
Eur. Phys. J. Special Topics
© EDP Sciences, Springer-Verlag 2014
DOI: 10.1140/epjst/e2014-02279-6

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

A random growth model for power grids
and other spatially embedded infrastructure
networks

Paul Schultz1,2,a, Jobst Heitzig1, and Jürgen Kurths1,2,3

1 Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany
2 Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany
3 Institute for Complex Systems and Mathematical Biology, University of Aberdeen,
AB24 3UE Aberdeen, UK

Received 17 April 2014 / Received in final form 7 June 2014
Published online 26 September 2014

Abstract. We propose a model to create synthetic networks that may
also serve as a narrative of a certain kind of infrastructure network evo-
lution. It consists of an initialization phase with the network extending
tree-like for minimum cost and a growth phase with an attachment rule
giving a trade-off between cost-optimization and redundancy. Further-
more, we implement the feature of some lines being split during the
grid’s evolution. We show that the resulting degree distribution has an
exponential tail and may show a maximum at degree two, suitable to
observations of real-world power grid networks. In particular, the mean
degree and the slope of the exponential decay can be controlled in par-
tial independence. To verify to which extent the degree distribution is
described by our analytic form, we conduct statistical tests, showing
that the hypothesis of an exponential tail is well-accepted for our model
data.

1 Introduction

1.1 Motivation

Currently, the German high-voltage transmission grid alone has an astonishing overall
line length of about 150 000 km [1]. While this is a well-known fact, the exact topology
of the power grid network remains generally unavailable or confidential, making it
difficult to find suitable data sources for power grid research. Nevertheless, this is a
fruitful field of research with increasing importance; confronting challenges such as
decentralized generation (in the low-voltage grid), an increased frequency and severity
of extreme events due to climate change and the construction of long-ranging high-
voltage interconnections to cope with power supply and demand being spatially more
separated. Many of the challenges are of a topological nature, e.g. related to unstable
structures and their improvement [17] or to “paradoxical” overloads [32]. To our
knowledge, there are only a few real-world power grid data sets available for research,
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e.g., the publicly available high-voltage grid from National Grid UK1 seems to be
the only accessible data set of a contemporary power grid that is geo-referenced, i.e.,
comes with data on geographic node locations. Further commonly used data sets are
the IEEE test cases with networks ranging from about ten to 300 nodes2 or the power
grid3 of the Western United States [30]. Many research questions however require to a
certain extend numerical simulations and thus there is a need for easy-to-implement
models producing ensembles of synthetic though “realistic” power grid topologies,
tunable to observed statistical properties.
As power grids display some topological similarities to some other infrastructure

networks, in particular an approximately exponentially decaying degree distribution,
our aim here is to construct a random graph model that is well-suited for the power
grid use-case but is also tunable to other use-cases with exponential decay, e.g., rail-
road [29] or road [27] networks, or certain information infrastructure networks [10].
Note that it is often difficult to distinguish from data whether a degree distribution
of a network with only several hundreds of nodes follows a power law (as it is often
claimed by presenting a double-logarithmic plot that seems to be more or less lin-
ear) or some other heavy-tailed distribution, e.g., an exponential; hence random grid
models with exponential decay may have an even broader use than it seems at first
glance.
Following the above demands, we propose here a model to create synthetic net-

works, resembling key features of real-world power grids concerning the degree dis-
tribution and other common statistical properties from complex networks analysis as
well.
We will show that our proposed model offers features to produce a wide range of

networks with an exponentially decaying degree distribution that arises endogenously
from some simple and plausible construction and growth mechanisms involving linking
criteria from the real world such as the minimization of distances, the maximization
of redundancy, or the splitting of links.

1.2 Topological properties of real-world power grids

In the following we intend to summarize topological features of power grid networks.
We assume that a power grid is well-described by a two-dimensional, spatially em-
bedded, connected network. To fit into the most common complex networks theory
framework, we treat the network as undirected, unweighted and simple, meaning no
two lines connecting the same endpoints (no multiple edges). In reality however, mul-
tiple edges indeed occur regularly as multiple circuits hosted in parallel are on the
same towers (see Sect. 4). Note that despite their two-dimensional spatial embedding,
power grids usually have crossing lines (that appear to “intersect” in two-dimensional
plots), so power grids are not “planar” in the graph-theoretical sense.
Data sets studied in the literature represent networks with a size N ranging from

dozens to thousands of nodes, and they exhibit an extreme sparsity with a mean
degree k̄ ≈ 2.8 [24] that is independent of N (see Fig. 1).
Another remarkable feature of real-world power grids is that their degree distri-

bution, i.e., the statistical distribution pk of the number of neighbors k of a node,
appears to have a local maximum at very small degrees (see the slight “bump” at
k = 2, 3 in Fig. 2a) [24,28] and an exponentially decaying tail [3,24,26] of the form

1 http://www2.nationalgrid.com/uk/services/land-and-development/planning-

authority/ (accessed June 17, 2014).
2 http://www.ee.washington.edu/research/pstca/ (accessed June 17, 2014).
3 http://www-personal.umich.edu/~mejn/netdata/(accessed June 17, 2014).
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Fig. 1. Semi-logarithmic plot of the mean degree observed for various power grids in different
areas [24] versus the corresponding system size (number of nodes in the network). The dashed
line indicates the mean value of k = 2.8.

(a) (b)

Fig. 2. (a) Probability mass function (dotted) and decumulative distribution (solid) of
degrees from the Western US data set [30] (b) model with N0, p, q, r, s = 100, 0.01, 0.32, 1, 0
(dashed line) and N0, p, q, r, s = 50, 0.03, 0.44, 0.3, 0.28 (solid line) and Western US data
(dotted).

pk ∼ e−k/γ . The decay parameter γ is typically estimated to be between 1.5 and 2
[24,26]. However, it often remains unclear in the literature how the hypothesis of an
exponential decay was tested against possible alternative heavy-tailed distributions.

As the observed kind of degree distributions could not be explained by tree-like
networks – they have exactly N −1 edges and thus a mean degree of 2(N −1)/N ∼ 2
and no large individual degrees – this hints at the existence of heterogeneously dis-
tributed redundancy. The so-called “N − 1 criterion” applied in power grid planning
ensures that all nodes are connected to the grid via multiple circuits, which may how-
ever be hosted on the same towers. Thus a network representation of the power grid
that includes multiple lines would be at least twice connected in the graph-theoretical
sense of topological connectedness, meaning that the removal of a single line can
never split the grid into two disconnected parts. Still, most network representations
of power grids represent multiple parallel lines by only a single network link, hence
they are typically only simply connected, meaning that there is always a link (which
may represent multiple parallel circuits hosted on the same towers) whose removal
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would cause a separation of the network into two disconnected parts (though one of
the parts would usually be very small); typical examples of such non-redundant links
are tree-like appendices, and indeed there is evidence that such structures may cause
certain types of instability (“dead ends” and “dead trees”, [18]). Despite this formally
low level of topological connectedness, most links of a power grid are typically redun-
dant. E.g., in the example of Fig. 2a, the network has 1.3 times as many edges as a
tree of same size would have.
Another metric for redundancy is algebraic connectivity λ2 (also called the Fiedler

eigenvalue), which is the second-smallest eigenvalue of the network’s Laplacian matrix,
with the smallest eigenvalue being zero. It is also related to the minimum number
of links R that would disconnect the network in two parts and lies between zero
(unconnected network) and the value of the topological connectivity (which is one
for power grids, see above). For a fixed network size N , the algebraic connectivity
increases linearly with R, λ2 ∝ R, meaning that additional redundancy relates to
higher values of λ2. On the contrary, for fixed R, the algebraic connectivity decreases
with N as λ2 ∝ N−1. This scaling behavior is well visible for the data points in
Fig. 5d, see also the discussion in Sect. 3.3.
Finally, also the network’s clustering coefficient, i.e., the probability that two

neighbors of a node are also directly linked, can be seen as a metric for redundancy,
though a very local one. Empirically there seems to be no dependence on the size
of the network (see Table 2), what is also the case for realizations of our model (see
discussion below).
Much of the redundancy in a power grid is indeed relatively local, which can also

be seen from the fact that the network average shortest path length (aspl), i.e., the
average number of links required to pass from any node to another, grows with N
at a rate somewhere between O( 5

√
N) and O(

√
N) (the latter being the aspl of a

two-dimensional regular grid, see Fig. 5c).
Power grids are sometimes thought to possess the small-world property, i.e., having

a low average shortest path length but a high clustering coefficient compared to a
random graph of same size [24]. Still, the predominant model for small-world networks,
the Watts-Strogatz (WS) model [30] has other statistical properties that are very
different from power grids and can thus not serve as a model for power grids. In
particular, WS small-world networks have a mean degree that is well above logN
which is however not at all the case for power-grids (see above).
Regarding the growth of power grids, there is evidence for two phases of power grid

construction, an initialization and an accelerated growth phase, as it was found for the
development of the French high-voltage grid [26]. There the network develops initially
coarsely and tree-like to quickly cover the spatial extents with minimal costs (line
length). This is followed by a densification of the network (the appearance of many
short-ranged links) and creation of additional redundancy. It can also be observed
that lines may split in two by addition of a new node.

1.3 Existing network models

The network models that are probably most popular in the literature are random
graphs based on the algorithms of Erdős-Rényi [11] or Gilbert [13], the small-world
model from Watts and Strogatz [30], and finally the scale-free networks based on
Barabási and Albert’s preferential attachment [2].
Random graphs are typically not sparse, have an aspl well below that of power

grids, and show a non-heavy-tailed, binomial degree distribution.
The simplest approach to create spatially embedded networks are so-called ran-

dom geometric networks [14] where node locations are drawn randomly from the unit
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square and nodes i, j are linked iff their distance dij is below a threshold ε. However,
such graphs are not necessarily connected, their mean degree grows as ≈ 4Nε2 instead
of being constant, their degree distribution is Poissonian, thus decaying faster than
exponentially, and both their clustering coefficient and aspl are larger than those of

power grids (≈ (3/4)2 ≈ 0.57 and ≈
√

9N/4k̄, respectively). A model with similar
properties is the Waxman model [31], where two nodes are linked with a probability
proportional to exp−dij/ε.
Scale-free networks on the other hand have much more heavy-tailed, power-law

degree distributions, and their mean degree is not continuously adjustable. Barabási
and Albert show however that, in the case of equal (non-preferential) connection
probabilities, their growth model produces exponentially decaying degree distribu-
tions. This is reinforced in [10] who show that the corresponding master equation has
the stationary solution pk = 2

−k. A similar result is found in [8], where the authors
present a growth model that is again not spatially embedded, but shows an expo-
nentially decaying degree distribution. This indicates that a model for power grid
topologies can be designed as a growth model that results in an observably exponen-
tially decaying degree distribution.
The Watts-Strogatz small-world algorithm [30] with its rewiring parameter p is

often used in studies that focus on the transition from regular to random topologies,
but it is not suited to generate power grid topologies. Its mean degree is not contin-
uously adjustable, it has a too small aspl (for large p) or is too regular (for small p)
and again is not a growth model and has no spatial embedding.
Any desired degree distribution, including an exponentially decaying one, can be

generated using the so-called configuration model [19,21] in which node degrees are
prescribed endogenously for all nodes and the links are generated respecting these
degrees but in an otherwise random manner. Still, this does not ensure the correct
behavior of other statistical network measures and the construction mechanism does
not seem a plausible assumption for the case of power grids where the exponential
decay is very likely not prescribed by design but rather emerges endogenously.
The “RT-nested-Smallworld”-model [28] is to our knowledge the first attempt to

design a model that especially matches the statistical properties of power grid topolo-
gies, by combining and modifying standard components of existing network models.
Their algorithm combines a modified small-world model for generating local struc-
tures which are then joined in a relatively regular mesh-like way. Despite its matching
several statistical properties of real-world networks, it hence seems to produce net-
works that are a little too regular, although the authors unfortunately provide no
plots of these networks and some of the actual construction details remain somewhat
unclear. In addition, their model is not spatially embedded, hence their construc-
tion of links is in no way based on the locations of nodes, despite the fact that
node locations are certainly an important criterion for actual power transmission line
construction.
Although it has not yet been used in random network models to our knowledge,

we finally have to mention the concept of a minimum spanning tree (MST) [4,5], An
MST connects a given set of nodes in a tree-like manner with those N − 1 many
lines that minimize the sum of some edge weights (i.e. the spatial distances between
the nodes); there are efficient algorithms to solve this minimization problem [16,25].
Interestingly, although [4,5] invented MSTs to design the Moravian power grid, they
apparently have not been considered in the academic power grid literature later on.
A model based only on MSTs, e.g., constructing the MST of a random set of loca-
tions in the plane, would of course be much too sparse (k̄ = 2(N − 1)/N ≈ 2) since
trees have no redundancy, would have a flat degree distribution (no degrees above
five), would produce no line crossings, and would not consider network growth. Still,
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because of the obvious intuitive appeal of the cost-minimization criterion, the model
we present below will use MSTs as an important building block.

1.4 Goal and approach

To support theoretical and numerical research on the influence of network topology,
on the efficiency and stability of power grids and other spatially embedded infrastruc-
ture networks, we aim at constructing a random network growth model that has the
following main features. It. . .

i) has any number of spatially embedded nodes and links.
ii) supports both random and exogeneously given node placement.
ii) has an initialization phase and a growth phase.
iv) is connected but sparse with a tunable mean degree.
v) has a tunable trade-off between cost minimization and redundancy.
vi) is easy to implement and of little computational complexity to support Monte-
Carlo simulations.

vii) is based on an idealized but plausible construction mechanism.
vii) has an exponentially decaying degree distribution that is not imposed exoge-
neously but emerges endogenously from the growth process, with a tunable decay
rate.

Our approach mainly focuses on minimizing costs via a minimal spanning tree in the
initialization phase and via links to nearest existing nodes in the growth phase. The
initialization phase results in an initially coarse, tree-like grid to quickly construct
a far-reaching supply network with minimal costs. In parallel we raise redundancy
via additional links that optimize a simple heuristic function estimating the trade-off
between cost and redundancy in the growth phase as well.

2 The model

2.1 Parameters and definitions

Redundancy/cost optimization. Our model uses the following heuristic target
function for redundancy/cost optimization when adding individual links:

f(i, j, G) =
(dG(i, j) + 1)

r

dspatial(xi, xj)
(1)

where dG(i, j) is the length of a shortest path between nodes i, j in network G (i.e.,
their network distance measured in hops).
The rationale for using this heuristic target function f instead of a target function

directly based on a more complex redundancy metric such as λ2 is the following. We
are modeling very sparse connected networks, which are hence almost tree-like and
contain many tree-shaped appendices. Call a link in a network redundant iff the
network remains connected when that link is removed. If a link i–j is added to a
tree G, then exactly dG(i, j) + 1 many links of the resulting network are redundant
(since they form a circle). If i–j is added to an almost tree-like G, at least dG(i, j)+1
many (and not too many more) links become redundant. The notion of redundant
link fits better with security rules actually used by grid operators than more complex
metrics from complex network theory such as λ2 do. Finally, the exponent r lets us
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tune the relative importance given to redundancy vs. costs, from r = 0 (redundancy
is disregarded) to r →∞ (costs are disregarded).

Parameters. Our model has the following input parameters:

– an initial number of nodes N0 � 1,
– a probability p ∈ [0, 1] for constructing an additional redundancy line attached at
each new node,

– a probability q ∈ [0, 1] for constructing a further redundancy line between existing
nodes in each growth step,

– an exponent r � 0 for the cost-vs-redundancy trade-off,
– a probability s ∈ [0, 1] for splitting an existing line in each growth step,
– either a spatial probability distribution ̺ (e.g. given by a probability density φ(x)
such that d̺(x) = φ(x) dx) for the random placement of nodes (e.g. a uniform
distribution in some two-dimensional region or a population density), or a sequence
of exogeneously given node locations x1, x2, . . . ,

– a spatial distance function dspatial(x,y) representing the costs of building a line
from x to y (e.g. Euclidean or geodesic distance, or some measure of local per-unit
cost integrated along a cheapest curve from x to y, etc.).

Mean degree and decay of the degree distribution are mainly determined by p, q and
s (see 3.1), while the trade-off between total line length and algebraic connectivity is
mainly determined by r (see 3.3).

Next, we describe the network construction algorithm, which consists of
two phases termed “Initialization” and “Growth”.

2.2 Initialization

Given N0, p, q, r, s, and ̺ or x1 . . . xN , we construct the network G as follows:

I1. If the locations x1 . . . xN are not given, draw them independently at random
from ̺.

I2. Initialize G to be a minimum spanning tree (MST) for x1 . . . xN w.r.t. the distance
function dspatial(x, y) (using Kruskal’s simple or Prim’s more efficient algorithm
[16,25]).

I3. Put m = ⌊N0(1 − s)(p + q)⌋. For each a = 1 . . .m, add a link to G as follows:
Find that yet unlinked pair of distinct nodes i, j ∈ {1, . . . , N0} for which f(i, j, G)
(Eq. 1) is maximal, and add the link i–j to G.

Note that the resulting G has N0− 1+m ≈ N0(1+ (1− s)(p+ q)) many links (which
is below the maximum possible number of N0(N0− 1)/2 whenever N0 � 7, otherwise
one has to adjust m to min{⌊N0(1− s)(p+ q)⌋, N0(N0 − 1)/2− (N0 − 1)}).

2.3 Growth

Given p, q, r, a network G of size N , and ̺ or a location xN+1, we add a new node
i = N + 1 to G as follows. With probability 1 − s, a node is added at a random
position, is linked to its closest neighbor and maybe to a second node, and maybe an
additional link is made between existing nodes (steps G1–G4 below); otherwise (i.e.,
with probability s), a random link is split in two, with a new node added halfway
(step G5 below). More precisely:

G0. With probabilities 1− s and s, perform either steps G1–G4 or step G5, respec-
tively.
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G1. If xi is not given, draw it at random from ̺.
G2. Find that node j ∈ {1, . . . , N} for which dspatial(xi, xj) is minimal and add the

link i–j to G.
G3. With probability p, find that node ℓ ∈ {1, . . . , N} \ {j} for which f(i, ℓ,G) is

maximal, and add the link i–ℓ to G.
G4. With probability q, draw a node i′ ∈ {1, . . . , N} uniformly at random, find that

node ℓ′ ∈ {1, . . . , N} which is not yet linked to i′ and for which f(i′, ℓ′, G) is
maximal, and add the link i′–ℓ′ to G.

G5. Select an existing link a–b uniformly at random, let xi = (xa + xb)/2, remove
the link a–b, and add two links i–a and i–b.

3 Results

In the following section we present analytic properties, that can be derived from the
above explained algorithm. Moreover, we apply the model to illustrative examples
and empirically derive further properties from a Monte-Carlo analysis.

3.1 Analytic properties

Using the above algorithm, we let grow networks from an initial number N0 of nodes
up to some number N � N0 of nodes and analyse their statistical properties at that
time point.

3.1.1 Complexity

The time complexity of the initialization is that of the algorithm used for finding M
(which is O(N20 logN0) for Kruskal’s algorithm [16] and O(N

2
0 ) for Prim’s algorithm

[25]) plus O(N20m) in step I3, which makes a polynomial complexity of O(N
3
0 ) in

total.
If instead of the simple successive one-link-at-a-time redundancy/cost optimiza-

tion in step I3, one would seek the set ofm additional lines that optimizes some overall
redundancy/cost trade-off by an exhaustive search, this would likely have superex-

ponential complexity of O(
(

N0
m

)

) = O((N0/2)
N0), and it is unclear whether a more

efficient algorithm for this global optimization exists and is simple enough to serve as
a plausible ingredient.
If instead of the heuristic function f some target function f ′ based on the resulting

λ2 would be used, the complexity of calculating a single value f
′(i, j, G) would be at

least that of calculating the eigenvalue λ2 of an N0 × N0 matrix (at least O(N20 ),
using for instance QR decomposition [15]), which would lead to at least a complexity
of O(N50 ) instead of O(N

3
0 ) for step I3.

The computational complexity of adding a single node in the growth phase is
dominated by the need to update the shortest path distance function dG. If s = 0,
this can be done in O(N2) time, but if s > 0 and a link is split in two, dG must
be recalculated completely, e.g. using Dijkstra’s algorithm [9], requires O(N2 logN)
time.
In total, the generation of a network of size N has thus complexity O(N3) for

s = 0 and O(N3 logN) for s > 0.
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3.1.2 Degree distribution

By construction, the expected mean degree of G is given by

κ = 2(1 + (1− s)(p+ q))−O(1/N) ≈ 2 + 2p+ 2q − 2ps− 2qs (2)

at all times. It is bounded between 2 (p = q = 0 or s = 1) and 6 (p = q = 1 and
s = 0). Here, the term 2m/N0 = 2(1− s)(p+ q) is the contribution of links added in
step I3.

Flat degree distribution of minimum spanning tree. For the generic two-
dimensional case that we focus on here, all nodes in a MST have degrees between one
and five since the angle between two straight spatially embedded links at the same
node is always larger than 60◦. Numerical simulations reveal a unimodal distribution
peaking at degree two and having almost no nodes with degree five (see Fig. 3a).

Approximate distribution of large degrees in growth process. The approx-
imate shape of the degree distribution for large N − N0 can be estimated using a
similar approach as in [8] for the case of a not spatially embedded random growth
model, leading to an approximately exponential decay of the form P (K = k) ∼ e−k/γ
for some γ > 0 which depends on the values of p, q, r, s. See the Appendix for a
derivation of this approximate distribution.

Overall degree distribution. The approximate analytic estimation of the expected
degree distribution in the growth process and the fact that the MST used initially
has a maximum degree of five suggests that, for large enough N , the actual overall
distribution of the node degree K also has an approximately exponentially decaying
tail:

P (K = k) ∼ e−k/γ for large k. (3)

Indeed, our simulations below show a good fit of the actual large-degree distributions
with this form.
For small k, the distribution may already be monotonically decreasing, but may

also peak at k = 2, 3, or 4 for several reasons depending on N0, p, q and s: If N0 is
large, the peak in the MST distribution may cause a peak in the overall distribution
(Figs. 3,a,c,f). Further, if s is large enough, this will also add to the share of degree-two
nodes. Equations (12,13) from the Appendix imply that p2 > p1 iff

s

1− s + s(1 + p+ 2q) + 3p+ 2pq + p
2 > 1. (4)

Sufficient conditions for this are s > (3−
√
5)/2 ≈ 0.4 or p > (

√
13− 3)/2 ≈ 0.3.

Estimation of the exponential decay parameter from data. Assuming an
exponentially decaying tail (i.e., a shifted geometric distribution) for k > k0 with
some k0, one can easily show (by differentiating the log-likelihood function) that the
maximum likelihood (ML) estimates of γ given some observed degrees k1, . . . , kN are
given by

γ̂ = −1/ log

⎛

⎝1− 1
∑
i,ki>k0

ki

|{i:ki>k0}|
− k0

⎞

⎠ , (5)

that is, by the relative frequencies of low degrees and by a function of the mean
of the large degrees (similar to the ML estimation of a geometric distribution, see
[6]). Alternatively to the ML estimator γ̂, one can also use the popular estimator
γ̂′ = −1/s where s is the slope of a linear fit of the logarithmic decumulative degree
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distribution function of k > k0. Note that γ̂
′ places more weight on the rare large

degrees, while γ̂ depends more on the bulk of the distribution, which explains why
typically γ̂ > γ̂′ whenever the initial part of the distribution function is concave as
in Fig. 3.

3.2 Examples

Example similar to Western US power grid. To illustrate realizations of our
model, we have chosen the popular data set of the Western US power grid [30], see
Fig. 2a. With the parameters (N0, p, q, r, s) = (100, 0.01, 0.32, 1, 0) in Fig. 2b we are
able to fit the observed mean degree and the slope of the exponential decay very
well (see Table 1). Note that this is a realization in the absence of splitting (s = 0),
what might serve as an explanation for the absence of a maximum at degree two,
also this leads to a smaller average shortest path length as will be discussed below in
more detail. For comparison we also show a different realization with (N0, p, q, r, s) =
(50, 0.03, 0.44, 0.3, 0.28) including the splitting of lines.

Polar examples. Figure 3 shows examples of grids and degree distributions gener-
ated with our model for “polar” choices of p, q, r ∈ {0, 1} with s = 0. The plotted
topologies picture networks with N = 400 nodes, and each degree distribution shows
the result for one individual network with a larger number of N = 4000 nodes so that
the tail shape can be seen more easily. An exponential decay appears linearly in the
semi-logarithmic plot.

In (a), N0 = N and p = q = r = 0, hence the grid is simply the MST of N
random locations, with no redundant or long-range links, a mean degree of two and
a flat degree distribution peaking at degree two. In (b), N0 = 1 instead, hence the
grid is a tree grown by adding one node and a link to the closest existing node one
at a time, resulting in some long-range links and an approximately exponentially
decaying degree distribution with γ estimated as γ̂ = 1.24 or γ̂′ = 1.12. In (c) and
(f), N0 = N again, resulting in a MST as the skeleton grid, but with p + q = 1,
resulting in redundant links either minimizing spatial distance ((c), r = 0), leading to
a clustering of links in regions which received more nodes by chance; or maximizing
the quotient between network and spatial distance ((f), r = 1), leading to a mesh-like
structure with almost no remaining degree-one nodes and an exponential decay with
γ̂ = 1.02 or γ̂′ = 0.78. In (d), N0 = 1, p = 1, q = 0, and r = 0, so that the grid is
grown by connecting each new node with the two closest existing nodes, resulting in
an exponential decay with γ̂ = 2.30 or γ̂′ = 2.10. In (e), p = 0 and q = 1 instead,
hence in each growth step both the new node and some existing node are linked to
their respective closest other existing node, resulting in an exponential decay with
γ estimated as γ̂ = 2.86 or γ̂′ = 2.67. In (g), N0 = 1, p = 1, q = 0, and r = 1,
so that in contrast to figure (d) the structure appears to be more mesh-like with
more redundancy. Again this is because a new node is always linked to two more,
giving equal weight to spatial and network distance. Lastly in (h), N0 = 1, p = 0,
q = 1, and r = 1, so that in every step a new node will connected to exactly one
existing node, with q = 1 meaning that also in every step two further nodes become
directly linked. While this scenario still produces more long-ranged connections as in
(e), the structure becomes locally more meshed. Additionally we picture a snapshot
of the ENTSO-E region 1 network of continental Europe for comparison. ENTSO-E
stands for “European Network of Transmission System Operators for Electricity”, the
successor of the Union for the Co-ordination of Transmission of Electricity (UCTE).
ENTSO-E is intended to ensure the coordination of network operation among the
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Fig. 3. Polar examples of random grid topologies with N = 400 nodes and degree distribu-
tions for N = 4000 nodes, generated with our model (s = 0 in all plots). Relative frequencies
P (K = k) (dots) and decumulative distribution function P (K > k) (solid lines). Links added
in step I2, I3, G2, G3, or G4 are plotted in black, brown, blue, red, or orange, respectively.
Left column: whole grid constructed with minimum spanning tree in initial phase (N0 = N);
Middle and right columns: no initial phase, whole grid successively grown (N0 = 1, middle:
p � 0, q = 0; right: p = 0, q � 0). Top row: tree-shaped grids with mean degree ≈ 2
(p = q = 0); Middle row: grids with redundant links minimizing spatial distance (p+ q = 1,
r = 0); Bottom row: grids with redundant links maximizing a redundancy/cost trade-off
(r = 1). Top right: Detail of real-world power grid in ENTSO-E region 1 (mainland Europe)
for comparison.



12 The European Physical Journal Special Topics

Table 1. Comparison of the Western US power grid data set (top row) and two realizations
of our model with (N0, p, q, r, s) = (100, 0.01, 0.32, 1, 0) (middle row) and (N0, p, q, r, s) =
(50, 0.03, 0.44, 0.3, 0.28) (bottom row). “cc” denotes the global clustering coefficient and
“aspl” the average shortest path length. All three networks have N = 4941 nodes.

M k̄ γ̂′ λ2 cc aspl

6594 2.67 2.12 0.001 0.08 18.99
6597 2.67 1.50 0.003 0.09 12.58
6622 2.68 1.33 0.001 0.12 16.54

members, make agreements on network codes and to improve the integration between
EU member state’s markets.

3.3 Monte-Carlo simulation and numerical test of the degree distribution

We performed two sets of Monte-Carlo simulations. (i) an ensemble of 10 000 model
realizations with fixed node number N = 100 (N0 = 1) and randomly chosen
p, q, r ∈ [0; 1] and s ∈ [0; 0.5] (see Fig. 1) and (ii) an ensemble of 1000 realiza-
tions with N ∈ [10; 1000] (N0 = 1) and randomly chosen p, q, r ∈ [0; 1], s = 0 (see
Fig. 5).
In Fig. 4a we picture the correlation matrix of the model parameter p, q, r, s vs.

the estimated decay parameter γ̂′, the algebraic connectivity λ2, the global clustering
coefficient and the average shortest path length aspl. It can be seen that the parameter
r mainly influences the algebraic connectivity and the clustering since it parametrizes
a cost-vs.-redundancy trade-off for the creation of new links. In Fig. 4b it seems that
there also happens a trade-off between global redundancy (λ2) and local redundancy
(clustering coefficient), where λ2 is increasing with r and vice versa. Besides, we see
from Fig. 4a, that the average shortest path length is indeed increasing with s in
accordance to our above observation.
The influence of the parameters p and q is very similar (Fig. 4a). From Figs. 4d

and 4c we conclude that they for instance determine the mean degree and the slope of
the exponential tail in an almost linear way on average. However it becomes obvious
that there is a systematic deviation of our estimators γ̂ and γ̂′ from the analytically
determined theoretical value of γ (see the Appendix) which remains to be explained
theoretically so far.
Further on we studied the scaling behavior of some network measures (Fig. 5).

Again we find an offset between the estimates γ̂′ and γ (Fig. 5b) but at least
the observation supports our finding that the slope of the exponential decay does
not depend on the network size N (see Eq. (15)). Supporting the observation in
Fig. 1a, we find that the mean degree does not depend on N , if we choose appro-
priate parameter values, the range of model realizations matches the data very well
(Fig. 5a).
In Fig. 5c we see that the scaling of the average shortest path length with the

network size follows a N δ dependence, where a linear regression (dashed line) yields
δ ≈ 0.24± 0.01. As a guidance to the eye, we also pictured δ = 0.5 (dotted line) that
would correspond to a network with only very local connections, whereas in these
realizations of our model, the possibility of long-range connections leads to a weaker
increase. For comparison we plotted data points for the ENTSO-E member states
(see Appendix) which is well in the range of the model realization. Where the model
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Fig. 4. (a) Correlation matrix of the model parameter p, q, r, s vs. the slope γ̂′ of the
exponential decay, λ2, the global clustering coefficient “cc” and the average shortest path
length “aspl”. Circles are filled proportional to the magnitude of the correlation, positive
values are pictured in blue, negative values in red. Pictured are further: (b) averaged values
of λ2 (solid) and the global clustering coefficient (dashed) given the trade-off parameter r,
(c) averaged values of the analytic estimate of γ (dotted), γ̂ (dot-dashed) and γ̂′ (dashed)
for realizations with different mean degree k and (d) same as in (c) for realizations with
different q. Shaded areas indicate one standard deviation. The diamond marks the Western
US power grid, the yellow squares mark data from [24].

yields to short path length, it might again be necessary to take the splitting of lines
into account. From the plot of (log aspl/ log N) vs. r we see that this scaling be-
havior does not depend on the degree of redundancy. Contrary, the global clustering
coefficient shows no dependence at all on N in accordance to empirical findings (see
Table 2).
In the last figure, we investigate the scaling of the algebraic connectivity with

the network size (Fig. 5d). We find the λ2 ∼ N−ε where a linear regression yields
ε ≈ 0.73±0.05 similar to the result from the ENTSO-E data set ε ≈ 0.86±0.09. Note
that these results are averaged over r ∈ [0; 1] and that λ2 increases with r (Fig. 4b),
so that for a properly chosen r, the algebraic connectivity can be as low as in the
data.
Besides for the average shortest path length and the algebraic connectivity, we

observed the remaining measures being independent of the system size.
Alongside of the Monte-Carlo simulations, for every realization we tested the hy-

pothesis that the distribution of degrees larger than four is a geometric distribution
with the parameter (i) γ = γ̂ or (ii) γ = γ̂′, respectively. As different goodness-
of-fit tests for the geometric distribution perform quite differently [6], we chose

the generalized Smirnov-transformed Anderson-Darling test Â2GST proposed in [6],
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Fig. 5. Pictured are: (a) the mean degree k vs. N for a subsample with p or q less than 0.1
(yellow squares mark data from [24]); (b) γ (top) and γ̂′ (bottom) vs. N and (c) a double-
logarithmic plot of the average shortest path length “aspl” (solid) vs. N . The dotted lines
have a slope of 1/2,1/4 and 1/5 from top to bottom, the yellow squares mark data for the
ENTSO-E member states (see Appendix). The inset shows (log aspl/ log N) vs. r. (d) λ2
vs. N (solid), where the dashed line indicates a linear regression to the model data and the
dotted line a linear regression to the data of the ENTSO-E member states. Shaded areas
indicate one standard deviation.

at a nominal significance level of 5 pct. Indeed we find that the test rejects the
hypothesis in 5.3 [4.8] pct. (γ̂ [γ̂′]) of the cases and accepts it in the remaining
cases.

4 Discussion

To summarize, we proposed a new growth model to create spatially embedded random
networks, that are especially suited to fit the needs of modeling power grids. However
as indicated in the introduction, this concept might be as well adopted for other
infrastructure networks with a similar construction process. By that we refer to the
at least two stages (initialization and growth) of development as implemented in our
model. Further it appears also worthwhile to take the splitting of lines into account,
as this helps to explain the observed structure of several real world networks, that
might otherwise not be reproducible, thus it became an important feature within
our model, not implemented in earlier studies of the topic. Another key ingredient,
minimum spanning trees, capture an important aspect of the initialization, namely,
that in early stages of (physical) network construction it is often necessary to develop
a wide-spreading grid in shortest time. In the later stages however, the notion of
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redundancy becomes more important for the construction process as well. To capture
this, we use a controllable trade-off between redundancy of a link and its spatial
length, which we assume to be an important cost factor.
The overall computational complexity is O(N3 logN), in the absence of line-

splitting this can be improved to O(N3). This means that the complexity of the algo-
rithm is still sufficient for the modeling of large network ensembles as they are often
necessary to assess statistical features of complex networks. Thus we hope the model
becomes a useful tool to assess the properties of power grids and other infrastructure
networks. We have chosen a set of independent model parameters that control the
resulting network properties in a relevant range that we explored using Monte-Carlo
simulation of our model. Further we found that the hypothesis of an exponentially de-
caying tail for large degrees in the degree distribution is well accepted for an ensemble
of model realizations, using the generalized Smirnov-transformed Anderson-Darling
test. However, while the analytically determined mean degree matches the observed
one very well, this is not the case for the slope of the exponential decay, which seems
to be overestimated with a constant offset. This needs to be taken into account and
corrected in the application of the model, however the underlying reason for that
remains still unclear to us.
Lastly we want to mention possible directions towards extensions of our model.

First of all it would be possible to use a more detailed description level of power grids,
incorporating for instance multiple edges (the N-1 criterion). Also, as our algorithm is
partly based on empirical observations, it might only yield realistic high-voltage trans-
mission grids, as distribution grids may show different structural properties [23]. We
conjecture, that they might be well-described by a model similar to our initialization
phase, as the apparent redundancy seems to be rather low.
More general however, it is also possible to choose different cost functions, adopt-

ing to corresponding research questions. For instance it could include geodesic spatial
distance measures, taking specific landscapes, population densities or inaccessible ar-
eas into account. Our ongoing interest lies also on the study of cascading failure
processes [7,12,20], i.e., to analyze how the proposed networks – being compared to
the standard set of network models – perform under random failures of or intentional
attacks on the infrastructure.

This work was partially supported by the ConDyNet project which is funded by the German
Federal Ministry of Education and Research.

Appendix A

The approximate shape of the degree distribution for large N −N0 can be estimated
using a similar approach as in [8] for the case of a not spatially embedded random
growth model. For this, we note that the probability of being selected as node i′ in
step G4 is exactly q/N .
If the probability of being selected as node j, ℓ, or ℓ′ were also the same for all

nodes, the degree distribution for large N could be derived as follows. Let dk(N)
be the expected number of nodes with degree k after adding N − N0 nodes. When
adding a node via steps G1–G4, it will get degree one or two with probability 1− p
or p, respectively; on the other hand, the number of degree-k nodes may decrease
by at most four if such a node is the j, ℓ, i′, or ℓ′ of that step, which happens
with probability dk(N)/N , pdk(N)/N , qdk(N)/N , and qdk(N)/N , respectively, or
may increase by at most four if the selected node has degree (k − 1) instead, which
happens with probability dk−1(N)/N , pdk−1(N)/N , qdk−1(N)/N , and qdk−1(N)/N ,
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respectively; when adding a node via step G5, it gets degree two and all other nodes
retain their degrees. Hence the expected number of degree-k nodes evolves as this:

d1(N + 1) = d1(N) + (1− s)[(1− p)− (1 + p+ 2q)d1(N)/N ], (6)

d2(N + 1) = d2(N) + (1− s)[p+ (1 + p+ 2q)(d1(N)− d2(N))/N ] + s, (7)

dk(N + 1) = dk(N) + (1− s)(1 + p+ 2q)(dk−1(N)− dk(N))/N fork > 2. (8)

Plugging the ansatz dk(N) ∼ Npk into these equations, we get

(N + 1)p1 = Np1 + (1− s)[(1− p)− (1 + p+ 2q)p1], (9)

(N + 1)p2 = Np2 + (1− s)[p+ (1 + p+ 2q)(p1 − p2)] + s, (10)

(N + 1)pk = Npk + (1− s)(1 + p+ 2q)(pk−1 − pk) fork > 2, (11)

which solves as

p1 =
(1− s)(1− p)

1 + (1− s)(1 + p+ 2q) , (12)

p2 =
(1− s)(p+ (1 + p+ 2q)p1) + s
1 + (1− s)(1 + p+ 2q) , (13)

pk =
(1− s)(1 + p+ 2q)
1 + (1− s)(1 + p+ 2q)pk−1 =: ηpk−1 for k > 2, (14)

hence pk decays exponentially as pk ∼ ηk = e−k/γ with

γ = − 1

log η
=

1

log 1+(1−s)(1+p+2q)(1−s)(1+p+2q)

∈
]

0;
1

log 54

]

≈]0; 4.48]. (15)

The decumulative distribution function Pk =
∑

k′�k pk then also decays at the same
rate. Note that γ increases with both p and q, as does κ, but there is no one-to-one
relationship between γ and κ; rather, both κ and γ can be adjusted via p, q in partial
independence.

In reality, however, the probabilities of being selected as node j, ℓ, or ℓ′ may differ
between nodes for several reasons, which explains why the actually observed values
of γ differ somewhat from the above-derived theoretical value.
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Appendix B

Table 2. Data set for the power grids of ENTSO-E member states. Listed are network size
N , the number of edgesM , mean degree k̄, the global clustering coefficient “cc”, the average
shortest path length “aspl” and the algebraic connectivity λ2.

member state N M k̄ cc aspl λ2
France 3788 4907 2.591 0.059 12.260 0.003
United Kingdom 1712 2073 2.422 0.040 15.238 0.003
Spain 1512 1955 2.586 0.038 11.490 0.004
Italy 911 1123 2.465 0.054 16.179 0.004
Germany 820 1029 2.510 0.051 15.409 0.004
Finland 621 757 2.438 0.020 10.730 0.009
Belgium 579 778 2.687 0.050 9.503 0.011
Austria 538 632 2.349 0.025 12.127 0.002
Hungary 528 903 3.420 0.111 6.777 0.023
Greece 436 559 2.564 0.057 9.317 0.008
Netherlands 314 392 2.497 0.080 8.033 0.009
Sweden 265 320 2.415 0.050 8.824 0.017
Switzerland 253 320 2.530 0.055 8.737 0.014
Moldova 223 255 2.287 0.022 9.456 0.009
Portugal 213 295 2.770 0.095 6.944 0.018
Lithuania 202 242 2.396 0.023 7.747 0.013
Ireland 181 254 2.807 0.104 5.659 0.041
Bosnia & Herzegovina 181 244 2.696 0.061 5.743 0.042
Estonia 178 233 2.618 0.083 6.509 0.025
Norway 170 209 2.459 0.016 11.752 0.003
Croatia 165 210 2.545 0.046 6.302 0.023
Latvia 157 198 2.522 0.066 6.521 0.018
Ukraine 152 215 2.829 0.094 6.331 0.032
Poland 144 191 2.653 0.064 6.506 0.043
Slovenia 120 155 2.583 0.147 5.615 0.032
Denmark 118 152 2.576 0.085 5.860 0.025
Romania 102 129 2.529 0.063 5.363 0.059
Serbia & Montenegro 99 124 2.505 0.117 5.701 0.030
Albania 75 89 2.373 0.018 5.564 0.043
Luxembourg 69 81 2.348 0.004 4.858 0.046
Macedonia 68 85 2.500 0.109 4.446 0.084
Czech Republic 66 84 2.545 0.047 4.386 0.109
Cyprus 60 66 2.200 0.012 5.649 0.029
Turkey 59 82 2.780 0.121 5.115 0.075
Slovakia 45 53 2.356 0.080 4.787 0.084
Bulgaria 44 55 2.500 0.046 3.940 0.152
Belarus 43 60 2.791 0.065 3.776 0.157
Malta 21 29 2.762 0.263 3.138 0.131
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