
Behavior Research Methods & Instrumentation
1975. Vol. 7 (4).369-376

COMPUTER TECHNOLOGY

A random search algorithm
for laboratory computers

RENWICK E. CURRY
Massachusetts Institute ofTechnology, Cambridge, Massachusetts 02139

The small laboratory computer is ideal for experimental control and data acquisition. Postexperimental
data processing is many times performed on large computers because of the availability of sophisticated
programs, but costs and data compatibility are negative factors. Parameter optimization, which subsumes
curve fitting, model fitting, parameter estimation, least squares. etc., can be accomplished on the small
computer and offers ease of programming, data compatability, and low cost, as attractive features. A
previously proposed random search algorithm ("random creep") was found to be very slow in convergence.
We present a new method (the "random leap" algorithm) which starts in a global search mode and
automatically adjusts step size to speed convergence. A FORTRAN executive program for the random leap
algorithm is presented which calls a user supplied function subroutine. An example of a function subroutine
is given which calculates maximum likelihood estimates of receiver operating characteristic parameters
from binary response data. Other applications in parameter estimation, g-eneralized least squares. and
matrix inversion are discussed.

For many investigators involved in behavIOral research,
the small laboratory computer is viewed primarily as an
experiment monitor, controller, and data acquisition
device. The small computer is ideal for this purpose
because of its low initial cost and because it is dedicated
to the laboratory in which it resides.

The decision is not as clear when considering whether
or not to perform postexpcrimental data processing on
the small computer. In favor of the small computer are
data compatibility (no tape-to-tape or tape-to-card
conversions), low operating cost. and availability.
Furthermore, there are many programs designed for
these applications (e.g .. the DECUS library).

The advantages or processing the experimental data
on a large computer are the increases In flexibility.
scope, and sophistication of processing techniques
attendant with the increase in memory and
computational speed. There are many well-documented
programs in existence which take advantage of these
attributes (e.g., the UCLA BMD series).

A strong case caIl he made for the small computer in
one area of "sophisticated" data processing, and it has
received only a modest amount of attention. Parameter
optimization, which subsumes curve fitting, model
fitting, parameter estimation, least squares, polynomial
root finding, etc .. is a task which can be performed on
the large computer ;]S well as the Simi\. Many algorithms
have been proposed (e .g.. Fletcher & Powell, 1963) and

Thb research was sponsDred hy NASA Grant NGR 22·009.733.
Man-Machine Intcgration Branch. NASA-AMES Research Center.

several of these are available in coded form (e.g., IBM
Scientific Subroutine Package). These algorithms
typically require gradient calculations, some require
matrix inversions, and all would quickly overwhelm the
capabilities of a small computer. As with most
algorithms, they only attempt fo find one local
extremum.

Other algorithms utilize a direct search process and
are more readily implemented on a small computer.
They are conceptually the most simple: the objective
function or cost function f(') is evaluated at a point in
parameter space x; a trial point x =~ + !:J.x is selected,
and if f(x) is an improvement over f(~), ~ is replaced by
x. Thus, the hest solution is always retained and
relinquished only when a better one is found.

Algorilh ms of the direct search type are differentiated
by the manIler in which the trial value (or fix) is chosen.
Examples uf direct search algorithms are Chandler's
(Note I) STEPlT and Hooke and Jeeves' procedure
(1961): these and other methods are compared in
Dorfman. Beavers. & Saslow (1973). The performance of
these algorithms, as measured by the conventional
yardsticks of computing time or the number of times the
cost function is evaluated. is usually (but not always)
inferior to the more sophisticated approaches. For the
small computer, however, time is not money, and when
the further advantages of less programming effort (e.g.,
no gradients to be computed) and data compatibility are
considered, the direct search algoritluns on a small
computer become very attractive.

One final feature, and some would say that it is the

·no CURRY

I
I

I
I

,/
-~

&

\
\
\

\ ,
'-,

\
\.

\
I
I

I
I,

I
I

""

<# 1;.

\~\y'

/
I,,,,,

,
I
I,
\

\
\
\

\

Figure 1. Geometry of possible improvement with random
steps (!Ix) of fIXed size (R) in two-parameter space. (a) Far from
the extremum: the gradient vectors (g) are paranel, and an
improvement is possible only if tI> (the angle between !Ix and g) is
-rr/2 < tP < rr/2, which occurs with the probability .5. (b) Close
to a spherical extremum (E) at distance Po: contours of constant
criterion f(x) are concentric circles centered at E. Improvement
is possible only if -tPo < tP < tPo < rr/2 with probability < .5.
When the step size is greater than twice the distance to the
extremum (R > 2po), no improvement is possible.

The Random Leap Method
Improving convergence rate. The main disadvantage of

the random creep method, as it is described in the
previous section, is the relatively slow rate of
convergence because only the minimum step size is used.
We experimented with modifications to rectify this
problem; for example, if b,x had been an improvement
on the previous trial, it was then used in succeeding trials
until no further improvement was obtained. These
modifications gave a minimal amount of improvement.

It was about this time that the analytical work of
Rastrigan (1963) came to our attention; he analyzed a
random search procedure where the direction of the

no guarantee that this algorithm will converge to the
global extremum (only an exhaustive search will do
that), but experience has shown this to be an effective
method of finding local and global extrema (Bekey &
Ung,1974).

j = 1, ... ,n

€j =N(O,aj)

where fu4 is the perturbation to the jth element of x on.
the ith trial, and the €j are independent zero-mean
Gaussian variables. (2) If the trial vector 'X = ~ + /J.x
results in an improvement, x: is replaced by 'X. If not, a
new b,x is chosen according to the above equation. (3) If
the iteration fails to improve after a specified number of
consecutive trials, all standard deviations are increased
by the same factor

RANDOM SEARCH ALGORITHMS
FOR GLOBAL EXTREMA

j =1, ... ,n

most important, is that these teclmiques can more easily
search for global, not just local extrema, since the logic
for global search is readily incorporated in the direct
search logic.

In this paper, we present a direct search program for
fJnction minimization which is intended especially for
use on small computers. Because of this goal, the
primary consideration is small program size rather than
speed of computation, number of function evaluations,
or computation costs. The program's genesis is the
"random creep" algorithm originally proposed by
Faureau and Franks (1958) and discussed most recently
by Bekey and Ung (1974). After describing the
algorithm, we propose a new algorithm (the "random
leap") which offers substantially better convergence
speed. A FORTRAN program to carry out the random
leap procedure is given, and an example of maximum
likelihood estimation of receiver operating characteristic
parameters is presented. Applications to generalized least
squares and matrix inversions are also discussed.

The Random Creep Method
The random creep algorithm (Bekey & Ung, 1974;

Faureau & Franks, 1958) derives its name from the
manner in which the trial values of the parameter vector
increment b,x are derived: (1) At each stage of the
iteration, each of the n elements of the currently
optimal parameter vector ~ is perturbed by a zero-mean
Gaussian random number of specified standard
deviation:

where 0: > 1. This action is based on the assumption that
a local minimum has been reached. (4) The process
terminates after either (a) the total number of iterations
reaches a predetermined value, or (b) the standard
deviations have been increased a specified number of
times.

The major advantage of this approach in small
computer applications is the relatively small amount of
storage space required for the search algorithm. There is

RANDOM SEARCH ALGORITHM FOR LABORATORY COMPUTERS 371

Figure 2. Probability of no improvement vs. step size
(measured in distance to extremum) for spherical extremum in
n-dimensional space.

r:.lI1dolll scarch vcctur is uniformly distributcd over the
hypcrsphere, but the stcp size is fixed. The areas of
interest arc shown in Figure I for a two-parameter case:
6x is thc random increment in the parameter vector and
has a fixed magnitude or step size of R: <P is the angle
between the gradient vector g and the random increment
6x. In Figure Ia. the currcntly optimal value of x is far
from the extremum resulting in (nearly) parallel
gradients throughout the trial region. The probability of
3n improvement is Yz undcr these conditions.

Figure Ib sh ows the situation when the search
procedure nears an extremum E which is assumed to be
of a spherical nature~the contours of constant cost
function are circles in this two-parameter case, but are
hyperspheres in general. In this diagram, the step size is
again denoted by R; <P is the angle of t:,x from the
gradient, <Po is the maximum angle for which an
improvement can be made; and Po is the distance of the
current point from the extremum. It can be seen that
tile probability of improvement is less than J6. under this
condition, since there is a smaller region in which the
random search vector will yield an improvement. In the
extreme case, when the step size is twice the distance to
the extremum, then all points of the function which
would yield an improvement lie within the circle of the
search vector and no improvement is possible. These
factors are shown quantiatively in Figure 2, which

0.50

0.25

R/DLM

1.00

C.7)

demonstrates the probability of no improvement for
fixed step size as a function of the step size, measured in
distance from a spherical extremum, for various
dimensions of the parameter vector. These curves were
generated by numerically integrating the expressions
given in Rastrigan (1963).

Figure 2 contains the information that is the basis for
the random leap method. In essence, the step size is
adjusted so that one always obtains a modest probability
for improvement. When the step size is large, it is
difficult to get an improvement, so the step size is
halved. As the search procedure then comes closer to the
extremum, it again becomes difficult to obtain an
improvement and the ~tep size is again halved.

When dealing, as we are, with a completely random
increment in cach coordinate direction, the step size is
not tlxed. In Figure 3, we show the cumulative
distribution curves for the R distribution which is the
magnitude of the random increment 6x when the
incremcnts are independent Gaussian variables with the
same standard deviation. The algorithm we suggest uses
uniformly distributed variables, so we have also shown,
for latcr use, the abscissa in lhe scale of step size
normalized with respect to the limits of the uniform
distribution. The difference bctween the uniform and
Gaussian distributions (in terms of the magnitude of the
vector) becomes small for a large number of parameters;
the circles in Figure 3 indicate the exact solutions for
uniformly distributed variables for n = 2, and even for
this low number of parameters, the deviations are of no
practical signitlcance.

Program outline. The overview of the operation begins
with a call to the user-supplied function routine to

Figure 3. Approximate magnitude R of the random search
increment b.x. Upper abscissa scale for R normalized by the
standald deviation (Gaussian distribution); lower abscissa scale
for R normalized by the half-limit of a uniform distribution
(DLM) = ..;TO). Circles show exact values for uniform
distribution (n = 2).

l/p.2.01.0

STI!PSIZE (R)/OISTANCE PRct! EXTREIlIJI((p,'

372 CURRY

":::::::::::RANDOM LEAP PARAMETER SEARCH ROUTINE
DIMENSION xCS), TMPX(5),DlMOCS), T~lM(5)

C::::::::::5ET IA::;2::::(P/2)-3,RNDMG::2::::(P-l)-1 FOR P BIT MACHINE

IA = 61
RNDMG = 2047
IRNO = 1237

e:: :::::~lI'HTIALIZATION CALL TO GET PARAMEfER$ AND FIRST VALUE
IlFRST:l

res T=C 5 TFN(TMP X, NX, lFR5 T I MX I TR, MXFGS, MXEXP, MXfL$, MXC 1R, lPRT, DlMC)
LFRST ;; 2
NFAIL ::; 0
I TE R ::; 0

C::::::::::START LOCAL SEARCH HERE
30 MODE = 1

C::::::::::START GLOBAL SEARCH HERE (MODE Sf r TO 2 BELOW)
3S NEXP ::; 0

NCTR ;; 0
C::::::::::SET TEMPORARY 0151R. LIMITS AT INITIAL VALUE

DO 40 l=l,NX
40 TMPLM(I) = OLMO(I)

GO TO (SO,80),MODE
C::::::::::SAVE SUCCESSFUL TRY AND PRINT IF LPRNT=2

SO CST::; TeST
DO 60 l=l,NX

60 X(I) = TMPXC!)
GO TO C75,70),LPRT

70 ~JRITE 0,1040) ITER,MODE,NFAIL,NE';P,NCTR,CST,(X(I),J::1,NX)
101+0 FORMAT (SI6,E1S.5,EF10.4/(10X,6F1 1).1+»

75 NFAIL :: 0
C::::::::::FIND AND TEST NE~ TRIAL X AFTER CI~ECKING FOR MAX ITERATIONS

SO ITER:: ITER + 1
IF (iTER - HXITR) 90,90 J 230

90 DO 99 I::::1,NX
IRND :: IA::IRNO
IF (IRND) 99,230,99

99 TMPX(I):: X(I) .. FLOAT(IRNO)/RNDMt;::TMPLM(I)
TCST::CSTFN(TMPX, NX, LFRST ,MXI TR,MX,'=GS, MXEXP, MXFlS, MXC TR,lPRT , OUolO)
IF (TCST - CST) 100,110,110

C:D:::':::SAVE IMPROVED SOLUTION BuT FIRST SWITCH TO LOCAL {F IN GLOBAL
100 GO TO CSO,30),MODE

c::::x::::OTHERWISE COUNT SUCCESSIVE FAILURES, GO TO STEPSIZE lOGIC
110 NFAIL :; NFAll .. 1

GO TO (120,170),MOOE
C::::::::::STEPSIZE LOGIC FOR LOCAL SEARCH
c:o:::::::TEST FOR MAX FAILURES, LOCAL SEAR':H

120 IF (NFAIL - MXFlS) 80,80,130
130 NCTR :: NCTR .. 1

IF (NCTR - MXCTR) 11+0,140,160
C:::::::~::HALVE DISTRIBUTION LIMITS AND TRy NEW X

11+0 NfAll :: 0
DO ISO 1::1,NX

150 TMPLM(I) = TMPLMO)".5
GO TO 80

c:oo:::xENO lOCAL SEARCH I f TOO AANY CONTRACT IONS (HAlVI NGS)
160 WRITE 0,1100)

1100 FORMAT ('END LOCAL S£ARCH')
WRITE (1,1040) iTER,MODE,NFAIL,NEXP,NCTR,CST,(X(I),I::I,NX)
MODE = 2
GO TO l5

c:::::o:::STEPSIZE LOGIC FOR GLOBAL SEARCH
c:n::c::::rES T FOil MAX FA ILURES, GLOBAL SEARCH

170 IF (NFAIL - MXFGS) SO,SO,lS0
ISO NEXP ~ NExP .. 1

IF (NEXP - MXEXP) 190,190,230
C::::::::::EXPAND DISTRIBuTION LlM! TS

190 NFAIL :: 0
DO 200 l::l,NX

200 TMPLMC!) = 1. 3"TMPLMC!)
GO TO 80

c:::::::n:EXiT SEARCH LOGIt: HERE AND START AGAIN
230 WRITE 0,1060)

1060 FORMAT ('STOP')
WRITE (1,1040) 1TER.,MODE,NFAIL,NE,(P,NCTR,CST ,(XC I),1 :::l,NX)
GO TO I
END

Figure 4

supply the constants for the program operation and the
initial guess at the parameter vector. From there, the
operation proceeds as follows: (a) Uniformly distributed
independent increments of each coordinate are chosen
to calculate the new trial value of x.1 Initially, the
distribution limits of these random increments are
chosen to be of moderate size relative to the entire
search region, i.e., if the search region is (-1,1) in each
coordinate, then the limits of the uniform increments
are on the order of (-1,1). This allows a preliminary
global search in the beginning phases. (b) When the trial
values of x have failed to yield an improvement a
specified number of times, it is assumed that the step
size is too large relative to the distance to the extremum,
and the distribution limits are halved. The search
continues with these limits until the procedure fails to
yield an improvement in the (same) consecutive number
of trials. (c) After the distribution limits have been

halved a specified number of times, it is assumed that
the procedure has converged to a local minimum. The
results are printed out, and the distribution limits are
reset to their original, moderately sized, values. The
global search is then initiated in a manner similar to the
random creep method: if no improvement is reached
after a specified number of times, the distrib.ution limits
are increased, and the search continued. Note, however,
that the global search is initiated with the moderately
sized distribution limits and not the minimum size, as is
done in the random creep method. (d) The procedure is
terminated whenever the total number of iterations
exceeds a specified value or when the global search has
not yielded an improvement after a specified number of
expansions of the distribution limits.

The advantage of the random leap algorithm lies in its
ability to perform a preliminary global search and
gradually reduce the step size as the extremum is neared.
There are cases, obviously, when the random creep
method would be better, such as when the initial value
of x is very close to the extremum.

Program description. A FORTRAN listing of the
random leap algorithm is given in Figure 4, which
executes the general procedure described above. To do
this, it requires a user-supplied function subroutine
CSTFN which calculates the value of the cost function;
we have made provision for the user to enter the
constants and parameters for the search routine for
maximum flexibility. During the first call to the
function routine CSTFN, the following transfer of
variables obtains:

Variables Passed to CSTFN
LFRST has been set to the value of 1 to indicate that

this is the first (initialization) call

Variables Returned from CSTFN
TMPX temporary value of X, in this case the initial

value
NX the number of dimensions in the parameter

vector x
MXITR maximum number of iterations
MXFGS maximum number of consecutive failures in

the global search mode
MXEXP maximum number of expansions (increases of

the distribution limits) in the global search
mode

MXFLS maximum number of consecutive failures in
the local search mode

MXCTR maximum number of contractions (halvings) of
the distribution limits in the local search mode

LPRT returned as 2 to print (a) each time an
improvement is made, (b) at the end of the
local search, and (c) at the termination of the
search; returned as 1 to print only at the end
of the local search and at the end of the entire
search

RANDOM SEARCH AL(;ORITHM FOR LABORATORY COMPUTERS 373

TCST the numerical value of thc cost function
DLMCl> the array containing the initial limits of the

uniformly distributcd random search
incrcments. For cxample, 6X(I) is uniformly
distributed betwecn (~DLM@(I). DLMCl>(I».

For subsequent calls to the function routine during
the normal course of operation, the following transfer of
variables applies:

Variables Passed to CSTFN
TMPX the temporary or trial value of X
LFRST has been set to '2 to indicate that initialization

is not require d

Variables Returned from CSTFN
TCST the numerical value of the cost function

CHOOSING THE SEARCH PARAMETERS

In this section, we give some guidelines on how
one determines the parameters of the search. Assume
that the parameters have been scaled such that the
solution is likely to lie within the unit hypercube (-1, I)
in each coordinate. Let us pick a convergence criterion
that (say) each value should be determined within at
least .01 of the true value which minimizes the cost
function. To fmd the minimum step size required, we
arbitrarily fix the probability of no improvement which
we would like to detect at (say) .7. Looking at Figure 2.
we can then determine the step size relative to the
distance from the extremum for various dimensions of
the parameter vector. If we have four parameters, then a
probability of .7 occurs with a step size that is roughly
.6 times the distance from the extremum. Since we want
the distance from the extremum to be no more than .0 I,
the magnitude of the minimum step size must be .006.
To find the minimum distribution limits corresponding
to the minimum step size, we refer to Figure 3. where
we see that for n = 4, the step size will be less than 1.8
times the distribution limit more than 95% of the time.
Thus, the minimum limits of the uniform distribution
should be ±.006/1.8 = ±.0033. The initial value of the
distribution limits should be on the order of ±I, and
because the limits are halved at each stage, we seek an
integer M such that 1/2M "'" .0033. Note that
2 8 (.0033) = .768, so we set DLMCl> =.8 and
MXCTR= 8.

The adaptive nature of the random leap
program results from testing the hypothesis that the
probability of failure is .7 or less. To reject this
hypothesis at the .05 and .01 levels of significance. we
would need 9 amd I3 successive failures, respectively.
(six and nine successive failures are required for the same
level of confidence when detecting probability of failure
.6 or less, showing the desirability of working with
probabilities of no improvement closer to .5 than 1.0.)
Thus, MXFLS, Maximum Consecutive Failures, Local

Search, should be in the range of 9 to 13, perhaps
greater to account for contingencies.

The parameters for the global process (MXFGS and
MXEXP) can really only be determined by
experimentation in each particular situation. We found,
in the cost function described below (which has two
maxima) that 300 trials with a five-dimensional vector
were more than adequate to fmd the global maximum
when situated at the local maximum. The number of
such trials must be increased substantially when going to
a larger parameter vector to obtain similar densities of
trial values within the parameter space,

APPLICATIONS

Maximum Likelihood Estimation
In this section, we describe an application of the

random leap algorithm and the results of a Monte Carlo
simulation. The first example uses a cost function of the
form

f(x) = .5gexp(-Ql(X)) + A Iexp(-Q2 (x» (1)

n .
Ql = Sen) .~ (.5 - XJ2 /(1.26)1-1 (2a)

1=1

where Sen) is a scale factor depending only on the
number of dimensions in the parameter vector and keeps
the argument of the exponent function within
reasonable bounds. This function was chosen for a
detailed examination because of its two nearly equal
modes. It corresponds to a maximum likelihood
estimation problem in which the observations (.5,
.5) come from either a distribution with mean x
(prior probability .59) or -x (prior probability AI) and
unequal variances.

Monte Carlo trials. One hundred Monte Carlo trials of
the random creep and random leap operations were run
using the cost function in Equation 1 on a PDP·12
computer with software multiply and divide routines.
Approximate time for each iteration was about 1.5 sec.
The initial conditions for these trials were uniformly
distributed in the unit hypercube, and parameter vectors
of dimensions 2 and 5 were used. Convergence was
considered complete when the search routine first came
within a sphere corresponding to an rms deviation in
each component of .05.

With the two-dimensional parameter vector, the mean
number of iterations·to·convergence for the random leap
algorithm was 35, the median 36, and the maximum
number of iterations required was 67. In all these cases,
the fact that the search was started at the global level
rather than the local level resulted in a convergence to
the global maximum first. On the other hand, the
random creep algorithm converged to the local

374 CURRY

where rijk is the number of i responses at criterion i to
stimulus k, i = 1,2, ... ,M;j =YES, NO; k = s (signal), n
(noise). The parameter vector for this case is

Note that we can easily obtain the parameter estimates
under the constraints of equal-variance distributions by
setting as in the above expression to unity.

A function subroutine written to generate the
parameter estimates is shown in Figure 5. It prompts the
user for the number of different criterion levels, and a
parameter indicating whether it is to be an
equal-variance case or whether B = IIus is a parameter to
be estimated.

(6)x=

maximum first in many trials. It also failed to find the
global maximum within the allowable maximum of 500
iterations on many of its trials, whereas the random leap
algorithm never failed to converge to the global
maximum.

In testing the random leap algorithm with the
five-dimensional parameter vector, the mean number of
iterations-to-convergence in 100 Monte Carlo trials was
194, with a maximum number of iterations of 365 and a
minimum of 58. The distribution of the number of
iterations had two modes: one, at 100 iterations,
corresponded to those searches that went directly to the
global maximum; the other mode, at 240 iterations,
represented those searches that went to the local
maximum first and then to the global maximum. Sixty
of the 100 Monte Carlo trials converged to the global
maximum first; this is a statistically significant
difference from the expected value of 50 that one would
expect with the random creep algorithm, and is due to
the fact that the random leap algorithm starts off in the
global search mode. The random creep algorithm was
not run in this more difficult task because of its
relatively poor performance on the easier two-parameter
case.

(4)

P("YES" Isignal) = I -<I>[(6i -d/)lasl =11>[(d' -l3i)lus]

m

Q(x) ex f(x) = i~/iNnlnl<l>(~i)l + riYnlnj<l>(-(3i)!

where {3j is the criterion level adopted in the ith session,
d' is the sensitivity measured in noise standard deviation
units, Us is the standard deviation of the signal
distribution, measured in noise units and 11> is the
Gaussian distribution function.

The mnimum likelihood estimates for the parameters
(3i, d', and Us are obtained by maximizing the likelihood
function which is proportional to

1.821256)"T + 1.781478)"T

Figure 5

FUNCTiON GCOF(7)
AZ = AaS(Z)
T :: 1./0 23161t19 X AZ)
o = .39891.+23 lC EXP(- Z;'Z~c.5)

p:. 1. - 0::Tll««1.330274"T -
@ - .3565638)"T + .l193815)

IF (2) 1,2,2
IP=l.-P
2 GCDF :: P

RE TURN
END

FUNC T ION CSTFN(X, NX, LFRS T,MX I TR, MXFGS J MXEXP, MXFLS, MXC TR, LPRT DLMO)
C~:::;l::::FUNCTION SUBROUTINE FOR MAXIMUM LIKELIHOOD ESTjMATION OF ROC'PARAM
C::::::::::WRITTEN FOR TELETYPE INTERACTION

DJMENSION X(1),R(2,6),DLMO(1)
GO TO Cl,30),LFRST

c:::::::::qHIS PORTION FOR THE IN!TIALIZATlON CALL TO INPUT DATA
1 wRITE (1,1000)

1000 FORMAT (I READ NX,MXITR,MXFGS,MXEXP,MXFLS"MXCTR"LPRT')
READ (1,1010) NX,MXI TR,MXFGS,MXEXP,MXFLS,MXCTR, LPRT

1010 FORMAT (4)
WRITE (1,1005)

1005 FORMAT (' NUMBER Of CRITERJAIl FOR EQUAL VAR,2 OTHERWISE')
READ CI,1010) MCRIT,lS
J F «lB-l)lC(lB-2)) 1~ 5.1

5 WRITE 0,1020)
1020 FORMAT (I READ 'NO,IYES RE5PONSES;FIRST NOISE, THEN S ... N')

DO 10 IeRlT ;:: l,MCRlT
DO 10 ISIG ;:: 1,2
1 :: ISIG ... 2:c(ICR!T - 1)

10 READ 0,1030) RO,I),RO,I)
1030 FORMAT (Fl0.2)

WRITE (1,101.+0)
101.+0 FORHAT (I READ XQ(t),DLMO(I)I)

IMX :: MCRIT ... LB
DO 20 I ;:: 1, I MX

20 READ (1,1030) XCI),DLMOCI)
cloOOC::NORMAL CALCULATIONS HERE
Cllxx:mSTRIP 0' FROM X AND LIMIT IF NECESSARY

30IX::MCRIT+l
IF (XCIX) - .01) 34,38 .. 38

34 X(IX) = .01
38 0 = X(I X)

CUlD()(ltGET STD. DEV. RATIO
GO TO (40,50),LB

1.+0 B = 1-
GO TO 60

50 IX :: MeRIT + 2
CX::lO:lCLlMIT ALLOWABLE B .GE. 0.01

IF (X(IX) - .Oll 54,58,58
54 X(IX) = .01
58 a = xCix)

Cl:::lllCXCAL.CUlATE LOG LIKELIHOOD FUNCTION (LESS CONSTANTS)
60 XLLF = O.

00 100 ICRIT :: l,MCRIT
DO 100 ISIG :: 1,2
GO TO (70 .. 80),15IG

70 Z = X(ICRIT)
GO TO 90

80 Z = 8"(X<ICRIT) - 0)
CltlClOOCTHEORET1CAL PR08('NO t) fROM GAUSSIAN CUMULATIVE OlSTRIBUTION

90 P = GCDF(Z)
IP = ISIG + 2"<ICRIT - Il

100 XLLF " XLLF + RO,IP)XALOG(P) + R(2,IP)"ALOG(I. - P)
ClUClflC)(MINIMIlE THE NEGATIVE LOG liKELIHOOD FUNCTION

CSTFN :; - XLLF
RETURN
END

(3)

i = 1,2, ... ,M

p("YES"lnoise) = 1 - cI>({3i) = 11>(-(3t)

Receiver Operating Characteristics
In the theory of signal detection (TSD) approach to

psychophysics, the subject's response is divided into
sensory and response bias components. One may
administer a yes-no response procedure in several
sessions, during each one of which a subject adopts a
different strategy or criterion level (m, whereas the
sensitivity of the signal (d') remains constant throughout
(Green & Swets, 1966). Assuming that we have binary
response data ("YES" or "NO") for Mcriterion levels, the
TSD model uses the following expression for the
probability of a "YES" response given noise (n) and
signal(s) respectively

RANDOM SEARCH ALGORITHM FOR LABORATORY COMPUTERS 375

For a test case, we assumed a value of x equal to
(~1 = .5, ~2 = .75, ~3 = 1.25, d' = 1.00, as = 1.25). We
used as responses the values proport ional to the
theoretical probabilities, i.e., we expect a "perfect" fit.
Starting from the initial condition (.5, 0, .5, .5, .5), the
random leap algorithm converged to within .01 of the
true value of each component of the parameter vector
within 100 iterations. To determine how well these data
from an unequal variance distribution are fit by an
equal-variance model, we used the equal-variance option
of the program and found the equal-variance fit tn the
unequal-variance data: the final estimates were
(~1=.531, ~2=.756, ~3=1.1, d'=.(6), and the
random leap algorithm, starting from the same initial
conditions as before, again converged to within .0 I of
the final values after 100 iterations. Each nf these
solutions took about 3 min on the PDP-12 computer
described above. Since a printout was made at each
improvement, though, the computations were limited at
times by the print operation.

Parameter Estimates from Grouped Data
The maximum likelihood procedure is one method of

obtaining estimates of distribution parameters for
grouped data, for example, obtaining the mean and
standard deviation of a distribution from data such as is
gathered in poststimulus histogram form. In these cases,
the log IikeliJlOod function is proportional to

(7)

where ri is the number of responses in the ith group
(i = i,2, ... ,N), and Pi is the theoretical probability of
the sample falling in the ith group. Under the
assumption that the underlying distribution is Gaussian,
Pi is given by

(8)

and the parameter vector is

(9)

Simple changes can be made to the function routine
shown in Figure 5 to perform these calculations. The
boundaries of the groupsjcifmust, of course, be read in
during the initialization phase, but it is a simple matter
to program Equation 7 and solve for the mean, fJ., and
standard deviations, o.

An alternative to using the maximum likelihood
estimation criterion is the minimum X2 criterion (Rao,
1973). This has many of the advantages of the maximum
likelihood procedure, and serendipitously, one is

calculating the X2 value which can be used in a
goodness-of-fit test when the final estimates have been
obtained.

Generalized Least Squares
One of the most common and most powerful forms of

regression analysis is generalized least squares, which can
be written in the form

f(x) = (Y- h(x))TW(Y ~ hex)) (10)

where y is a k-dimensional vector of observations (data),
h is a vector function of the parameter x, and W is a
positive semidefinite (symmetric) matrix of weighting
coeftlcients. The objective is to choose the parameter
vector x to minimize this cost function. [n the linear
form, Equation 10 becomes

f(x) = (\) - HX)TW(\} - Hx) (11)

where H is a kxn matrix. This has a unique solution
under suitable conditions on Hand W (Rao, 1973),
ususally satisfied in practice. One may use the random
leap algorithm to find the solution to Equation II rather
than go through the matrix inversions and manipulations
required to solve for the vector x. We also note that ifH
is square and nonsingular, and if we solve Equation II
with y equal to zero except for a I in row i, then
solution x is the ith column of the matrix H -1. Thus, n
separate parameter searches will completely invert the
nxn matrix H.

CONCLUSIONS

The disadvantage of a small laboratory computer for
postexperimental data processing is its small memory
and inability to accommodate large sophisticated data
processing programs, while the advantages of using the
small computer are data compatibility, ease of program
development, ability to run for long periods of time, low
cost, and accessibility. Parameter optimization is one
area which has received relatively little attention in small
computer applications. Direct search methods are the
easiest to program, and they require little core storage
and no analytical gradient calculations.

Random search algorithms are one member of this
class, and Rastrigan (1963) has shown that the average
rate of convergence of the random creep algorithm may
actually be superior to the gradient method in which the
gradients arc calculated numerically at each step. The
slow rate of convergence experienced in the random
creep algorithm is due to small step size and was
overcome by the random leap algorithm proposed here.
This algori th111 opera tes by starting off in the global
search mode and automatically reducing the step size as
the search procedure approaches the extremum of the
function. After reaching a minimum (or maximum), it

3i'6 CURRY

branches out and starts a global s~arch by gradually
expanding the size of the random increments from their
original, moderately sized values.

The random leap algorithm was compared to the
random creep method on a bimodal likelihood function
and showed superior convergence characteristics. We
then presented a function subroutine to be used with the
random leap program to calculate the maximum
likelihood estimates of receiver operating characteristic
parameters in YES-NO tasks; this was followed by a
description of maximum likelihood estimation of
distribution parameters from grouped data (histograms).
Generalized least squares regression was also considered,
and it was shown how one could perform matrix
inversion using successive applications of direct search
methods.

REfERENCE NOTE

\. CH.~NDLER.J. P. Sl/brol/lilleSTEPIT: All algorithm that finds
III,' I',i/I/es (!I Ihe parllllH-Ien I('hich minimize a given conti~uous
111I1('(io//. A copyrighted program. 1. P. Chandler. Copyright. 1%5.

REFERENCES

BFKFY, G. A.. & UNG. M. T. A comparative evaluation of
t\lO global search algorithms, IEEE Transactions on
Systems, Man and Cybernetics. 1974, SMC-4. 112-116.

D()~IMAN. D. 0.. BI'AYERS. L. L.. & SASLOW. C.
hllmation of signal detection theory parameters from
rating method data: A comparison of the method of scoring
ami cl irl'c·t sc'arch. 111///,·till 01 Ihe Ps\,cll<JlIlllllic Society.
1l)~.1. I. 211i ·208. . -

FAUREAU, R. R.. & FRANKS. R. G. Statistic-al optimization.
In: Proceedillgs (!I the Secllnd Intematiunal Computer
Clln/~rence. 1958.437-443.

Fl HOIFR. R.. c'< POWELL, M. 1. D. A r:lJ)idh cOl1\'ergent
dl·\CC·tlt metll\\d I"l minimi/ation. rhe CIlIII/'l/ter jlll/rIlal,
1%.1. 6. I bJ.

GREEN. D. M.. &: SWETS. J. A. SIRllal detection theor.,.
alld /,syc!tllphysics. New York: Wiley, 1%6, -

HOOKE. R.. & JEEvES. T. A. Direct seardl s()[ution of numerical
and statistical prohlems. jOl/rnal III Ihe Associatio// /iJr
Computer Machillery. 1%1. 8. 212-229. .

RAD. c. R. Li//eal' statistical i///<-I'<'IIce a//t! its applications
(2nd ed.). New York: Wiley. 1973.

RASTRIGAN. L. A. The convergence of random search method
in the presence of noise. Autolllatillll and Remote Colltrol.
1963. 24. 1337-1342.

NOTE

1. This is easily done by intentionally overtlowing the FORTRAN
integer multiplication. and on a 12-bit machine. provides 1.024
uniformly distributed random numbers (-2047, 2047) before
repeating the sequence.

(Received for publication November 27. 1974;
revision received April I. 1975.)

