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A previously developed random matrix/transition state theory (RM/TST) model for the 
probability distribution of state-specific unimolecular decay rates has been generalized to 
incorporate total angular momentum conservation and other dynamical symmetries. The model 
is made into a predictive theory by using a semiclassical method to determine the transmission 
probabilities of a nonseparable rovibrational Hamiltonian at the transition state. The overall 
theory gives a good description of the state-specific rates for the D&O --) D2 + CO unimolecular 
decay; in particular, it describes the dependence of the distribution of rates on total angular 
momentum J. Comparison of the experimental values with results of the RM/TST theory 
suggests that there is mixing among the rovibrational states. 

I. INTRODUCTION 

In a recent series of experiments, Polik et al. ’ deter- 
mined the unimolecular reaction rates for the decomposi- 
tion of formaldehyde in its ground electronic state 

D2CO+D2+C0 (1.1) 

for individual quantum (i.e., rovibrational) states of the 
reactant molecule. Although standard statistical theory 
[i.e., Rice-Ramsperger-Kassel-Marcus (RRKM) , micro- 
canonical transition state theory, etc.] provides a good de- 
scription of the rate as a function of the energy of the 
molecule on the average, the decay rates of individual 
quantum states with energies in a given energy interval 
show significant fluctuations about the average rate for that 
energy (interval). Figure 1 shows a schematic depiction of 
this situation. 

Miller and co-workers2’3 showed how to combine ran- 
dom matrix theory with transition state theory to provide 
a theoretical model for describing the distribution of state- 
specific decay rates about their average. The essential as- 
sumptions of this random matrix/transition state theory 
(RM/TST) model are that the states be nonoverlapping 
and strong& mixed. The first assumption is clearly satisfied 
if the experiments resolve individual quantum states. By 
strongly mixed, we mean that the system behaves like the 
Gaussian orthogonal ensemble of random matrix theory.4 
Physically, this latter requirement is equivalent to the as- 
sumption that the expansion coefficients (in some generic 
basis) of the eigenstates in a given energy interval all be- 
have as independent random variables. The good agree- 
ment of various spectral measures between the experimen- 
tal results and predictions of the Gaussian orthogonal 
ensemble indicates that the eigenstates of D2C0 are indeed 
well described as strongly mixed.3 

The purpose of this paper is twofold-first to show 
how total angular momentum conservation (and other dy- 

namical symmetries) can be incorporated into the RM/ 
TST model for the probability distribution of state-specific 
decay rates, and second to show how a recently developed 
semiclassical transition state theory can be utilized to make 
it a predictive theory. Section II A first summarizes the 
essentials of the RM/TST model developed previously and 
the semiclassical transition state theory for a general an- 
harmonic rovibrational transition state is described in Sec. 
II E), with specific application to the RM/TST model. Sec- 
tionII C then shows how this RM/TST theory is modified 
to account for dynamical symmetries. As an aside, Appen- 
dix A presents an expression for the microcanonical quan- 
tum survival probability resulting from the distribution of 
decay rates given by the RM/TST theory of Sec. II. 

Application of the theory to reaction ( 1.1) is made in 
Sec. III, where the primary new results are the dependence 
of the probability distributions on total angular momentum 
J. Since the results given by the RM/TST theory depend 
rather sensitively on which degrees of freedom one assumes 
are strongly mixed and which are approximately con- 
served, the calculations were carried out with various as- 
sumptions to see which gave the best agreement with ex- 
periment. Specifically, RM/TST theory is used to obtain 
the probability distribution for the individual J states of 
D,CO assuming conservation of total angular momentum 
J, conservation of the angular momentum projection onto 
a space-fixed axis &l, and either (a) no additional con- 
served quantities; (b) conservation of C, symmetry; or (c) 
conservation of C, symmetry and the absolute value of the 
angular momentum projection onto a body-fixed axis [K] . 
In addition, the distribution for all the decay rates is ob- 
tained under these conditions. Comparison to the experi- 
mental distributions indicates that case (a) can account for 
the unimolecular reaction dynamics at high electric field. 
However, it is possible that J mixing can also provide sim- 
ilar agreement. 
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FIG. 1. Unimolecular decay rate vs energy. The points indicate the decay 
rates and energies for individual quantum states of the reactant 
molecule. F(E) is the average rate averaged over all the states in a given 
narrow energy interval SE. 

II. THEORY 

A. Summary of basic RWTST model 

A system undergoing unimolecular dissociation can, in 
general, be described by an effective Hamiltonian matrix516 
of the form 

PZrn, =i%%,mrf rm,&, (2.1) 

where { 1 m)) is some bound-state ( L2) basis which spans 
the (Hilbert) space of the reactant molecule. The real sym- 
metric matrix Rm,,f describes coupling (anharmonic, Co- 
riolis, etc. ) in the reactant molecule. The decay rate matrix 
r ,?2,??2 t describes the coupling of the bound states { 1 n)} to a 
continuum of unspecified scattering states of the dissoci- 
ated molecule. The complex eigenvalues of 3Fff, {Ej 
-fI’$, give the energies (Ej) and decay rates {rj} of the 
individual quantum (metastable) states of the reactant 
molecule provided they are nonoverlapping, i.e., 

rj< IEj-Ej,Ia (2.2) 

(Alternatively, {Ej) and {I,> are the positions and widths 
of scattering resonances between bimolecular collisions of 
the fragment molecules. ) In light of Eq. (2.2), it is reason- 
able to treat the imaginary part of ZF’ by first order per- 
turbation theory. The “zeroth order” eigenstates 

IYj)= C Imkn,j (2.3) 
m 

are thus the eigenvectors of the real Hamiltonian matrix 
X and the imaginary parts of the eigenvalues are given 
(within first order perturbation theory) by 

rjs(Y,lrlYj)= c C,,jrm,m,Cm,,j=Cir.r*cj. (2.4) 
m,?d 

The unimolecular decay rate for a state characterized by 
eigenvector c is therefore r(c) = cT l I’ l c. 

One next assumes that the eigenstates of X are 

strongly Inixed, i.e., that the dynamics of the (highly ex- 

cited) reactant molecule are chaotic, ergodic, etc. This cor- 
responds to assuming that the statistics of the eigenstates 
within a given narrow energy interval are equivalent to 
sampling over all states consistent with normalization 
cT* c= 1. Physically, this uniform sampling will involve a 
random mixture of only a finite number of basis states since 
random coupling of an infinite basis would entail the loss of 
energy information. Thus the “zeroth order state” reduces 
to the generic form 

Iwj>= mIil Imh,j3 (2.5) 

where f is the effective number of strongly mixed states in 
a generic basis. (Appendix B discusses more fully the phys- 
ical significance of the parameter f. ) As in random matrix 
theory, the normalization requirement on this 
f-dimensional state vector c is approximated by a product 
of Gaussian distributions, an approximation which im- 
proves with increasing f. The probability distribution of 
unimolecular decay rates is then given by 

fm= S_mm --* j-mm dcl ...dc~~~(~)s(r-~~.r*~), 

(2.6) 

where the probability distribution of the expansion coeffi- 
cient is 

ff 
pf (cl = ,IJ 

r 
G eMfcY2. (2.7) 

Introducing the integral form of Dirac’s S function S(z) 
= (27r) -‘s ?’ ,ektdt, the integrals in Eq. (2.6) can be eval- 
uated to give 

s 
m P(r)=(2r)-l & elTtD’ (t) - 1/2, (2.8a) 
--co 

where 

D’(t)=d&(I+2itl?/f )= k (1+2ityi/f ), (2.8b) 
j=l 

and {rj} are the n nonzero eigenvalues of the I? matrix. 
(Note that, in general n < f, vis a vis most of these eigen- 
values are zero.) 

Using brackets ( . > to denote an average with respect 
to the probability distribution, the average rate is given by 

h(r) =+ ,$ yj=-+Tr(I). (2.9) 
3 1 

This determines the effective number of mixed states as 

f+2e (2.10) 

Similarly, the variance of the distribution is 

((T")--(r)z)=($ + $)=fTr(r'). (2.11) 
J 1 
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These last two results can be combined to obtain the so- 
called effective number of channels with-respect to the l? 
matrix 

WY Tr(T’)2 _-.-~ 
%ff=(r2) _ (,32-Tr(f2) * - .- c2*12) 

Note that this provides an analytic value of veff if the ei- 
genvalues of I’ are known. 

It is useful to define the dimensionless reducedproba- 
bility distribution in terms of P( IT) as 

p(x) =lTP(Cx), 
.~ ..; 

(2.13a) 

where x= r/I? is the decay rate in units of the average rate. 
From Eqs. (2.8) and (2.9), one sees that 

p(x)=(2?+ 
s 

O” & eixfjj(t) -l/2, (2.13b) 
--co 

where 

~(t)=det[I+2itI’/Tr(I’)]= ti [1+2ityj/Tr(T’)]. 
j=l 

(2.13~) 

If there are exactly II equal nonzero eigenvalues, i.e., 
yj=r for j<n, Eq. (2.13) reduces to a x2 distribution with 
n degrees of freedom, and this has been the traditional 
model used to describe tluctuations in unimolecular decay 
rates.7’8 In this case, veff=n. If there are two nonzero and 
nonequal eigenvalues of arbitrary degeneracy, the integral 
is of the form of a confluent hypergeometric functiom2 this 
form exhibits a more general type of behavior than that 
observed with the x2 distributions2 In the most general 
case, one can obtain the distribution from Eq. (2.13) by 
numerical integration provided, of course, that one has the 
eigenvalues {ri) of I?. Note that these expressions are writ- 
ten as Fourier transforms in order to suggest the use of a 
fast Fourier transform (FFT) numerical procedure for 
their evaluation. If instead, a direct integration is desired, 
then these expressions can be written in a manifestly real 
form; see Eqs. (3. I) and (3.2) in Ref. 2. 

B. Eigenvalues of the decay rate matrix via 
semiclassical transition state theory 

In order to convert the distribution described in the 
previous subsection into a predictive formula, one needs to 
evaluate the eigenvalues of the decay rate matrix {yj} up to 
an overall multiplicative factor. In Ref. 2, an adiabatic TST 
was used to approximately obtain the Yj’S; here we present 
a more rigorous theoretical procedure to determine them. 
Previously, it was argued that the eigenvalues of I? can be 
obtained by a vibrationally adiabatic approximation’ 
within a reaction path Hamiltonian formalism.t” The ei- 
genvalues were shown to be proportional to the transmis- 
sion probabilities P,, through the various states n of the 
activated complex, i.e., 

lJj=epIt, (2.14) 

where j is the collective index n, and E is a constant of 
proportionality. (As an aside, Appendix B presents a dis- 

cussion relating E to the RM/TST parameter f .) This sug- 
gests that an even better approximation for the eigenvalues 
of l? can be obtained by constructing “good action-angle 
variables”” locally about the saddle point (i.e., transition 
state) of the potential energy surface. An expansion of the 
potential to successive orders introduces anharmonicity vis 
a vis reaction path curvature. Thus while the system is 
assumed to be locally integrable, there is no adiabatic as- 
sumption involved. The details of this method have already 
been presented for the transmission probabilities of D,CO 
for total angular momentum J=0.‘2 Here we outline this 
semiclassical method and include nonzero angular momen- 
tum. 

Provided anharmonic and Coriolis couplings are not 
too strong, there will in general exist a local set of “good” 
classical action variables {Ik;k=l,...,F) about a saddle 
point on the potential energy surface just as there does 
about a minimum. The essential difference though is that 
one of the action variables associated with the saddle point 
is imaginary, IF= -ie/a, in terms of which the semiclas- 
sical transmission probability is given by 

P=(1+e2e)-1. (2.15) 

The semiclassical procedure is therefore first to express the 
classical Hamiltonian as a function of the “good” actions 
X( {Ik}), then to quantize the real actions by the usual 
semiclassical condition, e.g., 

Ik=(nk+f), k=l,..., F-l, (2.16) 

and finally to determine 8 as a function of the total energy 
E and the locally conserved quantum numbers {nk;k 
= l,...,F- 1) by solving the equation 

X (2.17) 

for e(E,n>. {We refer to 8 as the generalized barrier pen- 
etration integral because it is given by the well-known in- 
tegral 

e= 
s &,bW(q)--El (2.18) 

barrier 

for a one-dimensional barrier.) With B(E,n) so deter- 
mined, the transmission probability for energy E and state 
n of the activated complex is 

(2.19) 

Angular momentum is included in the above formulas 
simply by noting that the classical Hamiltonian will, in 
general, also be a function of its magnitude J and its pro- 
jection onto a body-fixed axis K. (If the molecule is not a 
symmetric top, K is not a good quantum number, but may 
still be used to label the rotational energy levels. In either 
case, there will be F=3N-6 vibrational quantum num- 
bers for an N atom nonlinear system.) Equation (2.17) is 
thus changed to read 
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SF ,..., nF-1+;,-;6$J,K (2.20) 

which determines B(E,n,J,K) and thereby the transmission 
probability is 

Pn,&E) = ( I+ cp(n,J,EE) ) - 1. (2.21) 

Moreover, the Hamiltonian may be obtained quantum me- 
chanically and use of the correspondence 

(2.22) 

leads to a Hamiltonian of the form in Eq. (2.20) which can 
then be inverted to obtain Pn,& E) . 

Determining the Hamiltonian as a function of the good 
action variables, however, requires an analytic solution of 
the classical equations of motion and is thus not in general 
possible. It can be accomplished to a useful level of approx- 
imation though by including anharmonicity, Coriolis cou- 
pling, etc., perturbatively in essentially the same way they 
are handled in determining rovibrational energy levels of a 
stable molecule (i.e., about a minimum on the potential 
energy surface). Therefore the Hamiltonian is expanded at 
the transition state and only those terms which contribute 
to the second order eigenvalues are retained (i.e., the vi- 
brational terms up to quartic order with respect to the 
mass weighted normal co-ordinates Qk of the transition 
state, the rigid rotor terms, and the rovibrational coupling 
terms arising from the Coriolis interaction) 

x= V,+i i (-&2+&t) +A lim fkrmek~ditm 
k 

+A kgn f,wmQkQzQ,Q,+ i$ B& 
F 

-2;Q&~B&,?.~ 
6 

(2.23) 

where V. is the potential energy at the saddle point, the 
sums over lower case letters are unrestricted sums over the 
F vibrational modes, and the sums over Greek letters are 
sums over the rotational axes. The difference from the stan- 
dard rovibrational expansionI is that at zeroth order, the 
potential along the reaction coordinate (mode F) is a har- 
monic barrier vis a vis the frequency tiF is imaginary 

mF=i[mFI =izF. (2.24) 

Using second order Van Vleck perturbation theory,t3 
the Hamiltonian in Eq. (2.23 ) is given in terms of the local 
good vibrational quantum numbers (or action variables 

Ik=nk+b) by 

+ 5 [B.B- ;af(nk+f)]J;* (2.25) 

(If the system is truly a symmetric top, then there will be 
at least one degenerate vibration; the treatment is then 
analogous to that of a linear molecule.t4) The zeroth order 
constant energy correction15 accounting for the reaction 
coordinate is 

1 F-l 

55 .y fkkkk 7 ‘+’ fikk , 3 “;;I f&l fhn 

576 ‘$ -x+64 /$I (4+-o&,$-4 k<l<m [ bk+~1)2-@2,] [ (&-@1)2-&] - - 

1 fFFFF 7 f:FF 3 F--l fiFF 
3 F-l 

(4-2+ 2)-2+64 c 
fLF 

wF @k OF k (4@2,+&)@; 

1 F-l 

c 

f:lF -- 
4 k<Z [(0/;+01)2+~~][(ok-01)2+~~] 

(2.26) 

where Iclp is the moment of inertia tensor. Explicit expres- 
sions for the anharmonic constants x’s in terms of the force 
constants j’s are given in Ref. 12. There it is noted that the 
anharmonic constants coupling the reaction coordinate to 
the perpendicular coordinates are imaginary, i.e., 

and modification of the standard rovibrational expression*3 
yields the real quantity 

xm=-i&, (2.27) - fFFF@ 
-- 

Fi’ f FFd’ 
2 9 (2.29) 

WF I *I 

with &F strictly real for k#F. The rotational constant for 
mode F is also imaginary where apy is the first derivative of the moment of inertia 

tensor IpY with respect to the normal mode coordinates. 

aP,=i$F, (2.28) 
The remaining rotational constants are slight modifications 
of the standard result13 
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c Ii2 f!&g 
--P - 

0 ( +i 7- (2.30) 
fiJF 

As noted earlier, the rotational Hamiltonian in Eq. 
(2.25) can be diagonalized numerically for asymmetric 
tops. For approximately symmetric tops, it reduces to 

E= b+-%+B, J(J-k !);Jr_(~$ - Bl K2 

F 

+ &,,.( n&) (./F+$ (2.31) 

where BII and a! correspond to the values of the unique 
axis and B, and ai correspond to the average of the 
values of the perpendicular axes. This can be rewritten as a 
quadratic equation in 8 with real coefficients and inverted 
to obtain 

B(n,J,K;E) = 
2?r&?1?/i& 

1 + 4 1 + ‘tX~pc?E/~~ ’ 
(2.32a) 

where 

SE- VO-E+&+ BL J(J+ 1) + ( BII - BL )K2 

F-l 

+ kzl [wk---c-& J(J+ 1) -(aI -a’k K21 

(2.32b) 

F-l 

o,=cj,-&(J+ 1) - (CX’1; -a; )K2- E, &F 

(2.32~) 

Equation (2.32) combined with Eq. (2.21) provides 
the transition state labeled values of the transmission prob- 
ability. This theory will break down when 

4X&% 
T< -1, 

WF 

(2.33) 

which can result from either a resonance between the rovi- 
brational modes or from too low an order in the perturba- 
tion treatment. In the former case, the offending resonant 
term can be treated at lower order and explicitly diagonal- 
ized.14 In the latter case, a higher order perturbation treat- 
ment is required. While the energy expression can easily be 
obtained using symbolic manipulation with a computer,” 
the lack of higher order ab initio rovibrational coefficients 
in the potential presently prohibits this. 

In summary, therefore, the normalized eigenvalues of 
I? are given by 

(2.34) 

where N( E&P,,) is the cumulative reaction probability 
(CRP) and v is a collective index of all the quantum num- 
bers of the activated complex. With this association, Eq. 
(2.13) becomes 

p(x)=(2+’ 
s 

m dt eix*D( t) - 1’2, (2.35a) 
-co 

where 

a(t)= fl(1+2itPdN)r 
v 

(2.35b) 

Thus given an ab initio calculation of various “spectro- 
scopic” parameters at the saddle point of the potential en- 
ergy surface, one can readily calculate the transmission 
probabilities and subsequently use Eq. (2.35) in order to 
predict the reduced decay rate probability distribution. 
(The ‘Ispectroscopic” parameters include the frequencies 
and anharmonicities obtained from the quadratic, cubic, 
and a limited set of the quartic force constants; the rota- 
tional constants; and the a’s in the Coriolis interaction.) 

C. Symmetry considerations 

The “good” quantum numbers ass.ociated with the 
transition states discussed above in Sec. II B are in general 
not globally conserved quantum numbers. If they were, the 
molecular Hamiltonian would be integrable, and thus cer- 
tainly not chaotic, strongly mixed, etc. Most of the “good” 
quantum numbers of the transition state-e.g., the vibra- 
tional quantum numbers {nk;k= l,...,F- l&are good 
only in the transition state region and thus only relevant 
for approximating the eigenvalues of I?. The total angular 
momentum J (in field-free space), however, is a globally 
conserved quantum number; consequently, states of differ- 
ent Jare noninteracting. In applying any statistical theory, 
one should thus take cognizance of all globally conserved 
quantum numbers-e.g., total angular momentum (in 
field-free space), global discrete symmetries (the molecular 
symmetry group), etc.-and invoke the statistical assump- 
tion of strong mixing only within each manifold of states 
labeled by the globally conserved quantum numbers. How 
the globally conserved symmetries are included into RM/ 
TST is the subject of the present analysis. The role of sym- 
metry in statistical-theories has been treated in other con- 
texts by several authors.177’8 

Therefore suppose that p are the globally conserved 
quantum numbers and that v are the quantum numbers 
conserved only locally in the transition state region. The 
eigenvalues y&v) of the I’ matrix are labeled by the com- 
plete set of quantum numbers arising from the direct prod- 
uct of 1~ and v. One then applies the RM/TST theory 
separately for each set of the conserved quantum numbers 
p. The distribution of unimolecular decay rates for the ~1 
manifold of strongly mixed states is thus given by [noting 
Eqs. (2.13a) and (2.35)] 
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PJl-) =r,-*pJr/ry 

= (2nl=J-’ jrn dt ei*r’F~D~(t)-*‘2, (2.36a) 
-CC 

D,(t)= n [1+2itP(~v)/N~I, 
Y 

(2.36b) 

where rc( is the average decay rate for the states in the p 
manifold and N,[=~&w>] is the cumulative reaction 
probability for the fi manifold. The combined or total dis- 
tribution is the sum over all the ,U distributions weighted 
by the density of states, i.e., 

&x(r) = 2 fpqm 
P 

with 

(2.37) 

where pp is the density of states of the p manifold and p is 
the total density of states. This is rewritten in terms of the 
reduced distributions [Eq. (2.13)] as 

pt&)= zfp;Pp + a 
p. P ( ) P 

(2.39) 

Note that this distribution yields the usual transition state 
(or RRKM) expression for the average rate 

P 

with 

lYp=NJ(2r&&). (2.4Ob) 

The total distribution can also be written, in terms of the 
cumulative reaction probabilities of the different p mani- 
folds, as 

fPN 
ptot(x) = 1 fpq&hpd and vp=~. (2.41) 

P P 

Furthermore, the moments of the distribution can be 
written analytically in terms of the moments for each man- 
ifold as 

(x9 = c f&J -nw)p, (2.42) 
P 

where (. * *)p denotes an average with respect to pP(x j. 
A simple example of these expressions results when the 

only underlying symmetry divides the states into two un- 
coupled manifolds, each with an equal density of states. 
This does not necessarily imply that the corresponding 
CRPs are equal as the states in a given manifold access 
only the transition states labeled by the corresponding glo- 
bal symmetry of the manifold. (This case is actually phys- 
ically relevant as it can arise if the molecular symmetry 

group is C,.) Equation (2.41) becomes 

(2.43) 

and Eq. (2.42) becomes 

(,,=,n-II (~)~Ir,,+(~)~~x~,,]. . (2.44) 

This expression with n=2 can be used to obtain the effec- 
tive number of channels 

2 ‘W’%ve~,~+N~het~,d (N1-N2j2 
-= 
l’eff WI +W2 +W,+W2 ‘- 

(2.45) 

where IteK,i is the effective number of channels for the i 
manifold. 

Thus in order to predict a decay rate probability dis- 
tribution for a given system, one first searches for any con- 
served symmetries or quantum numbers. Equation (2.36) 
is used to obtain the distribution for each of the symmetry 
blocks. These are combined using Eq. (2.41) to -obtain the 
final result. Note that if only the moments are desired, then 
one first uses the y(pv)‘s to obtain (x”), analytically [e.g., 
Eq. (2.11) for the second moment] and then use of Eq. 
(2.42) provides the symmetry adapted RM/TST moments 
directly. This can also provide a useful check on the nu- 
merical evaluation of the probability distribution. 

III. APPLICATION TO FORMALDEHYDE 

In order to apply the random matrix/transition state 
theory developed in the previous section to D,CO, the 
quartic potential and rovibrational constants must be 
known at the transition state. However, as Schneider and 
Thiel” observed for bound state systems, the only quartic 
derivatives needed to obtain the Xij’s are those of the form 
fkkl[. Handy and co-workers2’ have shown that all of the 
cubic derivatives and this limited set of quartic derivatives 
can be calculated efficiently by central differences of ana- 
lytic second derivatives obtained at second order Mlaller- 
Plesset theory (MP2) .21 This method was directly appli- 
cable to the determination of the perturbed Hamiltonian 
near the transition state and results for the (J=O) -D,CO 
transmission probabilities indicate that there is a small, but 
measurable effect due to the anharmonicity.‘2 

The coefficients needed for the rovibrational Hamil- 
tonian are listed in Table I.22 Since the transition state 
geometry of D,CO is a near prolate symmetric top-cf., 
the asymmetry parameter is 

2B-A-C 
‘c- A-c z--o.95 (3.1) 

-its rotational energy levels were approximated as a sym- 
metric top. (The rotational constants used for the 1 di- 
rection are taken to be the average of the x and y direc- 
tions. ) 

A. The reduced probability distributions 

Before comparing to experiment, it is useful to study 
the degree to which the RM/TST distributions depend on 

energy and dynamical symmetries. As pointed out in Sec. 
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TABLE I. The coefficients of the rotational Hamiltonian expanded about the saddle point of the D&O potential energy surface. (Refs. 12 and 22). The 

rotational constants are B,=O.76, B,,=O.89, and Bp5.59. All values are in units of cm-‘. 

k 0, k’=l k’=2 k’=3 k’=4 k’=5 k’=6 4 4 a’k 

lb’) 
Xa’) 

%a’) 
4(a”) 

5(d) 

Ha’) 

2478 -15.1 -0.001 -0.002 -0.cxl4 
1730 - 19.6 -7.6 -OS!02 -0.002 -0.011 
1125 1.1 - 16.0 -13.8 -0.003 -0.0002 -0.162. 
698 - 14.9 2.0 -4.2 -3.1 O.OQO -0.0003 -0.624 
660 0.9 - 16.8 -1.0 2.0 -2.0 0.003 -0.002 0.529 

15791 57.li 3.3i L 14.6i 28.21’ -3.Oi -6.7 0.0003i 0.0006i 0.075i 

II C, a given system can consist of noninteracting mani- 
folds of states which will not be strongly mixed due to 
symmetry. For formaldehyde in a Stark field, the only rig- 
orously conserved quantum number is A4, the projection of 
total angular momentum onto the constant electric field 
(space fixed) direction. In field-free space, to the extent 
that the mixing of states caused by the~stark field is neg- 
ligible, the total angular momentum J and the molecular 
symmetry23 C, are also globally conserved. Since D,CO is 
a near symmetric top, there is also the question of whether 
K-the projection of J onto the body-fixed axis-is better 
described as strongly mixed or (.approximately ) conserved 
globally. Since + 1 K 1 and - IK1 states are used to obtain 
the C, symmetry adapted states, one can at most require 
the conservation of IKI . [The conditions for labeling a 
given transition state as even (A’) or odd (A”) are given in 
Miller.24 Note that v4 the out-of-plane mode, is the only 
vibrational mode which is nontrivial with respect to C, 
symmetry.] 

states in A’ or A” will have essentially the same density of 
states, the J-resolved distribution in case (b) is obtained 
using Eq. (3.2) with fi=f in analogy to Eq. (2.43). In 
case (c), if I K/ is conserved in the preparation of the 
metastable states, then only those states with I KI = J will 
be observed in the experiments. With this restriction, the 
sum in Eq. (3.2) only includes the two C, states corre- 
sponding to I KI = J and it reduces to Eq. (2.43) as in 
cask (b). 

In Figs. 2-4, the RM/TST J-resolved reduced proba- 
bility distributions are presented at selected sample ener- 
gies relative to the bare barrier and for different values of J. 
(The energies are chosen to sample energy regimes well 
below, just above, and well above the zero point energy 
adjusted barrier.) The figures indicate that there is a pro- 
nounced variation in the shape of the predicted distribu- 
tions as a function of E, J, and symmetry. In particular, the 
distributions tend to be narrower and more strongly 

Thus four cases of dynamical symmetry which are per- 
tinent to the D,CO dissociation are: 

(a) J and M are the conserved quantities; 
(b) J, M, and C, are the conserved quantities; 
(c) J, M, I KI , and C, are the conserved quantities; 
(d) M and C, are the conserved quantities with J par- 

tially broken and IKl less so. 

2.0 "'i""n""t " -' "', 'I0 

Although case (d) is potentially very relevant to the dy- 
namics, we cannot use the present form of RM/TST to 
obtain the corresponding distributions since it would re- 
quire the use of “partially” mixed states. For the remaining 
cases, we can construct J-resolved distributions, i.e., 
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where pJ,M,# are the RM/TST reduced probability distri- 
butions labeled by J, M, and ~1, and the sum is over all 
values of p which are accessed in the experiment. (In the 
symmetric top limit, the transmission probabilities are in- 
dependent of M and consequently so is the J-resolved dis- 
tribution; PJ,M=~J.) 

In case (a), the sum in Eq. (3.2) collapses into a single 
term-E@. (2.36) labeled- by J and M:- In the remaining 
cases, it is also necessary to make an assumption on the y 
states accessed by the experiment and consequently in- 
eluded in the sum in Eq. (3.2). In case (b), we make the 
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FIG. 2. RhUTST probability distributions with J=O at various energies. 
The solid curves are obtained assuming no additional conserved quantities 
[case (a)]. The short-dashed curves are obtained assuming that C, sym- 
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most democratic choice by including all such states. Since metry is also obeyed [case (b)]. 
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FIG. 3. RM/TST probability distributions with J=2 at various energies. 
The solid and short-dashed curves correspond to the same cases as in Fig. 
2. The long-dashed curves are obtained assuming that C, symmetry and 
1 KI are also obeyed [case (c)l. 

peaked with either increasing energy or decreasing dynam- 
ical symmetry. 

‘veff is often used to characterize these probability dis- 
tributions by a single parameter. However, one should be 
careful not to rely too heavily on this measure. One reason 
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FIG. 4. RhUTST probability distributions with J=4 at various energies. 
All curves correspond to the same cases as in Figs. 2 and 3. 
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FIG. 5. ,$ distributions with various values of ves vs the experimental 
histogram (Ref. 3). 

+ 

for this is that very different distributions can have the 
same value of veff as illustrated in Ref. 2. A second reason 
is that if Eq. (2.12) is used to obtain veff for a finite number 
of observables-we refer to this value as +&+hen the larg- 
est rates will bias the value of v!& unequally. Moreover, 
large’ rates correspond to broader peaks which are poorly 
resolved experimentally. In order to account for this, one 
can use the maximum-likelihood method25P26 to define veff. 
The standard result for p observables is that erL satisfies 

. 

F(vgL/2) =j 

where 

ln(IYi/T), (3.3a) 

F(z) GE-ln z (3.3b) 

and G is the logarithm of the gamma function. 
In Fig. 5, the experimental histogram for all the D,CO 

decay rates is compared to x2 distributions with veff deter- 
mined by v$ and etf”. It should be clear that while the 
difference in these calculated values of veff is large, the 
difference between the two x2 distributions is small. Al- 
though both distributions are in reasonable agreement with 
the experimental result (the histogram), one can discern 
qualitative differences, e.g., the experimental distribution is 
narrower and dies off faster at the high end. . 

Equation (3.3) is exact if the distribution is a x2 dis- 
tribution with 2s” degrees of freedom. However, in gen- 
eral, the RM/TST distribution will differ from a x2 distri- 
bution and consequently the corresponding values of *EL 
and v& will also differ. Since the difference between these 
measures is small compared to the error in the experimen- 
tal values, we will simply present the values of the RM/ 
TST v$‘s for comparison in what follows2’ 
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TABLE II. The cumulative reaction probability for the J-resolved and 
combined probability distributions compared to experiment (Ref. 3). 

NJ=, 
NJ=~ 

NJ=3 
NJ=~ 

&NJ 

27-rpf 

RhUTST” RhUTSTb Exp.’ Ex~.~ Exp.= 

0.98 1.97 3.47 1.36 1.36 

1.59 1.90 4.09 1.60 1.50 
2.13 1.78 -6.31. 2.46 1.72 

2.58 1.63 9.76 3.81 2.70 

7.28 7.28 23.63 9.22 7.28 

7.28 7.28 23.11 9.02 7.13 

‘For case (b). 
bFor case (c). 

TJsing pLO=W+l)p,,,(W. 
dUsing p(J)=W+l)p,,,(1)/3. 
‘Using p(J) =p,,,(J) in the case that K is predominantly conserved. 

B. DpCO barrier height 

In the previous section, the RM/TST distributions 
were shown to vary strongly with the energy relative to the 
bare barrier 

E=hve,,+EO,,,- vo, (3.4) 

where veXp is the frequency of the excitation in the exper- 
iment, EQZpE is the zero point energy (ZPE) of the bound 
state, and V. is the bare barrier height. Since the theoret- 
ical calculations are performed about the barrier, the val- 
ues of @zpE and V. are- required in order to match the 
experiment. tizpE is readily computed from the ground 
state force field of formaldehyde; the force field has been 
computed by Handy et aI.” using analytic second deriva- 
tives within MP2 and compares well with the experimental 
results of Duncan and Mallinson2* and Reisner et aI.” 
(For D,CO, @zpn=13.0 kcal/mol.) However, ab initio 
calculations are just beginning to reach agreement on V, 
(Ref. 30) and it is useful to obtain an estimate of the 
barrier height by a fit of the J-resolved experimental results 
with the semiclassical anharmonic transition state model 
described in Sec. II B. 

The barrier height can be determined by varying the 
energy of the RM/TST cumulative reaction probability 
(CRP) calculation until agreement is reached with the 
experimentally inferred CRP. The latter quantity can be 
obtained, in principle, by either of two equivalent methods. 
The most straightforward is to write 

N=27rpl= with p= 7 pJ. (3.5aj 

Alternatively, the CRP is the sum 

NE T NJ=277 c pJFJ. (3Sb) 
J 

The two methods are clearly’equivalent if F is the weighted 
average of FJ as in Eq. (2.40). The extent to which these 
expressions are not equal is therefore a consistency check 
on the experimentally’ obtained rates and density of states 
p,,(J). In general, one also needs to include the appro- 
priate symmetry numbers in the rate expressions.23 This is 
hidden in Eq. (3.5) and subsequent expressions by includ- 
ing the symmetry numbers in the density of states. 

A difficulty in carrying out this procedure arises from 
the nature of the Stark level-crossing spectroscopy experi- 
ment. So resonances are necessarily observed at varying 
electric field strengths, giving rise to a density of state 
anomaly which is not directly accounted for in the calcu- 
lation. The density of So vibrational states is observed to 
increase by a factor of 4 over a typical electric field strength 
scan of 20 kV/cm.! This increase in density of states is 
attributed to partial breakdown of the J quantum number. 
The varying density of states introduces an uncertainty in 
the determination of the experimental CRP and hence in 
the calculated decay rate distributions. To limit this effect, 
the density of states used in the CRP calculation is ob- 
tained by extrapolating the observed density of states to 
zero electric field.’ Although all of the data are used to 
obtain the average rate, a restriction to those rates obtained 
at low electric field yields at most a 0.2 kcal/mol lowering 
in the barrier height, thus suggesting that the electric field 
has a small effect on the average rate. 

Since cases (b) and (c) are the most likely candidates 
describing the dynamics of the reaction at zero electric 
field, only these cases are considered in calculating the 
barrier height. In case (c), the restriction to include only 
the ] K] = J states lowers the CRP relative to that of case 
(b) , and consequently a lower barrier is needed to fit to the 
experimental value. Thus a fit to the experimentally in- 
ferred CRP also provides some information about the 
metastable states which are being accessed by the experi- 
ment. 

If all the K states are accessed in the experiment, as in 
case (b), then the density of states is given by a state count, 
i.e., 

pW=W+l)p(OL (3.6) 

where p(J) is the density of states as a function of J. The 
density of states is thus determined by a single multiplica- 
tive constant; the first two experimental columns in Table 
II present the results of this calculation with either p,,( 0) 
or p,,( 1) fixing this multiplicative constant. [Note that 
pexP( 0) is a further extrapolation of the observed p,,(J) 
assuming linear dependence with a slope -of (0.45 f 0.16) 
instead of the statistical value of 2.‘] If only the ] K] = J 
states are accessed in the experiment, as in case (c), then 
the density of states will be independent of J. However, the 
density of states observed experimentally by Polik et al. ’ 
did not quite follow either of these statistical regimes. In 
fact, they found that “although the density of states in- 
creases slightly with J, K appears to be predominantly con- 
served.“’ The last experimental column in Table II pre- 
sents the CRPs obtained using p,,(J). The relative ratios 
in the calculation of the total CRP using Eqs. (3.5a) and 
(3.5b) between each of the experimental columns of Table 
II are similar, and thus this consistency check does not 
resolve the issue of which is the correct choice of the den- 
sity of states. 

The RM/TST CRPs presented in Table II are obtained 
at a value of the barrier height such that the total CRP 
agrees with the experimentally inferred CRP using pexp (J) . 
In case (b), the CRP is fit to the third experimental col- 
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TABLE III. Ab initio and empirical bare barrier heights in units of kcal/ 
mol for the DrCO+D,+CO reaction. 

Method 

MCSCF+CI 

MP4SDTQ 

CCSDT- 1 

RRKM (J=O) 

RM/TST (b) 

RM/TST (c) 

Barrier height 

86.Oh2.5 

85.9 

86.8 

84.6*0.8 

85.4* 1.0 

84.1 =I= 1.0 

Reference 

31 

32 

30 -- 

1 
. . . 

. . . 

umn with Vo=85.4=t 1.0 kcal/mol; a decrease in the bar- 
rier height by 0.2 kcal/mol would increase the total CRP 
to match that of the second experimental column, whereas 
a 1.3 kcal/mol decrease is required to match the first. In 
case (c), the CRP is fit to the third experimental column 
with Vo=84.1 f 1.0 kcal/mol; a decrease in the barrier 
height by 0.3 kcal/mol would increase the total CRP to 
match that of the second experimental column, whereas a 
2.3 kcal/mol decrease is required to match the first. In 
both sets of cases, the error arises from the same sources as 
in Ref. 1 with an additional 0.2 kcal/mol arising from the 
energy spread of the observed rates. Assuming that the 
dependence of the density of states on J is correct in the 
experiments, then the barrier heights are taken to be those 
which matched the third experimental column. In any 
event, we note that a change in the RM/TST distributions 
caused by up to a 0.5 kcal/mol decrease of the barrier 
height does not significantly alter the qualitative features of 
the RM/TST distributions. 

In Table III, the RM/TST results for the bare barrier 
are summarized and compared to previous ab initio results 
and to the earlier result of Polik et al.’ obtained using a 
harmonic RRKM fit of all of the rates extrapolated to 
J=O. The RM/TST barrier heights are within the error 
bars of the J=O extrapolation. Although the result under 
case (b) is closer to the ab initio results than that for case 
(c), the agreement is insuthcient to conclude that all the K 
states are accessed in the experiment. 

C. Comparison to experiment 

A comparison between the RM/TST and experimental 
reduced probability distributions should reveal which local 
quantum numbers are approximately conserved through- 
out the reaction and which are strongly mixed. In case (b), 
e.g., the energy of the experiment relative to the bare bar- 
rier is 8.7 kcal/mol. Since this is near the zero point energy 
of the transition state ( -9.5 kcal/mol), many of the con- 
tributing transition states are in the tunneling regime and 
an adequate description of their transmission probabilities 
must account for tunneling and anharmonicity. This, 
therefore, justifies the need for the semiclassical transition 
state model described in Sec. II B. 

The J-resolved RM/TST distributions are compared to 
the experimental histograms for individual J stateslT3 in 
Fig. 6. [Note that in case (a), the calculations are per- 
formed using the barrier height obtained in case (b).] The 
poor agreement between the histograms and distributions 
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X 

FIG. 6. RM/TST probability distributions at the energy of the experi- 
ment for various values of J compared to the J-resolved experimental 
histograms (Refs. 1 and 3). The solid, short-dashed, and long-dashed 
curves are the same as in Figs. 2 and 3. 

obtained for case (c) indicates that I K] is not conserved. 
The experimental distribution seems to lie in between the 
theoretical distributions for cases (a) and (b), and this 
suggests that the system has some mixing between the C, 
states, but not complete mixing. For completeness, the val- 
ues of ves for cases (a), (b), and (c) are compared to v& 
and v$~ in Table IV. As is the case for the total distribu- 
tion, there is disagreement between the experimentally de- 
termined values v& and efL providing further support for 
their limited utility. Nonetheless, the experimentally ob- 
tained values roughly fall in between the RM/TST results 
for cases (a) and (b). It should also be noted that to a 
good approximation, the primary effect of C, symmetry is 
to halve the available transition states (i.e., v~~,~ =: 2veVeff,b) 
and this is seen in the RM/TST results in Table IV. Thus, 
the J-resolved results indicates that the K states are 
strongly mixed and that C, symmetry is to some extent 
broken, but not completely mixed in the random matrix 
sense. 

In order to combine the J-resolved RM/TST distribu- 
tions using Eq. (2.41), the relative density of states of each 
J manifold must be determined. The combined RM/TST 
distributions using either the statistical density of states, 
where p(J) A (2J+ 1) p (0)) or the experimental densities 
of states p,,,(J) are compared to the experimental histo- 
gram in Fig. 7. As was the case for the J-resolved distri- 
butions,- the total RM/TST distributions for cases (a) and 
(b) bracket the observed histogram, while the distribution 
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TABLE IV. The values of vCrr for the J-resolved and combined probability distributions. v$ is computed from the experiments using Bq. (2.12). esL 

is obtained using the maximum-likelihood method (Ref. 26). &,, vzs,, and vzs,e are the RM/TST results under cases (a), (b), and (c), respectively. 

J 

1 
2 

3 
4 
All 

All rates Low E field High E field RM/TST 

4T * 
0 *dT c 4 e *eff,,. 0 4 0 

e&b 7hff,C 

7.0 6.8+ 1.0 5.2 4.5A1.6 7.4 7.8A1.4 4.61 2.12 2.08 
4.0 6.0* 1.5 2.0 3.6=‘= 1.0 8.0 8.4=!= 1.7 7.66 3.63 2.04 

4.7 6.3AO.9 3.3 4.2+ 1.5 9.2 9.0& 1.4 10.7 5.11 1.97 

6.2 6.9* 1.1 5.3 6.0* 1.4 7.7 7.6* 1.2 13.6, 6.55 1.89 

5.0 6.1*0.7 3.4 4.3 AO.9 7.4 7.7kO.8 8.70”/8.70b 4. 14”/4.25b 1.35=/1.63b 

‘Obtained using (U+ 1) weights. 
bObtained using the experimentally observed density of states p,,,(J) in the case that K is predominantly conserved. 

for case (c) is shifted somewhat to the left of the experi- 
mental histogram. This once again leads to the possible 
conclusion that states of different C, symmetry are partially 
mixed by the Stark field. 

While the above calculations suggest total breakdown 
of the [ KI quantum number as a candidate for the origin 
of the additional degrees of freedom observed in the exper- 
imental decay rate distributions, it is acknowledged that 
several other potential sources for degrees of freedom also 
exist. First, vibrational anharmonicity arising from still 
higher order terms in the transition state region of the 
potential energy surface could result in a higher veff .2 Sec- 
ond, J breakdown induced by the Stark field will increase 
the number of available decay channels and could provide 
similar agreement between experimental and calculated 
distributions. Third, only the limiting cases of no break- 
down or complete breakdown of the 1 K j quantum number 
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FIG. 7. RMAST probability distributions at the energy of the experi- 
ment with p(J)=(U+l)p,,,(O) and with p(J) =p,,,(J) compared 
to the experimental histogram for all rates. The solid, short-dashed, and 
Zong-dashed curve-s are obtained assuming cases (a), (b) , and (c), respec- 
tively. 

have been considered in this treatment. An intermediate 
case-e.g., case (d&of partial K breakdown, in combina- 
tion with other decay channels, could account for the ex- 
perimental distributions. Note that this would increase the 
barrier height-although by less than 1.0 kcal/mol- 
because the sum in the CRP would now include additional 
states of the activated complex. While the intent of this 
paper has been to examine the decay rate distributions 
observed in So D,CO, other experimental data suggest that 
1 KI may not be strongly mixed. The lack of a 2J+ 1 de- 
pendency of the experimental density of states and the lack 
of a 1/(2J+ 1) dependency of the average squared Si-S, 
coupling matrix element each suggest that I K I is only par- 
tially mixed.’ 

Thus far, the effect of the electric field on the rates has 
been ignored since the energetic effect is minimal. How- 
ever, the isotropy of space is broken in the presence of an 
electric field and this minimally breaks the C, symmetry in 
the molecule-fixed frame of the transition state at suffi- 
ciently high field strengths. The loss of C, symmetry can 
have a strong effect on the statistical distributions as evi- 
denced by the difference in the RM/TST distributions in 
Fig. 7. In fact, the results for cases (a) and (b) might 
suggest that at low electric field strengths, C, symmetry 
would be conserved, whereas at high electric field 
strengths, it would be broken. This is further suggested, 
e.g., in Fig. 10 of Ref. 3, in which yes is plotted vs electric 
field; although a linear fit is shown in that presentation, its 
behavior is more like that of a sigmoid with veff going from 
-4 in the low field region to -8 in the high field region. 
The ratio of two in veff between these two regions indicates 
that the electric field is breaking a symmetry which has 
only two labels, such as C, symmetry. 

In Fig. S(a), the experimental histogram is obtained 
using all of the 212 observed rates with electric field 
strength less than 6.5 kV/cm and is compared to the RM/ 
TST distributions with C, symmetry. In Fig. 8(b), the ex- 
perimental histogram is obtained using all of the 617 ob- 
served rates with electric field strength greater than 12.0 
kV/cm and is compared to the RM/TST distributions 
without C, symmetry. Although not shown, the histograms 
labeled by J for each of these electric field cases were also 
compared to the J-resolved distributions yielding analo- 
gous agreement. In addition, the values of vetf for these 
electric field cases are also compared to the RM/TST val- 
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FIG. 8. IZiWTST probability distributions at the energy of the experi- 
ment compared to the experimental histogram for rates at low electric 
field and at high electric field. The RIWTST distributions are obtained 
with p(J) =p,,,(J), and the solid, short-dashed, and long-dashed curves 
are obtained as in Fig. 7. 

ues in Table IV. The agreement is remarkable and suggests 
that C, symmetry is approximately conserved at low elec- 
tric field, while at sufficiently high electric field, the sym- 
metry is completely broken. Nonetheless, while this mark- 
edly different behavior in the experimental distributions is 
mimicked by the breaking of C, symmetry, the possibility 
that the breakdown of J by the Stark field could account 
for this behavior has not been ruled out. 

IV. CONCLUDING REMARKS 

It may be helpful to recap briefly the basic assumptions 
behind the derivation of the RM/TST model [Eq. (2.13) 
in Sec. II A]. (a) The imaginary part of the effective 
Hamiltonian matrix (2.1) is treated by first order pertur- 
bation theory; this is essentially the assumption that the 
resonances are nonoverlapping ( rk < I Ek- Ekt I on the av- 
erage) . (b) The real part of the effective Hamiltonian ma- 
trix (2.1) is assumed to be a “random” matrix,4 i.e., the 
quantum states are assumed to be strongly mixed (“cha- 
otic”). (The only result of random matrix theory which is 
actually used is that the projections of the eigenstates onto 
an arbitrary basis are Gaussian random numbers.) As- 
sumption (a) is not very severe since under assumption 
(b) the state-selected decay rates would be experimentally 
accessible only if the resonances were nonoverlapping or 
weakly overlapping. However, assumption (b) can hold 
only if the effective number of mixed states f is large 
enough that the association specified by Eq. (2.7) will 

hold; this can only happen in a region with a high density 

of states. Thus this analysis is applicable in an intermediate 
energy regime in which there is a balance between a high 
density of states and resolvable widths. 

The primary new development of the RM/TST model 
is the generalization to include globally conserved quanti- 
ties (e.g., total angular momentum and discrete molecular 
symmetries). Use of the semiclassical transmission proba- 
bilities described in Sec. II B also converts this model into 
a predictive theory. The probability distribution of unimo- 
lecular decay rates that results from this RM/TST theory 
can depend sensitively on. which degrees of freedom one 
assumes are strongly mixed and which are approximately 
conserved. In practice, therefore, one carries out the sta- 
tistical calculation for various such assumptions and com- 
pares to experimental results to deduce information about 
the unimolecular dynamics. 

Application of the RM/TST theory to the distribution 
of state-specific unimolecular decay rates of D2C0 for in- 
dividual values of total angular momentum J shows quite 
good agreement with the experimental results of Polik 
et al. ’ In particular, if one assumes that all of the K states 
are accessed in the experiment and that I K I is strongly 
mixed, one obtaihs very good agreement between RM/TST 
and the experiment; the differences between the low and 
high field distributions may be attributable to the breaking 
of C, symmetry by the Stark field. However, this agreement 
may be deceptive in that previous analysis1’3 of the exper- 
imental data suggest that I KI is not strongly mixed. In this 
case, the RM/TST results suggest that if one is to treat 
I K I as conserved, then one must allow J to break down. 
Thus while this work does not unambiguously resolve the 
issue as to which rovibrational states are strongly mixed, 
there seems little doubt that some states are strongly mixed 
and that the Stark field is inducing further mixing. 
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APPENDIX A: THE MICROCANONICAL QUANTUM 
SURVIVAL PROBABILITY 

The “microcanonical quantum survival probability” is 
defined as a sum over a continuum of states with exponen- 
tial decay, e.g., 

P(t) = 
s 

m dl? P( lY)evr’. t-41) 
0 

J. Chem. Phys., Vol. 99, No. 2, 15 July 1993 Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



962 Hernandez et a/.: RM/TST decay rate distributions 

This would correspond to the survival probability of a 
broadband excitation or collision experiment in which a 
dense set of exponentially decaying excited states are pre- 
pared uniformly in a narrow energy interval. Miller7 and 
Hase* have considered this quantity explicitly for the case 
of Porter-Thomas distributions for P(r). With the more 
general result for P(r) given by RM/TST [Eq. (2.35) 
above], it is relatively straightforward to obtain the follow- 
ing result for p(t): 

P(t)= n [1+2tl?;r/Tr(rj j-l/“. 

i 
(AZ) 

If all the “/i’s are the same, then Bq. (A2) reduces to that 
given previously’ for a X-square distribution. 

Equation (A2) can also be written as 

p(t) =--J 1+N,t -WI 
R ( ) =P ’ (A31 

which is readily computed using the semiclassical trans- 
mission probabilities described in Sec. II B. In the limit 
that t+O, this equation reduces to 

(A41 

which demonstrates in the short time limit the exponential 
falloff of the survival probability as determined by the av- 
erage rate. 

APPENDIX B: RELATION BETWEEN f AND E 

The value of the proportionality constant E in Eq. 
(2.14) can be related to the effective number of mixed 
states f in RM/TST theory. Recall that the microcanoni- 
cal rate is simply related to the cumulative reaction prob- 
ability N and the density of states p by 

Equation (2.10) then gives 

=2%7x. U32) 

If the states are not mixed, then f = 1 and E= (27rp) -’ as 
expected. In this case, E is the average energy spacing. If 
the states are mixed, then f characterizes the average num- 
ber of mixed levels and E is the average energy spacing 
which contains f states, 

Calculation of Tr( I’) could thus provide a direct dheck 
on the applicability of RM/TST theory with large f being 
favorable. While this calculation is not within reach at 
present the relation specified in Eq. (B2) demonstrates 

that the notion of a set of strongly mixed states in a given 
energy interval is consistent with the semiclassical model 
described in Sec. II B; the size of that interval being E. 
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