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Résumé. — Nous introduisons et étudions un modéle simple pour décrire les phénoménes de rup-
ture. Ce modéle est défini par un réseau aléatoire d’isolants et de fusibles. Les propriétés de conduc-
tivité électrique sont analysées : en augmentant la tension électrique appliquée, une séquence de
fusibles va sauter et se transformer d’une maniére irréversible en isolants. Le processus se termine
dés qu’il n’y a plus de chemin conducteur qui traverse le réseau. Des quantités comme la conductivité
totale du réseau et la tension appliquée de I’extérieur sont calculées pendant la rupture. Deux nou-
veaux exposants critiques qui décrivent ces quantités prés du seuil de percolation ont été déterminés.

Abstract. — We introduce and study a simple idealized model to describe breaking processes by
analysing the current-carrying properties of a random network consisting of insulators and fuses.
By increasing the value of the external voltage applied across the network, a sequence of fuses will
« burn out » and change irreversible into insultating bonds. This process terminates when a conduct-
ing path no longer exists in the network. We monitor several basic quantities during this breaking
process, such as the conductivity of the network and the value of the voltage needed to break the
hottest fuse. Two new exponents describing the behaviour of these quantities near the percolation
threshold are reported.

Breaking phenomena of disordered structures such as the tearing of unwoven textiles, the
fracture of brittle materials, or the propagation of cracks in solids are receiving increasing atten-
tion due to their imminent technological relevance and due to the fundamental theoretical
questions involved [1-7]. The irreversibility and non-locality of breaking processes produces
rather complicated spatial and temporal correlations, giving rise to a potentially much richer
phenomenology than the extensively studied steady-state properties of disordered media, such
as the electrical conductivity or superconductivity [8-11], or the linear elasticity of random net-
works [12-14]. There is a vast literature on the general problem of mechanical failure and crack
propagation in solids [1, 6, 7]. Unfortunately much of the existing work involves very complicat-
ed models and/or calculations. Our motivation is to introduce a relatively simple and tractable
model which captures at least some of the basic features of breaking processes. To this end, we
consider the electrical analogue of breaking through the introduction of a random fuse network.
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The « burning out » of individual fuses as the external voltage is increased is analogous to the
physical breaking of bonds as the mechanical stress across an elastic network is increased. One
of the motivations for dealing with such an electrical network is that it is the scalar analogue
of an elasticity problem, and the former should therefore be simpler to study. This is similar to
the situation in the linear response regime, where the scalar conductivity problem is much simpler
to treat than the vector elasticity problem.

In our model, we consider a square lattice of size L x L with bonds all of length unity and
free boundary conditions. On each bond of this lattice, we place a fuse with probability p and an
insulator with probability 1 — p. We define a fuse as a device with a constant resistance when
the applied voltage across it is less than a critical value V, (Fig. 1). For convenience we choose
the value of the fuse resistance and the value of ¥, to be unity. If the applied voltage exceeds V.,
the fuse burns out or « breaks » irreversibly, thus changing into an insulator. We are interested
in studying how a random network consisting of these fuses will break apart, i.e., undergo an
insulating transition, as the external voltage across the system is increased.

vt
Fig. 1. — The current-voltage response of the fuse element used in our model network.

To study this breaking process, we first identify the conducting backbone of the network,
defined as that portion of the system which conducts current, by the use of the recently introduced
cluster « burning » algorithm [15]. On this backbone, we then calculate the voltages at each node
of the network by using a standard Gauss-Seidel relaxation procedure. In this set of voltages,
there will exist a « hottest » bond across which the potential drop has the largest value. We now
adjust the value of the external voltage so that the voltage drop across the hottest bond is just
sufficient to cause its breaking. In order to obtain an intrinsic quantity, we normalize this critical
voltage by the length of the system. We term the value of the external voltage obtained by this
procedure as V,,, the « initial » value of the voltage required to initiate the breaking process.
In performing subsequent breakings, we first assume that there is sufficient time for the modified
network, in which the hottest bond has been removed, to reach a new equilibrium voltage state
before further fuse burning takes place. In the framework of our model, we therefore recalculate
the new equilibrium values of the node voltages when the hottest bond has been deleted. Now
a new « hottest » bond may be identified, and then broken. This process is repeated until the
network is broken into two distinct pieces (Fig. 2).

The breaking process that we have defined is somewhat different than what might be realized
in a simple-minded experimental procedure. A typical procedure would be to increase the value
of the external voltage, breaking bonds one at a time until the entire network breaks apart. For
a relatively homogeneous network with p =~ 1, the breaking process would be self-sustaining
as soon as the first bond is broken due to the propagation of a well-defined crack. On the other
hand, for a network with p ~ p_, the percolation threshold, it may be necessary to increase the
voltage several times after the first bond breaking, as there may exist very weak strands which
break initially, but other stronger strands may require a still higher value of the voltage to break.

For the homogeneous network, the propagation of a crack causes the system to weaken mono-
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bond are, respectively : (a) 0.0985, (b) 0.102, (c) 0.0964, (d) 0.118, (¢) 0.0981, and (f) 0.113. Open boundary

hottest bond in the network by the arrow. The values of the external voltage needed to break the hottest
conditions are used in horizontal direction and fixed boundary conditions in vertical direction.

Fig. 2. — Illustration of a typical breaking process for a 20 x 20 square lattice network at p = 0.7 (a-f).
Only the conducting backbone of the full random network is shown. For each network, we indicate the

tonically. Due to this weakening, the value of the external voltage could be decreased to just above
the breaking voltage of the most highly-stressed intact bond without interrupting the overall
breaking process. Our numerical procedure of breaking only one bond (the hottest) at a time

Just before the network breaks, we reach a rather singular situation in which the conductivity
of the network is limited by a single bond along which the entire current of the network must

corresponds to adjusting the external voltage upward or possibly downward after each fuse
point. For a homogeneous network, this numerical approach should give results similar to that

obtained in the naive experimental procedure that we have outlined above. However, near the

burning, so that the voltage drop across the hottest bond in the network just exceeds its breaking
percolation threshold, there may be some differences in the results obtained by the two methods.
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pass through. We term the value of the external voltage (per unit length of the system) required
to break this final bond as V. The critical behaviour of both V', and V;, as a function of p — p,
appears to be rather interesting, as shown in figure 3. At p = 1, V{;, equals unity as the potential
drop across each bond of the network is the same. Then as p decreases from unity, V,, decreases
as well, since the network is becoming « weaker » in a homogeneous way. However, for p ~ 0.7,
a further decrease in p leads to a subsequent increase in V. The origin of this increase stems from
the fact that near p,, the conducting paths become increasingly longer and more tortuous. In
order to achieve the critical potential drop of unity across one of the bonds in such a path, it will be
necessary to have a relatively large value of the external voltage.
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Fig. 3. — Double logarithmic plot of the critical value of the external voltage (per unit system length)
defined as the voltage required to burn the next fuse, versus p — p, for an 80 x 80 square lattice network.
Shown is the voltage, V,,, before any fuse is burned (@), and V,,, the voltage just before the last fuse is
burned (O). Statistics of 25 for p > 0.55 and of 50 for p < 0.55.

On the other hand, V;, exhibits a monotonic dependence on p. For p close to unity, it is clear
that ¥V, will be considerably smaller than V,,. Numerically we find that for a network atp = 1,
the ratio V,,/V,, appears to approach a finite value as the linear dimension of the network
becomes large. As p — p,, the number of bonds that need to be cut in order to disconnect the
network approaches unity, so that V,, and V;, should coincide, and this is what we observe
from our data. The behaviour of Vi, as p — p, is consistent with a power law divergence,
Ve =~ (p — p,) % with z = 048 + 0.08, a new exponent which seems to be unrelated to any
of the known exponents of the percolation problem.

In addition to studying the value of the voltage required to cause breaking, we have found that
two additional quantities appear to exhibit simple power-law dependences on p — p,. The first
quantity is the average number of bonds per unit volume, { N ), which must be cut in order
to disconnect the network. Appealing to the nodes and links picture of the percolating network
[16-17], we expect that the network will become disconnected when an entire row of links is
broken. Therefore we expect that { N ) should vary inversely with the correlation length, &.
In our simulations of an 80 x 80 network (Fig. 4), the data suggest that { N ) vanishes near p,
as (p — p.)% with x = 1.40 + 0.15, in reasonable agreement with the hypothesis that ( N )
should be proportional to the inverse correlation length.

A final quantity that we monitor is the conductivity of the network during the breaking process.
The value of the network conductivity before any breaking occurs, coincides with the conductivity
of the classical random resistor network problem. We define the value of the conductivity of this
initial system as G,,. The value of G, should vanish near p, as (p — p.), with t = 1.28 [8-11].
Our dataona 80 x 80 lattice gives a value for t of 1.18 + 0.15, thereby yielding an estimate of the
accuracy of our calculations. Just before the network completely breaks, we also measure the
conductivity of the resulting « final » network, and we define the measured value of the conduc-
tivity to be Gg,,. This quantity appears to vanish near p, as (p — p,)°, with v = 0.53 + 0.10.

in®
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Fig. 4. — Double logarithmic plot of the average number of burned fuses per unit volume, ( N ), as a
function of p — p,, for the 80 x 80 network. The error bars indicate the statistical uncertainties. Statistics
as in figure 3.

There appears to be no simple connection between this new exponent and the other known expo-
nents of percolation (Fig. 5).

It is also interesting to note that G, possesses a peculiar scaling property. At p,, only one bond
must be broken in order to render the network disconnected [18], so that G,, and G, must
coincide. This coincidence will persist for values of p greater than p, as long as £ is larger than the
linear dimension, L, of the system under study. However, once ¢ becomes smaller than L, many
bond breakings are required to disconnect the network and G;;, will now be smaller than G,,.
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Fig. 5. — Double logarithmic plot of the conductivity of the network as a function of P — p forthe 80 x 80
network. Shown is the initial conductivity, G,,, before any fuse is burned (@), and the final conductivity,
Gi,.» just before last fuse is burned (O). Statistics as in figure 3.
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Thus for a finite size system, G, will vary as (p — p.)” until £ becomes larger than L, and sub-
sequently, G,, and G,, should be equal. Finally, it is worth noting that near p, very few bonds
need to burn in order to break the network. Therefore, geometrical exponents such as the fractal
dimension of the initial and final network will be the same. On the other hand, the dynamical
exponents such as the conductivity exponent or the fraction dimension are quite different [19].
This demonstrates the predominant role that the hottest bonds play in determining dynamic
exponents.

Various properties of the interface produced by the breaking process, which separates the
two disconnected portions of the network, also seem to be worth investigating. Unfortunately,
several of the simpler properties that can be defined, such as the fractal dimension of the interface
and the distance between successive bond cuts, exhibit very strong finite size dependence. In
order to obtain reliable data on these quantities, we will need to consider system sizes much
larger than what is currently possible within the framework of the present model.

Another property that might be of interest is the number of horizontal fuses burned divided
by the number of vertical fuses burned. For p = 1 one expects this ratio to be zero and for p — p,
to be one. We note at this point that the nodes and links picture [16-17] cannot explain the con-
ductivity exponent. Therefore we do not expect an effective medium theory to give very accurate
results either.

In summary, we have introduced a new model that describes the breaking process of a random
electrical network of insulators and fuses. This model is tractable numerically, and yields a
number of interesting features that seem to be characteristic of the far from equilibrium properties
that are typical of a breaking process. We have found that several characteristic quantities exhibit
power-law dependences on (p — p_.) with new exponents which are not apparently related to the
known exponents of percolation. Further studies of random fuse and related models seem worth-
while, and work along these lines is currently in progress. It would also be very interesting to
find experimental realizations for simple random fuse networks.
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