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Abstract—We present a distributed random linear network
coding approach for transmission and compression of informa-
tion in general multisource multicast networks. Network nodes
independently and randomly select linear mappings from inputs
onto output links over some field. We show that this achieves ca-
pacity with probability exponentially approaching 1 with the code
length. We also demonstrate that random linear coding performs
compression when necessary in a network, generalizing error ex-
ponents for linear Slepian–Wolf coding in a natural way. Benefits
of this approach are decentralized operation and robustness to
network changes or link failures. We show that this approach
can take advantage of redundant network capacity for improved
success probability and robustness. We illustrate some potential
advantages of random linear network coding over routing in two
examples of practical scenarios: distributed network operation
and networks with dynamically varying connections. Our deriva-
tion of these results also yields a new bound on required field size
for centralized network coding on general multicast networks.

Index Terms—Distributed compression, distributed networking,
multicast, network coding, random linear coding.

I. INTRODUCTION

T
HE capacity of multicast networks with network coding
was given in [1]. We present an efficient distributed ran-

domized approach that asymptotically achieves this capacity.
We consider a general multicast framework—multisource mul-
ticast, possibly with correlated sources, on general networks.
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Fig. 1. An example of distributed random linear network coding. X and X
are the source processes being multicast to the receivers, and the coefficients �
are randomly chosen elements of a finite field. The label on each link represents
the process being transmitted on the link.

This family of problems includes traditional single-source mul-
ticast for content delivery and the incast or reachback problem
for sensor networks, in which several, possibly correlated,
sources transmit to a single receiver. We use a randomized
strategy: all nodes other than the receiver nodes perform
random linear mappings from inputs onto outputs over some
field. These mappings are selected independently at each node.
An illustration is given in Fig. 1. The receivers need only know
the overall linear combination of source processes in each of
their incoming transmissions. This information can be sent with
each transmission block or packet as a vector of coefficients
corresponding to each of the source processes, and updated at
each coding node by applying the same linear mappings to the
coefficient vectors as to the information signals. The relative
overhead of transmitting these coefficients decreases with
increasing length of blocks over which the codes and network
remain constant. For instance, if the network and network code
are fixed, all that is needed is for the sources to send, once, at
the start of operation, a canonical basis through the network.

Our primary results show, first, that such random linear
coding achieves multicast capacity with probability exponen-
tially approaching with the length of code. Second, in the
context of a distributed source coding problem, we demonstrate
that random linear coding also performs compression when
necessary in a network, generalizing known error exponents for
linear Slepian–Wolf coding [4] in a natural way.

This approach not only recovers the capacity and achievable
rates, but also offers a number of advantages. While capacity
can be achieved by other deterministic or random approaches,
they require, in general, network codes that are planned by or
known to a central authority. Random design of network codes
was first considered in [1]; our contribution is in showing how
random linear network codes can be constructed and efficiently
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communicated to receivers in a distributed manner. For the case
of distributed operation of a network whose conditions may be
varying over time, our work hints at a beguiling possibility: that
a network may be operated in a decentralized manner and still
achieve the information rates of the optimized solution. Our
distributed network coding approach has led to and enabled
subsequent developments in distributed network optimization,
e.g., [20], [13]. The distributed nature of our approach also ties
in well with considerations of robustness to changing network
conditions. We show that our approach can take advantage of
redundant network capacity for improved success probability
and robustness. Moreover, issues of stability, such as those
arising from propagation of routing information, are obviated
by the fact that each node selects its code independently from
the others.

Our results, more specifically, give a lower bound on the
probability of error-free transmission for independent or lin-
early correlated sources, which, owing to the particular form
of transfer matrix determinant polynomials, is tighter than the
Schwartz–Zippel bound (e.g., [23]) for general polynomials
of the same total degree. This bound, which is exponentially
dependent on the code length, holds for any feasible set of
multicast connections over any network topology (including
networks with cycles and link delays). The result is derived
using a formulation based on the Edmonds matrix of bipartite
matching, which leads also to an upper bound on field size
required for deterministic centralized network coding over
general networks. We further give, for acyclic networks, tighter
bounds based on more specific network structure, and show
the effects of redundancy and link reliability on success proba-
bility. For arbitrarily correlated sources, we give error bounds
for minimum entropy and maximum a posteriori probability
decoding. In the special case of a Slepian–Wolf source network
consisting of a link from each source to the receiver, our error
exponents reduce to the corresponding results in [4] for linear
Slepian–Wolf coding. The latter scenario may thus be consid-
ered a degenerate case of network coding.

We illustrate some possible applications with two examples
of practical scenarios—distributed settings and networks with
dynamically varying connections—in which random linear
network coding shows particular promise of advantages over
routing.

This paper is an initial exploration of random linear network
coding, posing more questions that it answers. We do not cover
aspects such as resource and energy allocation, but focus on op-
timally exploiting a given set of resources. Resource consump-
tion can naturally be traded off against capacity and robustness,
and across multiple communicating sessions; subsequent work
on distributed resource optimization, e.g., [13], [21], has used
random linear network coding as a component of the solution.
There are also many issues surrounding the adaptation of pro-
tocols, which generally assume routing, to random coding ap-
proaches. We do not address these here, but rather seek to estab-
lish that the potential benefits of random linear network coding
justify future consideration of protocol compatibility with or
adaptation to network codes.

The basic random linear network coding approach involves
no coordination among nodes. Implementations for various ap-
plications may not be completely protocol-free, but the roles
and requirements for protocols may be substantially redefined

in this new environment. For instance, if we allow for retrials to
find successful codes, we in effect trade code length for some
rudimentary coordination.

Portions of this work have appeared in [9], which introduced
distributed random linear network coding; [8], which presented
the Edmonds matrix formulation and a new bound on required
field size for centralized network coding; [12], which gener-
alized previous results to arbitrary networks and gave tighter
bounds for acyclic networks; [11], on network coding for ar-
bitrarily correlated sources; and [10], which considered random
linear network coding for online network operation in dynami-
cally varying environments.

A. Overview

A brief overview of related work is given in Section I-B. In
Section II, we describe the network model and algebraic coding
approach we use in our analyses, and introduce some notation
and existing results. Section III gives some insights arising from
consideration of bipartite matching and network flows. Suc-
cess/error probability bounds for random linear network coding
are given for independent and linearly correlated sources in Sec-
tion IV and for arbitrarily correlated sources in Section V. We
also give examples of practical scenarios in which randomized
network coding can be advantageous compared to routing, in
Section VI. We present our conclusions and some directions
for further work in Section VII. Proofs and ancillary results are
given in the Appendix .

B. Related Work

Ahlswede et al. [1] showed that with network coding, as
symbol size approaches infinity, a source can multicast infor-
mation at a rate approaching the smallest minimum cut between
the source and any receiver. Li et al. [19] showed that linear
coding with finite symbol size is sufficient for multicast. Koetter
and Médard [17] presented an algebraic framework for network
coding that extended previous results to arbitrary networks and
robust networking, and proved the achievability with time-in-
variant solutions of the min-cut max-flow bound for networks
with delay and cycles. Reference [17] also gave an algebraic
characterization of the feasibility of a multicast problem and
the validity of a network coding solution in terms of transfer
matrices, for which we gave in [8] equivalent formulations
obtained by considering bipartite matching and network flows.
We used these formulations in obtaining a tighter upper bound
on the required field size than the previous bound of [17], and
in our analysis of distributed randomized network coding, in-
troduced in [9]. Concurrent independent work by Sanders et al.

[26] and Jaggi et al. [14] considered single-source multicast on
acyclic delay-free graphs, showing a similar bound on field size
by different means, and giving centralized deterministic and
randomized polynomial-time algorithms for finding network
coding solutions over a subgraph consisting of flow solutions
to each receiver. Subsequent work by Fragouli and Soljanin [7]
gave a tighter bound for the case of two sources and for some
configurations with more than two sources. Lower bounds
on coding field size were presented by Rasala Lehman and
Lehman [18] and Feder et al. [6]. [6] also gave graph-specific
upper bounds based on the number of “clashes” between flows
from source to terminals.
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Dougherty et al. [5] presented results on linear solutions for
binary solvable multicast networks, and on nonfinite field alpha-
bets. The need for vector coding solutions in some nonmulticast
problems was considered by Rasala Lehman and Lehman [18],
Médard et al. [22], and Riis [25]. Various practical protocols
for and experimental demonstrations of random linear network
coding [3] and nonrandomized network coding [29], [24] have
also been presented.

II. MODEL AND PRELIMINARIES

A. Basic Model

Our basic network coding model is based on [1], [17]. A net-

work is represented as a directed graph , where is

the set of network nodes and is the set of links, such that infor-

mation can be sent noiselessly from node to for all .

Each link is associated with a nonnegative real number

representing its transmission capacity in bits per unit time.

Nodes and are called the origin and destination, respec-

tively, of link . The origin and destination of a link

are denoted and , respectively. We assume

. The information transmitted on a link is ob-

tained as a coding function of information previously received

at .

There are discrete memoryless information source pro-

cesses which are random binary sequences.

We denote the Slepian–Wolf region of the sources

where .

Source process is generated at node , and multi-

cast to all nodes , where

and are arbitrary mappings. In this

paper, we consider the (multisource) multicast case where

for all . The nodes

are called source nodes and the nodes are called

receiver nodes, or receivers. For simplicity, we assume subse-

quently that . The mapping ,

the set and the Slepian–Wolf region specify

a set of multicast connection requirements. The connection

requirements are satisfied if each receiver is able to reproduce,

from its received information, the complete source information.

A graph , a set of link capacities , and a

set of multicast connection requirements specify a multicast

connection problem.

We make a number of simplifying assumptions. Our anal-

ysis for the case of independent source processes assumes that

each source process has an entropy rate of one bit per unit

time; sources of larger rate are modeled as multiple sources at

the same node. For the case of linearly correlated sources, we

assume that the sources can be modeled as given linear combi-

nations of underlying independent source processes, each with

an entropy rate of one bit per unit time, as described further in

Section II-B. For the case of arbitrarily correlated sources, we

consider sources with integer bit rates and arbitrary joint prob-

ability distributions.

For the case of independent or linearly correlated sources,

each link is assumed to have a capacity of one bit per

unit time; links with larger capacities are modeled as parallel

links. For the case of arbitrarily correlated sources, the link rates

are assumed to be integers.

Reference [1] shows that coding enables the multicast infor-

mation rate from a single source to attain the minimum of the

individual receivers’ max-flow bounds,1 and shows how to con-

vert multicast problems with multiple independent sources to

single-source problems. Reference [19] shows that linear coding

is sufficient to achieve the same individual max-flow rates; in

fact, it suffices to do network coding using only scalar algebraic

operations in a finite field , for some sufficiently large , on

length- vectors of bits that are viewed as elements of [17].

The case of linearly correlated sources is similar.

For arbitrarily correlated sources, we consider operations in

on vectors of bits. This vector coding model can, for given

vector lengths, be brought into the scalar algebraic framework

of [17] by conceptually expanding each source into multiple

sources and each link into multiple links, such that each new

source and link corresponds to one bit of the corresponding in-

formation vectors. We describe this scalar framework in Sec-

tion II-B, and use it in our analysis of arbitrarily correlated

sources in Section V. Note, however, that the linear decoding

strategies of [17] do not apply for the case of arbitrarily corre-

lated sources.

We consider both the case of acyclic networks where link

delays are not considered, as well as the case of general net-

works with cycles and link delays. The former case, which we

call delay-free, includes networks whose links are assumed to

have zero delay, as well as networks with link delays that are

operated in a burst [19], pipelined [26], or batched [3] fashion,

where information is buffered or delayed at intermediate nodes

so as to be combined with other incoming information from the

same batch. A cyclic graph with nodes and rate may also be

converted to an expanded acyclic graph with nodes and rate

at least , communication on which can be emulated over

time steps on the original cyclic graph [1]. For the latter case,

we consider general networks without buffering, and make the

simplifying assumption that each link has the same delay.

We use some additional definitions in this paper. Link is an

incident outgoing link of node if , and an incident

incoming link of if . We call an incident incoming

link of a receiver node a terminal link, and denote by the set

of terminal links of a receiver . A path is a subgraph of the

network consisting of a sequence of links such that

, , and ,

and is denoted . A flow solution for a receiver is

a set of links forming link-disjoint paths each connecting a

different source to .

1That is, the maximum commodity flow from the source to individual re-
ceivers.
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B. Algebraic Network Coding

In the scalar algebraic coding framework of [17], the source

information processes, the receiver output processes, and the in-

formation processes transmitted on each link, are sequences of

length- blocks or vectors of bits, which are treated as elements

of a finite field , . The information process trans-

mitted on a link is formed as a linear combination, in , of

link ’s inputs, i.e., source processes for which

and random processes for which , if any. For the

delay-free case, this is represented by the equation

The th output process at receiver node is a linear com-

bination of the information processes on its terminal links, rep-

resented as

For multicast on a network with link delays, memory is needed

at the receiver (or source) nodes, but memoryless operation

suffices at all other nodes [17]. We consider unit delay links,

modeling links with longer delay as links in series. The corre-

sponding linear coding equations are

where , , , , and are the values

of the corresponding variables at time , respectively, and

represents the memory required. These equations, as with the

random processes in the network, can be represented alge-

braically in terms of a delay variable

where

(1)

and

The coefficients can be collected into

matrices

in the acyclic delay-free case

in the general case with delays

and , and the matrix

in the acyclic delay-free case

in the general case with delays

whose structure is constrained by the network. A pair or

tuple can be called a linear network code.

We also consider a class of linearly correlated sources mod-

eled as given linear combinations of underlying independent

processes, each with an entropy and bit rate of one bit per unit

time. To simplify the notation in our subsequent development,

we work with these underlying independent processes in a

similar manner as for the case of independent sources: the th

column of the matrix is a linear function of given

column vectors , where specifies the mapping from

underlying independent processes to the th source process

at .2 A receiver that decodes these underlying independent

processes is able to reconstruct the linearly correlated source

processes.

For acyclic graphs, we assume an ancestral indexing of links

in , i.e., if ) for any links , then has a lower

index than . Such indexing always exists for acyclic networks.

It then follows that matrix is upper triangular with zeros on

the diagonal.

Let .3 The mapping from source pro-

cesses to output processes at

a receiver is given by the transfer matrix [17].

For a given multicast connection problem, if some network

code in a field (or ) satisfies

the condition that has full rank for each receiver

, then satisfies

, and is a solution to the

multicast connection problem in the same field. A multicast

connection problem for which there exists a solution in some

field or is called feasible, and the corresponding

connection requirements are said to be feasible for the network.

2We can also consider the case where xxx 2 by restricting network
coding to occur in , q = 2 .

3For the acyclic delay-free case, the sequence (III�FFF ) = III+FFF+FFF +� � �
converges since FFF is nilpotent for an acyclic network. For the case with delays,
(III � FFF ) exists since the determinant of III � FFF is nonzero in its field of
definition (D; . . . ; f ; . . .), as seen by letting D = 0. [17]
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In subsequent sections, where we consider choosing the value

of by distributed random coding, the following defini-

tions are useful: if for a receiver there exists some value of

such that has full rank , then is a valid

network code for ; a network code is valid for a

multicast connection problem if it is valid for all receivers.

The th column of matrix specifies the mapping from

source processes to the random process on link . We denote by

the submatrix consisting of columns of corresponding to

a set of links .

For a receiver to decode, it needs to know the mapping

from the source processes to the random processes on its

terminal links. The entries of are scalar elements of

in the acyclic delay-free case, and polynomials in delay variable

in the case with link delays. In the latter case, the number of

terms of these polynomials and the memory required at the re-

ceivers depend on the number of links involved in cycles, which

act like memory registers, in the network.

We use the notational convention that matrices are named

with bold upper case letters and vectors are named with bold

lower case letters.

III. INSIGHTS FROM BIPARTITE MATCHING

AND NETWORK FLOWS

As described in the previous section, for a multicast connec-

tion problem with independent or linearly correlated sources,

the transfer matrix condition of [17] for the problem to be fea-

sible (or for a particular linear network code defined by ma-

trices to be valid for the connection problem) is that

for each receiver , the transfer matrix has nonzero de-

terminant. The following result shows the equivalence of this

transfer matrix condition and the Edmonds matrix formulation

for checking if a bipartite graph has a perfect matching (e.g.,

[23]). The problem of determining whether a bipartite graph

has a perfect matching is a classical reduction of the problem of

checking the feasibility of an flow [15].4 This latter problem

can be viewed as a degenerate case of network coding, restricted

to the binary field and without any coding; it is interesting to

find that the two formulations are equivalent for the more gen-

eral case of linear network coding in higher order fields.

Lemma 1:

(a) For an acyclic delay-free network, the determinant of the

transfer matrix for receiver is

equal to

4The problem of checking the feasibility of an s � t flow of size r on graph
G = (V ; E) can be reduced to a bipartite matching problem by constructing the
following bipartite graph: one set of the bipartite graph has r nodes u ; . . . ; u ,
and a node v corresponding to each link l 2 E ; the other set of the bipartite
graph has r nodes w ; . . . ; w , and a node v corresponding to each link l 2

E . The bipartite graph has links joining each node u to each node v such that
o(l) = s, a link joining node v to the corresponding node v for all l 2 E ,
links joining node v to v for each pair (l; j) 2 E�E such that d(l) = o(j),
and links joining each node w to each node v such that d(l) = t. The s� t

flow is feasible if and only if the bipartite graph has a perfect matching.

where

is the corresponding Edmonds matrix.

(b) For an arbitrary network with unit delay links, the transfer

matrix for receiver is non-

singular if and only if the corresponding Edmonds matrix

is nonsingular.

Proof: See Appendix A.

The usefulness of this result is in making apparent various

characteristics of the transfer matrix determinant polynomial

that are obscured in the original transfer matrix by the matrix

products and inverse. For instance, the maximum exponent of

a variable, the total degree of the polynomial, and its form for

linearly correlated sources are easily deduced, leading to Theo-

rems 1 and 2.

For the acyclic delay-free case, Lemma 2 below is another

alternative formulation of the same transfer matrix condition

which illuminates similar properties of the transfer matrix

determinant as Lemma 1. Furthermore, by considering network

coding as a superposition of flow solutions, Lemma 2 allows us

to tighten, in Theorem 3, the bound of Theorem 2 for random

network coding on given acyclic networks in terms of the

number of links in a flow solution for an individual receiver.

Lemma 2: A multicast connection problem with sources

is feasible (or a particular network code is valid for the

problem) if and only if each receiver has a set of terminal

links for which

where is the submatrix of consisting of links

, and

if

if

is the product of gains on the path . The sum

is over all flow solutions from the sources to links in , each

such solution being a set of link-disjoint paths each connecting

a different source to a different link in .

Proof: See Appendix A.

Lemma 1 leads to the following upper bound on required field

size for a feasible multicast problem, which tightens the upper

bound of given in [17], where is the number of pro-

cesses being transmitted in the network.

Theorem 1: For a feasible multicast connection problem with

independent or linearly correlated sources and receivers, in

both the acyclic delay-free case and the general case with delays,



4418 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 10, OCTOBER 2006

there exists a solution in finite field if

.

Proof: See Appendix A.

Work done in [14], [26] independently of and concurrently

with the initial conference publication of this result showed,

by different means, the sufficiency of for the acyclic

delay-free case. Subsequent work in [7] gave a tighter bound of

for the case of two sources and for some

configurations with more than two sources that satisfy some reg-

ularity conditions.

IV. RANDOM LINEAR NETWORK CODING FOR INDEPENDENT

OR LINEARLY CORRELATED SOURCES

In this section, we consider random linear network codes

in which some or all of the network code coefficients

for linearly correlated sources are chosen

independently and uniformly over , where is greater than

the number of receivers .

The next two results cover the case where some coefficients

are fixed instead of being randomly chosen, as long as there ex-

ists a solution to the network connection problem with the same

values for these fixed coefficients. For instance, if a node re-

ceives linearly dependent processes on two links , it can fix

for all outgoing links . Nodes that cannot determine

the appropriate code coefficients from local information choose

the coefficients independently and uniformly from .

Theorem 2: Consider a multicast connection problem on

an arbitrary network with independent or linearly correlated

sources, and a network code in which some or all network code

coefficients are chosen uniformly at random

from a finite field where , and the remaining code

coefficients, if any, are fixed. If there exists a solution to the

network connection problem with the same values for the fixed

code coefficients, then the probability that the random network

code is valid for the problem is at least , where

is the number of links with associated random coefficients

.

Proof: See Appendix B.

The code length is the logarithm of the field size .

It affects computational complexity and delay, since algebraic

operations are performed on codewords of length . Note that

the bound, derived using Lemma 1, is tighter than the bound of

obtained by direct application of the Schwartz–Zippel

theorem (e.g., [23]) which only considers the total degree of

the polynomial. The corresponding upper bound on the error

probability is on the order of the inverse of the field size, so

the error probability decreases exponentially with the number

of codeword bits .

The bound of Theorem 2 is very general, applying across

all networks with the same number of receivers and the same

number of links with associated random code coefficients,

without considering specific network structure. However, it is

intuitive that having more redundant capacity in the network,

for instance, should increase the probability that a random

linear code will be valid. Tighter bounds can be obtained by

taking into account a more specific network structure. Three

such bounds, for the acyclic delay-free case, are given below.

We have not proven or disproven whether they extend to net-

works with cycles.

The first tightens the bound of Theorem 2 for the acyclic

delay-free case, by using in its derivation Lemma 2 in place of

Lemma 1. It is used in Section VI to derive a bound on the prob-

ability of obtaining a valid random network code on a grid net-

work.

Theorem 3: Consider a multicast connection problem on an

acyclic network with independent or linearly correlated sources,

and a network code in which some or all network code coef-

ficients are chosen uniformly at random from

a finite field where , and the remaining code coeffi-

cients, if any, are fixed. If there exists a solution to the network

connection problem with the same values for the fixed code co-

efficients, then the probability that the random network code is

valid for the problem is at least , where is the

maximum number of links with associated random coefficients

in any set of links constituting a flow solution for any receiver.

Proof: See Appendix B.

The next bound is useful in cases where analysis of connec-

tion feasibility is easier than direct analysis of random linear

coding.

Theorem 4: Consider a multicast connection problem with

independent or linearly correlated sources on an acyclic graph

. The probability that a random linear network code in is

valid for the problem on is greater than or equal to the prob-

ability that the same connection requirements are feasible on a

modified graph formed by deleting each link of with proba-

bility .

Proof: See Appendix B.

The above theorem is used in obtaining the following result

showing how spare network capacity and/or more reliable links

allow us to use a smaller field size to surpass a particular success

probability.

Theorem 5: Consider a multicast connection problem on

an acyclic network with independent or linearly correlated

sources of joint entropy rate , and links which fail (are deleted

from the network) with probability . Let be the minimum

redundancy, i.e., the original connection requirements are fea-

sible on a network obtained by deleting any links in . The

probability that a random linear network code in is valid for

a particular receiver is at least

where is the longest source–receiver path in the network.

Proof: See Appendix B.
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Fig. 2. An example illustrating vector linear coding. xxx 2 and xxx 2

are vectors of source bits being multicast to the receivers, and the matrices
� are matrices of random bits. Suppose the capacity of each link is c. Matrices
� and� arenr �nc,� and� arenr �nc, and� and� arenc�nc.
The label on each link represents the process being transmitted on the link.

V. RANDOM LINEAR NETWORK CODING FOR ARBITRARILY

CORRELATED SOURCES

So far we have been considering independent or linearly cor-

related sources. We next consider transmission of arbitrarily cor-

related sources, using random linear network coding, over net-

works where compression may be required.

Analogously to Slepian and Wolf [28], we consider the

problem of distributed encoding and joint decoding of two

sources whose output values in each unit time period are drawn

independent and identically distributed (i.i.d.) from the same

joint distribution . The difference is that in our problem,

transmission occurs across an arbitrary network of intermediate

nodes that can perform network coding. In the special case of

a network consisting of one direct link from each source to a

common receiver, this reduces to the original Slepian–Wolf

problem.

We consider a vector linear network code that operates on

blocks of bits. Linear coding is done in over blocks con-

sisting of bits from each source , where is the bit rate of

source . Each node transmits, on each of its incident outgoing

links , bits for each block, formed as random linear combi-

nations of corresponding source bits originating at that node and

bits transmitted on incident incoming links, if any, as illustrated

in Fig. 2. An -decoder (which may be a minimum entropy or

maximum -probability decoder) [4] at a receiver maps a block

of received bits to a block of decoded values that has minimum

entropy or maximum -probability among all possible source

values consistent with the received block.

We bound the probability of decoding error at a receiver,

i.e., the probability that a block of source values differs from

the decoded values. Specifically, we consider the case of two

sources whose output values in each unit time period are drawn

i.i.d. from the same joint distribution . Let and be the

minimum cut capacities between the receiver and each of the

sources, respectively, and let be the minimum cut capacity

between the receiver and both sources. We denote by the max-

imum source–receiver path length. Our approach follows that in

[4], whose results we extend. As there, the type of a vector

is the distribution on defined by the relative fre-

quencies of the elements of in , and joint types are

analogously defined.

Theorem 6: The error probability of the random linear net-

work code is at most , where

and are dummy random variables with joint distribution

.

Proof: See Appendix B.

The error exponents

for general networks reduce to those obtained in [4] for the

Slepian–Wolf network where , , ,
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TABLE I
SUCCESS PROBABILITIES OF RANDOMIZED FLOODING SCHEME RF AND RANDOM LINEAR CODING SCHEME RC. THE TABLE

GIVES BOUNDS AS WELL AS SOME ACTUAL PROBABILITY VALUES WHERE EXACT CALCULATIONS ARE TRACTABLE

Fig. 3. Rectangular grid network with two processes X and X originating
at a source node. The links are all directed outwards from the source node. The
labels on the links show the source transmissions in the random flooding scheme
RF, where one process is sent in both directions on one axis and the other process
in both directions along the other axis.

VI. BENEFITS OF RANDOMIZED CODING OVER ROUTING

Network coding, as a superset of routing, has been shown to

offer significant capacity gains for networks with special struc-

ture [26]. For many other networks, network coding does not

give higher capacity than centralized optimal routing, but can

offer other advantages when centralized optimal routing is diffi-

cult. In this section, we consider two types of network scenarios

in which distributed random linear coding can be particularly

useful.

A. Distributed Settings

In networks with large numbers of nodes and/or changing

topologies, it may be expensive or infeasible to reliably maintain

routing state at network nodes. Distributed randomized routing

schemes have been proposed [2], [27] which address this kind

of issue. However, not allowing different signals to be combined

can impose intrinsic penalties in efficiency compared to using

network coding.

Consider as a simple example the problem of sending two

processes from a source node to receiver nodes in unknown lo-

cations on a rectangular grid network, shown in Fig. 3. For sim-

plicity, we analyze the acyclic delay-free case, which may corre-

spond to synchronized, burst, or pipelined operation where each

transmission at a node occurs upon reception of transmissions

on all incident incoming links of .

Suppose we wish to use a distributed transmission scheme

that does not involve any coordination among nodes or routing

state. The network aims to maximize the probability that any

node will receive two distinct processes, by flooding in a

way that preserves message diversity, for instance using the

following random flooding scheme RF.

• The source node sends one process in both directions on

one axis and the other process in both directions along the

other axis, as illustrated in Fig. 3.

• A node receiving information on one link sends the same

information on its three outgoing links (these are nodes

along the grid axes passing through the source node).

• A node receiving information on two links sends one of the

incoming processes on one of its two outgoing links with

equal probability, and the other process on the remaining

link.

For comparison, we consider the same rectangular grid

problem with the following simple random coding scheme RC

(ref Fig. 3).

• The source node sends one process in both directions on

one axis and the other process in both directions along the

other axis.

• A node receiving information on one link sends the same

information on its three outgoing links.

• A node receiving information on two links sends a random

linear combination of the source processes on each of its

two outgoing links.5

Proposition 1: For the randomized flooding scheme RF, the

probability that a receiver located at grid position relative

to the source receives both source processes is at most

Proof: See Appendix C.

Proposition 2: For the random coding scheme RC, the prob-

ability that a receiver located at grid position relative to

the source can decode both source processes is at least

.

Proof: See Appendix C.

Table I gives, for various values of and , the values of

the success probability bounds as well as some actual proba-

bilities for the random flooding scheme RF when and are

small. Note that an increase in grid size from to

requires only an increase of two in codeword length for the

random coding scheme RC to obtain success probability lower

bounds close to , which are substantially better than the upper

bounds for RF.

5This simple scheme, unlike the randomized flooding scheme RF, leaves out
the optimization that each node receiving two linearly independent processes
should always send out two linearly independent processes.
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TABLE II
A SAMPLE OF RESULTS ON GRAPHS GENERATED WITH THE FOLLOWING PARAMETERS: NUMBER OF NODES n, NUMBER OF SOURCES r, NUMBER OF

RECEIVERS d, TRANSMISSION RANGE �, MAXIMUM IN-DEGREE AND OUT-DEGREE i. b AND b ARE THE RATE OF BLOCKED CONNECTIONS FOR

ROUTING AND CODING, RESPECTIVELY, AND t AND t ARE THE CORRESPONDING THROUGHPUTS

B. Dynamically Varying Connections

Another scenario in which random linear network coding

can be advantageous is for multisource multicast with dynami-

cally varying connections. We compare distributed randomized

coding to an approximate online Steiner tree routing approach

from [16] in which, for each transmitter, a tree is selected

in a centralized fashion. Since the complexity of setting up

each connection is a significant consideration in the dynamic

scenario we consider, we use one tree per connection; more

complicated online routing approaches using multiple Steiner

trees may be able to achieve a smaller performance gap com-

pared to network coding, but this is not within the scope of our

paper.

Since sophisticated routing algorithms are difficult to ana-

lyze, we used a simulation-based approach. We ran trials on ran-

domly generated graphs with the following parameters: number

of nodes , number of sources , number of receivers , trans-

mission range , and maximum in-degree and out-degree . For

each trial, nodes were scattered uniformly over a unit square.

To create an acyclic graph we ordered the nodes by their -co-

ordinate and chose the direction of each link to be from the

lower numbered to the higher numbered node. Any pair of nodes

within Euclidian distance of each other was connected by a

link, up to the maximum in-degree and out-degree of the nodes

involved. The receiver nodes were chosen as the highest num-

bered nodes, and source nodes were chosen randomly (with

replacement) from among the lower numbered half of the nodes.

The parameter values for the tests were chosen such that the re-

sulting random graphs would in general be connected and able

to support some of the desired connections, while being small

enough for the simulations to run efficiently.

Each trial consisted of a number of time slots. In each time

slot, a source was either on, i.e., transmitting source informa-

tion, or off, i.e., not transmitting source information. For the ap-

proximate Steiner tree routing algorithm, each source that was

on was associated with a Steiner tree, link-disjoint from the

others, connecting it to all the receivers.

At the beginning of each time slot, any source that was on

stayed on with probability or else turned off, and any

source that was off stayed off with probability or else

underwent, in turn, the following procedure.

• For the approximate Steiner tree routing algorithm, the al-

gorithm was applied to search for a Steiner tree, link-dis-

joint with the Steiner trees of other sources that were cur-

rently on, connecting that source to all the receivers. If such

a Steiner tree was found, the source turned on, using that

Steiner tree to transmit its information to all receivers; if

not, the source was blocked, i.e., stayed off.

• For network coding, up to three random linear network

codes were chosen. If one of them was valid for transmit-

ting information to all receivers from that source as well as

other sources that were currently on, the source turned on;

otherwise, the source was blocked.

We used as performance metrics the frequency of blocked re-

quests and the average throughput, which were calculated for

windows of 250 time slots until these measurements reached

steady state, i.e., measurements in three consecutive windows

being within a factor of from each other, so as to avoid tran-

sient initial startup behavior. Some results for various randomly

generated networks are given in Table II.

These simulations do not attempt to quantify precisely the dif-

ferences in performance and overhead of random linear coding

and online routing, but are useful as a preliminary indication.

With regard to throughput and blocking probability, the simula-

tions show that random linear network coding outperforms the

Steiner tree heuristic on a non-negligible set of randomly con-

structed graphs, indicating that when connections vary dynami-
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cally, coding can offer advantages that are not circumscribed to

a few carefully chosen examples. With regard to overhead, the

additional overhead of network coding comes from the linear

coding operations at each node, the decoding operations at the

receivers, and the coefficient vectors sent with each block or

packet. Each of these types of overhead depends on the coding

field size. Our theoretical bounds of previous sections guarantee

the optimality of random linear coding for large enough field

sizes, but they are tight only for worst case network connec-

tion problems. The simulations illustrate the kinds of field sizes

needed in practice for networks with a moderate number of

nodes. To this end, we use a small field size that allows random

linear coding to generally match the performance of the Steiner

heuristic, and to surpass it in networks whose topology makes

Steiner tree routing difficult. The simulations show the applica-

bility of short network code lengths of 4–5 bits for networks of

8–12 nodes.

VII. CONCLUSION

We have presented a distributed random linear network

coding approach which asymptotically achieves capacity, as

given by the max-flow min-cut bound of [1], in multisource

multicast networks. We have given a general bound on the suc-

cess probability of such codes for arbitrary networks, showing

that error probability decreases exponentially with code length.

Our analysis uses insights from network flows and bipartite

matching, which also lead to a new bound on required field

size for centralized network coding. We have also given tighter

bounds for acyclic networks which take into account more

specific network structure, and show how redundant network

capacity and link reliability affect the probability of obtaining

a valid random linear code.

Taking a source coding perspective, we have shown that dis-

tributed random linear network coding effectively compresses

correlated sources within a network, providing error exponents

that generalize corresponding results for linear Slepian–Wolf

coding.

Finally, two examples of scenarios in which randomized net-

work coding shows benefits over routing approaches have been

presented. These examples suggest that the decentralized nature

and robustness of random linear network coding can offer sig-

nificant advantages in settings that hinder optimal centralized

network control.

Further work includes extensions to nonuniform code distri-

butions, possibly chosen adaptively or with some rudimentary

coordination, to optimize different performance goals. Another

question concerns selective placement of random linear coding

nodes. The randomized and distributed nature of the approach

also leads us naturally to consider applications in network se-

curity. It would also be interesting to consider protocol issues

for different communication scenarios, and to compare specific

coding and routing protocols over a range of performance met-

rics.

APPENDIX

PROOFS AND ANCILLARY RESULTS

A. Edmonds Matrix and Flow Formulations

Proof of Lemma 1:

(a) Note that

The first matrix

has determinant . So

equals

which can be expanded as follows:

The result follows from observing that

since is upper-triangular with zeros along the main di-

agonal.

(b) As in part (a)

Since is nonzero, the result follows.

Proof of Lemma 2: Recall that we assume an an-

cestral numbering for the links of an acyclic graph. For

, let be the set of all sets of integers

such that . Let

, where .

Let and denote column of and , respectively.

It follows from the definitions of transfer matrices and

that can be computed recursively as follows:

(2)

(3)
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Expanding the determinant of linearly in the column

using (3), we obtain

We proceed recursively, expanding each determinant linearly in

its column whose index is highest, using (3) for and

(2) for . At each expansion stage, the expression for

is a linear combination of matrix determinants. Each nonzero

determinant corresponds to a matrix composed of columns

such that

and . Its coefficient

in the linear combination is a product of terms such that

, and is of the form where

for some and .

By induction we have that these properties hold for all nonzero

determinant terms in the course of the expansion. The expan-

sion terminates when the expression is a linear combination of

determinants of the form , at which point we have

The result follows by noting that each set

such that corresponds to a

network path consisting of links ; that the condition

for all implies that

the corresponding paths are disjoint; and that

is nonzero only when links transmit linearly

independent combinations of source processes.

Proof of Theorem 1: By Lemma 1, the transfer matrix

determinant for any receiver is nonzero if and only

if the determinant of the corresponding Edmonds matrix is

nonzero. Thus, we consider the determinant of the latter

matrix. Since each variable ( in the case of linearly

correlated sources), or appears in exactly one column

of the Edmonds matrix, the largest exponent of each of these

variables in is , and the largest exponent of each variable

in the product of receivers’ determinants is at

most .

For the acyclic delay-free case, we use an induction argument

similar to that in [17] to show that there exists a solution in

, such that is nonzero. Consider one of the vari-

ables , , , or , denoting it by , and consider

as a polynomial in the other variables with coefficients that are

polynomials in . Since these coefficients have maximum de-

gree , they are not divisible by . Thus, can take some

value in such that at least one of the coefficients is nonzero.

Repeating this procedure for each of the other variables gives

the desired result.

Going from the acyclic delay-free case to the general case

with delays, variables , , are replaced by ,

, in the Edmonds matrix, and variables be-

come rational functions in given by (1) in

Section II-B. Each variable appears in only one entry of

the Edmonds matrix, and each variable appears in only

one column of the Edmonds matrix in a linear expression that

forms the denominator of each nonzero entry of the column.

Thus, can be expressed as a ratio of polynomials whose

numerator is linear in each variable , , , or

. Proceeding similarly as for the acyclic delay-free case

yields the result.

B. Analysis of Random Linear Network Coding

Lemma 3: Consider a random network code in

which links have associated code coefficients , (

for the case of linearly correlated sources) and/or that are

randomly chosen variables. The determinant polynomial of the

corresponding Edmonds matrix

has maximum degree in the random variables

, and is linear in each of these vari-

ables.

Proof: Each variable appears in only one

column of the Edmonds matrix. Only the columns corre-

sponding to links transmitting random combinations of input

processes contain variable terms .

The determinant can be written as the sum of products of

entries, one from each row and column. Each such product

is linear in each variable term , and has degree

at most in these variables.

Lemma 4: Let be a nonzero polynomial in

of degree less than or equal to , in which the largest expo-

nent of any variable is at most . Values for are

chosen independently and uniformly at random from .

The probability that equals zero is at most for

.

Proof: For any variable in , let be the largest ex-

ponent of in . Express in the form ,

where is a polynomial of degree at most that does

not contain variable , and is a polynomial in which the

largest exponent of is less than . By the Principle of De-

ferred Decisions (e.g., [23]), the probability is un-

affected if we set the value of last after all the other coeffi-

cients have been set. If, for some choice of the other coefficients,

, then becomes a polynomial in of degree .
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By the Schwartz–Zippel theorem (e.g., [23]), this probability

is upper-bounded by . So

(4)

Next we consider , choosing any variable in

and letting be the largest exponent of in . We express

in the form , where is a polynomial of

degree at most that does not contain variables or

, and is a polynomial in which the largest exponent of

is less than . Proceeding similarly, we assign variables and

define and for until we reach where

is a constant and . Note that

and , so . Applying Schwartz–Zippel as

before, we have for

(5)

Combining all the inequalities recursively, we can show by in-

duction that

Now consider the integer optimization problem

Maximize

subject to

and integer (6)

whose maximum is an upper bound on .

We first consider the problem obtained by relaxing the integer

condition on the variables . Let be an

optimal solution.

For any set of distinct integers from , let

We can show by induction on that for any

set of distinct integers in . If , then

there is some , and there exists a feasible solution

such that , , and for

, which satisfies

This is positive, contradicting the optimality of , so

.

Next suppose for some . Then there exists

some such that , since if or for all

other , then . Assume without loss of generality

that . Then there exists a feasible vector

such that , , ,

and , which satisfies

This is again positive, contradicting the optimality of .

Thus, , and or . So exactly of

the variables are equal to . Since the optimal solution is an

integer solution, it is also optimal for the integer program (6).

The corresponding optimal

Proof of Theorem 2: There are links with associated

code coefficients

in the case of linearly correlated sources

that are chosen independently and uniformly at random over .

To check if the resulting network code is valid for a re-

ceiver , it suffices to check that the determinant of the corre-

sponding Edmonds matrix is nonzero (Lemma 1). This deter-

minant, which we denote by , is a polynomial linear in each

variable , with total degree at most in these

variables (Lemma 3). The product for receivers is, ac-

cordingly, a polynomial in of total degree at

most , and in which the largest exponent of each of these vari-

ables is at most . Applying Lemma 4, is nonzero with

probability at least .

The bound is attained with equality for a network with in-

dependent sources that consists only of link-disjoint paths, one

for each source–receiver pair. In this case, there is a one-to-one

correspondence between links and variables . Each

of these variables must be nonzero in order for the code to be

valid for all receivers.

Proof of Theorem 3: By Lemma 2, a given network code

is valid if, for each receiver , a linear combination of product

terms of the form , where

form a flow solution to , is nonzero. The

product of the corresponding expressions for receivers has

degree less than or equal to , where , and

the largest exponent of any variable is at most . Applying

Lemma 4 yields the result.

The same proof holds for linearly correlated sources, by con-

sidering variables in place of variables .

Proof of Theorem 4: Recall that links in an acyclic graph

are numbered ancestrally. For , suppose random

network coding is done over links , if any, and any link

is deleted with probability . Let be the graph

formed by removing deleted links from . Let be the event

that there exist code coefficients for undeleted links
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such that the resulting network code is valid for receiver over

. Denote by be the probability of .

To prove the theorem, we need to show that

which follows from showing that

for .

For any , consider any given subset of links

that are deleted, forming graph , and any

given code coefficients for links . We compare the con-

ditional probability of event (when link is deleted

with probability ) and event (when random code

coefficients are chosen for ). There are three cases.

Case 1: event occurs if link is deleted. Then

event occurs regardless of whether link is

deleted, and event occurs regardless of the values

of the random code coefficients for link , since a valid

code exists over with the given code coefficients for links

and zero coefficients for any link

such that .

Case 2: event does not occur if link is deleted,

but occurs if link is not deleted. Then there exists at least

one choice of code coefficients for link and any undeleted

links such that the resulting network code is valid for

all receivers over . Each receiver has a set of terminal

links whose coefficient vectors form a full rank set. Consider

the determinant of the associated matrix, expressed as a poly-

nomial with the code coefficients for

link as random variables. From Lemma 1, is linear

in the variables . The product for

receivers is a polynomial of degree at most in the variables

. If this product is nonzero, the corresponding

code is valid. By the Schwartz–Zippel theorem, this product

takes a nonzero value with probability when the vari-

ables are chosen uniformly at random from a

finite field of size . Thus, the conditional probability of event

is at least .

Case 3: event does not occur regardless of whether

link is deleted. Then event does not occur

regardless of the values of the random code coefficients for link

, since no valid code exists over with the given code

coefficients for links .

In all three cases, the conditional probability of event

is less than or equal to the conditional probability of

event .

The same proof holds for linearly correlated sources, by con-

sidering variables in place of variables .

Proof of Theorem 5 : Note that for any multicast con-
nection problem, the probability that a random network code
is valid for a particular receiver is equal to the probability
that a random network code is valid for a modified connection

problem in which is the only receiver. Consider any single-re-
ceiver connection problem on a graph . Let be the
probability that the connection requirements of are feasible
on the graph obtained by deleting links of with probability

. Let be the graph obtained by deleting
links of with probability , and the graph obtained by
deleting links of with probability . By Theorem 4, the
probability that random network coding gives a code valid for
the connection requirements of on can be lower-bounded
by the probability that the connection requirements are feasible
on , which is equal to .

Consider a single-receiver connection problem with
source processes originating at a common source node, on a
graph consisting of link-disjoint source–receiver paths
of length . Let be any other single-receiver connection
problem with source processes on a -redundant graph
with source–receiver paths of length at most . Suppose links
of each graph are deleted with probability .
We show by induction on that .

For , we consider a set of links in graph
forming link-disjoint source–receiver paths sufficient to
transmit all processes to the receiver. We distinguish two cases.

Case 1: None of the links in are deleted. In this case, the
connections are feasible.

Case 2: There exists some link that is deleted.
Then we have

success ( case 1) ( case 2) (success case 2)

(case 2) (success case 2)

Since has at least as many links as

case 2 case 2

Thus, if we can show that

success case 2 success case 2

the induction hypothesis

success success

follows.
For , the hypothesis is true since success case 2

. For , in case 2 we can remove link leaving
a -redundant graph . By the induction hypothesis,
the probability of success for is less than or equal to that
for .

Thus, , which is the probability that all links on at
least of length- paths are not deleted. The result follows
from observing that the probability that the links on a path are

not deleted is .

Proof of Theorem 6: We consider transmission, by random

linear network coding, of one block of source bits, represented

by vector . The transfer matrix

specifies the mapping from the vector of source bits to

the vector of processes on the set of terminal links incident

to the receiver.

The first part of the proof parallels the analysis in [4].

The -decoder maps a vector of received processes onto a

vector minimizing subject
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to . For a minimum entropy decoder,

, while for a maximum -probability

decoder, . We consider three types

of errors: in the first type, the decoder has the correct value

for but outputs the wrong value for ; in the second, the

decoder has the correct value for but outputs the wrong

value for ; in the third, the decoder outputs wrong values for

both and . The error probability is upper-bounded by the

sum of the probabilities of the three types of errors, .

As in [4], (joint) types of sequences are considered as (joint)

distributions ( , etc.) of dummy variables , etc.

The set of different types of sequences in is denoted by

. Defining the sets of types

and the sets of sequences

we have

Similarly

where the probabilities are taken over realizations of the net-

work transfer matrix corresponding to the random net-

work code. The probabilities

for nonzero can be calculated for a given net-

work, or bounded in terms of and parameters of the network

as we will show later.

As in [4], we can apply some simple cardinality bounds

and the identity

(7)

to obtain

where the exponents and logs are taken with respect to base .

For the minimum entropy decoder, we have

for

for
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which gives

(8)

(9)

(10)

We next show that these bounds also hold for the maximum

-probability decoder, for which, from (7),

(11)

For , , and (11) gives

(12)

We show the inequality at the bottom of the page by considering

two possible cases for any satisfying (12).

Case 1: . Then

Case 2: . Then

which gives

A similar proof holds for .

For , we show the inequality at the top of the following

page by considering two possible cases for any sat-

isfying (11).

Case 1: . Then



4428 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 10, OCTOBER 2006

Case 2: . Then

by (11)

which gives

Here the analysis diverges from that of [4], as we consider

general networks instead of the simple Slepian–Wolf network.

We bound the probabilities in terms of and the network pa-

rameters , the minimum cut capacity between the

receiver and source , , the minimum cut capacity between

the receiver and both sources, and , the maximum source–re-

ceiver path length.

Let and be subgraphs of graph consisting of all links

downstream of sources 1 and 2, respectively, where a link is

considered downstream of a source if or if there

is a directed path from the source to . Let be equal to .

Note that in a random linear network code, any link which

has at least one nonzero input transmits the zero process with

probability , where is the capacity of . This is the same

as the probability that a pair of distinct values for the inputs of

are mapped to the same output value on .

For a given pair of distinct source values, let be the event

that the corresponding inputs to link are distinct, but the cor-

responding values on are the same. Let be the event that

occurs for some link on every source–receiver path in graph

. is then equal to the probability of event .

Let be the graph consisting of node-disjoint

paths, each consisting of links each of unit capacity. We show

by induction on that is upper-bounded by the probability

of event .
We let be the graphs in turn, and consider

any particular source–receiver path in . We distinguish two
cases.

Case 1: does not occur for any of the links on the path
. In this case, the event occurs with probability .

Case 2: There exists some link on the path for which
occurs.

Thus, we have

(case 2) case 2

Since has at least as many links as

case 2 for case 2 for

Therefore, if we can show that

case 2 case 2

the induction hypothesis follows.
For , the hypothesis is true since case 2 .

For , in case 2, removing the link leaves, for , the ef-
fective equivalent of a graph consisting of node-disjoint
length- paths, and, for , a graph of minimum cut at least

. The result follows from applying the induction hypoth-
esis to the resulting graphs.

Thus, gives an upper bound on probability

Substituting this into the error bounds (8) – (10) gives the de-
sired result.

C. Random Flooding Versus . Random Coding on a Grid

Proof of Proposition 1: To simplify notation, we assume

without loss of generality that the axes are chosen such that the

source is at , and . Let be the event that

two different processes are received by a node at grid position

relative to the source. The statement of the proposition is

then

(13)

which we prove by induction.
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Fig. 4. Rectangular grid network. Y denotes the process transmitted on the
link between (x � 1; y) and (x; y), and Y denotes the process transmitted
on the link between (x; y � 1) and (x; y).

Let denote the process transmitted on the link between

and and let denote the process transmitted

on the link between and (refer to Fig. 4).

Observe that , since with proba-

bility node transmits to node the process

complementary to whatever process is being transmitted

from node . Similarly, , so

.

Case 1:

Case 1a: . With probability ,

, resulting in . With probability ,

, resulting in . So

Case 1a

Case 1b: . Either or

, so

Case 1b

Case 2:

Case 2a: . Either or

, so

Case 2a

Case 2b: . By the assump-

tion of Case 2, is also equal to this same process,

and .

Case 2c: . Then and

, so Case 2c .

So

Case 1a

Case 1b

Case 2a

Case 2b

Case 2c

If (13) holds for some , then it also holds for

Now , since there are nodes,

, at which one of the processes being

transmitted to is eliminated with probability . Setting

gives the base case which completes the

induction.

Proof of Proposition 2: In the random coding scheme we

consider, the only randomized variables are the variables at

nodes receiving information on two links. The number of such

nodes on each source–receiver path is , so the total

degree of is . Applying Theorem 3 yields the

result.
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