest is to identify

missingness patterns and missingness mechanisms, and their potential relationships

with treatment conditions or other baseline factors. While missingness patterns in-

dicate which data points are missing, missingness mechanisms explain why they are

missing. In practice, missingness mechanisms refer to the underlying processes yield-

ing missing values. Such mechanisms are usually partially known or completely hid-
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den to investigators. By partitioning Y into (Yobs, Ymis), which respectively represent

the observed values and the values that would be observed if they were not missing,

missingness mechanisms reflect the association between (Yobs, Ymis) and R. When the

missingness pattern (R) is not associated with the values of the underlying poten-

tially missing data (i.e., Ymis) – a condition that we call ignorability – it is possible

to obtain correct inferences without modelling the missingness mechanisms.

Within the framework of outcome-dependent missingness (see Figure 2(A)), the

joint distribution of (yi, ri) is factored into the marginal distribution of yi and the con-

ditional distribution of ri given yi, i.e., P (yi, ri|Xi, θ, φ) = P (yi|Xi, θ)P (ri|yi, Xi, φ).

Within this framework, the definition of ignorability was extensively discussed in

the statistical community; see [16, 11, 17]. More specifically, when missing data are

”missing at random” (MAR; i.e., P [R|Y ] = P [R|Yobs]) and the parameters of data

(i.e., θ) are distinct from those of the missingness mechanism (i.e., φ ), the miss-

ingness mechanisms can be ignored for likelihood-based inferences about θ. This is

because the joint likelihood function L(θ, φ) can then be factored as the product of

the likelihood function for φ and the observed-data likelihood function for θ, i.e.,

L(θ, φ|Yobs, R) = L1(θ|Yobs)L2(φ|R, Yobs). As mentioned earlier, most longitudinal

models are based on observed-data likelihood (i.e., L1(θ|Yobs)) = P (R|Yobs, φ), thus

requiring the condition of ignorability. More specifically, generalized linear mixed

models require the assumption of MAR, Markov transition models require a spe-

cial case of MAR where rit depends on (yit−1, .., yi1), and marginal models with GEE
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assume covariate-dependent MAR (i.e., P [R|Y,X] = P [R|X]) [22]. Time-naive meth-

ods usually assume that missing data are missing completely at random (MCAR; i.e.,

P [R|Y ] = P [R]), which is usually too rigorous for practical data sets.

<INSERT FIGURE 2 HERE>

As seen in Figure 2, there are two other ways in defining the missingness mecha-

nisms: shared-parameter missingness (Figure 2(B)) and pattern-mixture missingness

(Figure 2(C)). Contrary to outcome-dependent missingness, pattern-mixture models

assumes that the joint distribution of (yi, ri) is factored into the marginal distrib-

ution of ri and the conditional distribution of yi given ri, i.e., P (yi, ri|Xi, θ, φ) =

P (ri|Xi, φ)P (yi|ri, Xi, θ). In other words, different distributions are assumed for re-

peated measures on subjects within different missingness patterns. For example, in

cancer studies, individuals who have died during the study should be treated differ-

ently than those who are still alive at the end of the study . By sharing a common

vector of parameters (i.e., ξ), a shared-parameter model assumes that the data yi

and missingness indicators ri are conditionally independent of each other given ξ, i.e.,

P (yi, ri|Xi, θ, φ) =
∫

P (ri|ξi, Xi, φ)P (yi|ξi, Xi, θ)dξi. In the case of shared-parameter

missingness, the shared parameters can be either observed covariates or unobserved

latent variables. For example, in a cancer study, we may observe that yi and ri are

independent of each other within each age category, but are dependent of each other

across all the age groups. In this case, age can be viewed as a confounder in determin-
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ing the relationship between yi and ri. When ξ corresponds to an latent variable, such

as random-effects, the missingness mechanism is also called informative [22], which

is a special case of nonignorability. For informative missingness, structure equation

models [9] potentially provide a tool for analysis.

It has become intuitive that among each of the three missingness modeling setting,

ignorability can be achieved so long as there are no marginal association between Ymis

and R conditionally on Yobs. Among the three cases, outcome-dependent models and

pattern-mixture model have been studied intensively. In this article, we use the

shared-parameters model, which will be implemented by a Markov transition models

with shared random effects, to analyze the effects of contingency management on

reducing cigarette smoking.

2.2 Random-Effects Markov Transition Model for Repeated

Count Measures

For longitudinal data with Poisson-distributed count measures and informative miss-

ing values, REMTM offers a strategy for implementing the shared-parameter models

where random effects are the shared parameters. This model can be viewed as a

natural extension of the REMTM for binary longitudinal data [21]. REMTM first

assumes that complete data, (yi, ri), are identically independently distributed across

subjects (i = 1, . . . , n), and for each subject i, the repeated count measures yi are
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conditionally independent of the missingness indicators ri given the random effects

ξi. Therefore, we can separately model the counting process p(yi|θ, ξi) and the miss-

ingness mechanism p(ri|φ, ξi).

2.2.1 Modelling the Counting Process

To model the counting process, the first-order Markov chain is assumed for Bfyi =

(yi1, . . . , yiT )T , where on any time point, yit is independent of (yi1, . . . , yit−2)
T given

the previous observation yit−1. A random intercept effect is used to capture the

baseline heterogeneity across subjects. In this random-intercept Markov transition

model, we are interested in the transition probability of the Poisson-distributed count

measures. Such probability depends on the covariates under investigation and a

random intercept, i.e.,

P (yit|xit, yit−1, ξi) =
λyit

it

yit!
e−λit

with λit = E(yit|xit, yit−1, ξi) connected to covariates xit and random effect ξi N(0, σ2)

through a linear regression model using a link function log(·),

log(λit) = xitβ + (log(max(1, yit−1) − xit−1β)α+ ξi.

This article solely deals with baseline covariates that do not change with time, i.e.,

xit = (xi1, . . . , xip)). Time-varying covariates can be easily implemented into the

above Poisson regression model. Here, β contains the fixed parameters, which are
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of the most interest in making inferences on the covariates effect (e.g., treatment

efficacy). The parameter α indicates the influence of the previous counts through

the logarithm of the residual, (max(1, yit−1)− xit−1β), where max(1, yit−1) is used to

ensure a positive value for logarithm.

2.2.2 Modelling the Missingness Mechanism

By viewing the missingness indicator matrix R as a special form of categorical re-

sponses, we can model the missingness mechanism by a multinomial-logit Markov

transition model. Still, we adopt the first-order Markov chain assumption to calibrate

the transitional probabilities Pij = Pr(rit = j|rit−1 = i) between any consecutive 3-

category missingness indicators, rit−1 and rit (i = 0, 1, 2; j = 0, 1, 2). Determined by

certain restrictions, the following transitional probabilities would be always equal to

zero: P12, P20, P21. For other combinations of rit−1 and rit, the transitional proba-

bilities are calculated in the following manner. First, if the previous count measure

is observed (i.e., rit−1 = 0), then the “current’ one could be observed, intermittently

missing, or missing due to dropout. In this case, the 3-category multinomial-logit

regression model can be used to calculate the transitional probabilities, i.e.,

P (rit = j|ξi, xit, rit−1 = 0) =















1
1+
P

2
l=1

exp(xitηl+ξiγl)
if j = 0,

exp(xitηj+ξitγj)

1+
P

2
l=1

exp(xitηl+ξitγl)
if j = 1 or 2.

Second, if the previous count measure is intermittent missing, then the current one
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may only be either observed or intermittently missing. Correspondingly, a logistic

regression model can be used for calculating P10 and P11, i.e.,

P (rit = j|ξi, xit, rit−1 = 1) =















1
1+exp(xitη1+ξiγ1)

if j = 0,

exp(xitη1+ξitγ1)
1+exp(xitη1+ξitγ1)

if j = 1.

Third, for the absorbing state 2, we would always have P (rit = 2|ξi, xit, rit−1 = 2) =

1. By denoting Ti as the time for the last observed measurement for subject i, special

considerations should be paid to the last observed measures yiTi
, for which we always

have P (riTi
= 0|riTi−1 = 1) = 1. This is because for any individual, if the measure

at time Ti − 1 is intermittently missing, the one at time Ti must be observed. In the

above logit and logistics models, regression coefficients η1 and η2 respectively indicate

whether intermittent missingness and dropout depend on covariates, while coefficients

γ1 and γ2 respectively indicate whether intermittent missingness and dropout are

informative (i.e., nonignorable).

2.3 Bayesian Inference using MCMC

After setting up models for the counting process and the missingness mechanism, we

need to estimate the parameters in the above models. In [22], a maximum likelihood

method was adopted to estimate the parameters of REMTM for binary longitudinal

data. Similarly, we can optimize the REMTM likelihood function for the count data,
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i.e.,

L(θ, φ|Yobs, X,R) ∝

∫ n
∏

i=1

{

Ti
∏

t=1

p(yit|xit, yit−1, ξi, θ)}{
T

∏

t=1

p(rit|ξi, xit, rit−1, φ)}p(ξi)dξi

where θ = (α, β) representing the parameters of the Poisson regression model (see

equations (2)-(3)), φ = (η1, η2, γ1, γ2) representing the parameters related to missing-

ness mechanisms (see equations (4)-(5)), and p(ξi) is the pdf of N(0, σ2). A problem

with the maximum likelihood estimation comes from the optimization procedure that

requires numerical integration and computationally-expensive calculation of transi-

tional probabilities in the presence of intermittent missing values. In this article, we

adopt the approach of Bayesian inference based on MCMC. By specifying various

prior distributions and starting with different initial points for the parameter vector,

we can loosen the analytical computation burden and verify whether the posterior

distribution has multiple modes.

2.3.1 Bayesian Inference and Prior Specification

In the application of the Bayesian inference to the REMTM for count data, each

parameter of ψ = (θ, φ, ξi, σ
2) is viewed as a variable instead of a constant, certain

prior distributions of the parameters are assumed, and the posterior distribution of
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parameters is obtained using Bayes’ theorem, i.e.,

P (ψ|Y,X,R) ∝ P (Y |ψ)P (R|ψ)P (ψ)

=
n

∏

i=1

{

Ti
∏

t=1

p(yit|xit, yit−1, ξi, θ)}{
T

∏

t=1

p(rit|ξi, xit, rit−1, φ)}P (ψ).

Using MCMC, we can sample the parameters from the posterior distribution and

draw inferences using the center (median or mean) and variance of the stationary

distribution. The prior distribution of each parameter can be a diffusion normal

distribution (i.e., normal distribution with large variance) or a uniform distribution

on certain intervals (i.e. flat prior). We assume flat priors for all the parameters except

σ2, which is specified by an inverse Gamma(a,b), i.e., f(σ2) = ba exp(−b/σ2)
(σ2)a+1Γ(a)

. According

to Bayes’ theories, with enough data, the difference on the posterior distribution

introduced by varying prior specification would be negligible as long as all the priors

cover the whole range of the possible values of the parameters.

2.3.2 An Augmented Gibbs Sampler

As seen from the likelihood function in (6) and the posterior distribution in (7), it is re-

quired that the product of the transition probabilities (i.e., Ly
i =

Ti
∏

t=1

p(yit|xit, yit−1, ξi, θ))

be computed. In the presence of intermittent missing values, the corresponding

Markov chain (yi1, . . . , yiTi
) is broken into segments of observed values. Thus, the

calculation of the whole product would require either integration or imputation. For
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example, if Ti = 4 and yi2 is the only intermittent missing value, then we can obtain

Ly
i from integration (i.e., Ly

i =
∫

p(yi2|yi1)p(yi3|yi2)p(yi4|yi3)dy2) or imputation (i.e.,

Ly
i = 1

m

∑m
l=1 p(y

l
i2|yi1)p(yi3|yi2)p(yi4|yi3) with m imputed values for yi2). When there

are more than one consecutive intermittent missing values, (e.g., ri2 = ri3 = 1), the

option of integration becomes too complicated to be feasible and the method of impu-

tation becomes more appealing. Considering that integration can be realized through

Monte Carlo computation, which itself depends on imputation to deal with missing

values, we propose to adopt the imputation approach to deal with the problem of

intermittent missingness.

Once intermittent missing values are imputed, then standard MCMC steps can

be used to simulate samples of the parameters ψ. Similar ideas were adopted by

[?, 17] when they used data augmentation [?]in their multiple imputation . If we

treat missing values as another group of parameters in an approximate sense, an

augmented Gibbs sampler can be developed to draw samples for the parameters and

missing values. This algorithms consist of two iterative steps. The first step can be

called imputation step, where the missing values are updated by drawing from the

conditional predictive distribution, i.e.,

ymis
i ∼ f(ymis

i |yobs
i ,xi, ri, ψ).

The second step is called parameter estimation step, where the parameters are drawn
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from the posterior distribution

ψ ∼ P (ψ|Y,X,R).

This second step can be replaced by further Gibbs steps. Roughly speaking, at

each iteration, we sample and update one parameter or one random effect from the

distribution conditional on all the others and the imputed data. If this conditional

distribution has a closed form, we sample from it directly. Otherwise, we have two

approaches: the adaptive rejection sampling [8] and the griddy Gibbs sampler [13].

The basic ideas of the two sapling methods are illustrated by Figure 3.

<INSERT FIGURE 3 HERE>

When the conditional density function has a log-concave from, we use the adaptive

rejection sampling to get efficient sampling results in the following two steps. First,

we set the upper hull u(x) and lower hall l(x), which are piecewise linear functions

respectively consisting of tangent lines and cords of the logarithm of the density

function, h(x) = log(f(x)), at selected points. Second, we sample a point from the

cumulative density function determined by u(x), and then update the upper and lower

halls depending on whether the sampled value is accepted or rejected.

When the conditional density function does not have a log-concave form and there

are no more efficient sampling methods available, we resort to the simple and intuitive

griddy Gibbs sampler, which is based on the empirical distribution method. As
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depicted by Figure 3(b), three steps are required to create a griddy Gibbs sampler.

First, the range of the conditional density function should be decided up to a constant.

Then, we divide the range with or without respect to the probability change to form

a grid. Finally, we sample from the grid points by simple inverse sampling [?] or a

more sophisticated method.

More specifically, to impute intermittent missing values in the first step of the aug-

mented Gibbs sampler, the griddy Gibbs sampler would be used. For i = 1, . . . , n and

t = 1, . . . , Ti, if yit is missing, then an imputation would be drawn using conditionally

on the observed or imputed yit−1 and yit+1, i.e.,

f(ymis
it |yit−1, yit+1, ψ) ∝

λyit

it

yit!
e−λitλ

yit+1

it+1 e
−λit+1 .

For the parameter estimation step, the adaptive rejection sampling would be used to

draw parameters ψ in the following order. The counting process parameters α and β

of the Poisson regression model are drawn using,

f(α|ψ\α, Ymis) ∝

n
∏

i=1

Ti
∏

t=1

P (yit|xit, yit−1, ξi)

f(β|ψ\β, Ymis) ∝
n

∏

i=1

Ti
∏

t=1

P (yit|xit, yit−1, ξi)

where ψ\α refers to the sub vector of ψ excluding α and “\’ has the similar meaning for

ψ\β and other notations that follow. For the parameters η and γ of the multinomial
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logit and the logistic regression models that describe the missingness mechamism, the

following conditional distributions are used.

f(η|ψ\η, Ymis) ∝
n

∏

i=1

Di
∏

t=1

P (rit|ξi, xit, rit−1)

f(γ|ψ\γ, Ymis) ∝

n
∏

i=1

Di
∏

t=1

P (rit|ξi, xit, rit−1)

For random intercept effects, ξi, and their variance σ2, we use the following conditional

distributions to draw samples:

f(ξi|ψ\ξi
, Ymis) ∝

Ti
∏

t=1

P (yit|xit, yit−1, ξi)

Di
∏

t=1

P (rit|ξi, xit, rit−1) exp{
ξ2
i

2σ2
}

f(σ2|ψ\σ2 , Ymis) ∝ (σ2)
−n/2

exp{−
n

∑

1

ξ2
i

2σ2
}
ba exp(−b/σ2)

σ2(a+1)

It is not difficult to verify that the above density functions for α, β, η, γ, and ξi

are log-concave by computing the second order derivatives of the corresponding log-

transformed functions. For example, (log(f(α|ψ\η, Ymis)))
′′ ∝

n
∑

i=1

Ti
∑

t=1

−λit(log(max(1, yit−1)−

xit−1β)2 < 0. By denoting s = log(σ2), it can be shown that f(s|ψ\s, Ymis) ∝

exp{−sn+2
2

−
Pn

1
ξ2
i

2σ2 } whose second derivative is also negative.
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3 Application

3.1 A Simulation Study

To verify the validity of REMTM and the augmented Gibbs sampler for incomplete

Poisson-distributed repeated measures, we performed a simulation study where the

sample size was set at three levels: n = 100, 300, or 500, to reflect a typical ap-

plied scenario seen in Phase II and III clinical trials. We fixed the maximum number

of possible repeated measures at T = 12, which is the same as the number in the

motivating study in Section 1.2, and randomized each of the n subjects to receive

an imaginary ’treatment’ or ’control’ group with 50% probability. Then, to gener-

ate an incomplete data set, two steps were applied . First, a complete data matrix

was simulated using the Poisson Markov transition model in (2)-(3) with fixed pa-

rameters α = 0.3 and β = (β0, β1) = (0.5,−0.5) (where xi = (1, T rti), Trt = 1

or 0 indicating ’treatment’ or ’control’ condition for subject i) and random effects

ξi ∼ N(0, 0.36) (i.e., σ2 = 0, 36). Then, we created intermittent missing values and

dropouts using the multinomiial-logit and logistic regression models with parameters

φ = (η1 = (η10, η11), η2 = (η20, η21), γ1, γ2) set to reflect 16 scenarios as shown in Table

1, where we fixed η10 = η20 = −1.0 and let each of the rest four parameters vary

between two levels. For example, when η11, η21, γ1, and γ2 are all set to zero, it corre-

sponds to an incomplete data set where both intermittent missingness and dropout

are ignorable and not treatment-dependent. The setting, ‘η11 = −0.5, η21 = 0, γ1 = 0,
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and γ2 = 0.4,’ corresponds to the scenario where intermittent missingness is ignor-

able and treatment-dependent, while dropout is nonignorable (or informative) and

not treatment-dependent.

Repeating the above steps generated 20 data sets for each sample size and one

combination of the missingness parameters φ. The augmented Gibbs sampler was

then applied to fit an REMTM for each data set. When summarizing the simulation

results, we paid more attention to the estimation of β1, the parameter of most interest.

The overall performance of the augmented Gibbs sampler was satisfactory. In Table

1, the averaged biases and variances for β1 over the estimators for the 20 data sets

for sample size n = 300 are listed, with the bias within 0.1 for most combinations

of the missingness parameters. The worst cases, with the biases at 0.162 and 0.107,

occurred when the data sets were generated using γ1 = γ2 = 0, corresponding to

ignorable intermittent missingness and dropout. In these cases of ignorability, the

assumption of shared-parameter missingness was violated, but the biases were still

acceptable. This also shows REMTM to be generally robust.

<INSERT TABLE 1 HERE>

During the simulation study, we found that different parameters have different

converging speed. We monitored the sampling process by comparing multiple chains

and used some statistical criteria as suggested by [4] to judge the convergence. After

all of them converge, we used the means of the sampled posterior distributions as the
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point estimators. A typical posterior distribution of β1 and its corresponding multiple

chains for the sampling process are plotted in Figure 4, from which it is noticable that

the posterior distribution of β1 is unimodal and the estimated treatment effect size is

very close to its true value (i.e., β1=-0.5).

<INSERT FIGURE 4 HERE>

3.2 Analyze the Motivating Study

The model REMTM with augmented Gibbs sampling algorithm was also used to

analyze the incomplete smoking episode data set. As mentioned earlier, there were

very few intermittent missing values in the data, which precluded stable estimators

of the parameters related to intermittent missingness mechanism. To circumvent this

limitation, we decided to create artificial intermittent missing values. By randomly

deleting certain amounts of observed values and increasing the levels of intermittent

missingness, we aimed to investigate the sensitivity of the estimator of βi (i.e., treat-

ment efficacy). If we created more missing values and all the estimates suggested

the same conclusion, we would have more confidence in accepting the conclusion.

The creation of artificial missingness also provided a device to verify the validity of

REMTM and the MCMC algorithm. If they provided similar solutions, then the

intermittent missing values could be inferred as being ignorable and independent of

the treatment condition. Four levels of intermittent missingness were specified: 5%,

10%, 15%, and 20%. At each level, twenty sets of intermittent missing values were

23



randomly generated by converting that proportion of missingness indicators from 0

to 1. By setting random initial values for the parameters to trigger the augmented

Gibbs sampler to analyze each data set, the estimators were averaged to make final

inferences.

<INSERT TABLE 2 HERE>

Since, the parameter β1 is of interest, we listed all the four sets of point estimators

and standard variance in Table 2. From this table, it is seen that the variances

of β1 across the 20 data sets for each intermittent missingness level becomes larger

as the level increases. Nonetheless, the bias remains small across the four levels of

intermittent missingness and all the corresponding 95% posterior credible intervals

exclude zero. In other words, the estimators jointly supported a significant favorable

effect for contingency management, the active treatment condition, in helping the

methadone-maintained smokers in this study reduce cigarette smoking.

<INSERT TABLE 3 HERE>

Table 3 depicts all the parameter estimates (averaged across the 20 incomplete

data sets) when the fake missingness rate is set at 5%. The point estimators and

95% posterior credible intervals for η, and γ jointly suggest that both intermittent

missingness and dropout are ignorable and independent of the covariate. This is co-

incidental with the fact that intermittent fake missing values were created completely

at random. Without direct or auxiliary information at hand to infer the possible
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dropout mechanism, we were unable to verify whether the suggested ignorability of

dropout by the fitted REMTM was correct or not.

4 Discussion

For various longitudinal data in biomedical research, three groups of modeling

strategies are popularly used: generalized linear mixed models, marginal models with

GEE, and transition models. In the presence of missing values, which is a common

problem in practice, all these models assume that missing data are ignorable and

draw inferences solely based on observed data. In many practical data sets, how-

ever, ignorability is a very strong assumption and analysis ignoring the patterns and

mechanism of missingness would bias hypothesis testing, especially if missing values

are nonignorable. As seen from Figure 2, nonignorablility could be further classified

into three cases: outcome-dependent, pattern-mixture, and shared-parameter. The

first two cases were extensively studied in the statistical community and handed by

various forms of selection models and pattern-mixture models (see [22]) for a detailed

review). In this article, a specific implementation of shared-parameter model called

REMTM was proposed to analyze incomplete Poisson-distributed repeated measures

with potentially informative missingn values due to occasional omission or prema-

ture withdrawal. A MCMC fitting algorithm called augmented Gibbs sampler was

also developed. Both the simulation study and the practical application verified the
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satisfactory performance of REMTM and the fitting algorithm.

When designing the simulation study, we tried to mimic the setting of a placebo-

controlled clinical trial. The augmented Gibbs sampler for REMTM shows accept-

able robustness in estimating treatment efficacy. Under various scenarios of missing-

ness mechanism, the fixed parameter of interest was well estimated. When applying

REMTM to the smoking cessation data set which contains self-reported repeated

measures counting the number of episodes of tobacco using, the various fitted models

consistently support the efficacy of contingency management. In the analysis, we

adopted the idea of artificial deletion of observed values in order to obtain intermit-

tent missing values. As more and more observed values became randomly excluded

from analysis, the observed information became smaller and smaller. However, the

steadfast sign and significance of the estimated treatment effect parameter. This pro-

vided very strong evidence for accepting the conclusion of treatment efficacy. This

method of artificial deletion potentially has practical value in statistical analysis in

that the method is analogous to assaying the strength of the constituents of a solu-

tion by using dilution methods. The variable strength (i.e., the intervention) could be

measured as the amount of missing data introduced to yield a non-significant result

when compared to the control.

REMTM is a case of shared-parameter model. Because of the feature of condi-

tional independency, measurement models and missingness models can be considered

conditionally independently. There exists many other ways to implement the shared-
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parameters models. Conditioned on the same group of shared-parameters, mixed

models and marginal models can be used to study the joint distribution of longitu-

dinal data or missingness mechanisms. When shared parameters include observable

covariates, then this shared-parameter model can be used to analyze epidemiological

longitudinal data sets with possibly informative missingness. In these models, the

observed shared-parameters can be confounders or derived scores such as propensity

scores [15] that address the problem of confounding. Adopting the idea of multiple

partial imputation [22], we can first impute the intermittent missing values and then

manage only dropouts using a simpler version of REMTM where a random-effects

logistic regression model can be used to model the dropout mechanism. This model

was also used to analyze the smoking cessation data set and supported a consistent

conclusion efficacy of contingency management.

A noticeable difficulty of incomplete data analysis comes from model selection. For

a practical data set, there is often not enough direct or indirect evidence for choos-

ing a proper model among many choices, e.g., shared-parameter models, selection

models, or pattern-mixture models. In this situation, we recommend adopting the

strategy of sensitivity analysis, where several models with various assumptions on the

missingness mechanism are applied to the same data to investigate the sensitivity

of the parameter estimation. Only if all the models provide conclusions that are not

conflicting with one another, would we have confidence in accepting them. Otherwise,

further investigation is likely needed.
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In this article, we restricted our discussion to longitudinal data sets with a bal-

anced design and time-independent covariates, but it is not difficult to modify the

model and algorithms to handle uneven repeated measures and time-varying covari-

ates. Considering that other types of repeated measures such as continuous and

categorical measures are also popular in practice, we are currently extending our

MCMC algorithm and Markov transition models to address them. To conduct sensi-

tivity analysis, various modeling strategies should be developed and implemented into

software packages. Recently, a software package called MPI has implemented both

selection models and pattern mixtures models [21]. The augmented Gibbs sampler

for the REMTM in this paper was programmed in C++ and the codes are available

by request.
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η1 η2 γ1 γ2 Bias(
¯̂
β1) Var(

¯̂
β1)(·10−3)

0 0 0 0 -0.162 0.268

0 0 0 0.4 -0.044 0.278

0 0 0.5 0 -0.059 0.202

0 0 0.5 0.4 -0.045 0.629

0 -1 0 0 -0.038 0.517

0 -1 0 0.4 0.034 0.288

0 -1 0.5 0 -0.014 0.562

0 -1 0.5 0.4 -0.028 0.102

-0.5 0 0 0 0.028 0.036

-0.5 0 0 0.4 0.059 0.025

-0.5 0 0.5 0 0.029 0.136

-0.5 0 0.5 0.4 0.016 0.149

-0.5 -1 0 0 0.107 0.055

-0.5 -1 0 0.4 0.031 0.500

-0.5 -1 0.5 0 0.086 0.602

-0.5 -1 0.5 0.4 0.025 0.158

Table 1: Biases and Variances of the Averaged Treatment Effect Estimators (
¯̂
β) in

the Simulation Study.
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Statistics 5% missing 10% missing 15% missing 20% missing
From the posterior distribution of β1

♦ average of 20 means -0.94 -1.05 -1.00 -1.03
♦ average of 20 std’s 0.17 0.16 0.12 0.09
♦ variance of 20 means 0.07 0.11 0.12 0.14

Table 2: Estimation of Treatment Effect Parameter (β1) in the Smoking Cessation
Study.
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Parameter Estimate Std. Dev. 95% C. I.
Possion Count Transition

♦ Dependence(α) 0.42 0.01 ( 0.40 , 0.43 )
♦ Intercept(β0) 2.19 0.10 ( 1.99 , 2.40 )
♦ Treatment(β1) -0.94 0.17 ( -1.26 , -0.61 )

Intermittent Missing
♦Intercept(η10) -0.51 0.08 ( -0.67 , -0.34 )
♦Treatment(η11) -0.09 0.12 ( -0.33 , 0.14 )
♦random effect(γ1) 0.03 0.05 ( -0.06 , 0.13 )

Dropout Missing
♦Intercept(η20) -2.75 0.24 ( -3.21 , -2.28 )
♦Treatment(η21) -0.02 0.33 ( -0.66 , 0.62 )
♦Random effect(γ2) 0.17 0.15 ( -0.12 , 0.47 )

variance of random effect σ2 1.66 0.23 ( 1.21 , 2.10 )

Table 3: Parameter Estimation with Standard Deviations and 95% Posterior Cred-
ible Intervals for the Smoking Cessation Data Set with 5% Randomly Generated
Intermittent Missing Values.
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Figure 1: Repeated Count Measures Over the 12-week Study Period for the Smoking
Cessation Clinical Trial.
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Figure 2: Three Representations of Missingness Mechanisms
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Figure 3: Adaptive Rejection Sampling Method and Griddy Gibbs Sampling Method.
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Figure 4: The Sampling Process and Posterior Distribution of Parameter β1 in the
Simulation Study.
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Figure Captions

Figure 1. Repeated Count Measures Over the 12-week Study Period

for the Smoking Cessation Clinical Trial.

The left graph plots the repeated measured number of smoking episodes

for the 90 smokers in the treatment group who received contingency

management. The right graph plots the repeated measured number of

smoking episodes for the 85 smokers in the control group who did not

received contingency management. In both plots, the y-axis indicates

the number or counts of tobacco use for the previous week, the x-axis

corresponds to the week numbers (1-12). The thick solid curves depict

the mean profiles in the two groups, while the dashed curves represent

the individual profiles.

Figure 2. Three Representations of Missingness Mechanisms.

Three ways in modeling incomplete data are depicted here. Parame-

ters and symbols in the figures are defined as: yi = (yobs
i ,ymis

i ) —-
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observed and missing values for subject i; ri —- missingness indicator

for repeated measures on subject i; θ —- parameters of data; φ —-

parameters of missingess indicators; and ξ —- parameters shared by

data and missingness indicators.

Figure 3. Adaptive Rejection Sampling Method and Griddy Gibbs

Sampling Method.

The left side figure shows the idea of Adaptive Rejection Sampling with

functions defined as: h(x) = log(x) — the logarithm of a statistical den-

sity function f(x); u(x) — upper hall of h(x); and l(x) — lower hall of

h(x). The right side figure depicts the idea of Griddy Gibbs Sampling

within which the density function is approximated by rectangles.

Figure 4. The Sampling Process and Posterior Distribution of Para-

meter β1 in the Simulation Study.

The left side figure draws three chains of the augmented Gibbs sampler,

each starting from randomly selected points. It is seen that after around
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100 iterations, the Gibbs sampler converges. The right side histogram

depicts the posterior distribution of the parameter of interest (i.e., β1).

From the histogram, we can see that the mean value of the posterior

distribution is very close to the true value (i.e., -0.5).
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