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Abstract

Background: Accumulated evidence shows that the abnormal regulation of long

non-coding RNA (lncRNA) is associated with various human diseases. Accurately

identifying disease-associated lncRNAs is helpful to study the mechanism of lncRNAs

in diseases and explore new therapies of diseases. Many lncRNA-disease association

(LDA) prediction models have been implemented by integrating multiple kinds of

data resources. However, most of the existing models ignore the interference of

noisy and redundancy information among these data resources.

Results: To improve the ability of LDA prediction models, we implemented a

random forest and feature selection based LDA prediction model (RFLDA in short).

First, the RFLDA integrates the experiment-supported miRNA-disease associations

(MDAs) and LDAs, the disease semantic similarity (DSS), the lncRNA functional

similarity (LFS) and the lncRNA-miRNA interactions (LMI) as input features. Then, the

RFLDA chooses the most useful features to train prediction model by feature

selection based on the random forest variable importance score that takes into

account not only the effect of individual feature on prediction results but also the

joint effects of multiple features on prediction results. Finally, a random forest

regression model is trained to score potential lncRNA-disease associations. In terms

of the area under the receiver operating characteristic curve (AUC) of 0.976 and the

area under the precision-recall curve (AUPR) of 0.779 under 5-fold cross-validation,

the performance of the RFLDA is better than several state-of-the-art LDA prediction

models. Moreover, case studies on three cancers demonstrate that 43 of the 45

lncRNAs predicted by the RFLDA are validated by experimental data, and the other

two predicted lncRNAs are supported by other LDA prediction models.

Conclusions: Cross-validation and case studies indicate that the RFLDA has excellent

ability to identify potential disease-associated lncRNAs.

Keywords: Random forest, Variable importance, Feature selection, lncRNA-disease

association prediction, Bioinformatics algorithm
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Background

LncRNAs are a category of long non-coding RNAs with transcripts longer than 200 nu-

cleotides [1]. Accumulated evidence demonstrates that lncRNAs are involved in almost

all-important biological processes, including gene transcription, cell differentiation, and

epigenetic regulation [2–4]. The abnormal regulation of lncRNAs is associated with

many complex human diseases, such as various cancers, Alzheimer’s disease, cardiovas-

cular disease and neurodegenerative diseases [5–9]. Therefore, accurately identifying

disease-associated lncRNAs is helpful to study the mechanism of lncRNAs in diseases

and explore new therapies of diseases.

To reduce the cost of discovering disease-associated lncRNAs by biological experiments,

dozens of computational models have been developed to identify disease-associated

lncRNAs based on a variety of biological data. At present, LDA prediction models can be

classified into three categories. The first type of LDA prediction models is models based

on complex network that predict disease-associated lncRNAs by integrating various bio-

logical networks [5]. Under the supposition that lncRNAs with analogous function tend

to be related to diseases with analogous phenotype, Sun et al. proposed a LDA prediction

model named RWRlncD by implementing random walk with restart (RWR) on a LFS net-

work [10]. Under the supposition that the more miRNAs two lncRNAs interacted, the

more likely they are related to the analogous diseases, Zhou et al. proposed a LDA predic-

tion model by implementing random walk on a heterogeneous network which integrated

the disease similarity network, the miRNA-mediated lncRNA crosstalk network and the

experiment-supported LDA network [11]. However, neither of the above methods can be

used to new diseases that have not any experiment-supported associated lncRNAs. Chen

et al. implemented a LDA prediction model called KATZLDA by integrating the Gaussian

interaction profile kernel similarity (GIPKS) and semantic similarity of diseases, the ex-

pression profiles and functional similarity of lncRNAs, and the experiment-supported

LDAs [12]. In addition, Chen et al. developed an improved RWR based LDA prediction

model (IRWRLDA), which set the initial probability vector of RWR by combining the

lncRNA expression similarity with the DSS [13]. Both of the above methods can be used

to new diseases that have not any experiment-supported associated lncRNAs. Moreover,

Yu et al. implemented a bi-random walks based LDA prediction model (BRWLDA) [14].

Gu et al. developed a random walk based LDA prediction model on global network

(GrwLDA) [15]. Zhang et al. constructed a flow propagation algorithm based LDA predic-

tion model (LncRDNetFlow) [16]. Xiao et al. proposed a paths of fixed lengths based LDA

prediction model (BPLLDA) [17]. Ping et al. inferred potential LDAs by an experiment-

supported LDA network [18]. Fan et al. implemented a RWR based LDA prediction

model (IDHI-MIRW) by combining the positive pointwise mutual information with mul-

tiple heterogeneous information [19]. Liu et al. constructed LDA prediction model based

on label propagation algorithm on weighted network (NBLDA) [20]. Li et al. developed a

local random walk based LDA prediction model (LRWHLDA) [21]. Sumathipala et al. de-

veloped a network diffusion based LDA prediction model by integrating the protein-

disease, protein-lncRNA and protein-protein associations [22]. Zhang et al. developed a

DeepWalk based LDA prediction model by integrating the miRNA-disease, lncRNA-

disease, and miRNA-lncRNA associations [23]. Xie et al. implemented a similarity kernel

fusion based LDA prediction model (SFK-LDA) by fusing the DSS and cosine similarity,

and the lncRNA expression similarity and cosine similarity [24].
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The second type of LDA prediction models predict disease-associated lncRNAs based

on the expression levels and regulation relationships between disease-associated genes/

miRNAs and lncRNAs [5]. Liu et al. implemented the first LDA prediction model not

depending on the known LDAs by combining experiment-validated disease-associated

genes with the gene/lncRNA expression profiles [25]. However, this model cannot be

used for diseases that have not any experiment-validated associated genes. Li et al. pro-

posed a genome location based model for screening human vascular disease-associated

lncRNAs [26]. However, this model is invalid for lncRNAs that have no neighbour

genes. Chen developed a hypergeometric distribution based LDA prediction model

(HGLDA) by combining the LMI with MDAs [27]. HGLDA has a reliable performance

for LDA prediction, but it cannot be used for lncRNAs that have not any experiment-

supported interacted miRNAs [5]. Wang et al. developed a sequence based LDA predic-

tion model (LncDisease) using the known lncRNA-miRNA crosstalk [28]. However, be-

cause the predicted miRNA-lncRNA interactions have high false negative and false

positive, the performance of LncDisease is limited. Moreover, Cheng et al. developed

information flow modelling based LDA prediction model (IntNetLncSim) by combining

lncRNA-associated transcriptional information with post-transcriptional information

[29]. Wang et al. developed a competing endogenous RNAs (ceRNAs) based LDA pre-

diction model (DisLncPri) by mapping lncRNAs to their functional genomics context

[30]. Fu et al. proposed a matrix factorization based LDA prediction model (MFLDA)

by decomposing multiple data matrices into low-rank matrices to identify their interior

structure [31]. Ding et al. developed an lncRNA-disease-gene tripartite graph based

LDA prediction model (TPGLDA) by combining the gene-disease associations with the

LDAs [32]. Lu et al. developed an inductive matrix completion based LDA prediction

model (SIMCLDA) by integrating the gene-disease, lncRNA-disease and gene-gene as-

sociations [33]. Wang et al. implemented a weighted matrix factorization based LDA

prediction model (WMFLDA) by pre-setting weights to various association matrices

among genes, lncRNAs and diseases and decomposing these matrices into low-rank

matrices [34].

The third type of LDA prediction models predict disease-associated lncRNAs based

on various machine learning algorithms [5]. Under the supposition that analogous dis-

eases tend to be related to analogous lncRNAs, Chen et al. proposed a Laplacian regu-

larized least squares based LDA prediction model (LRLSLDA) by combining the

experiment-supported LDAs with the lncRNA expression profiles [35], which is the

first computational model in this field. LRLSLDA is a semi-supervised machine learning

model not needing negative samples, but how to optimize model parameters remains a

problem. Later, Chen et al. implemented a new LDA prediction model named

LRLSLDA-LNCSIM by combining the functional, expression and GIPKS of lncRNAs

with the semantic and GIPKS of diseases [36]. LRLSLDA-LNCSIM improves the per-

formance of LRLSLDA. Furthermore, Huang et al. proposed an improved LFS model

(ILNCSIM) by using the topological characteristics of disease DAGs (directed acyclic

graphs) [37]. In addition, Zhao et al. implemented a naïve Bayesian classifier based

lncRNA-cancer association prediction model by integrating the genome, transcriptome

and regulome data [38]. Lan et al. implemented a bagging SVM classifier based LDA

prediction model (LDAP) by combining the disease similarity with the lncRNA similar-

ity [39]. Yu et al. proposed a naïve Bayesian classifier based collaborative filtering LDA
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prediction model (CFNBC) by integrating the lncRNA-disease, miRNA-disease and

lncRNA-miRNA associations [40]. Guo et al. developed a rotating forest and neural

network based LDA prediction model (LDASR) by combining the lncRNA GIPKS with

the DSS and GIPKS [41]. Chen et al. implemented a support vector machine based

LDA prediction model (ILDMSF) by integrating the lncRNA-gene interactions, the

lncRNA-disease associations and the DSS [42]. Guo et al. implemented a random forest

classifier based model for inferring novel associations among various bimolecular by

constructing a molecular association network based on the known associations among

diseases, proteins, miRNAs, lncRNAs and drugs [43]. Latterly, Xuan et al. proposed a

series of convolutional neural network based LDA prediction models, including

CNNLDA [44], GCNLDA [45], CNNDLP [46] and LDAPred [47]. CNNLDA learned

the global and attention characteristics of lncRNA-disease pairs using convolutional

neural networks by integrating the DSS, the LFS, and the lncRNA-disease, miRNA-

disease and lncRNA-miRNA associations [44]. GCNLDA learned the local and network

characteristics of lncRNA-disease pairs using convolutional neural network, graph con-

volutional network and convolutional auto-encoder by combining multiple associations

among diseases, miRNAs and lncRNAs [45]. CNNDLP learned the network and atten-

tion characteristics of lncRNA-disease pairs using convolutional neural network and

convolutional auto-encoder by integrating various associations, interactions and simi-

larities among miRNAs, lncRNAs and diseases [46]. LDAPred implemented LDA pre-

diction using convolutional neural network and information flow propagation by

integrating various associations, interactions, similarities and topology among miRNAs,

lncRNAs and disease [47]. These four methods have better performance for LDA pre-

diction, but they all need to adjust many model parameters.

Inspired by previous works [44, 48], we implemented a random forest and feature se-

lection based LDA prediction model (RFLDA). First, the RFLDA represented lncRNA-

disease pairs by a high-dimensional feature vector that integrated the DSS, the LFS, the

experiment-supported LDAs and MDAs, and the miRNA-lncRNA interactions. Then,

the RFLDA chose more useful features based on the variable importance score of ran-

dom forest to represent lncRNA-disease samples. Finally, the RFLDA employed a ran-

dom forest regression model trained on low-dimensional feature space to score

potential LDAs. The AUC and AUPR under 5-fold cross-validation demonstrate that

the RFLDA has better performance than several outstanding LDA prediction models.

Moreover, case studies on three cancers indicate that the RFLDA has excellent ability

to identify disease-associated lncRNAs.

Results

Feature selection

To determine how many features should be used to train random forest regression

model, we studied the prediction accuracy of models on different training sample sets

by 10-fold cross-validation. Specially, we chose the top 50, 100 … 1900 and 1950 most

important features (with the largest variable importance scores) to train random forest

models in turn and calculated their prediction accuracy. The prediction accuracy under

10-fold cross-validation of random forest models trained using different number of fea-

tures is shown in Fig. 1. As one can see from Fig. 1, the prediction accuracy of random
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forest models gradually increases with more features being added into training sample

set, and achieves the largest value, 0.947, on training sample set consisting of the top

300 most important features. Therefore, in this work, we utilized the top 300 most im-

portant features to train the RFMDA model and evaluate its performance. The variable

importance scores of all 1952 features are listed in Table S1, and the prediction accur-

acy of all random forest models on different training samples is listed in Table S2.

Performance measures

The AUC and AUPR under 5-fold cross-validation are calculated to evaluate the ability of

different LDA prediction models. The 2697 experiment-supported LDAs are considered

as positive samples. The 2697 randomly selected lncRNA-disease pairs not validated by

experiments are considered as negative samples. All lncRNA-disease pairs not validated

by experiments are taken as unlabelled samples. For 5-fold cross-validation, all positive

and negative samples are evenly divided into 5 parts. In each cross-validation, four parts

of positive samples and negative samples are used for training random forest model in

turn, and the leftover positive samples and all unlabelled samples are used as testing sam-

ples. Then, a random forest regression model is trained to score testing samples. As a re-

sult, each test sample (lncRNA-disease pair) is given a score that represented the

likelihood that the lncRNA and disease of this sample are associated. Next, all test samples

are sorted in descending by their prediction scores. On this basis, we calculated the false

positive rate (FPR) and the true positive rate (TPR) with different thresholds. The FPR

represents the proportion of the real negative samples in predicted positive samples (test

samples that are ranked before the given threshold) to all negative samples. The TPR rep-

resents the proportion of the real positive samples in predicted positive samples (test sam-

ples that are ranked before the given threshold) to all positive samples. The TPR and the

FPR can be calculated by eq. 1 and eq. 2, respectively.

TPR ¼
TP

TP þ FN
ð1Þ

Fig. 1 Prediction accuracy of random forest models on different training sample set consisting of different

number of features
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FPR ¼
FP

FP þ TN
ð2Þ

where, TP (true positive) means that a positive sample is correctly predicted as positive

sample; FN (false negative) means that a positive sample is incorrectly predicted as

negative sample; FP (false positive) means that a negative sample incorrectly predicted

as positive sample; TN (true negative) means that a negative sample is correctly

predicted as negative sample. Using TPR as vertical axis and FPR as horizontal axis, the

receiver operating characteristic (ROC) curve is drawn, and the AUC is calculated to

evaluate the prediction ability of different LDA prediction models [49]. The larger the

AUC is, the better the model is.

Because the number of negative samples (unconfirmed LDAs) is much larger than

the number of positive samples (experiment-supported LDAs), it is seriously imbal-

anced between them. Therefore, we also draw the precision-recall (PR) curve and cal-

culate the AUPR to evaluate the prediction ability of different LDA prediction model

[50]. The Precision means the percentage of the accurately predicted positive samples

in all predicted positive samples, and the Recall means the percentage of the accurately

predicted positive samples in all real positive samples. The Precision and the Recall can

be calculated by eq. 3 and eq. 4, respectively.

Precision ¼
TP

TP þ FP
ð3Þ

Recall ¼
TP

TP þ FN
ð4Þ

Giving that 5-fold cross-validation, we adopt the average values of AUCs/AUPRs in

five folds to evaluate the performance of different LDA prediction models. Moreover,

to get reliable results, we repeated each experiment 10 times and computed the average

value of 10 times experiments to be the final evaluation results.

Performance comparison with other prediction models

To show the prediction ability of the RFLDA, we compare it with several excellent

LDA prediction models, such as SIMCLDA [33], Ping’s method [18], MFLDA [31],

LDAP [39], CNNLDA [44], and GCNLDA [45]. The AUCs and AUPRs of all LDA pre-

diction models are shown in Table 1. The ROC curves of different LDA prediction

models are shown in Fig. 2. The AUCs and AUPRs of the RFLDA in each cross-

validation are listed in Table S3.

Table 1 The AUCs and AUPRs of different LDA prediction models

Algorithm AUC AUPR

SIMCLDA 0.746 0.095

Ping’s Method 0.871 0.219

MFLDA 0.626 0.066

LDAP 0.863 0.166

CNNLDA 0.952 0.251

GCNLDA 0.959 0.223

RFLDA 0.976 0.779
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As one can see, the RFLDA achieves AUC of 0.976 (±0.0002) on all tested 412 dis-

eases, which is higher than all other methods involved in the comparison. It outper-

forms SIMCLDA by 31%, Ping’s method by 12%, MFLDA by 56%, LDAP by 13%,

CNNLDA by 3% and GCNLDA by 2%. Moreover, RFLDA achieves AUPR of 0.779 (±

0.0297) on all tested 412 diseases, which is also higher than all other methods involved

in the comparison. Specifically, it outperforms SIMCLDA by 720%, Ping’s method by

256%, MFLDA by 1080%, LDAP by 369%, CNNLDA by 210% and GCNLDA by 249%.

The comparison results indicate that the RFLDA has excellent ability of LDA predic-

tion. It should be noted that the AUCs and AUPRs of other six models except RFLDA

in Table 1 are derived from Xuan et al.’s work [44, 45].

Case studies

To further show the ability of the RFLDA to identify new disease-associated lncRNAs,

case studies on stomach cancer, lung cancer and colon cancer are constructed. First,

we trained the RFLDA on a sample set that did not contain any validated associations

between lncRNAs and the investigated diseases. Here, all known lncRNA-disease asso-

ciations from Fu et al.’s previous work [31], except for the investigated diseases, were

taken as positive samples to training random forest prediction model, and all uncon-

firmed lncRNA-disease pairs were used as test samples. Then, we scored and sorted all

unconfirmed lncRNA-stomach/lung/colon cancer samples. Finally, we validated the

predicted lncRNAs associated with stomach/lung/colon cancer by the records in the

Lnc2Cancer (v2.0) [51], LncRNADisease (v2.0) [52], and published literature [53–56].

The Lnc2Cancer is a manually managed lncRNA-cancer association database, which

stores the 4986 experiment-validated associations between 165 cancers and 1614

lncRNAs. The LncRNADisease is a manually managed lncRNA-disease association

database, which stores the 10,564 experiment-validated LDAs and the 195,395

Fig. 2 The ROC curves of different LDA prediction models
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predicted LDAs by excellent LDA prediction methods. As a result, the top 15 predicted

lncRNAs associated with the three cancers by the RFLDA are shown in Table 2,

respectively.

As one can see from Tables 2, 14 of the top 15 predicted stomach cancer-associated

lncRNAs by the RFLDA are supported by the experimental data or the published litera-

ture, and the remaining one (MIR155HG) is supported by other LDA prediction

models. Specially, MIR17HG has been shown to be abnormaly regulated in stomach

cancer in published literature [53]. In addition, 14 of the top 15 predicted lung caner-

associated lncRNAs by the RFLDA are supported the experimental data or the publised

literature, and the remaining one (MIR100HG) is supported by other LDA prediction

models. Specially, HULC has been discovered to be dysregulated in lung cancer in pub-

lished literature [54]; Cheng et al. discovered that PRNCR1 could upregulate HEY2 by

competitively bind miR-448 to promote tumor progression in non-small cell lung can-

cer [55]. Moreover, all top 15 predicted colon cancer-associated lncRNAs by the

RFLDA are supported by the experimental data or the published literature. Specially,

Xu et al. discovered that MIR17HG was upregulated in colorectal cancer tissue and

could promote metastasis and tumorigenesis of colorectal cancer cells [56]. In sum-

mary, 43 of the top 45 predicted lncRNAs associated with the three cancers by the

RFLDA are supported by the experimental data in the Lnc2Cancer database, the

LncRNADisease database or the published literatures, and the remaining 2 lncRNAs

are supported by other LDA prediction models. Therefore, case studies show that the

RFLDA has excellent ability for LDA prediction.

Beside the three diseases analyzed in case studies, the RFLDA is also used to predict

the potential associated lncRNAs for other 409 diseases in this research. The predicted

top 50 lncRNAs associated with all 412 diseases by the RFLDA are listed in Table S4,

which contains three columns: name of disease, name of lncRNA, and the association

score predicted by the RFLDA.

Discussion

Increased evidence suggests that dysregulation of some lncRNAs are involved in many

complex human diseases. Accurately discovering lncRNAs associated with diseases is

helpful to explore the pathogenesis and appropriate treatment options of diseases. Due

to the high cost of experimental method for identifying disease-associated lncRNAs, re-

searchers have proposed a series of computational model for LDA prediction. However,

most of the existing models ignore the interference of noisy and redundancy informa-

tion among multiple data resources. To improve the performance of LDA prediction

models, we developed a random forest and feature selection based LDA prediction

model (RFLDA). The AUC and AUPR under 5-fold cross-validation show that the

RFLDA are better than several excellent LDA prediction models including SIMCLDA,

Ping’s method, MFLDA, LDAP, CNNLDA and GCNLDA. Moreover, case studies on

three cancers show that the RFLDA has excellent ability to identify potential disease-

associated lncRNAs.

We identify the following reasons why the RFLDA can achieve better performance.

First, the RFLDA integrates multiple types of biological data including the experiment-

supported LDAs, the functional similarity of lncRNAs, the semantic similarity of dis-

eases, the experiment-supported MDAs, and the interactions between lncRNAs and
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Table 2 The candidate lncRNAs associated with stomach cancer, lung cancer and colon cancer

Diseases Rank LncRNA Evidence

Stomach Cancer 1 HULC C & D

2 MIR17HG L& D*

3 TUG1 C & D

4 HOTTIP C & D

5 NEAT1 C & D

6 WT1-AS C & D

7 MALAT1 C & D

8 TP53COR1 C

9 HNF1A-AS1 C & D

10 SPRY4-IT1 C & D

11 MIR155HG D*

12 KCNQ1OT1 D

13 NPTN-IT1 C & D

14 BCYRN1 C & D*

15 CDKN2B-AS1 C & D

Lung Cancer 1 HOTTIP C & D

2 HULC L& D*

3 SPRY4-IT1 C & D

4 PCAT1 C & D

5 TP53COR1 C & D

6 SOX2-OT C & D

7 IGF2-AS C & D*

8 SPRY4-IT1 C & D

9 KCNQ1OT1 C & D

10 PRNCR1 L& D*

11 MIR100HG D*

12 TUSC7 C & D*

13 PVT1 C & D

14 GHET1 C & D*

15 BCYRN1 C & D

Colon Cancer 1 HOTTIP C & D

2 HULC C & D

3 GAS5 C & D

4 MIR17HG L& D*

5 CDKN2B-AS1 C & D

6 TUG1 C & D

7 PVT1 C & D

8 BANCR C & D

9 AFAP1-AS1 C & D

10 XIST C & D

11 HNF1A-AS1 C & D

12 UCA1 C & D
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miRNAs. Second, as an excellent machine learning algorithm, random forest has

high accuracy and robustness. By combining random re-sampling and weak classi-

fier assembling, random forest can implement the unbiased estimator for

generalization error and good generalization performance. Third, the variable im-

portance score of random forest takes into account not only the effect of an indi-

vidual feature on the sample prediction but also the joint effect of multiple

features on sample prediction. Therefore, the feature selection method based on

random forest variable importance score can effectively identifying the most im-

portant features for sample prediction.

There are some limitations in RFLDA model. First, RFLDA predicts LDA using

the supervised random forest algorithm, which requires both positive and negative

samples. However, it is almost unrealistic to obtain the reliable negative samples

for LDA prediction. The method of randomly selecting negative samples may influ-

ence the prediction performance of RFLDA. Besides, limitation of knowledge about

diseases, lncRNA, and miRNAs constrain the prediction performance of RFLDA.

Finally, there are many excellent association prediction computational models in

various fields of computational biology, such as miRNA/lncRNA-disease association

prediction [57–62], drug-target interaction prediction [63], and synergistic drug

combination prediction [64]. These association prediction models would provide

valuable insights into the development of new lncRNA-disease association predic-

tion. Therefore, we will further improve the performance of LDA prediction model

in the future by integrating more biological data and the most advanced algorithm

idea of different association prediction.

Conclusion

Accurately identifying disease-associated lncRNAs is helpful to explore the functionary

mechanism of lncRNAs in diseases. Predicting disease-associated lncRNAs by computa-

tional methods is an efficient mean. In this work, we developed a random forest and

feature selection based LDA prediction model by integrating the LFS, the DSS, the

experiment-supported LDAs, the experiment-supported MDAs, and the miRNA-

lncRNA interactions. The feature selection based on the variable importance score of

random forest was implemented to choose more useful features to train LDA predic-

tion model. The random forest regression model was trained to predict potential LDAs.

Cross-validation and case study show that the RFLDA outperforms several excellent

LDA prediction models. Therefore, we anticipate that the RFLDA can provide help for

the mechanism studies of lncRNAs in diseases in the future.

Table 2 The candidate lncRNAs associated with stomach cancer, lung cancer and colon cancer

(Continued)

Diseases Rank LncRNA Evidence

13 NEAT1 C & D

14 SPRY4-IT1 C & D

15 BCYRN1 C & D

“C” means that the candidate lncRNA is supported by the Lnc2Cancer database. “D” means that the candidate lncRNA is

supported by the experiment-validated data in the LncRNADisease database. “D*” means that the candidate lncRNA is

supported by the predicted data in the LncRNADisease database. “L” means that the candidate lncRNA is supported by

the published literature.
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Methods

Datasets for LDA prediction

The datasets used for constructing the RFLDA model include the experiment-

supported LDAs and MDAs, and the LMI. All these kinds of datasets come from Fu

et al.’s previous study on LDA prediction [31]. Specifically, the 2697 experiment-

supported LDAs are originally collected from the Lnc2Cancer [51], LncRNADisease

[52] and GeneRIF [65] database. In addition, the 13,562 experiment-supported MDAs

originally come from the HMDD (v2.0) [66] database. Moreover, the 1002 LMI origin-

ally come from starBase [67] database. In summary, all these datasets cover 240

lncRNAs, 495 miRNAs and 412 diseases.

Representation of LDA and MDA

The LDAs are represented by an 240 × 412 adjacency matrix LD (Fig. 1a). According to

the 2697 experiment-supported LDAs, the value of the element of the LD, LD(l(i), d(j)),

is set as 1 if lncRNA l(i) has been confirmed to be related to disease d(j), otherwise 0.

Similarly, the MDAs are represented by an 495 × 412 adjacency matrix MD (Fig. 1c).

According to the 13,562 experiment-supported MDAs, the value of the element of the

MD, MD(m(i), d(j)), is set as 1 if miRNA m(i) has been validated to be related to disease

d(j), otherwise 0.

Representation of DSS

Under the supposition that two analogous diseases tend to be related to analogous

lncRNAs, disease similarities are integrated into the RFLDA for LDA prediction. Dis-

ease Ontology (DO) [68] adopted a type of semantic associations (‘IS_A’ relationship)

to represent the association between disease terms. According to ‘IS_A’ relationship

between disease terms, we can use a DAG to represent a disease D. In the DAG(D), the

vertexes represent disease D and all of its ancestral disease terms, and each of the

directed edges represents an ‘IS_A’ relationship linking two diseases. Under the suppos-

ition that the more common disease terms two diseases share, the more similar they

are, the DSS can be calculated according to their DAGs. Here, we calculate disease

semantic similarities by Wang et al.’s method [69]. Specifically, the semantic value of a

disease D, DV(D), is calculated by eq. 5.

DV Dð Þ ¼
X

d∈S Dð Þ
DCD dð Þ ð5Þ

where S(D) represents the node set of DAG(D), DCD(d) represents the contribution de-

gree of a disease d in DAG(D) to disease D’s semantic value and is calculated by eq. 6.

DCD dð Þ ¼ 1 if d ¼ D

DCD dð Þ ¼ max ∆�DCD d
0

� �

jd
0

∈children of d
n o

if d≠D

(

ð6Þ

Where, ∆ is the attenuation coefficient of semantic contribution and is equal to 0.5

by default. As can be seen from eq. 6, the contribution degree of disease D to itself is

equal to 1, while the contribution degree of other diseases to disease D is reduced as

the length between them increases. Then, the DSS between d(i) and d(j), DS(d(i), d(j)),

is calculated by eq. 7.
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DS d ið Þ; d jð Þð Þ ¼

P

d∈S d ið Þð Þ∩S d jð Þð Þ DCd ið Þ dð Þ þ DCd jð Þ dð Þ
� �

DV d ið Þð Þ þ DV d jð Þð Þ
ð7Þ

In this work, we calculate disease semantic similarities between 412 diseases using

DincRNA online toolkit [70], and represent them by a 412 × 412 similarity matrix DD

(Fig. 1b), where the value of the element of the DD, DD(d(i), d(j)), represents the DSS

of d(i) and d(j).

Representation of LFS

Based on the supposition that two lncRNAs associated with analogous diseases may

have analogous functions, the LFS can be computed according to diseases associated

with them. Here, we calculate lncRNA functional similarities by Chen et al.’s method

[36]. Here, we assume that lncRNA l(a) is related to a group of diseases DG(a) = {

d(a1), d(a2),…, d(am)}, and lncRNA l(b) is related to a group of diseases DG(b) = {

d(b1), d(b2),…, d(bn)}, then the LFS between l(a) and l(b), denoted as LS(l(a), l(b)), can

be obtained by calculating the similarity between DG(a) and DG(b) by eq. 8.

LS l að Þ; l bð Þð Þ ¼

Pm
i¼1

max
1≤ j≤n

DSðd aið Þ; d bjð ÞÞð Þ þ
Pn

j¼1

max
1≤ i≤m

DSðd bjð Þ; d aið ÞÞð Þ

mþ n

ð8Þ

Where DS(d(ai), d(bj)) is the semantic similarity between the disease d(ai) in DG(a)

and the disease d(bj) in DG(b); m and n represent disease numbers of the DG(a) and

the DG(b), respectively. In this work, the LFS is represented by a 240 × 240 similarity

matrix LL (Fig. 1a), where the value of the element of the LL, LL(l(i), l(j)), represents

the LFS of l(i) and l(j).

Representation of LMI

Cumulative evidence indicates that the lncRNAs can interact with the corresponding

miRNAs and perform biological functions together with these miRNAs [71]. Therefore,

the LMI are integrated into the RFLDA model for lncRNA-disease association predic-

tion, which is represented by an 240 × 795 adjacency matrix LM (Fig. 1c). According to

1002 LMI extracted from starBase database, the value of the element of the LM,

LM(l(i),m(j)), is set as 1 if there is an interactions between miRNA m(j) and lncRNA

l(i), otherwise 0.

Construction of the RFLDA model

The RFLDA model is constructed by four steps (see Fig. 3): (1) sample representation;

(2) training sample set construction; (3) feature selection; (4) random forest construc-

tion and LDA prediction. Next, we introduce the process of constructing RFLDA in

detail.

Sample representation

In our RFLDA model, we take an lncRNA-disease pair as a sample. By integrating the

functional similarity of lncRNAs (Fig. 2a), the experiment-supported associations be-

tween lncRNAs and diseases (Fig. 2a), the semantic similarity of diseases (Fig. 2b), the
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interactions between lncRNAs and miRNAs (Fig. 2c), and the experiment-supported as-

sociations between miRNAs and diseases (Fig. 2c), we use an 1147-dimensional feature

vector to represent an lncRNA and a disease respectively. Therefore, a sample can be

represented by a 2294-dimensional feature vector (Fig. 2d), denoted as F, which can be

represented by eq. 9 in detail.

F ¼ f 1; f 2;⋯; f 240; f 241;⋯; f 652; f 653;⋯; f 1147; f 1148;⋯; f 1387; f 1388;⋯; f 1799; f 1800;⋯; f 2294ð Þ

ð9Þ

Where (f1, f2,⋯, f240) represents the 240 lncRNA-lncRNA similarities, (f241,⋯, f652) rep-

resents the 412 lncRNA-disease associations, (f653,⋯, f1147) represents the 495 lncRNA-

miRNA interactions, (f1148,⋯, f1387) represents the 240 disease-lncRNA associations,

(f1388,⋯, f1799) represents the 412 disease-disease similarities, and (f1800,⋯, f2294) repre-

sents the 495 disease-miRNA associations. Finally, we normalized fi to fi
′ by eq. 10.

f i
0

¼
f i− f min

f max− f min

ð10Þ

Where fmax and fmin were the maximum and the minimum of fi (i = 1, 2… 2294) in all

samples.

Training sample set construction

First, the 2697 experiment-supported LDAs were used as positive samples, and all

lncRNA-disease pairs not validated by experiments were taken as unlabelled samples.

In addition, the 2697 randomly selected unlabelled samples were taken as negative sam-

ples. Finally, all negative samples and positive samples were combined as training

samples.

Fig. 3 Flowchart of constructing the RFLDA model
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Feature selection based on variable importance score of random forest

Random forest (RF) [72] is an integrated machine learning algorithm proposed by Brei-

man in 2001, which combines Bagging technology and random subspace method to

realize randomness and diversity between base classifiers. First, RF randomly selects

multiple samples from the original sample set with replacement using the Bootstrap

technology. Then, it constructs a decision tree on each Bootstrap sample set. In the

process of training the decision tree, it randomly selects a feature from a feature set for

node splitting at each node by random subspace method. Finally, it combines multiple

decision trees and determines the classification or prediction results by majority vote.

Compared with other machine learning algorithms, RF has many advantages: (1) it can

process a variety of data types, including qualitative data or quantitative data; (2) it pro-

vides a measure of the variable importance, which provides an easy way to understand

the relative importance of features for classification or prediction model; (3) it has high

classification accuracy; (4) it has good robustness for noise data and data with missing

values; (5) it has ability to analyse complex interactions between features; (6) it has a

fast learning speed with the increase of the number of input variables [73]. In recent

years, RF has been widely used in a variety of classification and prediction problems,

such as DNA binding protein recognition [74], genetic polymorphism recognition [75],

prediction of medium and long-term chaotic regions of protein sequences [76], differ-

ential expression analysis of microarray data [77], miRNA-disease association predic-

tion [78], etc.

In this work, because each sample has 2294 features, it contains a lot of noisy and re-

dundant information. To improve the prediction performance while reduce the compu-

tational cost, we performed feature selection before training LDA prediction model.

First, we removed 312 features whose values were 0 in all samples. As a result, 1952

features were preserved. Then, we implemented feature selection according to the vari-

able importance score of random forest which is calculated by the average decrement

of the classification accuracy of random forest model before and after small perturb-

ation of the variable in OOB (outside of bag) [77]. Because the variable importance

score of random forest takes into account not only the impact of each individual vari-

able on the response variable but also the interaction of multiple variables on the re-

sponse variable, it is often used to rank features to select more important features [78].

In the RFLDA, we firstly trained a random forest model on the original training sample

set consisting of 1952 features and computed variable importance scores of all features;

then, we ranked 1952 features in descending order according to their scores; finally, we

selected the top 300 features with the highest variable importance scores to represent

the training samples. To get reliable results, we calculated the variable importance

scores for all features 10 times, and selected important features according to the aver-

age variable importance score of each feature.

Random forest construction and LDA prediction

In the last step of the RFLDA, we firstly constructed a random forest regression model

using the training sample set consisting of the top 300 most important features by run-

ning randomForest package on R platform. In the training sample set, each positive

sample was labelled as 1 while each negative sample was labelled as 0. Then, we used
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the random forest prediction model to score unconfirmed lncRNA-disease pairs. The

larger the score of an lncRNA-disease pair, the more likely the lncRNA and the disease

are associated. It should be noted that two main parameters in random forest algo-

rithm, the mtry and the ntree, were set to the number of features / 3 and 500 respect-

ively according to the recommended values.
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