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A RANDOM MATRIX APPROACH TO NEURAL NETWORKS

BY COSME LOUART, ZHENYU LIAO AND ROMAIN COUILLET1

CentraleSupélec, University of Paris–Saclay

This article studies the Gram random matrix model G = 1
T

�T�, � =
σ(WX), classically found in the analysis of random feature maps and ran-
dom neural networks, where X = [x1, . . . , xT ] ∈ R

p×T is a (data) ma-
trix of bounded norm, W ∈ R

n×p is a matrix of independent zero-mean
unit variance entries and σ : R → R is a Lipschitz continuous (activation)
function—σ(WX) being understood entry-wise. By means of a key concen-
tration of measure lemma arising from nonasymptotic random matrix argu-
ments, we prove that, as n,p,T grow large at the same rate, the resolvent
Q = (G + γ IT )−1, for γ > 0, has a similar behavior as that met in sam-
ple covariance matrix models, involving notably the moment � = T

n E[G],
which provides in passing a deterministic equivalent for the empirical spec-
tral measure of G. Application-wise, this result enables the estimation of the
asymptotic performance of single-layer random neural networks. This in turn
provides practical insights into the underlying mechanisms into play in ran-
dom neural networks, entailing several unexpected consequences, as well as
a fast practical means to tune the network hyperparameters.
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1. Introduction. Artificial neural networks, developed in the late fifties
[Rosenblatt (1958)] in an attempt to develop machines capable of brain-like behav-
iors, know today an unprecedented research interest, notably in its applications to
computer vision and machine learning at large [Krizhevsky, Sutskever and Hinton
(2012), Schmidhuber (2015)] where superhuman performances on specific tasks
are now commonly achieved. Recent progress in neural network performances
however find their source in the processing power of modern computers as well as
in the availability of large datasets rather than in the development of new math-
ematics. In fact, for lack of appropriate tools to understand the theoretical be-
havior of the nonlinear activations and deterministic data dependence underlying
these networks, the discrepancy between mathematical and practical (heuristic)
studies of neural networks has kept widening. A first salient problem in harness-
ing neural networks lies in their being completely designed upon a deterministic
training dataset X = [x1, . . . , xT ] ∈ R

p×T , so that their resulting performances
intricately depend first and foremost on X. Recent works have nonetheless es-
tablished that, when smartly designed, mere randomly connected neural networks
can achieve performances close to those reached by entirely data-driven network
designs [Rahimi and Recht (2007), Saxe et al. (2011)]. As a matter of fact, to han-
dle gigantic databases, the computationally expensive learning phase (the so-called
backpropagation of the error method) typical of deep neural network structures be-
comes impractical, while it was recently shown that smartly designed single-layer
random networks (as studied presently) can already reach superhuman capabilities
[Cambria et al. (2015)] and beat expert knowledge in specific fields [Jaeger and
Haas (2004)]. These various findings have opened the road to the study of neu-
ral networks by means of statistical and probabilistic tools [Choromanska et al.
(2015), Giryes, Sapiro and Bronstein (2016)]. The second problem relates to the
nonlinear activation functions present at each neuron, which have long been known
(as opposed to linear activations) to help design universal approximators for any
input–output target map [Hornik, Stinchcombe and White (1989)].

In this work, we propose an original random matrix-based approach to under-
stand the end-to-end regression performance of single-layer random artificial neu-
ral networks, sometimes referred to as extreme learning machines [Huang, Zhu
and Siew (2006), Huang et al. (2012)], when the number T and size p of the in-
put dataset are large and scale proportionally with the number n of neurons in
the network. These networks can also be seen, from a more immediate statis-
tical viewpoint, as a mere linear ridge-regressor relating a random feature map
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σ(WX) ∈ R
n×T of explanatory variables X = [x1, . . . , xT ] ∈ R

p×T and target
variables y = [y1, . . . , yT ] ∈ R

d×T , for W ∈ R
n×p a randomly designed matrix

and σ(·) a nonlinear R → R function (applied component-wise). Our approach
has several interesting features both for theoretical and practical considerations.
It is first one of the few known attempts to move the random matrix realm away
from matrices with independent or linearly dependent entries. Notable exceptions
are the line of works surrounding kernel random matrices [Couillet and Benaych-
Georges (2016), El Karoui (2010)] as well as large dimensional robust statistics
models [Couillet, Pascal and Silverstein (2015), El Karoui (2013), Zhang, Cheng
and Singer (2014)]. Here, to alleviate the nonlinear difficulty, we exploit concentra-
tion of measure arguments [Ledoux (2005)] for nonasymptotic random matrices,
thereby pushing further the original ideas of El Karoui (2009), Vershynin (2012)
established for simpler random matrix models. While we believe that more power-
ful, albeit more computational intensive, tools [such as an appropriate adaptation
of the Gaussian tools advocated in Pastur and Ŝerbina (2011)] cannot be avoided to
handle advanced considerations in neural networks, we demonstrate here that the
concentration of measure phenomenon allows one to fully characterize the main
quantities at the heart of the single-layer regression problem at hand.

In terms of practical applications, our findings shed light on the already in-
completely understood extreme learning machines which have proved extremely
efficient in handling machine learning problems involving large to huge datasets
[Cambria et al. (2015), Huang et al. (2012)] at a computationally affordable cost.
But our objective is also to pave to path to the understanding of more involved neu-
ral network structures, featuring notably multiple layers and some steps of learning
by means of backpropagation of the error.

Our main contribution is twofold. From a theoretical perspective, we first ob-
tain a key lemma, Lemma 1, on the concentration of quadratic forms of the
type σ(wTX)Aσ(XTw) where w = ϕ(w̃), w̃ ∼ N (0, Ip), with ϕ : R → R and
σ : R → R Lipschitz functions, and X ∈ R

p×T , A ∈ R
n×n are deterministic ma-

trices. This nonasymptotic result (valid for all n,p,T ) is then exploited under a
simultaneous growth regime for n,p,T and boundedness conditions on ‖X‖ and
‖A‖ to obtain, in Theorem 1, a deterministic approximation Q̄ of the resolvent
E[Q], where Q = ( 1

T
�T� + γ IT )−1, γ > 0, � = σ(WX), for some W = ϕ(W̃ ),

W̃ ∈ R
n×p having independent N (0,1) entries. As the resolvent of a matrix (or

operator) is an important proxy for the characterization of its spectrum [see, e.g.,
Akhiezer and Glazman (1993), Pastur and Ŝerbina (2011)], this result therefore al-
lows for the characterization of the asymptotic spectral properties of 1

T
�T�, such

as its limiting spectral measure in Theorem 2.
Application-wise, the theoretical findings are an important preliminary step for

the understanding and improvement of various statistical methods based on ran-
dom features in the large dimensional regime. Specifically, here, we consider the
question of linear ridge-regression from random feature maps, which coincides



A RANDOM MATRIX APPROACH TO NEURAL NETWORKS 1193

with the aforementioned single hidden-layer random neural network known as ex-
treme learning machine. We show that, under mild conditions, both the training

Etrain and testing Etest mean-square errors, respectively, corresponding to the re-
gression errors on known input–output pairs (x1, y1), . . . , (xT , yT ) (with xi ∈ R

p ,
yi ∈ R

d ) and unknown pairings (x̂1, ŷ1), . . . , (x̂T̂
, ŷ

T̂
), almost surely converge to

deterministic limiting values as n,p,T grow large at the same rate (while d is
kept constant) for every fixed ridge-regression parameter γ > 0. Simulations on
real image datasets are provided that corroborate our results.

These findings provide new insights into the roles played by the activation func-
tion σ(·) and the random distribution of the entries of W in random feature maps as
well as by the ridge-regression parameter γ in the neural network performance. We
notably exhibit and prove some peculiar behaviors, such as the impossibility for
the network to carry out elementary Gaussian mixture classification tasks, when
either the activation function or the random weights distribution are ill chosen.

Besides, for the practitioner, the theoretical formulas retrieved in this work al-
low for a fast offline tuning of the aforementioned hyperparameters of the neural
network, notably when T is not too large compared to p. The graphical results
provided in the course of the article were particularly obtained within a 100- to
500-fold gain in computation time between theory and simulations.

The remainder of the article is structured as follows: in Section 2, we introduce
the mathematical model of the system under investigation. Our main results are
then described and discussed in Section 3, the proofs of which are deferred to
Section 5. Section 4 discusses our main findings. The article closes on concluding
remarks on envisioned extensions of the present work in Section 6. The Appendix
provides some intermediary lemmas of constant use throughout the proof section.

Reproducibility: Python 3 codes used to produce the results of Section 4 are
available at https://github.com/Zhenyu-LIAO/RMT4ELM.

Notation: The norm ‖ · ‖ is understood as the Euclidean norm for vectors and
the operator norm for matrices, while the norm ‖ · ‖F is the Frobenius norm for
matrices. All vectors in the article are understood as column vectors.

2. System model. We consider a ridge-regression task on random feature
maps defined as follows. Each input data x ∈ R

p is multiplied by a matrix
W ∈ R

n×p; a nonlinear function σ : R → R is then applied entry-wise to the
vector Wx, thereby providing a set of n random features σ(Wx) ∈ R

n for each
datum x ∈ R

p . The output z ∈ R
d of the linear regression is the inner product

z = βTσ(Wx) for some matrix β ∈ R
n×d to be designed.

From a neural network viewpoint, the n neurons of the network are the virtual
units operating the mapping Wi·x �→ σ(Wi·x) (Wi· being the ith row of W ), for
1 ≤ i ≤ n. The neural network then operates in two phases: a training phase where
the regression matrix β is learned based on a known input–output dataset pair
(X,Y ) and a testing phase where, for β now fixed, the network operates on a new
input dataset X̂ with corresponding unknown output Ŷ .

https://github.com/Zhenyu-LIAO/RMT4ELM
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During the training phase, based on a set of known input X = [x1, . . . , xT ] ∈
R

p×T and output Y = [y1, . . . , yT ] ∈ R
d×T datasets, the matrix β is chosen so

as to minimize the mean square error 1
T

∑T
i=1 ‖zi − yi‖2 + γ ‖β‖2

F , where zi =
βTσ(Wxi) and γ > 0 is some regularization factor. Solving for β , this leads to the
explicit ridge-regressor

β = 1

T
�

(

1

T
�T� + γ IT

)−1
Y T,

where we defined � ≡ σ(WX). This follows from differentiating the mean square
error along β to obtain 0 = γβ + 1

T

∑T
i=1 σ(Wxi)(β

Tσ(Wxi) − yi)
T, so that

( 1
T
��T + γ In)β = 1

T
�Y T which, along with ( 1

T
��T + γ In)

−1� = �( 1
T

�T� +
γ IT )−1, gives the result.

In the remainder, we will also denote

Q ≡
(

1

T
�T� + γ IT

)−1

the resolvent of 1
T
�T�. The matrix Q naturally appears as a key quantity in the

performance analysis of the neural network. Notably, the mean-square error Etrain
on the training dataset X is given by

Etrain = 1

T

∥

∥Y T − �Tβ
∥

∥

2
F = γ 2

T
trY TYQ2.(1)

Under the growth rate assumptions on n,p,T taken below, it shall appear that the
random variable Etrain concentrates around its mean, letting then appear E[Q2] as
a central object in the asymptotic evaluation of Etrain.

The testing phase of the neural network is more interesting in practice as it

unveils the actual performance of neural networks. For a test dataset X̂ ∈ R
p×T̂ of

length T̂ , with unknown output Ŷ ∈ R
d×T̂ , the test mean-square error is defined

by

Etest = 1

T

∥

∥Ŷ T − �̂Tβ
∥

∥

2
F ,

where �̂ = σ(WX̂) and β is the same as used in (1) [and thus only depends
on (X,Y ) and γ ]. One of the key questions in the analysis of such an elemen-
tary neural network lies in the determination of γ which minimizes Etest (and is
thus said to have good generalization performance). Notably, small γ values are
known to reduce Etrain but to induce the popular overfitting issue which gener-
ally increases Etest, while large γ values engender both large values for Etrain and
Etest.

From a mathematical standpoint though, the study of Etest brings forward some
technical difficulties that do not allow for as a simple treatment through the present
concentration of measure methodology as the study of Etrain. Nonetheless, the



A RANDOM MATRIX APPROACH TO NEURAL NETWORKS 1195

analysis of Etrain allows at least for heuristic approaches to become available,
which we shall exploit to propose an asymptotic deterministic approximation for
Etest.

From a technical standpoint, we shall make the following set of assumptions on
the mapping x �→ σ(Wx).

ASSUMPTION 1 (Sub-Gaussian W ). The matrix W is defined by

W = ϕ(W̃ )

(understood entry-wise), where W̃ has independent and identically distributed
N (0,1) entries and ϕ(·) is λϕ-Lipschitz.

For a = ϕ(b) ∈ R
ℓ, ℓ ≥ 1, with b ∼ N (0, Iℓ), we shall subsequently denote

a ∼Nϕ(0, Iℓ).
Under the notation of Assumption 1, we have in particular Wij ∼ N (0,1) if

ϕ(t) = t and Wij ∼ U(−1,1) (the uniform distribution on [−1,1]) if ϕ(t) = −1 +
2 1√

2π

∫∞
t e−x2

dx (ϕ is here a
√

2/π -Lipschitz map).
We further need the following regularity condition on the function σ .

ASSUMPTION 2 (Function σ ). The function σ is Lipschitz continuous with
parameter λσ .

This assumption holds for many of the activation functions traditionally con-
sidered in neural networks, such as sigmoid functions, the rectified linear unit
σ(t) = max(t,0) or the absolute value operator.

When considering the interesting case of simultaneously large data and ran-
dom features (or neurons), we shall then make the following growth rate assump-
tions.

ASSUMPTION 3 (Growth rate). As n → ∞,

0 < lim inf
n

min{p/n,T /n} ≤ lim sup
n

max{p/n,T /n} < ∞

while γ,λσ , λϕ > 0 and d are kept constant. In addition,

lim sup
n

‖X‖ < ∞,

lim sup
n

max
ij

|Yij | < ∞.
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3. Main results.

3.1. Main technical results and training performance. As a standard prelimi-
nary step in the asymptotic random matrix analysis of the expectation E[Q] of the
resolvent Q = ( 1

T
�T� + γ IT )−1, a convergence of quadratic forms based on the

row vectors of � is necessary [see, e.g., Marc̆enko and Pastur (1967), Silverstein
and Bai (1995)]. Such results are usually obtained by exploiting the independence
(or linear dependence) in the vector entries. This not being the case here, as the
entries of the vector σ(XTw) are in general not independent, we resort to a con-
centration of measure approach, as advocated in El Karoui (2009). The following
lemma, stated here in a nonasymptotic random matrix regime (i.e., without neces-
sarily resorting to Assumption 3), and thus of independent interest, provides this
concentration result. For this lemma, we need first to define the following key ma-
trix:

� = E
[

σ
(

wTX
)

T
σ
(

wTX
)]

(2)

of size T × T , where w ∼ Nϕ(0, Ip).

LEMMA 1 (Concentration of quadratic forms). Let Assumptions 1–2 hold. Let

also A ∈ R
T ×T such that ‖A‖ ≤ 1 and, for X ∈ R

p×T and w ∼ Nϕ(0, Ip), define

the random vector σ ≡ σ(wTX)T ∈ R
T . Then

P

(∣

∣

∣

∣

1

T
σ TAσ − 1

T
tr�A

∣

∣

∣

∣

> t

)

≤ Ce
− cT

‖X‖2λ2
ϕλ2

σ
min( t2

t20
,t)

for t0 ≡ |σ(0)| + λϕλσ‖X‖
√

p
T

and C,c > 0 independent of all other parameters.
In particular, under the additional Assumption 3,

P

(
∣

∣

∣

∣

1

T
σ TAσ − 1

T
tr�A

∣

∣

∣

∣

> t

)

≤ Ce−cnmin(t,t2)

for some C,c > 0.

Note that this lemma partially extends concentration of measure results involv-
ing quadratic forms [see, e.g., Rudelson, Vershynin et al. (2013), Theorem 1.1], to
nonlinear vectors.

With this result in place, the standard resolvent approaches of random matrix
theory apply, providing our main theoretical finding as follows.

THEOREM 1 (Asymptotic equivalent for E[Q]). Let Assumptions 1–3 hold

and define Q̄ as

Q̄ ≡
(

n

T

�

1 + δ
+ γ IT

)−1
,
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where δ is implicitly defined as the unique positive solution to δ = 1
T

tr�Q̄. Then,
for all ε > 0, there exists c > 0 such that

∥

∥E[Q] − Q̄
∥

∥≤ cn− 1
2 +ε.

As a corollary of Theorem 1 along with a concentration argument on 1
T

trQ, we
have the following result on the spectral measure of 1

T
�T�, which may be seen as

a nonlinear extension of Silverstein and Bai (1995) for which σ(t) = t .

THEOREM 2 (Limiting spectral measure of 1
T
�T�). Let Assumptions 1–3

hold and, for λ1, . . . , λT the eigenvalues of 1
T
�T�, define μn = 1

T

∑T
i=1 δλi

. Then,
for every bounded continuous function f , with probability one

∫

f dμn −
∫

f dμ̄n → 0,

where μ̄n is the measure defined through its Stieltjes’ transform mμ̄n(z) ≡
∫

(t −
z)−1 dμ̄n(t) given, for z ∈ {w ∈C,ℑ[w] > 0}, by

mμ̄n(z) = 1

T
tr
(

n

T

�

1 + δz

− zIT

)−1

with δz the unique solution in {w ∈ C,ℑ[w] > 0} of

δz = 1

T
tr�
(

n

T

�

1 + δz

− zIT

)−1
.

Note that μ̄n has a well-known form, already met in early random matrix
works [e.g., Silverstein and Bai (1995)] on sample covariance matrix models. No-
tably, μ̄n is also the deterministic equivalent of the empirical spectral measure of
1
T
P TWTWP for any deterministic matrix P ∈ R

p×T such that P TP = �. As such,
to some extent, the results above provide a consistent asymptotic linearization

of 1
T
�T�. From standard spiked model arguments [see, e.g., Benaych-Georges

and Nadakuditi (2012)], the result ‖E[Q] − Q̄‖ → 0 further suggests that also the
eigenvectors associated to isolated eigenvalues of 1

T
�T� (if any) behave similarly

to those of 1
T
P TWTWP , a remark that has fundamental importance in the neural

network performance understanding.
However, as shall be shown in Section 3.3, and contrary to empirical covariance

matrix models of the type P TWTWP , � explicitly depends on the distribution of
Wij (i.e., beyond its first two moments). Thus, the aforementioned linearization

of 1
T
�T�, and subsequently the deterministic equivalent for μn, are not universal

with respect to the distribution of zero-mean unit variance Wij . This is in striking
contrast to the many linear random matrix models studied to date which often
exhibit such universal behaviors. This property too will have deep consequences in
the performance of neural networks as shall be shown through Figure 3 in Section 4
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for an example where inappropriate choices for the law of W lead to network
failure to fulfill the regression task.

For convenience in the following, letting δ and � be defined as in Theorem 1,
we shall denote

 = n

T

�

1 + δ
.(3)

Theorem 1 provides the central step in the evaluation of Etrain, for which not
only E[Q] but also E[Q2] needs be estimated. This last ingredient is provided in
the following proposition.

PROPOSITION 1 (Asymptotic equivalent for E[QAQ]). Let Assumptions 1–3
hold and A ∈ R

T ×T be a symmetric nonnegative definite matrix which is either �

or a matrix with uniformly bounded operator norm (with respect to T ). Then, for

all ε > 0, there exists c > 0 such that, for all n,
∥

∥

∥

∥

E[QAQ] −
(

Q̄AQ̄ +
1
n

tr(Q̄AQ̄)

1 − 1
n

tr2Q̄2
Q̄Q̄

)
∥

∥

∥

∥

≤ cn− 1
2 +ε.

As an immediate consequence of Proposition 1, we have the following result on
the training mean-square error of single-layer random neural networks.

THEOREM 3 (Asymptotic training mean-square error). Let Assumptions 1–3
hold and Q̄,  be defined as in Theorem 1 and (3). Then, for all ε > 0,

n
1
2 −ε(Etrain − Ētrain) → 0

almost surely, where

Etrain = 1

T

∥

∥Y T − �Tβ
∥

∥

2
F = γ 2

T
trY TYQ2,

Ētrain = γ 2

T
trY TYQ̄

[ 1
n

trQ̄2

1 − 1
n

tr(Q̄)2
 + IT

]

Q̄.

Since Q̄ and � share the same orthogonal eigenvector basis, it appears that
Etrain depends on the alignment between the right singular vectors of Y and the
eigenvectors of �, with weighting coefficients

(

γ

λi + γ

)2(

1 + λi

1
n

∑T
j=1 λj (λj + γ )−2

1 − 1
n

∑T
j=1 λ2

j (λj + γ )−2

)

, 1 ≤ i ≤ T ,

where we denoted λi = λi(), 1 ≤ i ≤ T , the eigenvalues of  [which depend
on γ through λi() = n

T (1+δ)
λi(�)]. If lim infn n/T > 1, it is easily seen that

δ → 0 as γ → 0, in which case Etrain → 0 almost surely. However, in the more
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interesting case in practice where lim supn n/T < 1, δ → ∞ as γ → 0 and Etrain
consequently does not have a simple limit (see Section 4.3 for more discussion on
this aspect).

Theorem 3 is also reminiscent of applied random matrix works on empirical
covariance matrix models, such as Bai and Silverstein (2007), Kammoun et al.
(2009), then further emphasizing the strong connection between the nonlinear ma-

trix σ(WX) and its linear counterpart W�
1
2 .

As a side note, observe that, to obtain Theorem 3, we could have used the fact
that trY TYQ2 = − ∂

∂γ
trY TYQ which, along with some analyticity arguments [for

instance when extending the definition of Q = Q(γ ) to Q(z), z ∈ C], would have

directly ensured that ∂Q̄
∂γ

is an asymptotic equivalent for −E[Q2], without the need
for the explicit derivation of Proposition 1. Nonetheless, as shall appear subse-
quently, Proposition 1 is also a proxy to the asymptotic analysis of Etest. Besides,
the technical proof of Proposition 1 quite interestingly showcases the strength of
the concentration of measure tools under study here.

3.2. Testing performance. As previously mentioned, harnessing the asymp-
totic testing performance Etest seems, to the best of the authors’ knowledge, out of
current reach with the sole concentration of measure arguments used for the proof
of the previous main results. Nonetheless, if not fully effective, these arguments
allow for an intuitive derivation of a deterministic equivalent for Etest, which is
strongly supported by simulation results. We provide this result below under the
form of a yet unproven claim, a heuristic derivation of which is provided at the end
of Section 5.

To introduce this result, let X̂ = [x̂1, . . . , x̂T̂
] ∈R

p×T̂ be a set of input data with

corresponding output Ŷ = [ŷ1, . . . , ŷT̂
] ∈ R

d×T̂ . We also define �̂ = σ(WX̂) ∈
R

p×T̂ . We assume that X̂ and Ŷ satisfy the same growth rate conditions as X and
Y in Assumption 3. To introduce our claim, we need to extend the definition of
� in (2) and  in (3) to the following notation: for all pair of matrices (A,B) of
appropriate dimensions,

�AB = E
[

σ
(

wTA
)

T
σ
(

wTB
)]

,

AB = n

T

�AB

1 + δ
,

where w ∼Nϕ(0, Ip). In particular, � = �XX and  = XX .
With these notation in place, we are in position to state our claimed result.

CONJECTURE 1 (Deterministic equivalent for Etest). Let Assumptions 1–2
hold and X̂, Ŷ satisfy the same conditions as X,Y in Assumption 3. Then, for

all ε > 0,

n
1
2 −ε(Etest − Ētest) → 0
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almost surely, where

Etest = 1

T̂

∥

∥Ŷ T − �̂Tβ
∥

∥

2
F ,

Ētest = 1

T̂

∥

∥Ŷ T − T

XX̂
Q̄Y T

∥

∥

2
F

+
1
n

trY TYQ̄Q̄

1 − 1
n

tr(Q̄)2

[

1

T̂
tr

X̂X̂
− 1

T̂
tr(IT + γ Q̄)(

XX̂


X̂X
Q̄)

]

.

While not immediate at first sight, one can confirm (using notably the relation
Q̄ + γ Q̄ = IT ) that, for (X̂, Ŷ ) = (X,Y ), Ētrain = Ētest, as expected.

In order to evaluate practically the results of Theorem 3 and Conjecture 1, it is a
first step to be capable of estimating the values of �AB for various σ(·) activation
functions of practical interest. Such results, which call for completely different
mathematical tools (mostly based on integration tricks), are provided in the subse-
quent section.

3.3. Evaluation of �AB . The evaluation of �AB = E[σ(wTA)Tσ(wTB)] for
arbitrary matrices A,B naturally boils down to the evaluation of its individual
entries, and thus to the calculus, for arbitrary vectors a, b ∈ R

p , of

�ab ≡ E
[

σ
(

wTa
)

σ
(

wTb
)]

(4)
= (2π)−

p
2

∫

σ
(

ϕ(w̃)Ta
)

σ
(

ϕ(w̃)Tb
)

e− 1
2 ‖w̃‖2

dw̃.

The evaluation of (4) can be obtained through various integration tricks for a wide
family of mappings ϕ(·) and activation functions σ(·). The most popular activa-
tion functions in neural networks are sigmoid functions, such as σ(t) = erf(t) ≡

2√
π

∫ t
0 e−u2

du, as well as the so-called rectified linear unit (ReLU) defined by

σ(t) = max(t,0) which has been recently popularized as a result of its robust be-
havior in deep neural networks. In physical artificial neural networks implemented
using light projections, σ(t) = |t | is the preferred choice. Note that all aforemen-
tioned functions are Lipschitz continuous and, therefore, in accordance with As-
sumption 2.

Despite their not abiding by the prescription of Assumptions 1 and 2, we be-
lieve that the results of this article could be extended to more general settings, as
discussed in Section 4. In particular, since the key ingredient in the proof of all our
results is that the vector σ(wTX) follows a concentration of measure phenomenon,
induced by the Gaussianity of w̃ [if w = ϕ(w̃)], the Lipschitz character of σ and
the norm boundedness of X, it is likely, although not necessarily simple to prove,
that σ(wTX) may still concentrate under relaxed assumptions. This is likely the
case for more generic vectors w than Nϕ(0, Ip) as well as for a larger class of
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TABLE 1
Values of �ab for w ∼ N (0, Ip), ∠(a, b) ≡ aTb

‖a‖‖b‖

σ(t) �ab

t aTb

max(t,0) 1
2π

‖a‖‖b‖(∠(a, b) acos(−∠(a, b)) +
√

1 −∠(a, b)2)

|t | 2
π ‖a‖‖b‖(∠(a, b) asin(∠(a, b)) +

√

1 −∠(a, b)2)

erf(t) 2
π asin( 2aTb√

(1+2‖a‖2)(1+2‖b‖2)
)

1{t>0} 1
2 − 1

2π
acos(∠(a, b))

sign(t) 2
π asin(∠(a, b))

cos(t) exp(− 1
2 (‖a‖2 + ‖b‖2)) cosh(aTb)

sin(t) exp(− 1
2 (‖a‖2 + ‖b‖2)) sinh(aTb).

activation functions, such as polynomial or piece-wise Lipschitz continuous func-
tions.

In anticipation of these likely generalizations, we provide in Table 1 the val-
ues of �ab for w ∼ N (0, Ip) [i.e., for ϕ(t) = t] and for a set of functions σ(·) not
necessarily satisfying Assumption 2. Denoting � ≡ �(σ(t)), it is interesting to re-
mark that, since arccos(x) = − arcsin(x) + π

2 , �(max(t,0)) = �(1
2 t) + �(1

2 |t |).
Also, [�(cos(t)) + �(sin(t))]a,b = exp(−1

2‖a − b‖2), a result reminiscent of
Rahimi and Recht (2007).2 Finally, note that �(erf(κt)) → �(sign(t)) as κ → ∞,
inducing that the extension by continuity of erf(κt) to sign(t) propagates to their
associated kernels.

In addition to these results for w ∼ N (0, Ip), we also evaluated �ab =
E[σ(wTa)σ (wTb)] for σ(t) = ζ2t

2 + ζ1t + ζ0 and w ∈ R
p a vector of indepen-

dent and identically distributed entries of zero mean and moments of order k equal
to mk (so m1 = 0); w is not restricted here to satisfy w ∼ Nϕ(0, Ip). In this case,
we find

�ab = ζ 2
2
[

m2
2
(

2
(

aTb
)2 + ‖a‖2‖b‖2)+

(

m4 − 3m2
2
)(

a2)T(b2)]+ ζ 2
1 m2a

Tb
(5)

+ ζ2ζ1m3
[(

a2)Tb + aT
(

b2)]+ ζ2ζ0m2
[

‖a‖2 + ‖b‖2]+ ζ 2
0 ,

where we defined (a2) ≡ [a2
1, . . . , a2

p]T.
It is already interesting to remark that, while classical random matrix models

exhibit a well-known universality property—in the sense that their limiting spectral
distribution is independent of the moments (higher than two) of the entries of the
involved random matrix, here W—for σ(·) a polynomial of order two, �, and

2It is in particular not difficult to prove, based on our framework, that as n/T → ∞, a random
neural network composed of n/2 neurons with activation function σ(t) = cos(t) and n/2 neurons
with activation function σ(t) = sin(t) implements a Gaussian difference kernel.
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thus μn strongly depend on E[W k
ij ] for k = 3,4. We shall see in Section 4 that

this remark has troubling consequences. We will notably infer (and confirm via
simulations) that the studied neural network may provably fail to fulfill a specific
task if the Wij are Bernoulli with zero mean and unit variance but succeed with
possibly high performance if the Wij are standard Gaussian [which is explained
by the disappearance or not of the term (aTb)2 and (a2)T(b2) in (5) if m4 = m2

2].

4. Practical outcomes. We discuss in this section the outcomes of our main
results in terms of neural network application. The technical discussions on The-
orem 1 and Proposition 1 will be made in the course of their respective proofs in
Section 5.

4.1. Simulation results. We first provide in this section a simulation corrobo-
rating the findings of Theorem 3 and suggesting the validity of Conjecture 1. To
this end, we consider the task of classifying the popular MNIST image database
[LeCun, Cortes and Burges (1998)], composed of grayscale handwritten digits of
size 28×28, with a neural network composed of n = 512 units and standard Gaus-
sian W . We represent here each image as a p = 784-size vector; 1024 images of
sevens and 1024 images of nines were extracted from the database and were evenly
split in 512 training and test images, respectively. The database images were jointly
centered and scaled so to fall close to the setting of Assumption 3 on X and X̂ (an
admissible preprocessing intervention). The columns of the output values Y and
Ŷ were taken as unidimensional (d = 1) with Y1j , Ŷ1j ∈ {−1,1} depending on
the image class. Figure 1 displays the simulated (averaged over 100 realizations
of W ) versus theoretical values of Etrain and Etest for three choices of Lipschitz
continuous functions σ(·), as a function of γ .

Note that a perfect match between theory and practice is observed, for both
Etrain and Etest, which is a strong indicator of both the validity of Conjecture 1 and
the adequacy of Assumption 3 to the MNIST dataset.

We subsequently provide in Figure 2 the comparison between theoretical for-
mulas and practical simulations for a set of functions σ(·) which do not satisfy
Assumption 2, that is, either discontinuous or non-Lipschitz maps. The closeness
between both sets of curves is again remarkably good, although to a lesser extent
than for the Lipschitz continuous functions of Figure 1. Also, the achieved perfor-
mances are generally worse than those observed in Figure 1.

It should be noted that the performance estimates provided by Theorem 3 and
Conjecture 1 can be efficiently implemented at low computational cost in practice.
Indeed, by diagonalizing � (which is a marginal cost independent of γ ), Ētrain can
be computed for all γ through mere vector operations; similarly, Ētest is obtained
by the marginal cost of a basis change of �

X̂X
and the matrix product �

XX̂
�

X̂X
,

all remaining operations being accessible through vector operations. As a conse-
quence, the simulation durations to generate the aforementioned theoretical curves
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FIG. 1. Neural network performance for Lipschitz continuous σ(·), Wij ∼ N (0,1), as a function

of γ , for 2-class MNIST data (sevens, nines), n = 512, T = T̂ = 1024, p = 784.

using the linked Python script were found to be 100 to 500 times faster than to gen-
erate the simulated network performances. Beyond their theoretical interest, the
provided formulas therefore allow for an efficient offline tuning of the network hy-
perparameters, notably the choice of an appropriate value for the ridge-regression
parameter γ .

4.2. The underlying kernel. Theorem 1 and the subsequent theoretical find-
ings importantly reveal that the neural network performances are directly related
to the Gram matrix �, which acts as a deterministic kernel on the dataset X. This
is in fact a well-known result found, for example, in Williams (1998) where it is
shown that, as n → ∞ alone, the neural network behaves as a mere kernel operator
(this observation is retrieved here in the subsequent Section 4.3). This remark was
then put at an advantage in Rahimi and Recht (2007) and subsequent works, where
random feature maps of the type x �→ σ(Wx) are proposed as a computationally
efficient proxy to evaluate kernels (x, y) �→ �(x,y).

As discussed previously, the formulas for Ētrain and Ētest suggest that good per-
formances are achieved if the dominant eigenvectors of � show a good alignment
to Y (and similarly for �

XX̂
and Ŷ ). This naturally drives us to finding a priori sim-

ple regression tasks where ill-choices of � may annihilate the neural network per-
formance. Following recent works on the asymptotic performance analysis of ker-
nel methods for Gaussian mixture models [Couillet and Benaych-Georges (2016),

https://github.com/Zhenyu-LIAO/RMT4ELM


1204 C. LOUART, Z. LIAO AND R. COUILLET

FIG. 2. Neural network performance for σ(·) either discontinuous or non-Lipschitz,
Wij ∼N (0,1), as a function of γ , for 2-class MNIST data (sevens, nines), n = 512, T = T̂ = 1024,
p = 784.

Liao and Couillet (2017), Mai and Couillet (2017)] and [Couillet and Kammoun
(2016)], we describe here such a task.

Let x1, . . . , xT/2 ∼ N (0, 1
p
C1) and xT/2+1, . . . , xT ∼ N (0, 1

p
C2) where C1 and

C2 are such that trC1 = trC2, ‖C1‖,‖C2‖ are bounded, and tr(C1 −C2)
2 = O(p).

Accordingly, y1, . . . , yT/2+1 = −1 and yT/2+1, . . . , yT = 1. It is proved in the
aforementioned articles that, under these conditions, it is theoretically possible, in
the large p,T limit, to classify the data using a kernel least-square support vector
machine (i.e., with a training dataset) or with a kernel spectral clustering method
(i.e., in a completely unsupervised manner) with a nontrivial limiting error prob-
ability (i.e., neither zero nor one). This scenario has the interesting feature that
xT

i xj → 0 almost surely for all i = j while ‖xi‖2 − 1
p

tr(1
2C1 + 1

2C2) → 0, almost
surely, irrespective of the class of xi , thereby allowing for a Taylor expansion of
the nonlinear kernels as early proposed in El Karoui (2010).

Transposed to our present setting, the aforementioned Taylor expansion allows
for a consistent approximation �̃ of � by an information-plus-noise (spiked) ran-
dom matrix model [see, e.g., Benaych-Georges and Nadakuditi (2012), Loubaton
and Vallet (2010)]. In the present Gaussian mixture context, it is shown in Couillet
and Benaych-Georges (2016) that data classification is (asymptotically at least)
only possible if �̃ij explicitly contains the quadratic term (xT

i xj )
2 [or combina-
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tions of (x2
i )Txj , (x2

j )Txi , and (x2
i )T(x2

j )]. In particular, letting a, b ∼ N (0,Ci)

with i = 1,2, it is easily seen from Table 1 that only max(t,0), |t |, and cos(t) can
realize the task. Indeed, we have the following Taylor expansions around x = 0:

asin(x) = x + O
(

x3),

sinh(x) = x + O
(

x3),

acos(x) = π

2
− x + O

(

x3),

cosh(x) = 1 + x2

2
+ O

(

x3),

x acos(−x) +
√

1 − x2 = 1 + πx

2
+ x2

2
+ O

(

x3),

x asin(x) +
√

1 − x2 = 1 + x2

2
+ O

(

x3),

where only the last three functions [only found in the expression of �ab corre-
sponding to σ(t) = max(t,0), |t |, or cos(t)] exhibit a quadratic term.

More surprisingly maybe, recalling now equation (5) which considers nonnec-
essarily Gaussian Wij with moments mk of order k, a more refined analysis shows
that the aforementioned Gaussian mixture classification task will fail if m3 = 0
and m4 = m2

2, so for instance, for Wij ∈ {−1,1} Bernoulli with parameter 1
2 .

The performance comparison of this scenario is shown in the top part of Fig-
ure 3 for σ(t) = −1

2 t2 + 1 and C1 = diag(Ip/2,4Ip/2), C2 = diag(4Ip/2, Ip/2),
for Wij ∼ N (0,1) and Wij ∼ Bern [i.e., Bernoulli {(−1, 1

2), (1, 1
2)}]. The choice

of σ(t) = ζ2t
2 + ζ1t + ζ0 with ζ1 = 0 is motivated by Couillet and Benaych-

Georges (2016), Couillet and Kammoun (2016) where it is shown, in a somewhat
different setting, that this choice is optimal for class recovery. Note that, while
the test performances are overall rather weak in this setting, for Wij ∼ N (0,1),
Etest drops below one (the amplitude of the Ŷij ), thereby indicating that nontriv-
ial classification is performed. This is not so for the Bernoulli Wij ∼ Bern case
where Etest is systematically greater than |Ŷij | = 1. This is theoretically explained
by the fact that, from equation (5), �ij contains structural information about the
data classes through the term 2m2

2(x
T

i xj )
2 + (m4 − 3m2

2)(x
2
i )T(x2

j ) which induces

an information-plus-noise model for � as long as 2m2
2 + (m4 − 3m2

2) = 0, that is,
m4 = m2

2 [see Couillet and Benaych-Georges (2016) for details]. This is visually
seen in the bottom part of Figure 3 where the Gaussian scenario presents an iso-
lated eigenvalue for � with corresponding structured eigenvector, which is not the
case of the Bernoulli scenario. To complete this discussion, it appears relevant in
the present setting to choose Wij in such a way that m4 − m2

2 is far from zero,
thus suggesting the interest of heavy-tailed distributions. To confirm this predic-
tion, Figure 3 additionally displays the performance achieved and the spectrum of
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FIG. 3. (Top) Neural network performance for σ(t) = − 1
2 t2 + 1, with different Wij , for a 2-class

Gaussian mixture model (see details in text), n = 512, T = T̂ = 1024, p = 256. (Bottom) Spectra and

second eigenvector of � for different Wij (first eigenvalues are of order n and not shown; associated

eigenvectors are provably noninformative).

� observed for Wij ∼ Stud, that is, following a Student-t distribution with degree
of freedom ν = 7 normalized to unit variance (in this case m2 = 1 and m4 = 5).
Figure 3 confirms the large superiority of this choice over the Gaussian case (note
nonetheless the slight inaccuracy of our theoretical formulas in this case, which
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is likely due to too small values of p,n,T to accommodate Wij with higher order
moments, an observation which is confirmed in simulations when letting ν be even
smaller).

4.3. Limiting cases. We have suggested that � contains, in its dominant eigen-
modes, all the usable information describing X. In the Gaussian mixture example
above, it was notably shown that � may completely fail to contain this information,
resulting in the impossibility to perform a classification task, even if one were to
take infinitely many neurons in the network. For � containing useful information
about X, it is intuitive to expect that both infγ Ētrain and infγ Ētest become smaller
as n/T and n/p become large. It is in fact easy to see that, if � is invertible (which
is likely to occur in most cases if lim infn T/p > 1), then

lim
n→∞ Ētrain = 0,

lim
n→∞ Ētest −

1

T̂

∥

∥Ŷ T − �
X̂X

�−1Y T
∥

∥

2
F = 0

and we fall back on the performance of a classical kernel regression. It is inter-
esting in particular to note that, as the number of neurons n becomes large, the
effect of γ on Etest flattens out. Therefore, a smart choice of γ is only relevant for
small (and thus computationally more efficient) neuron layers. This observation is
depicted in Figure 4 where it is made clear that a growth of n reduces Etrain to zero
while Etest saturates to a nonzero limit which becomes increasingly irrespective
of γ . Note additionally the interesting phenomenon occurring for n ≤ T where
too small values of γ induce important performance losses, thereby suggesting a
strong importance of proper choices of γ in this regime.

Of course, practical interest lies precisely in situations where n is not too large.
We may thus subsequently assume that lim supn n/T < 1. In this case, as sug-
gested by Figures 1–2, the mean-square error performances achieved as γ → 0
may predict the superiority of specific choices of σ(·) for optimally chosen γ . It
is important for this study to differentiate between cases where r ≡ rank(�) is
smaller or greater than n. Indeed, observe that, with the spectral decomposition
� = Ur�rU

T

r for �r ∈ R
r×r diagonal and Ur ∈ R

T ×r ,

δ = 1

T
tr�
(

n

T

�

1 + δ
+ γ IT

)−1
= 1

T
tr�r

(

n

T

�r

1 + δ
+ γ Ir

)−1
,

which satisfies, as γ → 0,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

δ → r

n − r
, r < n,

γ δ → � = 1

T
tr�
(

n

T

�

�
+ IT

)−1
, r ≥ n.

A phase transition therefore exists whereby δ assumes a finite positive value in the
small γ limit if r/n < 1, or scales like 1/γ otherwise.
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FIG. 4. Neural network performance for growing n (256, 512, 1024, 2048, 4096) as a function of

γ , σ(t) = max(t,0); 2-class MNIST data (sevens, nines), T = T̂ = 1024, p = 784. Limiting (n = ∞)
Ētest shown in thick black line.

As a consequence, if r < n, as γ → 0,  → n
T
(1 − r

n
)� and Q̄ ∼ T

n−r
Ur ×

�−1
r UT

r + 1
γ
VrV

T

r , where Vr ∈ R
T ×(n−r) is any matrix such that [UrVr ] is or-

thogonal, so that Q̄ → UrU
T

r and Q̄2 → Ur�
−1
r UT

r ; and thus, Ētrain →
1
T

trYVrV
T

r Y T = 1
T
‖YVr‖2

F , which states that the residual training error corre-
sponds to the energy of Y not captured by the space spanned by �. Since Etrain is
an increasing function of γ , so is Ētrain (at least for all large n), and thus 1

T
‖YVr‖2

F

corresponds to the lowest achievable asymptotic training error.
If instead r > n (which is the most likely outcome in practice), as γ → 0, Q̄ ∼

1
γ
( n
T

�
�

+ IT )−1 and thus

Ētrain
γ→0−→ 1

T
trYQ�

[ 1
n

tr�Q2
�

1 − 1
n

tr(�Q�)2
� + IT

]

Q�Y T,

where � = n
T

�
�

and Q� = ( n
T

�
�

+ IT )−1.
These results suggest that neural networks should be designed both in a way that

reduces the rank of � while maintaining a strong alignment between the dominant
eigenvectors of � and the output matrix Y .

Interestingly, if X is assumed as above to be extracted from a Gaussian mixture
and that Y ∈ R

1×T is a classification vector with Y1j ∈ {−1,1}, then the tools
proposed in Couillet and Benaych-Georges (2016) (related to spike random matrix
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analysis) allow for an explicit evaluation of the aforementioned limits as n,p,T

grow large. This analysis is however cumbersome and outside the scope of the
present work.

5. Proof of the main results. In the remainder, we shall use extensively the
following notation:

� = σ(WX) =

⎡

⎢

⎢

⎣

σ T

1
...

σ T

n

⎤

⎥

⎥

⎦

, W =

⎡

⎢

⎢

⎣

wT

1
...

wT

n

⎤

⎥

⎥

⎦

that is, σi = σ(wT

i X)T. Also, we shall define �−i ∈ R
(n−1)×T the matrix � with

ith row removed, and correspondingly

Q−i =
(

1

T
�T� − 1

T
σiσ

T

i + γ IT

)−1
.

Finally, because of exchangeability, it shall often be convenient to work with the
generic random vector w ∼ Nϕ(0, IT ), the random vector σ distributed as any
of the σi ’s, the random matrix �− distributed as any of the �−i’s, and with the
random matrix Q− distributed as any of the Q−i ’s.

5.1. Concentration results on �. Our first results provide concentration of
measure properties on functionals of �. These results unfold from the follow-
ing concentration inequality for Lipschitz applications of a Gaussian vector; see,
for example, Ledoux (2005), Corollary 2.6, Propositions 1.3, 1.8 or Tao (2012),
Theorem 2.1.12. For d ∈ N, consider μ the canonical Gaussian probability on

R
d defined through its density dμ(w) = (2π)−

d
2 e− 1

2 ‖w‖2
and f : Rd → R a λf -

Lipschitz function. Then we have the said normal concentration

μ

({
∣

∣

∣

∣

f −
∫

f dμ

∣

∣

∣

∣

≥ t

})

≤ Ce
−c t2

λ2
f ,(6)

where C,c > 0 are independent of d and λf . As a corollary [see, e.g., Ledoux
(2005)], for every k ≥ 1,

E
[
∣

∣

∣

∣

f −
∫

f dμ

∣

∣

∣

∣

k]

≤
(

Cλf√
c

)k

.

The main approach to the proof of our results, starting with that of the key
Lemma 1, is as follows: since Wij = ϕ(W̃ij ) with W̃ij ∼ N (0,1) and ϕ Lipschitz,
the normal concentration of W̃ transfers to W which further induces a normal
concentration of the random vector σ and the matrix �, thereby implying that
Lipschitz functionals of σ or � also concentrate. As pointed out earlier, these
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concentration results are used in place for the independence assumptions (and their
multiple consequences on convergence of random variables) classically exploited
in random matrix theory.

Notation: In all subsequent lemmas and proofs, the letters c, ci,C,Ci > 0 will
be used interchangeably as positive constants independent of the key equation pa-
rameters (notably n and t below) and may be reused from line to line. Additionally,
the variable ε > 0 will denote any small positive number; the variables c, ci,C,Ci

may depend on ε.
We start by recalling the first part of the statement of Lemma 1 and subsequently

providing its proof.

LEMMA 2 (Concentration of quadratic forms). Let Assumptions 1–2 hold. Let

also A ∈ R
T ×T such that ‖A‖ ≤ 1 and, for X ∈ R

p×T and w ∼ Nϕ(0, Ip), define

the random vector σ ≡ σ(wTX)T ∈ R
T . Then

P

(
∣

∣

∣

∣

1

T
σ TAσ − 1

T
tr�A

∣

∣

∣

∣

> t

)

≤ Ce
− cT

‖X‖2λ2
ϕλ2

σ
min( t2

t20
,t)

for t0 ≡ |σ(0)| + λϕλσ‖X‖
√

p
T

and C,c > 0 independent of all other parameters.

PROOF. The layout of the proof is as follows: since the application w �→
1
T
σ TAσ is “quadratic” in w, and thus not Lipschitz (therefore not allowing for

a natural transfer of the concentration of w to 1
T
σ TAσ ), we first prove that 1√

T
‖σ‖

satisfies a concentration inequality, which provides a high probability O(1) bound
on 1√

T
‖σ‖. Conditioning on this event, the map w �→ 1√

T
σ TAσ can then be shown

to be Lipschitz (by isolating one of the σ terms for bounding and the other one for
retrieving the Lipschitz character) and, up to an appropriate control of concentra-
tion results under conditioning, the result is obtained.

Following this plan, we first provide a concentration inequality for ‖σ‖. To this
end, note that the application ψ : Rp → R

T , w̃ �→ σ(ϕ(w̃)TX)T is Lipschitz with
parameter λϕλσ‖X‖ as the combination of the λϕ-Lipschitz function ϕ : w̃ �→ w,
the ‖X‖-Lipschitz map R

n → R
T , w �→ XTw and the λσ -Lipschitz map R

T →
R

T , Y �→ σ(Y ). As a Gaussian vector, w̃ has a normal concentration and so does
ψ(w̃). Since the Euclidean norm R

T →R, Y �→ ‖Y‖ is 1-Lipschitz, we thus have
immediately by (6)

P

(∣

∣

∣

∣

∥

∥

∥

∥

1√
T

σ
(

wTX
)

∥

∥

∥

∥

− E
[∥

∥

∥

∥

1√
T

σ
(

wTX
)

∥

∥

∥

∥

]
∣

∣

∣

∣

≥ t

)

≤ Ce
− cT t2

‖X‖2λ2
σ λ2

ϕ

for some c,C > 0 independent of all parameters.
Finally, using again the Lipschitz character of σ(wTX),

∣

∣

∥

∥σ
(

wTX
)∥

∥−
∥

∥σ(0)1T

T

∥

∥

∣

∣≤
∥

∥σ
(

wTX
)

− σ(0)1T

T

∥

∥≤ λσ‖w‖ · ‖X‖
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so that, by Jensen’s inequality,

E
[∥

∥

∥

∥

1√
T

σ
(

wTX
)

∥

∥

∥

∥

]

≤
∣

∣σ(0)
∣

∣+ λσ E
[

1√
T

‖w‖
]

‖X‖

≤
∣

∣σ(0)
∣

∣+ λσ

√

E
[

1

T
‖w‖2

]

‖X‖

with E[‖ϕ(w̃)‖2] ≤ λ2
ϕE[‖w̃‖2] = pλ2

ϕ [since w̃ ∼ N (0, Ip)]. Letting t0 ≡
|σ(0)| + λσλϕ‖X‖

√

p
T

, we then find

P

(
∥

∥

∥

∥

1√
T

σ
(

wTX
)

∥

∥

∥

∥

≥ t + t0

)

≤ Ce
− cT t2

λ2
ϕλ2

σ ‖X‖2
,

which, with the remark t ≥ 4t0 ⇒ (t − t0)
2 ≥ t2/2, may be equivalently stated as

∀t ≥ 4t0, P

(
∥

∥

∥

∥

1√
T

σ
(

wTX
)

∥

∥

∥

∥

≥ t

)

≤ Ce
− cT t2

2λ2
ϕλ2

σ ‖X‖2
.(7)

As a side (but important) remark, note that, since

P

(
∥

∥

∥

∥

�√
T

∥

∥

∥

∥

F

≥ t
√

T

)

= P

(

√

√

√

√

n
∑

i=1

∥

∥

∥

∥

σi√
T

∥

∥

∥

∥

2
≥ t

√
T

)

≤ P

(

max
1≤i≤n

∥

∥

∥

∥

σi√
T

∥

∥

∥

∥

≥
√

T

n
t

)

≤ nP

(
∥

∥

∥

∥

σ√
T

∥

∥

∥

∥

≥
√

T

n
t

)

the result above implies that

∀t ≥ 4t0, P

(
∥

∥

∥

∥

�√
T

∥

∥

∥

∥

F

≥ t
√

T

)

≤ Cne
− cT 2t2

2nλ2
ϕλ2

σ ‖X‖2

and thus, since ‖ · ‖F ≥ ‖ · ‖, we have

∀t ≥ 4t0, P

(∥

∥

∥

∥

�√
T

∥

∥

∥

∥

≥ t
√

T

)

≤ Cne
− cT 2t2

2nλ2
ϕλ2

σ ‖X‖2
.

Thus, in particular, under the additional Assumption 3, with high probability, the
operator norm of �√

T
cannot exceed a rate

√
T .

REMARK 1 (Loss of control of the structure of �). The aforementioned con-
trol of ‖�‖ arises from the bound ‖�‖ ≤ ‖�‖F which may be quite loose (by
as much as a factor

√
T ). Intuitively, under the supplementary Assumption 3, if
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E[σ ] = 0, then �√
T

is “dominated” by the matrix 1√
T

E[σ ]1T

T , the operator norm of

which is indeed of order
√

n and the bound is tight. If σ(t) = t and E[Wij ] = 0, we
however know that ‖ �√

T
‖ = O(1) [Bai and Silverstein (1998)]. One is tempted to

believe that, more generally, if E[σ ] = 0, then ‖ �√
T
‖ should remain of this order.

And, if instead E[σ ] = 0, the contribution of 1√
T

E[σ ]1T

T should merely engender

a single large amplitude isolate singular value in the spectrum of �√
T

and the other

singular values remain of order O(1). These intuitions are not captured by our
concentration of measure approach.

Since � = σ(WX) is an entry-wise operation, concentration results with re-
spect to the Frobenius norm are natural, where with respect to the operator norm
are hardly accessible.

Back to our present considerations, let us define the probability space AK =
{w,‖σ(wTX)‖ ≤ K

√
T }. Conditioning the random variable of interest in

Lemma 2 with respect to AK and its complementary Ac
K , for some K ≥ 4t0,

gives

P

(
∣

∣

∣

∣

1

T
σ
(

wTX
)

Aσ
(

wTX
)

T − 1

T
tr�A

∣

∣

∣

∣

> t

)

≤ P

({
∣

∣

∣

∣

1

T
σ
(

wTX
)

Aσ
(

wTX
)

T − 1

T
tr�A

∣

∣

∣

∣

> t

}

,AK

)

+ P
(

A
c
K

)

.

We can already bound P(Ac
K) thanks to (7). As for the first right-hand side term,

note that on the set {σ(wTX),w ∈ AK}, the function f : RT → R : σ �→ σ TAσ is
K

√
T -Lipschitz. This is because, for all σ,σ + h ∈ {σ(wTX),w ∈ AK},

∥

∥f (σ + h) − f (σ)
∥

∥=
∥

∥hTAσ + (σ + h)TAh
∥

∥≤ K
√

T ‖h‖.

Since conditioning does not allow for a straightforward application of (6), we
consider instead f̃ , a K

√
T -Lipschitz continuation to R

T of fAK
, the restric-

tion of f to AK , such that all the radial derivative of f̃ are constant in the set
{σ,‖σ‖ ≥ K

√
T }. We may thus now apply (6) and our previous results to obtain

P
(∣

∣f̃
(

σ
(

wTX
))

− E
[

f̃
(

σ
(

wTX
))]∣

∣≥ KT t
)

≤ e
− cT t2

‖X‖2λ2
σ λ2

ϕ .

Therefore,

P
({
∣

∣f
(

σ
(

wTX
))

− E
[

f̃
(

σ
(

wTX
))]
∣

∣≥ KT t
}

,AK

)

= P
({
∣

∣f̃
(

σ
(

wTX
))

− E
[

f̃
(

σ
(

wTX
))]
∣

∣≥ KT t
}

,AK

)

≤ P
(∣

∣f̃
(

σ
(

wTX
))

− E
[

f̃
(

σ
(

wTX
))]∣

∣≥ KT t
)

≤ e
− cT t2

‖X‖2λ2
σ λ2

ϕ .
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Our next step is then to bound the difference � = |E[f̃ (σ (wTX))] −
E[f (σ(wTX))]|. Since f and f̃ are equal on {σ,‖σ‖ ≤ K

√
T },

� ≤
∫

‖σ‖≥K
√

T

(∣

∣f (σ)
∣

∣+
∣

∣f̃ (σ )
∣

∣

)

dμσ (σ ),

where μσ is the law of σ(wTX). Since ‖A‖ ≤ 1, for ‖σ‖ ≥ K
√

T , max(|f (σ)|,
|f̃ (σ )|) ≤ ‖σ‖2, and thus

� ≤ 2
∫

‖σ‖≥K
√

T
‖σ‖2 dμσ = 2

∫

‖σ‖≥K
√

T

∫ ∞

t=0
1‖σ‖2≥t dt dμσ

= 2
∫ ∞

t=0
P
({

‖σ‖2 ≥ t
}

,Ac
K

)

dt

≤ 2
∫ K2T

t=0
P
(

A
c
K

)

dt + 2
∫ ∞

t=K2T
P
(∥

∥σ
(

wTX
)∥

∥

2 ≥ t
)

dt

≤ 2P
(

A
c
K

)

K2T + 2
∫ ∞

t=K2T
Ce

− ct

2λ2
ϕλ2

σ ‖X‖2
dt

≤ 2CT K2e
− cT K2

2λ2
ϕλ2

σ ‖X‖2 +
2Cλ2

ϕλ2
σ‖X‖2

c
e
− cT K2

2λ2
ϕλ2

σ ‖X‖2

≤ 6C

c
λ2

ϕλ2
σ‖X‖2,

where in last inequality we used the fact that for x ∈ R, xe−x ≤ e−1 ≤ 1, and

K ≥ 4t0 ≥ 4λσλϕ‖X‖
√

p
T

. As a consequence,

P
({∣

∣f
(

σ
(

wTX
))

− E
[

f
(

σ
(

wTX
))]∣

∣≥ KT t + �
}

,AK

)

≤ Ce
− cT t2

‖X‖2λ2
ϕλ2

σ

so that, with the same remark as before, for t ≥ 4�
KT

,

P
({
∣

∣f
(

σ
(

wTX
))

− E
[

f
(

σ
(

wTX
))]
∣

∣≥ KT t
}

,AK

)

≤ Ce
− cT t2

2‖X‖2λ2
ϕλ2

σ .

To avoid the condition t ≥ 4�
KT

, we use the fact that, probabilities being lower than
one, it suffices to replace C by λC with λ ≥ 1 such that

λCe
−c T t2

2‖X‖2λ2
ϕλ2

σ ≥ 1 for t ≤ 4�

KT
.

The above inequality holds if we take for instance λ = 1
C

e
18C2

c since then t ≤
4�
KT

≤ 24Cλ2
ϕλ2

σ ‖X‖2

cKT
≤ 6Cλϕλσ ‖X‖

c
√

pT
(using successively � ≥ 6C

c
λ2

ϕλ2
σ‖X‖2 and K ≥

4λσλϕ‖X‖
√

p
T

), and thus

λCe
− cT t2

2‖X‖2λ2
ϕλ2

σ ≥ λCe
− 18C2

cp ≥ λCe− 18C2
c ≥ 1.
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Therefore, setting λ = max(1, 1
C

e
C′2c

2 ), we get for every t > 0

P
({
∣

∣f (σ
(

wTX
))

− E
[

f
(

σ
(

wTX)
)]
∣

∣≥ KT t
}

,AK

)

≤ λCe
− cT t2

2‖X‖2λ2
ϕλ2

σ ,

which, together with the inequality P(Ac
K) ≤ Ce

− cT K2

2λ2
ϕλ2

σ ‖X‖2 , gives

P
(
∣

∣f
(

σ
(

wTX
))

− E
[

f
(

σ
(

wTX
))]
∣

∣≥ KT t
)

≤ λCe
− T ct2

2‖X‖2λ2
ϕλ2

σ + Ce
− cT K2

2λ2
ϕλ2

σ ‖X‖2
.

We then conclude

P

(∣

∣

∣

∣

1

T
σ
(

wTX
)

Aσ
(

wTX
)

T − 1

T
tr(�A)

∣

∣

∣

∣

≥ t

)

≤ (λ + 1)Ce
− cT

2‖X‖2λ2
ϕλ2

σ
min(t2/K2,K2)

and, with K = max(4t0,
√

t),

P

(∣

∣

∣

∣

1

T
σ
(

wTX
)

Aσ
(

wTX
)

T − 1

T
tr(�A)

∣

∣

∣

∣

≥ t

)

≤ (λ + 1)Ce
−

cT min( t2

16t20
,t)

2‖X‖2λ2
ϕλ2

σ .

Indeed, if 4t0 ≤
√

t then min(t2/K2,K2) = t , while if 4t0 ≥
√

t then min(t2/K2,

K2) = min(t2/16t2
0 ,16t2

0 ) = t2/16t2
0 . �

As a corollary of Lemma 2, we have the following control of the moments of
1
T
σ TAσ .

COROLLARY 1 (Moments of quadratic forms). Let Assumptions 1–2 hold. For

w ∼ Nϕ(0, Ip), σ ≡ σ(wTX)T ∈R
T , A ∈ R

T ×T such that ‖A‖ ≤ 1, and k ∈ N,

E
[∣

∣

∣

∣

1

T
σ TAσ − 1

T
tr�A

∣

∣

∣

∣

k]

≤ C1

(

t0η√
T

)k

+ C2

(

η2

T

)k

with t0 = |σ(0)| + λσλϕ‖X‖
√

p
T

, η = ‖X‖λσλϕ , and C1,C2 > 0 independent of

the other parameters. In particular, under the additional Assumption 3,

E
[∣

∣

∣

∣

1

T
σ TAσ − 1

T
tr�A

∣

∣

∣

∣

k]

≤ C

nk/2
.
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PROOF. We use the fact that, for a nonnegative random variable Y , E[Y ] =
∫∞

0 P(Y > t) dt , so that

E
[∣

∣

∣

∣

1

T
σ TAσ − 1

T
tr�A

∣

∣

∣

∣

k]

=
∫ ∞

0
P

(∣

∣

∣

∣

1

T
σ TAσ − 1

T
tr�A

∣

∣

∣

∣

k

> u

)

du

=
∫ ∞

0
kvk−1P

(
∣

∣

∣

∣

1

T
σ TAσ − 1

T
tr�A

∣

∣

∣

∣

> v

)

dv

≤
∫ ∞

0
kvk−1Ce

− cT

η2 min( v2

t20
,v)

dv

≤
∫ t0

0
kvk−1Ce

− cT v2

t20 η2
dv +

∫ ∞

t0

kvk−1Ce
− cT v

η2 dv

≤
∫ ∞

0
kvk−1Ce

− cT v2

t20 η2
dv +

∫ ∞

0
kvk−1Ce

− cT v

η2 dv

=
(

t0η√
cT

)k ∫ ∞

0
ktk−1Ce−t2

dt +
(

η2

cT

)k ∫ ∞

0
ktk−1Ce−t dt,

which, along with the boundedness of the integrals, concludes the proof. �

Beyond concentration results on functions of the vector σ , we also have the
following convenient property for functions of the matrix �.

LEMMA 3 (Lipschitz functions of �). Let f : Rn×T → R be a λf -Lipschitz

function with respect to the Froebnius norm. Then, under Assumptions 1–2,

P

(
∣

∣

∣

∣

f

(

�√
T

)

− Ef

(

�√
T

)
∣

∣

∣

∣

> t

)

≤ Ce
− cT t2

λ2
σ λ2

ϕλ2
f

‖X‖2

for some C,c > 0. In particular, under the additional Assumption 3,

P

(∣

∣

∣

∣

f

(

�√
T

)

− Ef

(

�√
T

)∣

∣

∣

∣

> t

)

≤ Ce−cT t2
.

PROOF. Denoting W = ϕ(W̃ ), since vec(W̃ ) ≡ [W̃11, . . . , W̃np] is a Gaussian
vector, by the normal concentration of Gaussian vectors, for g a λg-Lipschitz func-
tion of W with respect to the Frobenius norm [i.e., the Euclidean norm of vec(W)],
by (6),

P
(∣

∣g(W) − E
[

g(W)
]∣

∣> t
)

= P
(∣

∣g
(

ϕ(W̃ )
)

− E
[

g
(

ϕ(W̃ )
)]∣

∣> t
)

≤ Ce
− ct2

λ2
gλ2

ϕ
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for some C,c > 0. Let us consider in particular g : W �→ f (�/
√

T ) and remark
that

∣

∣g(W + H) − g(W)
∣

∣=
∣

∣

∣

∣

f

(

σ((W + H)X)√
T

)

− f

(

σ(WX)√
T

)∣

∣

∣

∣

≤ λf√
T

∥

∥σ
(

(W + H)X
)

− σ(WX)
∥

∥

F

≤ λf λσ√
T

‖HX‖F

= λf λσ√
T

√
trHXXTH T

≤ λf λσ√
T

√

∥

∥XXT
∥

∥‖H‖F

concluding the proof. �

A first corollary of Lemma 3 is the concentration of the Stieltjes’ transform
1
T

tr( 1
T
�T� − zIT )−1 of μn, the empirical spectral measure of 1

T
�T�, for all

z ∈C \R+ (so in particular, for z = −γ , γ > 0).

COROLLARY 2 (Concentration of the Stieltjes’ transform of μn). Under As-

sumptions 1–2, for z ∈ C \R+,

P

(
∣

∣

∣

∣

1

T
tr
(

1

T
�T� − zIT

)−1
− E
[

1

T
tr
(

1

T
�T� − zIT

)−1]∣
∣

∣

∣

> t

)

≤ Ce
− c dist(z,R+)2T t2

λ2
σ λ2

ϕ‖X‖2

for some C,c > 0, where dist(z,R+) is the Hausdorff set distance. In particular,
for z = −γ , γ > 0, and under the additional Assumption 3,

P

(
∣

∣

∣

∣

1

T
trQ − 1

T
tr E[Q]

∣

∣

∣

∣

> t

)

≤ Ce−cnt2
.

PROOF. We can apply Lemma 3 for f : R �→ 1
T

tr(RTR − zIT )−1, since we
have
∣

∣f (R + H) − f (R)
∣

∣

=
∣

∣

∣

∣

1

T
tr
(

(R + H)T(R + H) − zIT

)−1(
(R + H)TH + H TR

)(

RTR − zIT

)−1
∣

∣

∣

∣

≤
∣

∣

∣

∣

1

T
tr
(

(R + H)T(R + H) − zIT

)−1
(R + H)TH

(

RTR − zIT

)−1
∣

∣

∣

∣
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+
∣

∣

∣

∣

1

T
tr
(

(R + H)T(R + H) − zIT

)−1
H TR

(

RTR − zIT

)−1
∣

∣

∣

∣

≤ 2‖H‖
dist(z,R+)

3
2

≤ 2‖H‖F

dist(z,R+)
3
2

,

where, for the second to last inequality, we successively used the relations
| trAB| ≤

√
trAAT

√
trBBT, | trCD| ≤ ‖D‖ trC for nonnegative definite C,

and ‖(RTR − zIT )−1‖ ≤ dist(z,R+)−1, ‖(RTR − zIT )−1RTR‖ ≤ 1, ‖(RTR −
zIT )−1RT‖ = ‖(RTR − zIT )−1RTR(RTR − zIT )−1‖ 1

2 ≤ ‖(RTR − zIT )−1RT ×
R‖ 1

2 ‖(RTR − zIT )−1‖ 1
2 ≤ dist(z,R+)−

1
2 , for z ∈ C\R+, and finally ‖ · ‖ ≤ ‖ · ‖F .

�

Lemma 3 also allows for an important application of Lemma 2 as follows.

LEMMA 4 (Concentration of 1
T
σ TQ−σ ). Let Assumptions 1–3 hold and write

WT = [w1, . . . ,wn]. Define σ ≡ σ(wT

1X)T ∈ R
T and, for WT

− = [w2, . . . ,wn] and

�− = σ(W−X), let Q− = ( 1
T
�T

−�− + γ IT )−1. Then, for A,B ∈R
T ×T such that

‖A‖,‖B‖ ≤ 1

P

(
∣

∣

∣

∣

1

T
σ TAQ−Bσ − 1

T
tr�AE[Q−]B

∣

∣

∣

∣

> t

)

≤ Ce−cnmin(t2,t)

for some C,c > 0 independent of the other parameters.

PROOF. Let f : R �→ 1
T
σ TA(RTR + γ IT )−1Bσ . Reproducing the proof of

Corollary 2, conditionally to 1
T
‖σ‖2 ≤ K for any arbitrary large enough K > 0,

it appears that f is Lipschitz with parameter of order O(1). Along with (7) and
Assumption 3, this thus ensures that

P

(
∣

∣

∣

∣

1

T
σ TAQ−Bσ − 1

T
σ TAE[Q−]Bσ

∣

∣

∣

∣

> t

)

≤ P

(
∣

∣

∣

∣

1

T
σ TAQ−Bσ − 1

T
σ TAE[Q−]Bσ

∣

∣

∣

∣

> t,
‖σ‖2

T
≤ K

)

+ P

(‖σ‖2

T
> K

)

≤ Ce−cnt2

for some C,c > 0. We may then apply Lemma 1 on the bounded norm matrix
AE[Q−]B to further find that

P

(
∣

∣

∣

∣

1

T
σ TAQ−Bσ − 1

T
tr�AE[Q−]B

∣

∣

∣

∣

> t

)

≤ P

(
∣

∣

∣

∣

1

T
σ TAQ−Bσ − 1

T
σ TAE[Q−]Bσ

∣

∣

∣

∣

>
t

2

)
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+ P

(∣

∣

∣

∣

1

T
σ TAE[Q−]Bσ − 1

T
tr�AE[Q−]B

∣

∣

∣

∣

>
t

2

)

≤ C′e−c′nmin(t2,t),

which concludes the proof. �

As a further corollary of Lemma 3, we have the following concentration result
on the training mean-square error of the neural network under study.

COROLLARY 3 (Concentration of the mean-square error). Under Assumptions

1–3,

P

(
∣

∣

∣

∣

1

T
trY TYQ2 − 1

T
trY TYE

[

Q2]
∣

∣

∣

∣

> t

)

≤ Ce−cnt2

for some C,c > 0 independent of the other parameters.

PROOF. We apply Lemma 3 to the mapping f : R �→ 1
T

trY TY(RTR +
γ IT )−2. Denoting Q = (RTR +γ IT )−1 and QH = ((R +H)T(R +H)+γ IT )−1,
remark indeed that

∣

∣f (R + H) − f (R)
∣

∣

=
∣

∣

∣

∣

1

T
trY TY

((

QH )2 − Q2)
∣

∣

∣

∣

≤
∣

∣

∣

∣

1

T
trY TY

(

QH − Q
)

QH

∣

∣

∣

∣

+
∣

∣

∣

∣

1

T
trY TYQ

(

QH − Q
)

∣

∣

∣

∣

=
∣

∣

∣

∣

1

T
trY TYQH ((R + H)T(R + H) − RTR

)

QQH

∣

∣

∣

∣

+
∣

∣

∣

∣

1

T
trY TYQQH ((R + H)T(R + H) − RTR

)

Q

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

T
trY TYQH (R + H)THQQH

∣

∣

∣

∣

+
∣

∣

∣

∣

1

T
trY TYQHH TRQQH

∣

∣

∣

∣

+
∣

∣

∣

∣

1

T
trY TYQQH (R + H)TRQ

∣

∣

∣

∣

+
∣

∣

∣

∣

1

T
trY TYQQHH TRQ

∣

∣

∣

∣

.

As ‖QH (R + H)T‖ =
√

‖QH (R + H)T(R + H)QH‖ and ‖RQ‖ =
√

‖QRTRQ‖
are bounded and 1

T
trY TY is also bounded by Assumption 3, this implies
∣

∣f (R + H) − f (R)
∣

∣≤ C‖H‖ ≤ C‖H‖F
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for some C > 0. The function f is thus Lipschitz with parameter independent of n,
which allows us to conclude using Lemma 3. �

The aforementioned concentration results are the building blocks of the proofs
of Theorem 1–3 which, under all Assumptions 1–3, are established using standard
random matrix approaches.

5.2. Asymptotic equivalents.

5.2.1. First equivalent for E[Q]. This section is dedicated to a first character-
ization of E[Q], in the “simultaneously large” n,p,T regime. This preliminary
step is classical in studying resolvents in random matrix theory as the direct com-
parison of E[Q] to Q̄ with the implicit δ may be cumbersome. To this end, let us
thus define the intermediary deterministic matrix

Q̃ =
(

n

T

�

1 + α
+ γ IT

)−1

with α ≡ 1
T

tr�E[Q−], where we recall that Q− is a random matrix distributed as,
say, ( 1

T
�T� − 1

T
σ1σ

T

1 + γ IT )−1.
First note that, since 1

T
tr� = E[ 1

T
‖σ‖2] and, from (7) and Assumption 3,

P( 1
T
‖σ‖2 > t) ≤ Ce−cnt2

for all large t , we find that 1
T

tr� =
∫∞

0 t2P( 1
T
‖σ‖2 >

t)dt ≤ C′ for some constant C′. Thus, α ≤ ‖E[Q−]‖ 1
T

tr� ≤ C′
γ

is uniformly
bounded.

We will show here that ‖E[Q] − Q̃‖ → 0 as n → ∞ in the regime of As-
sumption 3. As the proof steps are somewhat classical, we defer to the Appendix
some classical intermediary lemmas (Lemmas 5–7). Using the resolvent identity,
Lemma 5, we start by writing

E[Q] − Q̃ = E
[

Q

(

n

T

�

1 + α
− 1

T
�T�

)]

Q̃

= E[Q] n

T

�

1 + α
Q̃ − E

[

Q
1

T
�T�

]

Q̃

= E[Q] n

T

�

1 + α
Q̃ − 1

T

n
∑

i=1

E
[

Qσiσ
T

i

]

Q̃,

which, from Lemma 6, gives for Q−i = ( 1
T
�T� − 1

T
σiσ

T

i + γ IT )−1,

E[Q] − Q̃

= E[Q] n

T

�

1 + α
Q̃ − 1

T

n
∑

i=1

E
[

Q−i

σiσ
T

i

1 + 1
T
σ T

i Q−iσi

]

Q̃
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= E[Q] n

T

�

1 + α
Q̃ − 1

1 + α

1

T

n
∑

i=1

E
[

Q−iσiσ
T

i

]

Q̃

+ 1

T

n
∑

i=1

E
[

Q−iσiσ
T

i ( 1
T
σ T

i Q−iσi − α)

(1 + α)(1 + 1
T
σ T

i Q−iσi)

]

Q̃.

Note now, from the independence of Q−i and σiσ
T

i , that the second right-hand
side expectation is simply E[Q−i]�. Also, exploiting Lemma 6 in reverse on the
rightmost term, this gives

E[Q] − Q̃ = 1

T

n
∑

i=1

E[Q − Q−i]�
1 + α

Q̃

(8)

+ 1

1 + α

1

T

n
∑

i=1

E
[

Qσiσ
T

i Q̃

(

1

T
σ T

i Q−iσi − α

)]

.

It is convenient at this point to note that, since E[Q] − Q̃ is symmetric, we may
write

E[Q] − Q̃ = 1

2

1

1 + α

(

1

T

n
∑

i=1

(

E[Q − Q−i]�Q̃ + Q̃�E[Q − Q−i]
)

(9)

+ 1

T

n
∑

i=1

E
[

(

Qσiσ
T

i Q̃ + Q̃σiσ
T

i Q
)

(

1

T
σ T

i Q−iσi − α

)]

)

.

We study the two right-hand side terms of (9) independently.
For the first term, since Q − Q−i = −Q 1

T
σiσ

T

i Q−i ,

1

T

n
∑

i=1

E[Q − Q−i]�
1 + α

Q̃ = 1

1 + α

1

T
E

[

Q
1

T

n
∑

i=1

σiσ
T

i Q−i

]

�Q̃

= 1

1 + α

1

T
E

[

Q
1

T

n
∑

i=1

σiσ
T

i Q

(

1 + 1

T
σ T

i Q−iσi

)

]

�Q̃,

where we used again Lemma 6 in reverse. Denoting D = diag({1 + 1
T
σ T

i ×
Q−iσi}ni=1), this can be compactly written:

1

T

n
∑

i=1

E[Q − Q−i]�
1 + α

Q̃ = 1

1 + α

1

T
E
[

Q
1

T
�TD�Q

]

�Q̃.

Note at this point that, from Lemma 7, ‖�Q̃‖ ≤ (1 + α)T
n

and

∥

∥

∥

∥

Q
1√
T

�T

∥

∥

∥

∥

=
√

∥

∥

∥

∥

Q
1

T
�T�Q

∥

∥

∥

∥

≤ γ − 1
2 .
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Besides, by Lemma 4 and the union bound,

P
(

max
1≤i≤n

Dii > 1 + α + t
)

≤ Cne−cnmin(t2,t)

for some C,c > 0, so in particular, recalling that α ≤ C′ for some constant C′ > 0,

E
[

max
1≤i≤n

Dii

]

=
∫ 2(1+C′)

0
P
(

max
1≤i≤n

Dii > t
)

dt +
∫ ∞

2(1+C′)
P
(

max
1≤i≤n

Dii > t
)

dt

≤ 2
(

1 + C′)+
∫ ∞

2(1+C′)
Cne−cnmin((t−(1+C′))2,t−(1+C′)) dt

= 2
(

1 + C′)+
∫ ∞

1+C′
Cne−cnt dt

= 2
(

1 + C′)+ e−Cn(1+C′) = O(1).

As a consequence of all the above (and of the boundedness of α), we have that, for
some c > 0,

1

T

∥

∥

∥

∥

E
[

Q
1

T
�TD�Q

]

�Q̃

∥

∥

∥

∥

≤ c

n
.(10)

Let us now consider the second right-hand side term of (9). Using the rela-
tion abT + baT � aaT + bbT in the order of Hermitian matrices [which unfolds
from (a − b)(a − b)T � 0], we have, with a = T

1
4 Qσi(

1
T
σ T

i Q−iσi − α) and

b = T − 1
4 Q̃σi ,

1

T

n
∑

i=1

E
[

(

Qσiσ
T

i Q̃ + Q̃σiσ
TQ
)

(

1

T
σ T

i Q−iσi − α

)]

� 1√
T

n
∑

i=1

E
[

Qσiσ
T

i Q

(

1

T
σ T

i Q−iσi − α

)2]

+ 1

T
√

T

n
∑

i=1

E
[

Q̃σiσ
T

i Q̃
]

=
√

T E
[

Q
1

T
�TD2

2�Q

]

+ n

T
√

T
Q̃�Q̃,

where D2 = diag({ 1
T
σ T

i Q−iσi − α}ni=1). Of course, since we also have −aaT −
bbT � abT + baT [from (a + b)(a + b)T � 0], we have symmetrically

1

T

n
∑

i=1

E
[

(

Qσiσ
T

i Q̃ + Q̃σiσ
TQ
)

(

1

T
σ T

i Q−iσi − α

)]

� −
√

T E
[

Q
1

T
�TD2

2�Q

]

− n

T
√

T
Q̃�Q̃.
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But from Lemma 4,

P
(

‖D2‖ > tnε− 1
2
)

= P

(

max
1≤i≤n

∣

∣

∣

∣

1

T
σ T

i Q−iσi − α

∣

∣

∣

∣

> tnε− 1
2

)

≤ Cne−cmin(n2εt2,n
1
2 +ε

t)

so that, with a similar reasoning as in the proof of Corollary 1,
∥

∥

∥

∥

√
T E
[

Q
1

T
�TD2

2�Q

]
∥

∥

∥

∥

≤
√

T E
[

‖D2‖2]≤ Cnε′− 1
2 ,

where we additionally used ‖Q�‖ ≤
√

T in the first inequality.

Since in addition ‖ n

T
√

T
Q̃�Q̃‖ ≤ Cn− 1

2 , this gives

∥

∥

∥

∥

∥

1

T

n
∑

i=1

E
[

(

Qσiσ
T

i Q̃ + Q̃σiσ
T

i Q
)

(

1

T
σ T

i Q−iσi − α

)]

∥

∥

∥

∥

∥

≤ Cnε− 1
2 .

Together with (9), we thus conclude that

∥

∥E[Q] − Q̃
∥

∥≤ Cnε− 1
2 .

Note in passing that we proved that

∥

∥E[Q − Q−]
∥

∥= T

n

∥

∥

∥

∥

∥

1

T

n
∑

i=1

E[Q − Q−i]
∥

∥

∥

∥

∥

=
∥

∥

∥

∥

1

n
E
[

Q
1

T
�TD�Q

]
∥

∥

∥

∥

≤ c

n
,

where the first equality holds by exchangeability arguments.
In particular,

α = 1

T
tr�E[Q−] = 1

T
tr�E[Q] + 1

T
tr�
(

E[Q−] − E[Q]
)

,

where | 1
T

tr�(E[Q−] − E[Q])| ≤ c
n

. And thus, by the previous result,

∣

∣

∣

∣

α − 1

T
tr�Q̃

∣

∣

∣

∣

≤ Cn− 1
2 +ε 1

T
tr�.

We have proved in the beginning of the section that 1
T

tr� is bounded and thus we
finally conclude that

∥

∥

∥

∥

α − 1

T
tr�Q̃

∥

∥

∥

∥

≤ Cnε− 1
2 .
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5.2.2. Second equivalent for E[Q]. In this section, we show that E[Q] can be
approximated by the matrix Q̄, which we recall is defined as

Q̄ =
(

n

T

�

1 + δ
+ γ IT

)−1
,

where δ > 0 is the unique positive solution to δ = 1
T

tr�Q̄. The fact that δ > 0 is
well defined is quite standard and has already been proved several times for more
elaborate models. Following the ideas of Couillet, Hoydis and Debbah (2012), we
may for instance use the framework of so-called standard interference functions
[Yates (1995)] which claims that, if a map f : [0,∞) → (0,∞), x �→ f (x), satis-
fies x ≥ x′ ⇒ f (x) ≥ f (x′), ∀a > 1, af (x) > f (ax) and there exists x0 such that
x0 ≥ f (x0), then f has a unique fixed point Yates (1995), Theorem 2. It is easily
shown that δ �→ 1

T
tr�Q̄ is such a map, so that δ exists and is unique.

To compare Q̃ and Q̄, using the resolvent identity, Lemma 5, we start by writing

Q̃ − Q̄ = (α − δ)Q̃
n

T

�

(1 + α)(1 + δ)
Q̄

from which

|α − δ| =
∣

∣

∣

∣

1

T
tr�
(

E[Q−] − Q̄
)

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

T
tr�(Q̃ − Q̄)

∣

∣

∣

∣

+ cn− 1
2 +ε

= |α − δ| 1

T
tr

�Q̃ n
T
�Q̄

(1 + α)(1 + δ)
+ cn− 1

2 +ε,

which implies that

|α − δ|
(

1 − 1

T
tr

�Q̃ n
T
�Q̄

(1 + α)(1 + δ)

)

≤ cn− 1
2 +ε.

It thus remains to show that

lim sup
n

1

T
tr

�Q̃ n
T
�Q̄

(1 + α)(1 + δ)
< 1

to prove that |α − δ| ≤ cnε− 1
2 . To this end, note that, by Cauchy–Schwarz’s in-

equality,

1

T
tr

�Q̃ n
T
�Q̄

(1 + α)(1 + δ)
≤
√

n

T (1 + δ)2

1

T
tr�2Q̄2 · n

T (1 + α)2

1

T
tr�2Q̃2

so that it is sufficient to bound the limsup of both terms under the square root
strictly by one. Next, remark that

δ = 1

T
tr�Q̄ = 1

T
tr�Q̄2Q̄−1 = n(1 + δ)

T (1 + δ)2

1

T
tr�2Q̄2 + γ

1

T
tr�Q̄2.
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In particular,

n

T (1 + δ)2

1

T
tr�2Q̄2 =

δ n
T (1+δ)2

1
T

tr�2Q̄2

(1 + δ) n
T (1+δ)2

1
T

tr�2Q̄2 + γ 1
T

tr�Q̄2
≤ δ

1 + δ
.

But at the same time, since ‖( n
T
� + γ IT )−1‖ ≤ γ −1,

δ ≤ 1

γ T
tr�

the limsup of which is bounded. We thus conclude that

lim sup
n

n

T (1 + δ)2

1

T
tr�2Q̄2 < 1.(11)

Similarly, α, which is known to be bounded, satisfies

α = (1 + α)
n

T (1 + α)2

1

T
tr�2Q̃2 + γ

1

T
tr�Q̃2 + O

(

nε− 1
2
)

and we thus have also

lim sup
n

n

T (1 + α)2

1

T
tr�2Q̃2 < 1,

which completes to prove that |α − δ| ≤ cnε− 1
2 .

As a consequence of all this,

‖Q̃ − Q̄‖ = |α − δ| ·
∥

∥

∥

∥

Q̃ n
T
�Q̄

(1 + α)(1 + δ)

∥

∥

∥

∥

≤ cn− 1
2 +ε

and we have thus proved that ‖E[Q] − Q̄‖ ≤ cn− 1
2 +ε for some c > 0.

From this result, along with Corollary 2, we now have that

P

(∣

∣

∣

∣

1

T
trQ − 1

T
tr Q̄
∣

∣

∣

∣

> t

)

≤ P

(
∣

∣

∣

∣

1

T
trQ − 1

T
tr E[Q]

∣

∣

∣

∣

> t −
∣

∣

∣

∣

1

T
tr E[Q] − 1

T
tr Q̄
∣

∣

∣

∣

)

≤ C′e−c′n(t−cn
− 1

2 +ε
) ≤ C′e− 1

2 c′nt

for all large n. As a consequence, for all γ > 0, 1
T

trQ− 1
T

tr Q̄ → 0 almost surely.
As such, the difference mμn − mμ̄n of Stieltjes’ transforms mμn : C \ R

+ → C,
z �→ 1

T
tr( 1

T
�T� − zIT )−1 and mμ̄n : C \ R

+ → C, z �→ 1
T

tr( n
T

�
1+δz

− zIT )−1

[with δz the unique Stieltjes’ transform solution to δz = 1
T

tr�( n
T

�
1+δz

− zIT )−1]

converges to zero for each z in a subset of C \ R
+ having at least one accumu-

lation point (namely R
−), almost surely so [i.e., on a probability set Az with
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P(Az) = 1]. Thus, letting {zk}∞k=1 be a converging sequence strictly included in
R

−, on the probability one space A =⋂∞
k=1 Ak , mμn(zk) − mμ̄n(zk) → 0 for all

k. Now, mμn is complex analytic on C \ R
+ and bounded on all compact sub-

sets of C \ R
+. Besides, it was shown in Silverstein and Bai (1995), Silverstein

and Choi (1995) that the function mμ̄n is well defined, complex analytic and
bounded on all compact subsets of C \R+. As a result, on A, mμn − mμ̄n is com-
plex analytic, bounded on all compact subsets of C \ R

+ and converges to zero
on a subset admitting at least one accumulation point. Thus, by Vitali’s conver-
gence theorem [Titchmarsh (1939)], with probability one, mμn − mμ̄n converges
to zero everywhere on C \ R+. This implies, by Bai and Silverstein (2010), The-
orem B.9, that μn − μ̄n → 0, vaguely as a signed finite measure, with prob-
ability one, and since μ̄n is a probability measure [again from the results of
Silverstein and Bai (1995), Silverstein and Choi (1995)], we have thus proved
Theorem 2.

5.2.3. Asymptotic equivalent for E[QAQ], where A is either � or symmet-

ric of bounded norm. The evaluation of the second-order statistics of the neural
network under study requires, beside E[Q], to evaluate the more involved form
E[QAQ], where A is a symmetric matrix either equal to � or of bounded norm
(so in particular ‖Q̄A‖ is bounded). To evaluate this quantity, first write

E[QAQ]

= E[Q̄AQ] + E
[

(Q − Q̄)AQ
]

= E[Q̄AQ] + E
[

Q

(

n

T

�

1 + δ
− 1

T
�T�

)

Q̄AQ

]

= E[Q̄AQ] + n

T

1

1 + δ
E[Q�Q̄AQ] − 1

T

n
∑

i=1

E
[

Qσiσ
T

i Q̄AQ
]

.

Of course, since QAQ is symmetric, we may write

E[QAQ] = 1

2

(

E[Q̄AQ + QAQ̄] + n

T

1

1 + δ
E[Q�Q̄AQ + QAQ̄�Q]

− 1

T

n
∑

i=1

E
[

Qσiσ
T

i Q̄AQ + QAQ̄σiσ
T

i Q
]

)

,

which will reveal more practical to handle.

First note that, since ‖E[Q] − Q̄‖ ≤ Cnε− 1
2 and A is such that ‖Q̄A‖ is

bounded, ‖E[Q̄AQ]−Q̄AQ̄‖ ≤ ‖Q̄A‖‖E[Q]−Q̄‖ ≤ C ′nε− 1
2 , which provides an

estimate for the first expectation. We next evaluate the last right-hand side expecta-
tion above. With the same notation as previously, from exchangeability arguments
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and using Q = Q− − Q 1
T
σσ TQ−, observe that

1

T

n
∑

i=1

E
[

Qσiσ
T

i Q̄AQ
]

= n

T
E
[

Qσσ TQ̄AQ
]

= n

T
E
[

Q−σσ TQ̄AQ

1 + 1
T
σ TQ−σ

]

= n

T

1

1 + δ
E
[

Q−σσ TQ̄AQ
]

+ n

T

1

1 + δ
E
[

Q−σσ TQ̄AQ
δ − 1

T
σ TQ−σ

1 + 1
T
σ TQ−σ

]

,

which, reusing Q = Q− − Q 1
T
σσ TQ−, is further decomposed as

1

T

n
∑

i=1

E
[

Qσiσ
T

i Q̄AQ
]

= n

T

1

1 + δ
E
[

Q−σσ TQ̄AQ−
]

− n

T 2

1

1 + δ
E
[

Q−σσ TQ̄AQ−σσ TQ−
1 + 1

T
σ TQ−σ

]

+ n

T
E
[

Q−σσ TQ̄AQ−
δ − 1

T
σ TQ−σ

(1 + δ)(1 + 1
T
σ TQ−σ)

]

− n

T 2 E
[

Q−σσ TQ̄AQ−σσ TQ−(δ − 1
T
σ TQ−σ)

(1 + δ)(1 + 1
T
σ TQ−σ)2

]

= n

T

1

1 + δ
E[Q−�Q̄AQ−] − n

T

1

1 + δ
E
[

Q−σσ TQ−
1
T
σ TQ̄AQ−σ

1 + 1
T
σ TQ−σ

]

+ n

T
E
[

Q−
σσ T(δ − 1

T
σ TQ−σ)

(1 + δ)(1 + 1
T
σ TQ−σ)

Q̄AQ−

]

− n

T
E
[

Q−σσ TQ−
1
T
σ TQ̄AQ−σ(δ − 1

T
σ TQ−σ)

(1 + δ)(1 + 1
T
σ TQ−σ)2

]

≡ Z1 + Z2 + Z3 + Z4

(where in the previous to last line, we have merely reorganized the terms conve-
niently) and our interest is in handling Z1 +ZT

1 +Z2 +ZT

2 +Z3 +ZT

3 +Z4 +ZT

4 .
Let us first treat term Z2. Since Q̄AQ− is bounded, by Lemma 4, 1

T
σ TQ̄AQ−σ

concentrates around 1
T

tr�Q̄AE[Q−]; but, as ‖�Q̄‖ is bounded, we also have

| 1
T

tr�Q̄AE[Q−] − 1
T

tr�Q̄AQ̄| ≤ cnε− 1
2 . We thus deduce, with similar argu-
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ments as previously, that

−Q−σσ TQ−Cnε− 1
2 � Q−σσ TQ−

[ 1
T
σ TQ̄AQ−σ

1 + 1
T
σ TQ−σ

−
1
T

tr�Q̄AQ̄

1 + δ

]

� Q−σσ TQ−Cnε− 1
2

with probability exponentially close to one, in the order of symmetric matrices.
Taking expectation and norms on both sides, and conditioning on the aforemen-
tioned event and its complementary, we thus have that

∥

∥

∥

∥

E
[

Q−σσ TQ−
1
T
σ TQ̄AQ−σ

1 + 1
T
σ TQ−σ

]

− E[Q−�Q−]
1
T

tr�Q̄AQ̄

1 + δ

∥

∥

∥

∥

≤
∥

∥E[Q−�Q−]
∥

∥Cnε− 1
2 + C′ne−cnε′

≤
∥

∥E[Q−�Q−]
∥

∥C′′nε− 1
2 .

But, again by exchangeability arguments,

E[Q−�Q−] = E
[

Q−σσ TQ−
]

= E
[

Qσσ TQ

(

1 + 1

T
σ TQ−σ

)2]

= T

n
E
[

Q
1

T
�TD2�Q

]

with D = diag({1 + 1
T
σ T

i Q−σi}), the operator norm of which is bounded as O(1).
So finally,

∥

∥

∥

∥

E
[

Q−σσ TQ−
1
T
σ TQ̄AQ−σ

1 + 1
T
σ TQ−σ

]

− E[Q−�Q−]
1
T

tr�Q̄AQ̄

1 + δ

∥

∥

∥

∥

≤ Cnε− 1
2 .

We now move to term Z3 + ZT

3 . Using the relation abT + baT � aaT + bbT,

E
[(

δ − 1

T
σ TQ−σ

)

Q−σσ TQ̄AQ− + Q−AQ̄σσ TQ−
(1 + 1

T
σ TQ−σ)2

]

�
√

nE
[

(δ − 1
T
σ TQ−σ)2

(1 + 1
T
σ TQ−σ)4

Q−σσ TQ−

]

+ 1√
n

E
[

Q−AQ̄σσ TQ̄AQ−
]

=
√

n
T

n
E
[

Q
1

T
�TD2

3�Q

]

+ 1√
n

E[Q−AQ̄�Q̄AQ−]

and the symmetrical lower bound (equal to the opposite of the upper bound), where
D3 = diag((δ− 1

T
σ T

i Q−iσi)/(1+ 1
T
σ T

i Q−iσi)). For the same reasons as above, the

first right-hand side term is bounded by Cnε− 1
2 . As for the second term, for A =

IT , it is clearly bounded; for A = �, using n
T

Q̄�
1+δ

= IT −γ Q̄, E[Q−AQ̄�Q̄AQ−]
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can be expressed in terms of E[Q−�Q−] and E[Q−Q̄k�Q−] for k = 1,2, all of
which have been shown to be bounded (at most by Cnε). We thus conclude that

∥

∥

∥

∥

E
[(

δ − 1

T
σ TQ−σ

)

Q−σσ TQ̄AQ− + Q−AQ̄σσ TQ−
(1 + 1

T
σ TQ−σ)2

]∥

∥

∥

∥

≤ Cnε− 1
2 .

Finally, term Z4 can be handled similarly as term Z2 and is shown to be of norm

bounded by Cnε− 1
2 .

As a consequence of all the above, we thus find that

E[QAQ] = Q̄AQ̄ + n

T

E[Q�Q̄AQ]
1 + δ

− n

T

E[Q−�Q̄AQ−]
1 + δ

+ n

T

1
T

tr�Q̄AQ̄

(1 + δ)2
E[Q−�Q−] + O

(

nε− 1
2
)

.

It is attractive to feel that the sum of the second and third terms above vanishes.
This is indeed verified by observing that, for any matrix B ,

E[QBQ] − E[Q−BQ] = 1

T
E
[

Qσσ TQ−BQ
]

= 1

T
E
[

Qσσ TQBQ

(

1 + 1

T
σ TQ−σ

)]

= 1

n
E
[

Q
1

T
�TD�QBQ

]

and symmetrically

E[QBQ] − E[QBQ−] = 1

n
E
[

QBQ
1

T
�TD�Q

]

with D = diag(1 + 1
T
σ T

i Q−iσi), and a similar reasoning is performed to con-
trol E[Q−BQ] − E[Q−BQ−] and E[QBQ−] − E[Q−BQ−]. For B bounded,
‖E[Q 1

T
�TD�QBQ]‖ is bounded as O(1), and thus ‖E[QBQ] − E[Q−BQ−]‖

is of order O(n−1). So in particular, taking A of bounded norm, we find that

E[QAQ] = Q̄AQ̄ + n

T

1
T

tr�Q̄AQ̄

(1 + δ)2
E[Q−�Q−] + O

(

nε− 1
2
)

.

Take now B = �. Then, from the relation ABT + BAT � AAT + BBT in the
order of symmetric matrices,

∥

∥

∥

∥

E[Q�Q] − 1

2
E[Q−�Q + Q�Q−]

∥

∥

∥

∥

= 1

2n

∥

∥

∥

∥

E
[

Q
1

T
�TD�Q�Q + Q�Q

1

T
�TD�Q

]
∥

∥

∥

∥

≤ 1

2n

(∥

∥

∥

∥

E
[

Q
1

T
�TD�Q

1

T
�TD�Q

]∥

∥

∥

∥

+
∥

∥E[Q�Q�Q]
∥

∥

)

.
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The first norm in the parenthesis is bounded by Cnε and it thus remains
to control the second norm. To this end, similar to the control of E[Q�Q],
by writing E[Q�Q�Q] = E[Qσ1σ

T

1 Qσ2σ
T

2 Q] for σ1, σ2 independent vectors
with the same law as σ , and exploiting the exchangeability, we obtain after
some calculus that E[Q�Q] can be expressed as the sum of terms of the form
E[Q++ 1

T
�T

++D�++Q++] or E[Q++ 1
T
�T

++D�++Q++ 1
T
�T

++D2�++Q++] for
D,D2 diagonal matrices of norm bounded as O(1), while �++ and Q++
are similar as � and Q, only for n replaced by n + 2. All these terms are
bounded as O(1) and we finally obtain that E[Q�Q�Q] is bounded, and
thus

∥

∥

∥

∥

E[Q�Q] − 1

2
E[Q−�Q + Q�Q−]

∥

∥

∥

∥

≤ C

n
.

With the additional control on Q�Q− −Q−�Q− and Q−�Q−Q−�Q−, to-
gether, this implies that E[Q�Q] = E[Q−�Q−] + O‖·‖(n−1). Hence, for A =
�, exploiting the fact that n

T
1

1+δ
�Q̄� = � − γ Q̄�, we have the simplifica-

tion

E[Q�Q]

= Q̄�Q̄ + n

T

E[Q�Q̄�Q]
1 + δ

− n

T

E[Q−�Q̄�Q−]
1 + δ

+ n

T

1
T

tr�2Q̄2

(1 + δ)2 E[Q−�Q−] + O‖·‖
(

nε− 1
2
)

= Q̄�Q̄ + n

T

1
T

tr�2Q̄2

(1 + δ)2 E[Q�Q] + O‖·‖
(

nε− 1
2
)

or equivalently

E[Q�Q]
(

1 − n

T

1
T

tr�2Q̄2

(1 + δ)2

)

= Q̄�Q̄ + O‖·‖
(

nε− 1
2
)

.

We have already shown in (11) that lim supn
n
T

1
T

tr�2Q̄2

(1+δ)2 < 1, and thus

E[Q�Q] = Q̄�Q̄

1 − n
T

1
T

tr�2Q̄2

(1+δ)2

+ O‖·‖
(

nε− 1
2
)

.

So finally, for all A of bounded norm,

E[QAQ] = Q̄AQ̄ + n

T

1
T

tr�Q̄AQ̄

(1 + δ)2

Q̄�Q̄

1 − n
T

1
T

tr�2Q̄2

(1+δ)2

+ O
(

nε− 1
2
)

,

which proves immediately Proposition 1 and Theorem 3.
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5.3. Derivation of �ab.

5.3.1. Gaussian w. In this section, we evaluate the terms �ab provided in
Table 1. The proof for the term corresponding to σ(t) = erf(t) can be already
be found in Williams (1998), Section 3.1, and is not recalled here. For the other
functions σ(·), we follow a similar approach as in Williams (1998), as detailed
next.

The evaluation of �ab for w ∼N (0, Ip) requires to estimate

I ≡ (2π)−
p
2

∫

Rp
σ
(

wTa
)

σ
(

wTb
)

e− 1
2 ‖w‖2

dw.

Assume that a and b and not linearly dependent. It is convenient to observe that
this integral can be reduced to a two-dimensional integration by considering the
basis e1, . . . , ep defined (for instance) by

e1 = a

‖a‖ , e2 =
b

‖b‖ − aTb
‖a‖‖b‖

a
‖a‖

√

1 − (aTb)2

‖a‖2‖b‖2

and e3, . . . , ep any completion of the basis. By letting w = w̃1e1 + · · · +
w̃pep and a = ã1e1 (ã1 = ‖a‖), b = b̃1e1 + b̃2e2 (where b̃1 = aTb

‖a‖ and b̃2 =

‖b‖
√

1 − (aTb)2

‖a‖2‖b‖2 ), this reduces I to

I = 1

2π

∫

R

∫

R

σ(w̃1ã1)σ (w̃1b̃1 + w̃2b̃2)e
− 1

2 (w̃2
1+w̃2

2) dw̃1 dw̃2.

Letting w̃ = [w̃1, w̃2]T, ã = [ã1,0]T and b̃ = [b̃1, b̃2]T, this is conveniently written
as the two-dimensional integral

I = 1

2π

∫

R2
σ
(

w̃Tã
)

σ
(

w̃Tb̃
)

e− 1
2 ‖w̃‖2

dw̃.

The case where a and b would be linearly dependent can then be obtained by
continuity arguments.

The function σ(t) = max(t,0). For this function, we have

I = 1

2π

∫

min(w̃Tã,w̃Tb̃)≥0
w̃Tã · w̃Tb̃ · e− 1

2 ‖w̃‖2
dw̃.

Since ã = ã1e1, a simple geometric representation lets us observe that

{

w̃|min
(

w̃Tã, w̃Tb̃
)

≥ 0
}

=
{

r cos(θ)e1 + r sin(θ)e2|r ≥ 0, θ ∈
[

θ0 − π

2
,
π

2

]}

,
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where we defined θ0 ≡ arccos( b̃1

‖b̃‖) = − arcsin( b̃1

‖b̃‖) + π
2 . We may thus operate a

polar coordinate change of variable (with inverse Jacobian determinant equal to r)
to obtain

I = 1

2π

∫ π
2

θ0− π
2

∫

R+

(

r cos(θ)ã1
)(

r cos(θ)b̃1 + r sin(θ)b̃2
)

re− 1
2 r2

dθ dr

= ã1
1

2π

∫ π
2

θ0− π
2

cos(θ)
(

cos(θ)b̃1 + sin(θ)b̃2
)

dθ

∫

R+
r3e− 1

2 r2
dr.

With two integration by parts, we have that
∫

R+ r3e− 1
2 r2

dr = 2. Classical trigono-
metric formulas also provide

∫ π
2

θ0− π
2

cos(θ)2 dθ = 1

2
(π − θ0) + 1

2
sin(2θ0)

= 1

2

(

π − arccos
(

b̃1

‖b̃‖

)

+ b̃1

‖b̃‖
b̃2

‖b̃‖

)

∫ π
2

θ0− π
2

cos(θ) sin(θ) dθ = 1

2
sin2(θ0) = 1

2

(

b̃2

‖b̃‖

)2
,

where we used in particular sin(2 arccos(x)) = 2x
√

1 − x2. Altogether, this is after
simplification and replacement of ã1, b̃1 and b̃2,

I = 1

2π
‖a‖‖b‖

(

√

1 −∠(a, b)2 +∠(a, b) arccos
(

−∠(a, b)
))

.

It is worth noticing that this may be more compactly written as

I = 1

2π
‖a‖‖b‖

∫

∠(a,b)

−1
arccos(−x)dx,

which is minimum for ∠(a, b) → −1 (since arccos(−x) ≥ 0 on [−1,1]) and takes
there the limiting value zero. Hence, I > 0 for a and b not linearly dependent.

For a and b linearly dependent, we simply have I = 0 for ∠(a, b) = −1 and
I = 1

2‖a‖‖b‖ for ∠(a, b) = 1.

The function σ(t) = |t |. Since |t | = max(t,0) + max(−t,0), we have
∣

∣wTa
∣

∣ ·
∣

∣wTb
∣

∣

= max
(

wTa,0
)

max
(

wTb,0
)

+ max
(

wT(−a),0
)

max
(

wT(−b),0
)

+ max
(

wT(−a),0
)

max
(

wTb,0
)

+ max
(

wTa,0
)

max
(

wT(−b),0
)

.

Hence, reusing the results above, we have here

I = ‖a‖‖b‖
2π

(

4
√

1 −∠(a, b)2 + 2∠(a, b)

× acos
(

−∠(a, b)
)

− 2∠(a, b) acos
(

∠(a, b)
))

.
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Using the identity acos(−x) − acos(x) = 2 asin(x) provides the expected result.

The function σ(t) = 1t≥0. With the same notation as in the case σ(t) = max(t,0),
we have to evaluate

I = 1

2π

∫

min(w̃Tã,w̃Tb̃)≥0
e− 1

2 ‖w̃‖2
dw̃.

After a polar coordinate change of variable, this is

I = 1

2π

∫ π
2

θ0− π
2

dθ

∫

R+
re− 1

2 r2
dr = 1

2
− θ0

2π

from which the result unfolds.

The function σ(t) = sign(t). Here, it suffices to note that sign(t) = 1t≥0 − 1−t≥0
so that

σ
(

wTa
)

σ
(

wTb
)

= 1wTa≥01wTb≥0 + 1wT(−a)≥01wT(−b)≥0

− 1wT(−a)≥01wTb≥0 − 1wTa≥01wT(−b)≥0

and to apply the result of the previous section, with either (a, b), (−a, b), (a,−b)

or (−a,−b). Since arccos(−x) = − arccos(x) + π , we conclude that

I = (2π)−
p
2

∫

Rp
sign
(

wTa
)

sign
(

wTb
)

e− 1
2 ‖w‖2

dw = 1 − 2θ0

π
.

The functions σ(t) = cos(t) and σ(t) = sin(t). Let us first consider σ(t) =
cos(t). We have here to evaluate

I = 1

2π

∫

R2
cos
(

w̃Tã
)

cos
(

w̃Tb̃
)

e− 1
2 ‖w̃‖2

dw̃

= 1

8π

∫

R2

(

eıw̃Tã + e−ıw̃Tã)(eıw̃Tb̃ + e−ıw̃Tb̃)e− 1
2 ‖w̃‖2

dw̃,

which boils down to evaluating, for d ∈ {ã+ b̃, ã− b̃,−ã+ b̃,−ã− b̃}, the integral

e− 1
2 ‖d‖2

∫

R2
e− 1

2 ‖w̃−ıd‖2
dw̃ = (2π)e− 1

2 ‖d‖2
.

Altogether, we find

I = 1

2

(

e− 1
2 ‖a+b‖2 + e− 1

2 ‖a−b‖2)= e− 1
2 (‖a‖+‖b‖2) cosh

(

aTb
)

.

For σ(t) = sin(t), it suffices to appropriately adapt the signs in the expression
of I [using the relation sin(t) = 1

2ı
(et + e−t )] to obtain in the end

I = 1

2

(

e− 1
2 ‖a+b‖2 + e− 1

2 ‖a−b‖2)= e− 1
2 (‖a‖+‖b‖2) sinh

(

aTb
)

as desired.
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5.4. Polynomial σ(·) and generic w. In this section, we prove equation (5)
for σ(t) = ζ2t

2 + ζ1t + ζ0 and w ∈ R
p a random vector with independent and

identically distributed entries of zero mean and moment of order k equal to mk .
The result is based on standard combinatorics. We are to evaluate

�ab = E
[(

ζ2
(

wTa
)2 + ζ1w

Ta + ζ0
)(

ζ2
(

wTb
)2 + ζ1w

Tb + ζ0
)]

.

After development, it appears that one needs only assess, for say vectors c, d ∈ R
p

that take values in {a, b}, the moments

E
[(

wTc
)2(

wTd
)2]=

∑

i1i2j1j2

ci1ci2dj1dj2E[wi1wi2wj1wj2]

=
∑

i1

m4c
2
i1
d2
i1

+
∑

i1 =j1

m2
2c

2
i1
d2
j1

+ 2
∑

i1 =i2

m2
2ci1di1ci2di2

=
∑

i1

m4c
2
i1
d2
i1

+
(

∑

i1j1

−
∑

i1=j1

)

m2
2c

2
i1
d2
j1

+ 2
(

∑

i1i2

−
∑

i1 =i2

)

m2
2ci1di1ci2di2

= m4
(

c2)T(d2)+ m2
2
(

‖c‖2‖d‖2 −
(

c2)T(d2))

+ 2m2
2
((

cTd
)2 −

(

c2)T(d2))

=
(

m4 − 3m2
2
)(

c2)T(d2)+ m2
2
(

‖c‖2‖d‖2 + 2
(

cTd
)2)

,

E
[(

wTc
)2(

wTd
)]

=
∑

i1i2j

ci1ci2dj E[wi1wi2wj ] =
∑

i1

m3c
2
i1
di1 = m3

(

c2)d,

E
[(

wTc
)2]=

∑

i1i2

ci1ci2E[wi1wi2] = m2‖c‖2,

where we recall the definition (a2) = [a2
1, . . . , a2

p]T. Gathering all the terms for
appropriate selections of c, d leads to (5).

5.5. Heuristic derivation of Conjecture 1. Conjecture 1 essentially follows as
an aftermath of Remark 1. We believe that, similar to �, �̂ is expected to be of

the form �̂ = �̂◦ + ˆ̄σ1T

T̂
, where ˆ̄σ = E[σ(wTX̂)]T, with ‖ �̂◦

√
T
‖ ≤ nε with high

probability. Besides, if X, X̂ were chosen as constituted of Gaussian mixture vec-
tors, with nontrivial growth rate conditions as introduced in Couillet and Benaych-
Georges (2016), it is easily seen that σ̄ = c1p + v and ˆ̄σ = c1p + v̂, for some
constant c and ‖v‖,‖v̂‖ = O(1).

This subsequently ensures that �
XX̂

and �
X̂X̂

would be of a similar form

�◦
XX̂

+ σ̄ ˆ̄σ T and �◦
X̂X̂

+ ˆ̄σ ˆ̄σ T with �◦
XX̂

and �◦
X̂X̂

of bounded norm. These facts,
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that would require more advanced proof techniques, let envision the following
heuristic derivation for Conjecture 1.

Recall that our interest is on the test performance Etest defined as

Etest = 1

T̂

∥

∥Ŷ T − �̂Tβ
∥

∥

2
F ,

which may be rewritten as

Etest = 1

T̂
tr
(

Ŷ Ŷ T
)

− 2

T T̂
tr
(

YQ�T�̂Ŷ T
)

+ 1

T 2T̂
tr
(

YQ�T�̂�̂T�QY T
)

(12)
≡ Z1 − Z2 + Z3.

If �̂ = �̂◦ + ˆ̄σ1T

T̂
follows the aforementioned claimed operator norm control, re-

producing the steps of Corollary 3 leads to a similar concentration for Etest, which
we shall then admit. We are therefore left to evaluating E[Z2] and E[Z3].

We start with the term E[Z2], which we expand as

E[Z2] = 2

T T̂
E
[

tr
(

YQ�T�̂Ŷ T
)]

= 2

T T̂

n
∑

i=1

[

tr
(

YQσi σ̂
T

i Ŷ T
)]

= 2

T T̂

n
∑

i=1

E
[

tr
(

YQ−iσi σ̂
T

i Ŷ T

1 + 1
T
σ T

i Q−iσi

)]

= 2

T T̂

1

1 + δ

n
∑

i=1

E
[

tr
(

YQ−iσi σ̂
T

i Ŷ T
)]

+ 2

T T̂

1

1 + δ

n
∑

i=1

E
[

tr
(

YQ−iσi σ̂
T

i Ŷ T
)δ − 1

T
σ T

i Q−iσi

1 + 1
T
σ T

i Q−iσi

]

= 2n

T T̂

1

1 + δ
tr
(

YE[Q−]�
XX̂

Ŷ T
)

+ 2

T T̂

1

1 + δ
E
[

tr
(

YQ�TD�̂Ŷ T
)]

≡ Z21 + Z22

with D = diag({δ − 1
T
σ T

i Q−iσi}), the operator norm of which is bounded by nε− 1
2

with high probability. Now, observe that, again with the assumption that �̂ = �̂◦ +
σ̄1T

T̂
with controlled �̂◦, Z22 may be decomposed as

2

T T̂

1

1 + δ
E
[

tr
(

YQ�TD�̂Ŷ T
)]

= 2

T T̂

1

1 + δ
E
[

tr
(

YQ�TD�̂◦Ŷ T
)]

+ 2

T T̂

1

1 + δ
1T

T̂
Ŷ TE
[

YQ�TDσ̄
]

.

In the display above, the first right-hand side term is now of order O(nε− 1
2 ). As

for the second right-hand side term, note that Dσ̄ is a vector of independent and
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identically distributed zero mean and variance O(n−1) entries; while note formally
independent of YQ�T, it is nonetheless expected that this independence “weak-
ens” asymptotically (a behavior several times observed in linear random matrix
models), so that one expects by central limit arguments that the second right-hand

side term be also of order O(nε− 1
2 ).

This would thus result in

E[Z2] = 2n

T T̂

1

1 + δ
tr
(

YE[Q−]�
XX̂

Ŷ T
)

+ O
(

nε− 1
2
)

= 2n

T T̂

1

1 + δ
tr
(

YQ̄�
XX̂

Ŷ T
)

+ O
(

nε− 1
2
)

= 2

T̂
tr
(

YQ̄
XX̂

Ŷ T
)

+ O
(

nε− 1
2
)

,

where we used ‖E[Q−] − Q̄‖ ≤ Cnε− 1
2 and the definition 

XX̂
= n

T

�
XX̂

1+δ
.

We then move on to E[Z3] of equation (12), which can be developed as

E[Z3] = 1

T 2T̂
E
[

tr
(

YQ�T�̂�̂T�QY T
)]

= 1

T 2T̂

n
∑

i,j=1

E
[

tr
(

YQσi σ̂
T

i σ̂jσ
T

j QY T
)]

= 1

T 2T̂

n
∑

i,j=1

E
[

tr
(

Y
Q−iσi σ̂

T

i

1 + 1
T
σ T

i Q−iσi

σ̂jσ
T

j Q−j

1 + 1
T
σ T

j Q−jσj

Y T

)]

= 1

T 2T̂

n
∑

i=1

∑

j =i

E
[

tr
(

Y
Q−iσi σ̂

T

i

1 + 1
T
σ T

i Q−iσi

σ̂jσ
T

j Q−j

1 + 1
T
σ T

j Q−jσj

Y T

)]

+ 1

T 2T̂

n
∑

i=1

E
[

tr
(

Y
Q−iσi σ̂

T

i σ̂iσ
T

i Q−i

(1 + 1
T
σ T

i Q−iσi)2
Y T

)]

≡ Z31 + Z32.

In the term Z32, reproducing the proof of Lemma 1 with the condition ‖X̂‖
bounded, we obtain that

σ̂T

i σ̂i

T̂
concentrates around 1

T̂
tr�

X̂X̂
, which allows us to

write

Z32 = 1

T 2T̂

n
∑

i=1

E
[

tr
(

Y
Q−iσi tr(�

X̂X̂
)σ T

i Q−i

(1 + 1
T
σ T

i Q−iσi)2
Y T

)]

+ 1

T 2T̂

n
∑

i=1

E
[

tr
(

Y
Q−iσi(σ̂

T

i σ̂i − tr�
T̂
)σ T

i Q−i

(1 + 1
T
σ T

i Q−iσi)2
Y T

)]

= 1

T 2

tr(�
X̂X̂

)

T̂

n
∑

i=1

E
[

tr
(

Y
Q−iσiσ

T

i Q−i

(1 + 1
T
σ T

i Q−iσi)2
Y T

)]
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+ 1

T 2

n
∑

i=1

E
[

tr
(

YQσi

(

σ̂ T

i σ̂i − tr�
T̂

T̂

)

σ T

i QY T

)]

≡ Z321 + Z322

with D = diag({ 1
T̂
σ T

i σ̂i − 1
T̂

tr�
T̂ T̂

}ni=1) and thus Z322 can be rewritten as

Z322 = 1

T
E
[

tr
(

Y
Q�T

√
T

D
�Q√

T
Y T

)]

= O
(

nε− 1
2
)

while for Z321, following the same arguments as previously, we have

Z321 = 1

T 2

tr�
X̂X̂

T̂

n
∑

i=1

E
[

tr
(

Y
Q−iσiσ

T

i Q−i

(1 + 1
T
σ T

i Q−iσi)2
Y T

)]

= 1

T 2

tr�
X̂X̂

T̂

n
∑

i=1

1

(1 + δ)2
E
[

tr
(

YQ−iσiσ
T

i Q−iY
T
)]

+ 1

T 2

tr�
X̂X̂

T̂

n
∑

i=1

1

(1 + δ)2

× E
[

tr
(

YQσiσ
T

i QY T
)

(

(1 + δ)2 −
(

1 + 1

T
σ T

i Q−iσi

)2)]

= 1

T 2

tr�
X̂X̂

T̂

n
∑

i=1

1

(1 + δ)2 E
[

tr
(

YQ−i�XQ−iY
T
)]

+ 1

T 2

tr�
X̂X̂

T̂

n
∑

i=1

1

(1 + δ)2
E
[

tr
(

YQ�TD�QY T
)]

= n

T 2
E
[

tr
(

YQ−�XQ−Y T
)] tr(�

X̂X̂
)

T̂ (1 + δ)2
+ O

(

nε− 1
2
)

,

where D = diag({(1 + δ)2 − (1 + 1
T
σ T

i Q−iσi)
2}ni=1).

Since E[Q−AQ−] = E[QAQ]+O‖·‖(nε− 1
2 ), we are free to plug in the asymp-

totic equivalent of E[QAQ] derived in Section 5.2.3, and we deduce

Z32 = n

T 2
E
[

trY
(

Q̄�XQ̄ +
Q̄XQ̄ · 1

n
tr(XQ̄�XQ̄)

1 − 1
n

tr(2
XQ̄2)

)

Y T

] tr(�
X̂X̂

)

T̂ (1 + δ)2

=
1
n

tr(Y Q̄XQ̄Y T)

1 − 1
n

tr(2
XQ̄2)

1

T̂
tr(

X̂X̂
) + O

(

nε− 1
2
)

.

The term Z31 of the double sum over i and j (j = i) needs more efforts. To
handle this term, we need to remove the dependence of both σi and σj in Q in
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sequence. We start with j as follows:

Z31 = 1

T 2T̂

n
∑

i=1

∑

j =i

E
[

tr
(

YQσi σ̂
T

i

σ̂jσ
T

j Q−j

1 + 1
T
σ T

j Q−jσj

Y T

)]

= 1

T 2T̂

n
∑

i=1

∑

j =i

E
[

tr
(

YQ−jσi σ̂
T

i

σ̂jσ
T

j Q−j

1 + 1
T
σ T

j Q−jσj

Y T

)]

− 1

T 3T̂

n
∑

i=1

∑

j =i

E
[

tr
(

Y
Q−jσjσ

T

j Q−jσi σ̂
T

i

1 + 1
T
σ T

j Q−jσj

σ̂jσ
T

j Q−j

1 + 1
T
σ T

j Q−jσj

Y T

)]

≡ Z311 − Z312,

where in the previous to last inequality we used the relation

Q = Q−j −
Q−jσjσ

T

j Q−j

1 + 1
T
σ T

j Q−jσj

.

For Z311, we replace 1 + 1
T
σ T

j Q−jσj by 1 + δ and take expectation over wj :

Z311 = 1

T 2T̂

n
∑

i=1

∑

j =i

E
[

tr
(

YQ−jσi σ̂
T

i

σ̂jσ
T

j Q−j

1 + 1
T
σ T

j Q−jσj

Y T

)]

= 1

T 2T̂

n
∑

j=1

E
[

tr
(

Y
Q−j�

T

−j �̂−j σ̂jσ
T

j Q−j

1 + 1
T
σ T

j Q−jσj

Y T

)]

= 1

T 2T̂

1

1 + δ

n
∑

j=1

E
[

tr
(

YQ−j�
T

−j �̂−j σ̂jσ
T

j Q−jY
T
)]

+ 1

T 2T̂

1

1 + δ

n
∑

j=1

E
[

tr
(

Y
Q−j�

T

−j �̂−j σ̂jσ
T

j Q−j (δ − 1
T
σ T

j Q−jσj )

1 + 1
T
σ T

j Q−jσj

Y T

)]

≡ Z3111 + Z3112.

The idea to handle Z3112 is to retrieve forms of the type
∑n

j=1 dj σ̂jσ
T

j = �̂TD�

for some D satisfying ‖D‖ ≤ nε− 1
2 with high probability. To this end, we use

Q−j

�T

−j �̂−j

T
= Q−j

�T�̂

T
− Q−j

σj σ̂
T

j

T

= Q
�T�̂

T
+

Qσjσ
T

j Q

1 − 1
T
σ T

j Qσj

�T�̂

T
− Q−j

σj σ̂
T

j

T
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and thus Z3112 can be expanded as the sum of three terms that shall be studied in
order:

Z3112 = 1

T 2T̂

1

1 + δ

n
∑

j=1

E
[

tr
(

Y
Q−j�

T

−j �̂−j σ̂jσ
T

j Q−j (δ − 1
T
σ T

j Q−jσj )

1 + 1
T
σ T

j Q−jσj

Y T

)]

= 1

T T̂

1

1 + δ
E
[

tr
(

YQ
�T�̂

T
�̂TD�QY T

)]

+ 1

T T̂

1

1 + δ

n
∑

j=1

E
[

tr
(

Y
Qσjσ

T

j Q�T�̂σ̂j (δ − 1
T
σ T

j Q−jσj )σ
T

j Q

T (1 − 1
T
σ T

j Qσj )
Y T

)]

− 1

T 2T̂

1

1 + δ

n
∑

j=1

E
[

tr
(

YQσj σ̂
T

j σ̂jσ
T

j Q

(

δ − 1

T
σ T

j Q−jσj

)

×
(

1 + 1

T
σ T

j Q−jσj

)

Y T

)]

≡ Z31121 + Z31122 − Z31123,

where D = diag({δ − 1
T
σ T

j Q−jσj }ni=1). First, Z31121 is of order O(nε− 1
2 ) since

Q�T�̂
T

is of bounded operator norm. Subsequently, Z31122 can be rewritten as

Z31122 = 1

T̂

1

1 + δ
E
[

tr
(

YQ
�TD�

T
QY T

)]

= O
(

nε− 1
2
)

with here

D = diag
{((

δ − 1

T
σ T

j Q−jσj

)(

1

T
tr
(

Q−j

�T

−j �̂−j

T
�

X̂X

)

+ 1

T
tr(Q−j�)

1

T
tr�

X̂X̂

))

/

((

1 − 1

T
σ T

j Qσj

)(

1 + 1

T
σ T

j Q−jσj

))}n

i=1
.

The same arguments apply for Z31123 but for

D = diag
{ tr�

X̂X̂

T

(

δ − 1

T
σ T

j Q−jσj

)(

1 + 1

T
σ T

j Q−jσj

)}n

i=1
,

which completes to show that |Z3112| ≤ Cnε− 1
2 and thus

Z311 = Z3111 + O
(

nε− 1
2
)

= 1

T 2T̂

1

1 + δ

n
∑

j=1

E
[

tr
(

YQ−j�
T

−j �̂−j σ̂jσ
T

j Q−jY
T
)]

+ O
(

nε− 1
2
)

.
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It remains to handle Z3111. Under the same claims as above, we have

Z3111 = 1

T T̂

1

1 + δ

n
∑

j=1

E
[

tr
(

YQ−j

�T

−j �̂−j

T
�

X̂X
Q−jY

T

)]

= 1

T T̂

1

1 + δ

n
∑

j=1

∑

i =j

E
[

tr
(

YQ−j

σi σ̂
T

i

T
�

X̂X
Q−jY

T

)]

= 1

T 2T̂

1

1 + δ

n
∑

j=1

∑

i =j

E
[

tr
(

Y
Q−ijσi σ̂

T

i

1 + 1
T
σ T

i Q−ijσi

�
X̂X

Q−ijY
T

)]

− 1

T 3T̂

1

1 + δ

n
∑

j=1

∑

i =j

E
[

tr
(

Y
Q−ijσi σ̂

T

i

1 + 1
T
σ T

i Q−ijσi

× �
X̂X

Q−ijσiσ
T

i Q−ij

1 + 1
T
σ T

i Q−ijσi

Y T

)]

≡ Z31111 − Z31112,

where we introduced the notation Q−ij = ( 1
T
�T� − 1

T
σiσ

T

i − 1
T
σjσ

T

j + γ IT )−1.

For Z31111, we replace 1
T
σ T

i Q−ijσi by δ, and take the expectation over wi , as
follows:

Z31111 = 1

T 2T̂

1

1 + δ

n
∑

j=1

∑

i =j

E
[

tr
(

Y
Q−ijσi σ̂

T

i

1 + 1
T
σ T

i Q−ijσi

�
X̂X

Q−ijY
T

)]

= 1

T 2T̂

1

(1 + δ)2

n
∑

j=1

∑

i =j

E
[

tr
(

YQ−ijσi σ̂
T

i �
X̂X

Q−ijY
T
)]

+ 1

T 2T̂

1

(1 + δ)2

×
n
∑

j=1

∑

i =j

E
[

tr
(

Y
Q−ijσi σ̂

T

i (δ − 1
T
σ T

i Q−ijσi)

1 + 1
T
σ T

i Q−ijσi

�
X̂X

Q−ijY
T

)]

= n2

T 2T̂

1

(1 + δ)2 E
[

tr
(

YQ−−�
XX̂

�
X̂X

Q−−Y T
)]

+ 1

T 2T̂

1

(1 + δ)2

n
∑

j=1

∑

i =j

E
[

tr
(

YQ−jσi σ̂
T

i

(

δ − 1

T
σ T

i Q−ijσi

)

× �
X̂X

Q−jY
T

)]
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+ 1

T 2T̂

1

(1 + δ)2

n
∑

j=1

∑

i =j

E
[

tr
(

YQ−jσi σ̂
T

i

× �
X̂X

Q−j
1
T
σiσ

T

i Q−j

1 − 1
T
σ T

i Q−jσi

Y T

(

δ − 1

T
σ T

i Q−ijσi

))]

= n2

T 2T̂

1

(1 + δ)2 E
[

tr
(

YQ−−�
XX̂

�
X̂X

Q−−Y T
)]

+ 1

T 2T̂

1

(1 + δ)2

n
∑

j=1

E
[

tr
(

YQ−j�
T

−jD�̂−j�X̂X
Q−jY

T
)]

+ n

T 2T̂

1

(1 + δ)2

n
∑

j=1

E
[

YQ−j�
T

−jD
′�−jQ−jY

T
]

+ O
(

nε− 1
2
)

= n2

T 2T̂

1

(1 + δ)2 E
[

tr
(

YQ−−�
XX̂

�
X̂X

Q−−Y T
)]

+ O
(

nε− 1
2
)

with Q−− having the same law as Q−ij , D = diag({δ − 1
T
σ T

i Q−ijσi}ni=1)

and D′ = diag{ (δ− 1
T

σT

i Q−ijσi)
1
T

tr(�
X̂X

Q−ij �
XX̂

)

(1− 1
T

σT

i Q−jσi)(1+ 1
T

σT

i Q−ijσi)
}ni=1, both expected to be of order

O(nε− 1
2 ). Using again the asymptotic equivalent of E[QAQ] devised in Sec-

tion 5.2.3, we then have

Z31111 = n2

T 2T̂

1

(1 + δ)2 E
[

tr
(

YQ−−�
XX̂

�
X̂X

Q−−Y T
)]

+ O
(

nε− 1
2
)

= 1

T̂
tr
(

YQ̄
XX̂


X̂X

Q̄Y T
)

+ 1

T̂
tr(XQ̄

XX̂


X̂X
Q̄)

1
n

tr(Y Q̄XQ̄Y T)

1 − 1
n

tr(2
XQ̄2)

+ O
(

nε− 1
2
)

.

Following the same principle, we deduce for Z31112 that

Z31112 = 1

T 3T̂

1

1 + δ

n
∑

j=1

∑

i =j

E
[

tr
(

Y
Q−ijσi σ̂

T

i

1 + 1
T
σ T

i Q−ijσi

�
X̂X

Q−ijσiσ
T

i Q−ij

1 + 1
T
σ T

i Q−ijσi

Y T

)]

= 1

T 3T̂

1

(1 + δ)3

n
∑

j=1

∑

i =j

E
[

tr
(

YQ−ijσiσ
T

i Q−ijY
T
) 1

T
tr(�

X̂X
Q−ij�XX̂

)

]

+ 1

T 3T̂

1

(1 + δ)3

n
∑

j=1

∑

i =j

E
[

tr
(

YQ−jσiDiσ
T

i Q−jY
T
)]

+ O
(

nε− 1
2
)
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= n2

T 3T̂

1

1 + δ
E
[

tr
(

YQ−−�XQ−−Y T
) 1

T
tr(�

X̂X
Q−−�

XX̂
)

]

+ O
(

nε− 1
2
)

= 1

T̂
tr(

X̂X
Q̄

XX̂
)

1
n

tr(Y Q̄XQ̄Y T)

1 − 1
n

tr(2
XQ̄2)

+ O
(

nε− 1
2
)

with Di = 1
T

tr(�
X̂X

Q−ij�XX̂
)[(1 + δ)2 − (1 + 1

T
σ T

i Q−ijσi)
2], also believed to

be of order O(nε− 1
2 ). Recalling the fact that Z311 = Z3111 +O(nε− 1

2 ), we can thus
conclude for Z311 that

Z311 = 1

T̂
tr
(

YQ̄
XX̂


X̂X

Q̄Y T
)

+ 1

T̂
tr(XQ̄

XX̂


X̂X
Q̄)

1
n

tr(Y Q̄XQ̄Y T)

1 − 1
n

tr(2
XQ̄2)

− 1
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tr(

X̂X
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)

1
n

tr(Y Q̄XQ̄Y T)
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n

tr(2
XQ̄2)

+ O
(

nε− 1
2
)

.

As for Z312, we have

Z312 = 1

T 3T̂

n
∑

i=1

∑

j =i

E
[

tr
(

Y
Q−jσjσ

T

j Q−jσi σ̂
T

i
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T
σ T
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T
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T
σ T
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Y T
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T 3T̂

n
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E
[
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(

Y
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T
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T
σ T
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T

j Q−j

1 + 1
T
σ T

j Q−jσj

Y T

)]

.

Since Q−j
1
T
�T

−j �̂−j is expected to be of bounded norm, using the concentration

inequality of the quadratic form 1
T
σ T

j Q−j
�T

−j �̂−j

T
σ̂j , we infer

Z312 = 1

T T̂

n
∑

j=1

E
[

tr
(

Y
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T

j Q−jY
T

(1 + 1
T
σ T
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)

×
(

1

T 2 tr
(

Q−j�
T

−j �̂−j�X̂X

)

+ O
(

nε− 1
2
)
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= 1

T T̂

n
∑
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E
[
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(

Y
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T

j Q−jY
T
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T
σ T

j Q−jσj )2

)(

1

T 2 tr
(

Q−j�
T

−j �̂−j�X̂X

)

)]

+ O
(
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2
)

.



1242 C. LOUART, Z. LIAO AND R. COUILLET

We again replace 1
T
σ T

j Q−jσj by δ and take expectation over wj to obtain

Z312 = 1

T T̂

1

(1 + δ)2

n
∑

j=1

E
[

tr
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YQ−jσjσ
T

j Q−jY
T
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(
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)

]
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1

(1 + δ)2
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∑
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E
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T
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1
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+ O
(
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T T̂

1
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[

tr
(
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T 2 tr
(
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]
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T T̂
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tr
(

YQ�TD�QY T
) 1

T 2 tr
(
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−�̂−�
X̂X
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]

+ O
(

nε− 1
2
)

with Dj = (1 + δ)2 − (1 + 1
T
σ T

j Q−jσj )
2 = O(nε− 1

2 ), which eventually brings the
second term to vanish, and we thus get

Z312 = n

T T̂

1
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E
[

tr
(

YQ−�XQ−Y T
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tr
(
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)

]

+ O
(
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2
)

.

For the term 1
T 2 tr(Q−�T

−�̂−�
X̂X

) we apply again the concentration inequality
to get

1
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with high probability, where D = diag({δ − 1
T
σ T

i Q−ijσi}ni=1), the norm of which

is of order O(nε− 1
2 ). This entails

1

T 2
tr
(

Q−�T

−�̂−�
X̂X

)

= n

T 2

1

1 + δ
tr
(

�
X̂X

E[Q−−]�
XX̂

)

+ O
(

nε− 1
2
)

with high probability. Once more plugging the asymptotic equivalent of E[QAQ]
deduced in Section 5.2.3, we conclude for Z312 that

Z312 = 1

T̂
tr(

X̂X
Q̄

XX̂
)

1
n

tr(Y Q̄XQ̄Y T)
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n
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XQ̄2)

+ O
(
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)

and eventually for Z31

Z31 = 1
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tr
(

YQ̄
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)
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tr(XQ̄

XX̂
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1
n

tr(Y Q̄XQ̄Y T)
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n
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T̂
tr(

X̂X
Q̄

XX̂
)

1
n
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n

tr(2
XQ̄2)

+ O
(
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2
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.

Combining the estimates of E[Z2] as well as Z31 and Z32, we finally have the
estimates for the test error defined in (12) as

Etest = 1

T̂

∥

∥Ŷ T − T

XX̂
Q̄Y T

∥

∥

2
F

+
1
n

tr(Y Q̄XQ̄Y T)

1 − 1
n

tr(2
XQ̄2)

[

1

T̂
tr

X̂X̂

+ 1

T̂
tr(XQ̄

XX̂


X̂X
Q̄) − 2

T̂
tr(

X̂X̂
Q̄

XX̂
)

]

+ O
(

nε− 1
2
)

.

Since by definition, Q̄ = (X + γ IT )−1, we may use

XQ̄ = (X + γ IT − γ IT )(X + γ IT )−1 = IT − γ Q̄

in the second term in brackets to finally retrieve the form of Conjecture 1.

6. Concluding remarks. This article provides a possible direction of explo-
ration of random matrices involving entry-wise nonlinear transformations [here
through the function σ(·)], as typically found in modelling neural networks, by
means of a concentration of measure approach. The main advantage of the method
is that it leverages the concentration of an initial random vector w (here a Lips-
chitz function of a Gaussian vector) to transfer concentration to all vector σ (or
matrix �) being Lipschitz functions of w. This induces that Lipschitz functionals
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of σ (or �) further satisfy concentration inequalities, and thus, if the Lipschitz pa-
rameter scales with n, convergence results as n → ∞. With this in mind, note that
we could have generalized our input–output model z = βTσ(Wx) of Section 2 to

z = βTσ(x;W)

for σ : Rp ×P →R
n with P some probability space and W ∈ P a random variable

such that σ(x;W) and σ(X;W) [where σ(·) is here applied column-wise] satisfy
a concentration of measure phenomenon; it is not even necessary that σ(X;W)

has a normal concentration so long that the corresponding concentration function
allows for appropriate convergence results. This generalized setting however has
the drawback of being less explicit and less practical (as most neural networks
involve linear maps Wx rather than nonlinear maps of W and x).

A much less demanding generalization though would consist in changing the
vector w ∼ Nϕ(0, Ip) for a vector w still satisfying an exponential (not necessarily
normal) concentration. This is the case notably if w = ϕ(w̃) with ϕ(·) a Lipschitz
map with Lipschitz parameter bounded by, say, log(n) or any small enough power
of n. This would then allow for w with heavier than Gaussian tails.

Despite its simplicity, the concentration method also has some strong limitations
that presently do not allow for a sufficiently profound analysis of the testing mean
square error. We believe that Conjecture 1 can be proved by means of more elab-
orate methods. Notably, we believe that the powerful Gaussian method advertised
in Pastur and Ŝerbina (2011) which relies on Stein’s lemma and the Poincaré–
Nash inequality could provide a refined control of the residual terms involved in
the derivation of Conjecture 1. However, since Stein’s lemma (which states that
E[xφ(x)] = E[φ′(x)] for x ∼ N (0,1) and differentiable polynomially bounded φ)
can only be used on products xφ(x) involving the linear component x, the latter is
not directly accessible; we nonetheless believe that appropriate ansatzs of Stein’s
lemma, adapted to the nonlinear setting and currently under investigation, could
be exploited.

As a striking example, one key advantage of such a tool would be the possibility
to evaluate expectations of the type Z = E[σσ T( 1

T
σ TQ−σ − α)] which, in our

present analysis, was shown to be bounded in the order of symmetric matrices by

�Cnε− 1
2 with high probability. Thus, if no matrix (such as Q̄) pre-multiplies Z,

since ‖�‖ can grow as large as O(n), Z cannot be shown to vanish. But such a
bound does not account for the fact that � would in general be unbounded because
of the term σ̄ σ̄ T in the display � = σ̄ σ̄ T + E[(σ − σ̄ )(σ − σ̄ )T], where σ̄ = E[σ ].
Intuitively, the “mean” contribution σ̄ σ̄ T of σσ T, being post-multiplied in Z by
1
T
σ TQ−σ − α (which averages to zero) disappears; and thus only smaller order

terms remain. We believe that the aforementioned ansatzs for the Gaussian tools
would be capable of subtly handling this self-averaging effect on Z to prove that
‖Z‖ vanishes [for σ(t) = t , it is simple to show that ‖Z‖ ≤ Cn−1]. In addition,
Stein’s lemma-based methods only require the differentiability of σ(·), which need
not be Lipschitz, thereby allowing for a larger class of activation functions.
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As suggested in the simulations of Figure 2, our results also seem to extend to
noncontinuous functions σ(·). To date, we cannot envision a method allowing to
tackle this setting.

In terms of neural network applications, the present article is merely a first step
towards a better understanding of the “hardening” effect occurring in large dimen-
sional networks with numerous samples and large data points (i.e., simultaneously
large n,p,T ), which we exemplified here through the convergence of mean-square
errors. The mere fact that some standard performance measure of these random
networks would “freeze” as n,p,T grow at the predicted regime and that the per-
formance would heavily depend on the distribution of the random entries is already
in itself an interesting result to neural network understanding and dimensioning.
However, more interesting questions remain open. Since neural networks are to-
day dedicated to classification rather than regression, a first question is the study
of the asymptotic statistics of the output z = βTσ(Wx) itself; we believe that z

satisfies a central limit theorem with mean and covariance allowing for assessing
the asymptotic misclassification rate.

A further extension of the present work would be to go beyond the single-layer
network and include multiple layers (finitely many or possibly a number scaling
with n) in the network design. The interest here would be on the key question of
the best distribution of the number of neurons across the successive layers.

It is also classical in neural networks to introduce different (possibly random)
biases at the neuron level, thereby turning σ(t) into σ(t +b) for a random variable
b different for each neuron. This has the effect of mitigating the negative impact
of the mean E[σ(wT

i xj )], which is independent of the neuron index i.
Finally, neural networks, despite their having been recently shown to operate al-

most equally well when taken random in some very specific scenarios, are usually
only initiated as random networks before being subsequently trained through back-
propagation of the error on the training dataset (i.e., essentially through convex
gradient descent). We believe that our framework can allow for the understanding
of at least finitely many steps of gradient descent, which may then provide further
insights into the overall performance of deep learning networks.

APPENDIX: INTERMEDIARY LEMMAS

This section recalls some elementary algebraic relations and identities used
throughout the proof section.

LEMMA 5 (Resolvent identity). For invertible matrices A,B , A−1 − B−1 =
A−1(B − A)B−1.

LEMMA 6 (A rank-1 perturbation identity). For A Hermitian, v a vector and

t ∈ R, if A and A + tvvT are invertible, then

(

A + tvvT
)−1

v = A−1v

1 + tvTA−1v
.
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LEMMA 7 (Operator norm control). For nonnegative definite A and z ∈ C \
R

+,
∥

∥(A − zIT )−1∥
∥≤ dist

(

z,R+)−1
,

∥

∥A(A − zIT )−1∥
∥≤ 1,

where dist(x,A) is the Hausdorff distance of a point to a set. In particular, for

γ > 0, ‖(A + γ IT )−1‖ ≤ γ −1 and ‖A(A + γ IT )−1‖ ≤ 1.
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