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Abstract

Since finite automata are in general strong abstractions of systems,
many test cases which are automata traces generated uniformly at ran-
dom, may be un-concretizable. This paper proposes a method extending
the abovementioned testing approach to pushdown systems providing finer
abstractions. Using combinatorial techniques guarantees the uniformity
of generated traces. In addition, to improve the quality of the test suites,
the combination of coverage criteria with random testing is investigated.
The method is illustrated within both structural and model-based testing
contexts.

1 Introduction

1.1 General Overview
Producing secure, safe and bug-free programs is one of the most challenging
problems of modern computer science. In this context, two complementary
approaches addressing this problem are verification and testing. On the one
hand, verification techniques mathematically prove that a code or a model of
an application is safe. However, complexity bound makes verification difficult
to apply to large systems. On the other hand, testing techniques do not provide
any proof but are relevant in practice for developing high quality software. Over
the past decade, many works have been done in order to upgrade hand-made
(or experience-based) testing techniques to formal methods based frameworks.

Since exploring all the configurations of a software is time consuming and
error prone, one of the key problems for a validation engineer is to choose a
relevant test suite while controlling the number of tests. The crucial question
raised is then: “What does relevant mean?”. A frequent answer, in the literature
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Figure 1: Example of a finite graph

and in practice, is to consider a test suite as relevant if it fulfils some well-known
coverage criteria; for instance, a code coverage criterion, which is satisfied if all
the lines of the code are executed at least once when running the tests. It is
important to point out that coverage criteria can be applied to the code (white
box or structural testing) or to a model of the implementation (black box or
functional testing [1]). Since there are many ways to fulfil coverage criteria [2],
other criteria can be taken into account, for example based either on computing
minimal/maximal length test suites, or on selecting boundary or random values
for the test data.

Recently, a method for drawing paths in finite graphs uniformly has been
proposed [3], and the authors have shown how to use these techniques for a con-
trol flow graph based testing of C programs. The idea is to define probabilistic
coverage criteria for testing. The method consists in applying a combinatorial
based algorithm to solve the following probabilistic problem.

Random Generation of a Path in a Finite Graph
Input: A finite labelled graph G, a vertex v0, a positive integer n
Output: Randomly generate a path of length n in G, starting from v0. The generation has
to be uniform relatively to all paths of length n in G.

The technique by A.Denis et al. [4] proposes an efficient way to decide the
above problem, even for very large graphs. Nevertheless, a finite graph often
represents a strong abstraction of the system under test, and many abstract tests
generated by the approach may be impossible to play on the implementation.
This paper addresses this problem when using pushdown graphs as abstractions.
More precisely, the present article makes the following contributions. The first
contribution in Sec. 3 consists in improving the random approach proposed
by A.Denis et al. [4] by extending it to pushdown graphs, and thus providing
finer abstractions for systems, particularly useful to encode the call stack of
a program. The second contribution in Sec. 3 consists in providing a way to
efficiently solve the Random Generation of a Path in a Normalised Deterministic
Pushdown Automaton problem described below. The third contribution in Sec. 4
concerns the combination of coverage criteria with random testing, in order to
take benefit of both approaches for evaluating the quality of the test suites. The
fourth contribution in Sec. 5 and 6 consists in illustrating the application of the
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int power(float x, int n){
int res;
if (n==0) {

return 1;
} else {

res = power(x,n/2);
if (n%2==0) {

return res*res ;
} else {

return res*res*x ;
}

}
}

Figure 2: C program computing xn

proposed techniques within both structural and model-based testing contexts.

Random Generation of a Path in a Normalised Deterministic Pushdown Au-
tomaton
Input: A normalised deterministic pushdown automaton A, the initial state v0, a positive
integer n
Output: Randomly generate a NPDA-trace in A of length n, starting from v0. The
generation has to be uniform relatively to all NPDA-traces of length n in A.

In the paper NPDA stands for Normalised Deterministic Pushdown Automa-
ton, and DFA for Deterministic Finite Automaton. For the before mentioned
problem, informally a NPDA-trace is a path in the underlying finite automaton
consistent with the stack operations. Its precise definition is given in Sec. 2.

1.2 Motivation
The random generation of test cases from a graph based model constitutes the
context of the paper. This section explains why classical random walks are
unfair for testing purposes, and why pushdown graphs are better than basic
graphs for the concretization step.

1.2.1 Random Paths Generation vs. Random Walks

The first intuitive way to generate random paths is to perform a Markov-like
random generation: starting from v0, at each step the next vertex is randomly
and uniformly picked in the neighbourhood of the current vertices. This tech-
nique leads to an unknown distribution on paths of length n and is very sensitive
to the topology of the graph. Consider for instance the labelled graph depicted
in Fig. 1. Using a Markovian approach to generate a path of length 2 starting
from 0: path ef occurs with probability 1/2, and paths ab, ac and ag both with
probability 1/6. The generation is not uniform. For a graph with a complex
topology, severe disparities may be observed on the occurring probabilities of
paths of same length.

The Markovian approach may not ensure a well-balanced coverage of the
graph. The technique developed by A.Denise et al. [4] to handle the Random
Generation of a Path in a Graph problem requires two steps: In a first step
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the number of paths of length i ≤ n between each pair of vertices is computed
recursively and using combinatorial techniques. It is easily computed using a
recursive schema. Denoting by si(p, q) the number of paths of length i from p
to q and by α(p, q) the number of edges from p to q, one has s1(p, q) = α(p, q).
Moreover si+1(p, q) =

∑
α(p, r)si(r, q), where the sum is taken for all vertices r.

In a second step, the random path is recursively generated using the computed
probabilities: In order to generate a path of length n from p to q, the probability
that the second vertex visited by the path (after p) is r is α(p, r) sn−1(r,q)

sn(p,q) . The
first edge is picked uniformly from the edges from p to r (if there are many).
A new path from r to q of length n − 1 is randomly generated using the same
technique. For instance, for the labelled graph depicted in Fig. 1, to generate a
path of length 2 from 0 to 4, the probability to choose 3 as the second vertex
will be s1(3,4)

s2(0,4) = 1
3 . The probability to choose 1 as the second vertex will be

s1(1,4)
s2(0,4) = 2

3 . The probability to choose 2 or 4 or 0 is null. Next, if 3 is chosen,
the generated path is (0, e, 3)(3, f, 4). It happens with probability 1/3. If 1 is
chosen as second state, the last edge is equiprobably chosen between (1, b, 4)
and (1, g, 4). Paths(0, a, 1)(1, b, 4) and (0, a, 1)(1, g, 4) are both generated with
probability 1/3. Each path occurs equiprobably.

Remark that it is also possible to design a graph for which the Markovian
approach provides a more balanced coverage of the states/transitions than the
uniform approach. However, the advantage of the uniform path generation
approach is that it is possible to bias the distribution in order to optimise the
coverage of the graph, as it is explained in Sec. 4.

1.2.2 Finite Automata vs. Pushdown Automata

Let us consider the recursive C program described in Fig. 2 and computing
xn: the control flow graph of this program is depicted in Fig. 3. The con-
trol flow graph on the left disregards the recursive calls to the power function.
On the right, the invocations of the power function are represented by dashed
arrows labelled either by call(power) for the power function invocation, or by
return(power) for the the power function return.
Since in the left graph recursive calls to power are ignored, it is impossible to
compute arbitrarily long paths. On the contrary, it is possible on the right
graph. For instance, the run of power(3,2) corresponds to the path

0 → 1 → 5 99K 0 → 1 → 5 99K 0 → 1 → 2 → 4 99K 6 → 9 → 10 99K 6 → 7 → 8

The first occurrence of 5 99K 0 corresponds to the call to power(3,1). The
second occurrence 5 99K 0 corresponds to the call to power(3,0). The transition
4 99K 6 corresponds to the return of power(3,0), and the transition 10 99K 6
corresponds to the return of power(3,1).

Now let a stand for int res;, b for n==0, c for n!=0, d for call(power), e for
return 1;, f for return(power), g for n%2==0, h for n%2!=0, i for the instruction
return res*res;, and j for return res*res*x;. The words accepted by the
automaton depicted on the right of Fig. 3 (see also Fig. 5), are those in the
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return 1;
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return
res*res*x;

Figure 3: Examples of a control flow graph

Program Control
Flow Graph NPA

Context-free
Grammar Execution Trees

Automatic Tool Direct Translation Section 3.1 Section 3.2

Abstract Tests

Direct translation
Concretization

Figure 4: Random generation process
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language of [(acd)∗abef(gif + hjf)∗(gi + hj)] + (acd)∗abe (if considered paths
are from 0 to a final state). Moreover, the accepted words corresponding to the
correct occurrences1 of call(power)’s and return(power)’s are those described by
[(acd)kabef(gif + hjf)k−1(gi + hj)] + abe, where k ≥ 1. For instance, path
0 → 1 → 5 99K 0 → 1 → 2 → 4, corresponding to acdabe is a successful path
(also called a DFA-trace) in the automaton but cannot be concretized since the
call to the power function (letter d) is never returned. Therefore, the probability
that a path of length n in the automaton corresponds to a consistent path w.r.t.
calls/returns of the power function is in o( 1

2n/6 ) and converges to 0 while n grows
to +∞. It implies that the approach consisting in generating paths uniformly at
random in the finite automaton leads to un-concretizable tests most of the time.
Moreover, it rules out the possibility of using a rejection approach consisting in
generating DFA-traces until they correspond to NPDA-traces when generating
long test cases.

1.3 Layout of the Testing Approach
In a structural testing context, i.e., when the test campaign is performed from
the code of a program, to generate abstract tests from a program, our approach
consists in (1) generating its control flow graph, (2) translating its graph flow
into a normalised pushdown automaton, (3) transforming this NPDA into an
equivalent non-ambiguous context-free grammar, (4) uniformly generating exe-
cution trees of the grammar and (5) translating back these trees into paths in
the program. This approach is depicted in Fig. 4. Note that automatic tools
exist for Step (1) for a variety of used programming languages [5]. Step (2) only
consists in transforming function calls into stack operations, and can easily be
automatized. Step (3) is very basic [6, Section 2.2]. Abstract test cases at Step
(4) are then PDA-traces directly obtained from execution trees of the grammar
using the classical word generation/recognition by a context-free grammar. The
GenRgenS tool [7] or the CS package of Mupad [8] can be used for this purpose.
Afterwards, the concretization (5) consists in finding out some input values of
the program which make the execution of the program correspond to a given
NPDA-trace. Note that the concretization step requires the use of specific tools,
for instance constraint solvers, and is not investigated in the paper.

For model-based testing, i.e., when test cases are generated from an abstract
model of the system, the approach is similar when omitting the generation of
the control flow graph step. Indeed, the program, or the system under test, is
provided conjointly with its model, in this case a push-down automaton. Let
us emphasise the fact that in this context the concretization step may be much
harder, depending of the level of abstraction. However, this is a general issue for
all model-based testing approaches whose solutions depend on how the model
and the system are linked. This problem is out of the scope of this paper focusing
on how to randomly generate the tests.

1It means that the word is consistent with the calls to power function, like a well braced
expression.
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The present paper addresses the problem of computing at random NPDA-
traces from the NPDA (Steps (3) and (4)). The translation of a program into a
pushdown automaton and the trace concretization steps (Steps (1), (2) and (5))
are out of the scope of the paper, and are only illustrated with several examples.
Concretizing abstract test cases is a theoretically undecidable problem in both
model-based testing or structural testing frameworks, and it is a central issue
in the software testing context [9, 10, 11, 12].

1.4 Related Work
Graph-based Testing. Testing systems from finite state machines representing
models of the system [13, 1] (model-based testing) consists in describing the
system by a labelled transition system on which different algorithms may be used
to extract the test cases. This is, for instance, the principle of SpecExplorer [14]
or TGV [15]. Testing from control-flow graphs (structural testing) is one of
the major testing approaches developed in hundreds of articles. The interested
reader is referred to the reference paper [9] or to the reference book by P.Amman
and J.Offut [16] for more information.
Grammar-based Testing. Grammar-based testing was used to test parsers [17]
and re-factoring engines (program transformation software) [18]. A systematic
generation for grammar based inputs is proposed by D.Coppiet and J.Lian [19].
However because of the explosion of tests, symbolic approaches are frequently
preferred [20, 21, 22]. Recently, a generic tool for test generation from grammars
has been developed [23]. This tool does not provide any random feature but is
based on rule coverage approaches/algorithms, as in many other works [17, 24,
25, 26].
Random Testing. Random-based approaches for testing were initially proposed
by J.W.Duran et al. [27] and R.Hamlet [28]. Random testing can be employed
for generating test data, such as in DART [11] or to generate complete test
sequences, as in the Jartege tool [29]. A recent work [4] provides an approach
combining random testing and model-checking and is discussed deeper in this
paper. Other approaches [30, 31, 32, 33] propose random and grammar-based
techniques for testing: in this context, grammar are used to specify input data-
structures. Note that such algorithms were used in a work by P.Godefroid
et al. [22] for testing in a white-box fuzzing context. An approach combining
model-based testing and randomness is presented in a paper by F.Dadeau et
al. [34].

Uniform Random Generation of Derivation Trees. Combinatorial techniques
to generate uniformly at random execution trees from context-free grammars
were developed by Flajolet et al. [35, 36]. Several existing tools such as Gen-
RgenS [7] or the CS package of Mupad [8] can be used for this purpose. The
experiments presented in this paper make use of GenRgenS—a software dedi-
cated to random generation of sequences that supports several classes of models,
including Markov chains, context-free grammars, etc.
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2 Formal Background
If X is a finite set, X∗ denotes respectively the set of finite words over X. The
empty word (on every alphabet) is denoted ε. The set X∗ \{ε} is denoted X+ .

2.1 Pushdown Automata
A deterministic finite automaton is a tuple (Q,Σ, δ, qinit, F ) where Q is a finite
set of states, Σ is a finite alphabet, qinit ∈ Q is the initial state, F is the set
of final states and δ is a partial function from Q× Σ into Q. A successful path
or a DFA-trace in a finite automaton is a (possibly empty) finite sequence of
elements of Q×Σ×Q of the form (p1, a1, q1) . . . (pn, an, qn) such that p1 = qinit,
qn ∈ F and for each i, qi = pi+1 and δ(pi, a) = qi. The integer n is the length
of the path and a1 . . . an is its label.

A pushdown automaton is a tuple A = (Q,Σ,Γ, δ, qinit, F ) where Q is a
finite set of states, Σ and Γ are disjoint finite alphabets – Σ is the alphabet
of the actions and Γ is the stack alphabet – satisfying ε /∈ Σ and ⊥ ∈ Γ,
qinit ∈ Q is the initial state, F is the set of final states and δ is a partial
function from Q × (Σ ∪ {ε}) × Γ into Q × Γ∗ such that for every q ∈ Q, for
every X ∈ Γ, a ∈ Σ ∪ {ε}, (1) if δ(q, a,X) = (p, w) then w ∈ (Γ \ {⊥})∗, and
(2) if δ(q, a,⊥) = (p, w), then the first letter of w is ⊥. Letter ⊥ is called the
empty stack letter. A configuration of a pushdown automaton is an element of
Q×{⊥}(Γ \ {⊥})∗ that is a pair whose first element is in Q and the second is a
word starting by ⊥ and whose others letters are not ⊥. Informally, the second
part encodes the current value of the stack. The initial configuration is (qinit,⊥).
Two configurations (q,⊥u) and (p,⊥v) are a-consecutive, with a ∈ Σ∪{ε}, either
if u = ε and δ(q, a,⊥) = (p,⊥v), or if u is of the form u0X with X ∈ Γ \ {⊥}
and there exists w ∈ Γ∗ such that δ(q, a,X) = (p, w) and v = u0w.

ANPDA-trace of length n in a pushdown automaton is a sequence C1a1C2a2 . . . CnanCn+1

where the Ci’s are configurations, the ai’s are in Σ ∪ {ε} and such that C1 is
the initial configuration, for each i, Ci and Ci+1 are ai-consecutive, and Cn+1

is of the form (p,⊥) with p ∈ F . A normalised pushdown automaton (NPDA)
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is a pushdown automaton such that for every state q, every a ∈ Σ ∪ {ε}, every
X ∈ Γ, if δ(q, a,X) = (p, w) then one of the following cases arises:

(i) a = ε and w = ε, or

(ii) a = ε and w is of the form w = XY with Y ∈ Γ, or

(iii) a 6= ε and w = X.

It is also required that if δ(q, ε,X) = (p,XY ), then for every Z ∈ Γ, δ(q, ε, Z) =
(p, ZY ): transition pushing an element on the top of the stack can be fired
independently of the stack2.

Intuitively, case (i) corresponds to pop on the stack, case (ii) to push and
case (iii) to an action that does not modify the stack. The underlying finite
automaton of an NPDA A = (Q,Σ,Γ, δ, qinit, F ) is the finite automaton (Q,Σ∪
{pop(X),push(X) | X ∈ Γ}, µ, qinit, F ) where µ is defined by

(i) δ(q, ε,X) = (p, ε) iff µ(q,pop(X)) = p,

(ii) δ(q, ε,X) = (p,XY ) iff µ(q,push(Y)) = p,

(iii) δ(q, a,X) = (p,X) iff µ(q, a) = p.

The above definitions can be illustrated with the NPDA depicted in Fig. 5,
corresponding to the graph on the right of Fig. 3. For this automaton Q =
{0, . . . , 10}, Σ = {a, b, c, e, g, h, i, j}, Γ = {⊥, S}, qinit = 0, F = {4, 8, 10} and
δ is defined by the arrows: if there is an edge of the form (q, a, p) with a ∈ Σ,
then one has δ(q, a,⊥) = (p,⊥) and δ(a,⊥) = (p, S); if there is an edge of
the form (q,pop(S), p) then δ(q, ε, S) = (p, ε); if there is an edge of the form
(q,push(S), p) then δ(q, ε, S) = (p, SS) and δ(q, ε,⊥) = (p,⊥S). The sequence

(0,⊥)a(1,⊥)c(5,⊥)ε(0,⊥S)a(1,⊥S)c(5,⊥)ε(0,⊥SS)a(1,⊥SS)b(2,⊥SS)

e(4,⊥SS)ε(6,⊥S)h(9,⊥S)j(10,⊥S)ε(6,⊥)g(7,⊥)i(8,⊥)

is a NPDA-trace in the NPDA. This trace corresponds to the execution of
power(3,2), already pointed out in Sec. 1.2.2. Note that each pair (q, w) en-
codes that the system is in state q and that the call stack is w. For instance,
(2,⊥SS) means that system is in state 2 and that there are two no-closed calls
to the function power.

Each NPDA-trace of an NPDA is associated with a DFA-trace in the under-
lying automaton using the natural projection: the NPDA-trace C1a1 . . . anCn is
associated with the path (q1, a1, q2) . . . (qn−1, an, qn), where the Ci’s are of the
form (qi, wi). For instance, the DFA-trace associated with the above NPDA-
trace is (0, a, 1)(1, c, 5)(5, ε, 0) . . . (6, g, 7)(7, i, 8). This projection is denoted proj
and is injective. Its image forms a subset of DFA-traces, called consistent DFA-
traces of the underlying automaton, which is in bijection with the set of NPDA-
traces.

2Actually this is not a restriction for the expressiveness since it is possible to encode
a transition of the form δ(q, ε,X) = (p,XY ), requiring X on the top of the stack to be
fired into δ(q, ε,X) = (qnew1, ε) and for every Z ∈ Γ, δ(qnew1, ε, Z) = (qnew2, ZX) and
δ(qnew2, ε, Z) = (p, ZY )
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2.2 Context-free Grammars
A context-free grammar is a tuple G = (Σ,Γ, S0, R), where Σ and Γ are disjoint
finite alphabets, S0 ∈ Γ is the initial symbol, and R is a finite subset of Γ× (Σ∪
Γ)∗. Elements of Γ are called non-terminal symbols. An element of R is called
a rule of the grammar. A word w ∈ (Σ ∪ Γ)∗ is a successor of v ∈ (Σ ∪ Γ)∗

for the grammar G if there exist v0 ∈ Σ∗, v1, v2 ∈ (Σ ∪ Γ)∗, S ∈ Γ such
that v = v0Sv1 and w = v0v2v1 and (S, v2) ∈ R. A complete derivation of
the grammar G is a finite sequence x0, . . . , xn of words of (Σ ∪ Γ)∗ such that
x0 = S0, xn ∈ Σ∗ and for every i, xi+1 is a successor of xi. A derivation tree of
G is a finite tree whose internal nodes are labelled by letters of Γ, whose leaves
are labelled by elements of Σ∪ {ε}, whose root is labelled by S0 and satisfying:
if a node is labelled by X ∈ Γ and if its children are labelled by α1, . . . , αk (in
this order), then (X,α1 . . . αk) ∈ R and either α1 = ε and n = 1, or all the αi’s
are in Γ∪Σ. Consider for instance the grammar G = ({a, b}, {S, T}, S,R), with
R = {(S, Tb), (S, aSb), (T, ε)}). The sequence S, aSb, aTbb, abb is a complete
derivation of the grammar. The associated derivation tree is

S S

a

b b

T ε

Note that there is a natural bijection between the set of complete derivations of
a grammar and the set of derivation trees of this grammar.

3 Uniform Random Generation of Consistent DFA-
Traces

Given a NPDA, let us remind that the main goal of the paper is to uniformly
generate successful consistent traces of a given length in its underlying finite
automaton. In Sec. 3.1 a well-known connection between NPDA and context-
free grammars is recalled. A uniform random generation of consistent DFA-
traces is then explained in Sec. 3.2.

Note that in this paper, test cases are consistent DFA-traces or, equivalently
(up to a trivial bijection), NPDA-traces.

3.1 From NPDA to Context-free Grammars
Transforming a NPDA into a context-free grammar can be done using classical
algorithms on pushdown automata [6]. The following result is a direct combi-
nation of well-known results on pushdown automata.

Theorem 1 Let A be a pushdown automaton. One can compute in polynomial
time a grammar G satisfying the following assertions:
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ΣG ={(0, a, 1), (1, c, 5), (5,push(S), 0), (1, b, 2), (2, e, 4),

(4,pop(S), 6), (6, g, 7), (7, i, 8), (8,pop(S), 6), (6, h, 9), (9, j, 10),

(10,pop(S), 6)}, and

RG ={(T, LRD(6, g, 7)(7, i, 8)), (T, LRD(6, h, 9)(9, j, 10)),

(T, (0, a, 1)(1, b, 2)(2, e, 4)), (R,LRD)

(R, (0, a, 1)(1, c, 5)(5,push(S), 0)(0, a, 1)(1, b, 2)(2, e, 4)(4,pop(S), 6)),

(L, (0, a, 1)(1, c, 5)(5,push(S), 0)),

(D, (6, g, 7), (7, i, 8)(8,pop(S), 6)),

(D, (6, h, 9)(9, j, 10)), (10,pop(S), 6))}.

Figure 6: Example of a grammar generating consistent DFA-traces

• The size of G is at most quadratic in the size of A, and there is no rule
of the form (X,Y ) in G, where X and Y are stack symbols.

• There exists a bijection ϕ from the set of complete derivations of G and
the set of NPDA-traces of A.

• Given a complete derivation of G, its image by ϕ can be computed in
polynomial time.

Note that the precise complexity of algorithms depends on the chosen data-
structures, but all of them can be implemented in a very efficient way.

Consider for instance the underlying finite automaton for the NPDA de-
picted in Fig. 5. Consistent DFA-traces of A are generated by the grammar
(ΣG,ΓG, T,RG) in Fig. 6, where ΓG = {T, L,R,D}.

3.2 Random Generation of Consistent DFA-Traces
The random generation of consistent DFA-traces of a NPDA is performed using
Theorem 1. First, the related grammar G is computed. Next, derivation trees
are randomly generated: successful traces are computed using ϕ. Since ϕ is bi-
jective, if the random generation of derivation trees is uniform, so is the random
generation of consistent DFA-traces (using the fact that proj is bijective). The
general scheme of the generation process is sketched in Fig. 7.

The random generation of derivation trees is performed using classical com-
binatorial techniques [37] that are sketched below. Let G = (Σ,Γ, X,R) be a
context-free grammar satisfying the conditions of Theorem 1. For each symbol
S ∈ Γ, the sequence of positive integers s(1), . . . , s(k), . . . is introduced, where
s(i) is the number of size i derivation trees of (Σ,Γ, S,R). The recursive com-
putation of these s(i)’s is as follows. For each strictly positive integer k and

11



NPDA Grammar Derivation Trees

Comp. deri.NPDA-tracesConsistent DFA-traces

Thm. 1 Algo. Rand. Gen.

bijection

ϕproj (bijection)

Figure 7: Random generation of consistent DFA-traces

each rule r = (S,w1S1 . . . wnSnwn+1) ∈ R, with wj ∈ Σ∗ and Si ∈ Γ, let
βr = 1 +

∑n+1
i=1 |wi|

αr(k) =
∑
i1+i2+...+in=k−βr

∏j=n
j=1 sj(ij) if n 6= 0

αr(k) = 0 if n = 0 and k 6= βr

αr(βr) = 1 if n = 0.

It is known [37, Theorem I.1] that s(k) =
∑
r∈R∩(S×(Σ∪Γ)∗) αr(k).

Since, by hypothesis, there is no rule of the form (S, T ) in R, with S, T ∈
Γ, all ij ’s involved in the definition of βr are strictly less than k. This way,
the s(i)’s can be recursively computed. Consider, for instance, the grammar
({a, b}, {X}, X, {r1, r2, r3}) with r1 = (X,XX) r2 = (X, a) and r3 = (X, b).
One has βr1 = 1 + 0 = 1, βr2 = 1 + 1 = 2, βr3 = 1 + 1 = 2. Therefore,
x(k) =

∑
i+j=k−1 x(i)x(j) if k 6= 2 and x(2) = 1 + 1 +

∑
i+j=2−1 x(i)x(j) = 2

otherwise. It follows that x(1) = 0, x(2) = 2, x(3) = x(1)x(1) = 0, x(4) =
x(1)x(2) + x(2)x(1) = 0, x(5) = x(2)x(2) = 4, etc. The two derivation trees of
size 2 are X|

a
and

X
|
b
. The four derivation trees of size 5 are the trees of the form

X
/\

Z1 Z2

where both Z1 and Z2 are derivation trees of size 2.
Consider for instance the grammar described in Fig. 6. The computation pro-

vides that T (3) = 1, T (9) = 2, T (15) = 4, T (21) = 8, and T (i) = 0 for all other
values of i less or equal to 21. The result T (9) = 2 points out that there are two
DFA-traces of length 9: (0, a, 1)(1, c, 5)(5,push(S), 0)(0, a, 1)(1, b, 2)(2, e, 4)(4,pop, 6)(6, g, 7)(7, i, 8)
and (0, a, 1)(1, c, 5)(5,push(S), 0)(0, a, 1)(1, b, 2)(2, e, 4)(4,pop, 6)(6, h, 9)(9, j, 10).

In order to generate derivation trees of size n, all s(i)′s, for S ∈ Γ and
i ≤ n, have to be computed with the above method. This can be performed in
polynomial time. Afterwards, the random generation is done recursively using
the Random Generation algorithm in Fig. 8.

It is known [37] that this algorithm provides a uniform generation of deriva-
tion trees of size n, i.e., each derivation tree occurs with the same probability.
Note that an exception is returned at Step 2 if there is no element of the given
size. For the example presented before, there is no element of size 3, then it
is impossible to generate a derivation tree of size 3. Running the algorithm on
this example with n = 2, one consider at Step 1 the set {r1, r2, r3} since all
these rules have X as left element. Since αr1(2) = 0, αr2(2) = 1, αr3(2) = 1, at
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Random Generation
Input: G = (Σ,Γ, X,R) a context-free grammar, n a strictly positive integer.
Output: a derivation tree t of G size n.
Algorithm:

1. Let {r1, r2, . . . , r`} be set of the elements of R whose first element is X.
2. If

∑j=`
j=1 αrj (n) = 0, then return “Exception”.

3. Pick i ∈ {1, . . . , `} with probability Prob(i = j) =
αri

(n)∑j=`
j=1 αrj

(n)
.

4. Let ri = (X,Z1 . . . Zk), with Zj ∈ Σ ∪ Γ.
5. Root symbol of t is X.
6. Children of t are Z1, . . . , Zk in this order.
7. Let {i1, . . . , im} = {j | Zj ∈ Γ}.
8. Pick (x1, . . . , xm) ∈ Nm such that x1+. . .+xm = n−βri with probability

Prob(x1 = `1, . . . , xm = `m) =

∏j=m
j=1 zij (`j)

αri(n)
.

9. For each ij , the ij-th sub-tree of T is obtained by running the Random
Generation algorithm on (Σ,Γ, Zij , R) and `j .

10. Return t.

Figure 8: Random Generation algorithm

Step 3 the probability that i = 1 is null, the probability that i = 2 is 1/2 and
the probability that i = 3 is 1/2. If i = 2 is picked, the generated tree has X
as root symbol and a as unique child. Running the algorithm on this example
with n = 3 stops at Step 2 since there is no tree of size 3. When running the
algorithm on this example with n = 5, the set {r1, r2, r3} is considered at Step
1. Since αr1(5) = 4, αr2(5) = 0, αr3(5) = 0, i = 1 is picked with probability 1.
Therefore, the tree has X as root symbol, and its two children are both labelled
by X. Therefore, at Step 7, the considered set is {1, 2}. At Step 8, one has
n − βr1 = 5 − 1 = 4. The probability that i1 = 1 and i2 = 3 is null since
x(1) = 0. Similarly, the probability that i1 = 3 and i2 = 1 is null too. Now the
probability that i1 = 2 and i2 = 2 is 1. Afterwards the algorithm is recursively
executed on each child with n = 2: each of the 4 trees is chosen with probability
1/4.

From a NPDA with n states, the generation of k NPDA-traces of length n can
be performed in timeO(n6+n3k log(n)). Notice that computing a grammar from
a pushdown automaton requires, in the worst case, Ω(n3) operations, leading to
the given complexity. In practice, as many computed grammar rules are useless,
i.e. they cannot be used in a successful execution, it is frequently possible to
drastically reduce the size of the grammar to be much more efficient for the
random generation. Using more advanced random generation techniques, as
Botlzmann samples, may also improve both theoretical and practical complexity.
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4 Quality of the Test Suite and Coverage Criteria
Most of testing techniques are based on coverage criteria to ensure a kind of
sufficiency of the test suites. In this section the combination of coverage criteria
with random testing is investigated, in order to take benefit of both approaches.

Given a pushdown automaton, a coverage criterion is a set C defined using
this pushdown automaton or its underlying automaton. In general C is either
the set of states, or the set of transitions, or the the set of all paths with a loop
restriction. Following [?] and [4], one can define the quality of a randomised
testing technique as the minimal probability qC,N for covering any element of C
when drawing N random tests (of length n). Since tests are independent, one
has qC,N = 1− (1−qC,1)N . Therefore, computing or estimating qC,1 is a central
issue to determine a priori the coverage power of the approach. For a dual
approach consisting in generating tests until all elements of C were covered,
the average number of required tests is bounded by |C|

qC,1
. Since probabilities of

covering different elements by generating a trace are not independent, the exact
computation of the expected number of required tests cannot be performed in
a general case.

4.1 Criterion All states

The criterion All states, AS for short, is defined by the set of states of the
pushdown automaton. In this context qAS,1 is the minimal probability of visiting
a state by generating a derivation of length n. For each state q0 of the pushdown
automaton, let us denote by pr(q0) the probability that an execution trace of
length n corresponds to a path visiting q0. Clearly qAS,1 = minq{pr(q)}. Since
there are finitely many states, qAS,1 can be deduced by computing all pr(q)’s.
Since pr(q0) is the number of NPDA-traces of length n visiting q0 divided by the
number of NPDA-traces of length n3, it suffices to compute these two numbers.
The second number corresponds to the value s(n) defined at the beginning of
Sec. 3.2. It remains to compute the number of NPDA-traces of length n visiting
q0, which is done using the construction described bellow (which is an adaptation
of the classical product of automata).

Let A = (Q,Σ,Γ, δ, qinit, F ) be a normalised pushdown automaton and q0 ∈
Q. The automaton Aq0 is set as (Q × {0, 1},Σ,Γ, δ′, (qinit, 0), F ′), with F ′ =
F × {1} if q0 /∈ F and F ′ = F × {1} ∪ {(q0, 0)} if q0 ∈ F . Moreover, δ′(q, a,X)
is defined as follows:

• If q 6= q0 and if δ(q, a,X) = (p, w), then δ′((q, 0), a,X) = ((p, 0), w) and
δ′((q, 1), a,X) = ((p, 1), w).

• If q = q0 and if δ(q, a,X) = (p, w), then δ′((q0, 0), a,X) = ((p, 1), w) and
δ′((q0, 1), a,X) = ((p, 1), w).

3Assuming that there are NPDA-traces of length n; otherwise random testing is not pos-
sible.
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Figure 9: Underlying automaton of A6
exe

Intuitively, the boolean added to the states tells whether or not the state q0 has
been visited before. For instance, consider the automaton Aexe whose under-
lying automaton is depicted in Fig. 5. The automaton A6

exe has an underlying
automaton depicted in Fig. 9. Note that this automaton can be trimmed and
simplified by deleting useless states (9, 0), (10, 0), (8, 0), (7, 0), (0, 1), (1, 1),
(2, 1) and (5, 1).

Let θ be the function from the set of configurations of Aq0 into the set of
configurations of A. The following result is a direct consequence of the definition
of Aq0 .

Proposition 2 For any NPDA-trace C1a1C2a2 . . . CnanCn+1 of Aq0 , the se-
quence θ(C1)a1θ(C2)a2 . . . θ(Cn)anθ(Cn+1) is a NPDA-trace of A visiting q0.

Proof. One has C1 = ((qinit, 0),⊥), therefore θ(C1) = ((qinit,⊥) is the initial
configuration of A. Similarly Cn+1 is of the form ((qf , 1),⊥) with qf ∈ F .
Therefore θ(Cn+1) = ((qf ,⊥) is in a final state with the empty stack.

By construction of δ′ and since Ci and Ci+1 are ai-consecutive, θ(Ci) and
θ(Ci+1) are ai-consecutive too. It follows, by a direct induction, that θ(C1)a1θ(C2)a2 . . . θ(Cn)anθ(Cn+1)
is a NPDA-trace of A.

It remains to prove that θ(C1)a1θ(C2)a2 . . . θ(Cn)anθ(Cn+1) visits q0. If
Cn+1 is of the form ((qf , 1),⊥), then, since C1 = ((qinit, 0),⊥), there exists i
such that Ci is of the form ((qi, 0),⊥ui) and Ci+1 is of the form ((qi, 1),⊥ui+1).
By construction of δ′, qi = q0. If q0 ∈ F and if Cn+1 is of the form ((q0, 0),⊥),
then θ(Cn+1) = (q0,⊥), which concludes the proof.
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2

Conversely, for each NPDA-trace of A visiting q0, there exists a unique
execution in Aq0 corresponding to it.

Proposition 3 For any NPDA-trace C ′1a1C
′
2a2 . . . C

′
nanC

′
n+1 of A visiting q0,

there exists a unique NPDA-trace C1a1C2a2 . . . CnanCn+1 of Aq0 , such that for
each i, θ(Ci) = C ′i.

Proof. Let C ′i = (qi,⊥ui) for every i. Assuming that qn+1 6= q0, then,
since C ′1a1C

′
2a2 . . . C

′
nanC

′
n+1 visits q0, there exists i0 = min{i | qi = q0}. Set

Ci = ((qi, 0),⊥ui) if i ≤ i0 and Ci = ((qi, 1),⊥ui) otherwise. By construction
of δ′, one can easily check that C1a1C2a2 . . . CnanCn+1 is a NPDA-trace of Aq0
and that for each i, θ(Ci) = C ′i. Now if q0 ∈ F and Cn+1 = (q0, 0), then for
every i set Ci = ((qi, 0),⊥ui). Again, C1a1C2a2 . . . CnanCn+1 is a NPDA-trace
of Aq0 .

Assume now that D1a1D2a2 . . . DnanDn+1 is a NPDA-trace of Aq0 such
that for each i, θ(Di) = C ′i. By definition of θ, Di is of the form ((qi, bi),⊥ui).
First, if Cn+1 = (q0, 0), then, by definition of δ′, for i ≤ iO, bi = 1, and for
i ≥ i0, bi = 0. It follows that for every i, Di = Ci. Similarly, if q0 ∈ F and
Cn+1 = (q0, 0), then, by definition of θ, Di is of the form ((qi, 0),⊥ui), proving
the uniqueness and concluding the proof.

2

It follows that θ induces a bijection between NPDA-traces of length n of Aq0
and NPDA-traces of length n of A visiting q0. Using the approach described in
Sec. 3.2 on Aq0 , one can compute the number of NPDA-traces in A visiting q0,
and pr(q0) in the same time.

4.2 Criterion All transitions

The criterion All transitions, AT for short, is defined by the set of transitions of
the underlying automaton: qAT,1 is the minimal probability of using a transition
by generating a derivation of length n. For each transition (q0, a0, p0) of the
underlying automaton, let us denote by pr((q0, a0, p0)) the probability that an
execution trace of length n corresponds to a path using (q0, a0, p0). As for the
All states criterion, qAT,1 = min(q,a,q′){pr((q, a, q′))}, which can be computed
when all pr((q, a, q′)) are computed. Moreover, pr((q0, a0, p0)) is the number
of NPDA-traces of length n using (q0, a0, p0) divided by the number of NPDA-
traces (s(n), which is supposed to be strictly positive).

Let A = (Q,Σ,Γ, δ, qinit, F ) be a normalised pushdown automaton, and
(q0, a0, q1) be a transition of the underlying automaton. The automatonA(q0,a0,q1)

is set as (Q× {0, 1},Σ,Γ, δ�, (qinit, 0), F × {1}), where δ�(q, a,X) is defined as
follows:
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• If a0 = push(Y) and if δ(q, a,X) = (p, w), then

– if q 6= q0 or if δ(q, ε,X) 6= (p,XY ), then δ�((q, 1), ε,X) = ((p, 1), w)
and δ�((q, 0), ε,X) = ((p, 0), w);

– if q = q0 and if δ(q, ε,X) = (p,XY ), then δ�((q, 1), ε,X) = ((p, 1), XY )
and δ�((q, 0), ε,X) = ((p, 1), XY );

• If a0 = pop(Y) and if δ(q, a,X) = (p, w), then

– if q 6= q0 or if δ(q, ε,X) 6= (p,XY ), then δ�((q, 1), ε,X) = ((p, 1), w)
and δ�((q, 0), ε,X) = ((p, 0), w);

– if q = q0 and if δ(q, ε,X) = (p, ε), then δ�((q, 1), ε,X) = ((p, 1), ε)
and δ�((q, 0), ε,X) = ((p, 1), ε);

• If a0 ∈ Σ and if δ(q, a,X) = (p, w), then

– if q 6= q0 or if a0 6= a or if δ(q, a,X) 6= (p, ε), then δ�((q, 1), ε,X) =
((p, 1), w) and δ�((q, 0), ε,X) = ((p, 0), w);

– if q = q0 and if δ(q, a0, X) = (p, ε), then δ�((q, 1), a0, X) = ((p, 1), ε)
and δ�((q, 0), a0, X) = ((p, 1), ε);

Intuitively, the boolean added to the states tells whether or not the transition
(q0, a0, p0) has been used before: it is switched from 0 to 1 when the transition
(q0, a0, p0) is fired. For instance, let us consider again the automaton Aexe. The
underlying automaton of A(6,h,9)

exe is depicted in Fig. 10. Again, several useless
states may be removed.

In a way very close to the one used for the All states criterion, one can
check that there is a bijection between NPDA-traces of length n in A using
(p0, a0, q0) and the NPDA-traces of length n in A(p0,a0,q0), allowing to compute
pr((p0, a0, q0)).

4.3 Combining Random Testing and a Coverage Criterion
This section discusses the combination of the random testing and the coverage
criteria. The discussion concerns the All states criterion and exploits the results
of Sec. 4.1. However, the All transitions criterion can be handled in exactly the
same way using the results of Sec. 4.2.

In order to combine the random testing and the All states coverage criterion
on a pushdown automaton A, a natural approach could be as follows.

1. Compute all the pr(q)’s.

2. If some of them are equal to 0, then it is not possible to cover all states
by generating executions of length n.

3. Otherwise, pick at random a state q that has not been concerned yet with
previously generated tests (if any).
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Figure 10: Underlying automaton of A(6,h,9)
exe

4. Using Aq, generate a test visiting q.

5. If there is a state that has not been visited yet by the test suites, goto
step 3.

When using this approach, the number of tests is bounded by the number of
states. Unfortunately, the state space can be very large and thus cause trouble
when tests are hard to execute, for instance when physical manipulations are
required for playing the tests. In this case the above procedure can be stopped
after a fixed number N of generated tests. Following the work by A.Denise
et al. [4, Section 5.2], it is possible to optimise the expected quality of the
test suites by choosing the state q at step 3 with a non uniform distribution.
This method is not described here in details, the interested reader is referred
to original paper [4] for explanations. The method consists in choosing, at
step 3 the state q with a probability πq defined by solving the following linear
programming problem: maximise pmin satisfying{

pmin ≤
∑
p∈Q πp

pr(p,q)
pr(p) for all q ∈ Q∑

q∈Q πq = 1

where pr(p, q) is the probability that a NPDA-trace of length n visits both p
and q. The construction of Aq can be adapted for this purpose: the new set
of states becomes Q× {0, 1} × {0, 1}, the first boolean encoding whether q has
been visited, and the second one whether p has been visited. Final states are
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F × {1} × {1}, ensuring that both states have been visited. Moreover, note
that the above linear problem has to be solved with real numbers, and it can be
done efficiently. Therefore, it is possible to compute the πq’s to have a biased
generation that optimises the probabilistic quality relatively to the AS criterion.
The same approach can be developed for the AT criterion.

5 Experiments
The main purpose of this section is to provide some quantitative experimen-
tal information on the approach proposed in Section 4. In Section 5.2, it is
illustrated on an example of two mutually recursive functions. Then, another
illustrative example is provided in Section 5.3 where an XPath query is trans-
lated into a pushdown automaton. Finally, Section 5.4 reports on time and
space requirements for the examples of the present paper and from S.Schwoon
PhD [38]. Note that an additional qualitative study of the uniform random
testing algorithm is presented in Section 6.

5.1 Technical Information
All the experiments described in this section have been obtained on an Intel-
Core2 Duo 2GHz personal computer with 4GB of RAM, running on Ubuntu
10.04. In order to validate the approach and to obtain an order of magni-
tude of the running times and of the sizes of the involved grammars, the al-
gorithms have been implemented within a Python 2.6 prototype. Python is
a script/prototyping programming language whose main advantage consists in
allowing fast code developments. However, it is worth mentioning that it is
frequently admitted that C/C++ implementations are 10 to 100 times faster
than Python implementations, particularly for programs managing large data
structures. Consequently, the time estimations presented in this section have to
be considered in this context.

Python is an interpreted language using several internal mechanisms con-
suming space. The space bottleneck of the approach is the size of the involved
grammars. Therefore, in order to estimate the space consumption, it seems
more relevant to provide the sizes of the involved grammars rather than the
used memory. Notice also that the experiments point out that the critical re-
source for the approach is time, not space.

5.2 Illustrating Example
This section illustrates the proposed random testing approach on the program
of Fig. 11, using two mutually recursive functions S and M.

The M(x,n) function computes x%n, and the S(x,y,n) function computes
(x ∗ y)%n. Our objective is to test the function S using the random approach
developed in this paper. The NPDA Amodulo associated with this pair of func-
tions is depicted in Fig. 12. The top part of the NPDA describes the S function,
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int S(int x, int y, int n){
int z;
if (y == 1){

z = M(x,n);
return z;

} else {
z = x + S(x,y-1,n);
z = M(z,n);
return z;

}
}

int M(int x, int n){
if (x < 1){

return x;
} else {

return M(x-n,n);
}

}

Figure 11: Mutually recursive functions

whereas its bottom part describes the M function. The recursive calls to M in S
are encoded by the stack symbols M1 (for the case y==1) and M2 (for the case
y!=1). The stack symbol M3 encodes the call to M in M.

NPDA vs. Finite Automata. Using the NPDA Amodulo, a related gram-
mar satisfying the properties of Theorem 1 can be computed. The computed
grammar has 45 stack symbols and 50 rules. To compare our approach with
the results of A.Denis et al. [4], the related random generation approach has
been implemented. Table 1 presents the obtained results. The first column
contains the length of generated traces/paths in the underlying automaton in
Fig. 12. For each length, 10 traces are generated. The second column reports
on the generated NPDA-traces: the sequence of states is only given, and the
number in brackets indicates the number of times this trace has been randomly
generated. The content of the last column is similar but given for DFA-traces.

One can first observe that there is a unique NPDA-trace of length 8: 1-2-4-
I-II-III-5-6-7, which is obviously generated at each time. Note this NPDA-trace
corresponds to the execution of S(3,1,2). Conversely, there are two DFA-traces
of length 8: the first one corresponds to the NPDA-trace, whereas the second
trace 1-2-4-I-II-III-10-11-12 is not consistent with stack calls. Therefore, this
not consistent DFA-trace cannot be concretized, (i.e., there is no input value for
S whose execution would correspond to this trace). The same situation occurs
for generation of traces of size 10: there is no consistent DFA-trace but four
DFA-traces.

These experimental results show that for traces of length 8, 40% of DFA-
traces generated by the approach developed in the paper by A.Denise et al. [4]
would be not consistent, as well as 100% for DFA-traces of length 11. Ta-
ble 2 reports on the number of NPDA-traces—or, equivalently, of consistent
DFA-traces, and on the number of DFA-traces for Amodulo. It shows that the
probability of obtaining a consistent DFA-trace by generating a DFA-trace be-
comes negligible when the trace length grows. For instance, the probability for
a DFA-trace of length 80 to be consistent is 5.9 10−8. Moreover, for several
lengths, as 21, 29 or 37, there is no NPDA-traces of this length: all generated
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Figure 12: Amodulo: NPDA of the running example

Size of the traces Our approach Approach of [4]
from 1 to 7 no NPDA-traces of this length no DFA-traces of this length

8 1-2-4-I-II-III-5-6-7 (10) 1-2-4-I-II-III-10-11-12 (6)
1-2-4-I-II-III-5-6-7 (4)

9 no NPDA-trace of this length no DFA-trace of this length

10 no NPDA-trace of this length

1-2-4-I-IV-I-II-III-5-6-7 (3)
1-2-4-I-IV-I-II-III-10-11-12 (2)
1-2-4-I-II-III-V-VI-10-11-12 (3)
1-2-4-I-II-III-V-VI-5-6-7 (2)

11 no NPDA-trace of this length A-2-3-1-2-4-I-II-III-10-11-12 (6)
1-2-31-2-4-I-II-III-5-6-7 (4)

Table 1: Qualitative experimental results
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n 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
NPDA 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0
DFA 6 4 10 6 18 10 34 18 64 34 114 64 200 114 356

n 27 28 29 30 31 32 33 34 35 36 37 80
NPDA 3 1 0 1 4 1 0 3 5 1 0 142
DFA 200 640 356 1152 640 2066 1152 3692 2066 6598 3692 2.4 109

Table 2: NPDA-traces vs. DFA-traces

DFA-traces would be not consistent.
In regards to test cases generation of length less or equal to 60, the pre-

computation can be performed in less than 1 second. Next, 100 traces can be
generated in less than 0.34 second. More information on the computation time
for different lengths is available in Section 5.4.

Coverage Criteria. The approach developed in Section 4.1 has been applied
to the example of Amodulo. To deal with the All states criterion, for each state q
of Amodulo, the grammar generating NPDA-traces of Aqmodulo—that is a gram-
mar generating traces visiting q—has been computed. Then a cleaning step
has been performed. It consists in removing useless non-terminal symbols, i.e.,
when there is no execution tree of the grammar using these non-terminal sym-
bols. For each state q, Table 3 gives the size of the corresponding grammar:
the number of non-terminal symbols, and the number of rules. Notice that the
left-hand side of each rule contains at most 3 symbols. For each state q, Table 3
also provides the time (in seconds) required to generate the grammar and to
clean it, and the time (in seconds) to perform the pre-computation step for the
random generation. This step makes it possible both the computation of the
probability pr(q) and the random generation of NPDA-traces of Amodulo visit-
ing q. The two given times are given for respectively the generation of the
cleaned grammar, and for the pre-computation step for the random generation
(for traces of length up to 60). For instance, for the state 8, the cleaned gram-
mar generating traces of A8

modulo has 81 non-terminal symbols and 90 rules. It
has been computed in 250 seconds. The pre-computation step for the random
generation has been performed in 1.28 seconds.

Computing the pr(p, q)’s is quite more expensive. Before performing the
cleaning step, the related grammars are generated in about 1 second but every
one has about 9000 non-terminal symbols and 70000 rules. For example, the
greatest one with 10581 non-terminal symbols and 91572 rules has been gener-
ated for the states {7, 24}. After the cleaning step, the number of non-terminal
symbols and rules falls in general to about 100. For the states {7, 24} mentioned
above, the corresponding cleaned grammar has 110 non-terminal symbols and
124 rules. For each grammar, the cleaning step has been performed in about
420 seconds. At the end, the computation of all the probabilities involved in the
linear programming system presented in Section 4.3 has been done in about 34
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state 1 2 3 4 5 6 7 8 9 10 11 12
grammar 80+ 80+ 80+ 81+ 82+ 83+ 84+ 81+ 82+ 83+ 84+ 85+
size 88 89 87 90 91 92 93 90 91 92 93 92
time 248 250 249 250 249 249 248 250 251 250 249 251

1.19 1.18 1.19 1.23 1.23 1.23 1.24 1.28 1.35 +1.35 1.32 1.72

state I II III IV V VI
grammar 83+ 83+ 83+ 92+ 92+ 92+
size 92 92 92 101 104 104
time 249 250 250 250 250 251

1.29 1.29 1.29 1.31 1.29 1.32

Table 3: Computing the probabilities pr(q)’s for n ≤ 60 (in seconds).

hours. Then, solving this system requires less than one second thanks to the re-
cent Simplex-based tools, as lp_solve [39]. Finally, as explained in Section 5.4,
the random generation of traces is done in few seconds for hundreds of traces.

In regards to the criterion All transitions, the time to compute probabilities
is very close. However, since there are more transitions, the total time required
to compute the linear system is estimated to 216 hours. Section 5.4 explains
how this computation time may be significantly reduced to an expected time of
few hours.

5.3 Illustrating Example for Coverage Criteria
In this section the approach developed in Section 4 is experimented on an ex-
ample of the NPDA Axpath in Fig. 13 corresponding to an XPath query. Let
us remind that for stream processing purposes, XPath queries can be automati-
cally translated into a subclass of pushdown automata, called Visibly pushdown
automata [40]. The example in Fig. 13 is inspired by the example in [41, Fig.
5].

Following the proposals in Section 4, for a given length n of traces, three
following algorithms have been compared. Algorithm 1 proceeds with a uniform
generation of NPDA-traces of length n until all states are covered. Algorithm 2
generates a NPDA-trace of length n uniformly at random, and then chooses at
random (uniformly) a non visited state and generates a trace visiting it. This
second step is repeated until all states are visited. Algorithm 3 consists in solv-
ing the linear programming system presented in Section 4.3 and in generating
an NPDA-trace with the computed probabilities, until all states are covered.
Algorithms 4, 5 and 6 correspond respectively to Algorithms 1, 2 and 3 but
they aim to cover all transitions.

The grammars needed to generate the traces covering a given state have
been computed in 38 seconds in an automatic way. The linear system described
in Section 4.3 is computed in 250 seconds, and its resolution indicates that the
optimised solution consists in always generating a trace visiting 4. Indeed, a
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Figure 13: Automaton Axpath

n 12 14 16 18 20 22 24 26 28 30 32
Algorithm 1 7.51 6.1 5.0 4.77 4.74 4.24 4.43 4.37 4.34 4.34 4.33
Algorithm 2 1.87 1.84 1.83 1.77 1.8 1.78 1.79 1.77 1.77 1.76 1.77
Algorithm 3 1 1 1 1 1 1 1 1 1 1 1
Algorithm 4 14.1 11.03 10.08 9.27 8.83 9.06 8.64 9.36 9.45 8.59 9.43
Algorithm 5 6.9 6.07 5.57 5.08 4.92 4.68 4.66 4.71 4.51 4.52 4.51
Algorithm 6 14.1 - - 9.1 - - - - 8.8 - -

Table 4: Average number of generated traces to cover all states/transitions

quick look at the automaton shows that all NPDA-traces cover all states but
4; therefore such a trace visits all the states. The results on the average num-
ber of generated traces for the six above-mentioned algorithms are given in
Table 4. These average values have been obtained by repeating each experi-
ment 100 times. Algorithm 6 has been experimented for sizes 12, 18 and 28.
Actually, for Algorithm 6, the approach requires several, manual at this point,
transformations which can be automated.

For this example, Algorithm 3 is unsurprisingly the best one since a unique
NPDA-trace suffices to visit all states.

For Algorithm 1 the obtained results are conform to the theoretical expec-
tations. Indeed, for this algorithm NPDA-traces are generated until a trace
visiting state 4 is picked. Theoretically this requires an expected number of 1/p
generations, where p is the probability that a path vising 4 is generated. For
instance, the theoretical probability that a NPDA-trace of length 14 visits 4 is
about 0.16. Therefore, the theoretically expected number of NPDA-traces to be
generated in order to pick one visiting 4 is close to 1/0.16 ' 6.25. This explains
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the experimental result of 6.1 obtained for Algorithm 1. Similarly, there are
6372 NPDA-traces of length 16 and 1252 of them visit state 4. Therefore the
theoretical probability that a trace of length 16 visits 4 is 1252

6372 ' 0.196. Thus
the theoretically expected number of generated traces required to visit 4, and
consequently all states, is 6372

1252 ' 5.1, which is close to the value 5.0 obtained
experimentally.

For Algorithm 2, one iteration suffices if the first generated path visits 4,
with the probability of 0.16. Otherwise, there are two iterations. For instance,
for NPDA-traces of length 14, the theoretically expected number of generated
traces to cover all states with this algorithm is 0.16 ∗ 1 + (1 − 0.16) ∗ 2 = 1.84
which is exactly the observed value.

Similar remarks and comparison with theoretical results can be done for
Algorithms 4 and 5. Moreover, Algorithm 5 works unsurprisingly much better
than Algorithm 4.

For the All transitions criterion, Algorithm 6 does not work better than Al-
gorithm 5, contrary to the All states criterion. In fact, the induced optimisation
of the minimal probability to visit a transition is light. For instance for traces of
length 18, the minimal probability to visit a transition is 0.2 by generating uni-
formly a NPDA-trace. It becomes 0.25 using the optimisation of Algorithm 5.
For traces of length 28, the minimal probability grows from 0.22 to 0.25. On
this example, there is no good benefit from Algorithm 5. In comparison, for
the All states criterion, the minimal probability to visit a state grows from 0.22
(Algorithm 1) to 1 (Algorithm 3).

5.4 Computation Time on More Examples
This section is dedicated to the study of the experimental time and space re-
quired by the algorithms proposed in this paper. The NPDA used for experi-
ments are the Amodulo automaton in Fig. 12, the Axpath automaton in Fig. 13,
the Apower automaton in Fig. 5, the automaton ASY encoding the Shunting Yard
algorithm described in Section 6, and the automaton Aplotter from S.Schwoon
PhD [38] describing an algorithm over graphs. Note that NPDA can be automat-
ically computed from C or Java source code using either the JimpleToPDSolver4
tool [42] or the PuMoc5 tool [5]. The NPDA used in this section have sizes com-
parable with the sizes of pushdown systems corresponding to Windows drivers
given in a paper by F.Song and T.Touili [43].

Uniform Random Testing. The experimental results on the uniform ran-
dom testing algorithm from Section 3 are presented in Table 5. In this table,
the second column gives the size (number of states + number of transitions)
of the considered NPDA. Here the number in brackets indicates the number of
transitions of the NPDA considered as a PDA; for instance for the transition

4A mu-calculus checker over pushdown systems and pushdown parity games: http://www.
cs.ox.ac.uk/matthew.hague/pdsolver.html

5A CTL model-checker for pushdown systems and sequential programs: http://www.
liafa.univ-paris-diderot.fr/~song/PuMoC/
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(1, intz, 2) in Fig.12 there are in the pushdown automaton as many transitions
as stack symbols X, of the form δ(1, intz, X) = (2, X). The third column of
the table indicates the size of the generated grammar (number of non-terminal
symbols + number of rules) before cleaning, whereas the fourth column gives
the computation time for this generation. The two next columns respectively
give the size of the grammar after cleaning, and the time required for this
cleaning. Let us recall that the cleaning step consists in removing useless non-
terminal symbols and rules. The last-but-one column gives the details on the
pre-computation time for the random generation corresponding to the s(i)′s
computation as defined in Section 3.2: the first number in brackets is the max-
imal size used for stopping the pre-computation step, and the second one is the
computation time. For instance, for the Axpath automaton, (30) 0.57 means
that the pre-computation time to generate traces of size at most 30 is 0.57 sec-
ond. The last column gives the time to generate 100 traces of the size indicated
by the number in brackets. For example, for the first line of Amodulo, (8) 0.07
points out that 0.07 second are required to generate 100 traces of length 8.
Notice that the time is given for the size 8 since there is no NPDA-traces of
size 10. It can be noticed that the grammar cleaning is an expensive step. The
pre-computation step becomes significant for very long traces. However, once
the pre-computation is done, the random generation of NPDA-traces is non
expensive, as well as the rough grammar generation.

Random Biased Testing. For generating NPDA-traces of a given length,
the first step consists in computing for each state q, a grammar generating the
consistent DFA-traces (equivalently NPDA-traces) visiting q. It allows both to
compute the probability pr(q) that a NPDA-trace visits q, and to uniformly
generate such traces. Table 6 gives for each example the time required to com-
pute all the pr(q)’s. It also provides the average sizes of the related grammars
(as usual, number of non-terminal symbols + number of rules). Notice that
for the Shunting-Yard algorithm, the generated grammars—computed in about
25 seconds—have about 17000 non-terminal symbols, and 400000 rules. The
time for Aplotter is not pointed out since this NPDA has only one state. These
results show that the approach proposed at the beginning of Section 4.3 can be
easily applied to our examples. The last line of Table 6 also gives the time for
computing all the probabilities associated with transitions.

The first line of Table 7 gives the experimental average time to compute one
probability pr(p, q) (for states). For a pair of transitions, there is no special line
in Table 7 since the computed average time is very close to this of states, the
related automata being of similar size and structure. This table also provides
the total time to compute the linear programming system of Section 4.3. The
notation (*) is used to indicate that the reported value is an estimated time
computed from a sample of computed probabilities. For Aplotter, the probabili-
ties for states are irrelevant since this automaton has only one state. Two lines
at the bottom of Table 7 provide estimated time to compute the linear sys-
tem of Section 4.3 using some simplifications. For instance, for Apower depicted
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NPDA Grammar Grammar Cleaned Grammar Pre. 100 Traces
Size Size Gen. Grammar Cleaning Time Gen. Time

Time Time Gen. Time
Axpath 6+21 217+ 0.03 27+87 0.38 (10) 0.07 (10) 0.09

(102) 3463 (20) 0.22 (20) 0.17
(30) 0.57 (30) 0.63
(100) 17.21 (100) 1.1
(200) 141 (200) 2.83

Apower 10+12 201+369 0.02 27+31 0.05 (100) 0.98 (100) 0.41
(24) (200) 5.63 (196) 0.94

(500) 78.96 (496) 3.94
Amodulo 18+24 1621+ 0.07 45+50 6.07 (10) 0.03 (8) 0.07

(90) 7572 (20) 0.08 (21) 0.14
(50) 0.41 (49) 0.32
(100) 2.29 (99) 0.28
(200) 14.86 (199) 1.4

ASY 23+ 1937+ 0.13 143+ 16.61 (10) 0.16 (10) 0.13
36 16735 261 (20) 0.58 (20) 0.24

(102) (30) 1.46 (30) 0.34
(100) 39.21 (100) 1.14
(200) 326.28 (200) 2.35

Aplotter 1+22 21+24 0.01 21+24 0.01 (20) 0.05 (17) 0.07
(30) 0.11 (30) 0.11
(100) 2.21 (100) 0.44
(200)15.23 (200) 1.01
(300) 52.37 (300) 1.7
(500) 255.18 (500) 3.41

Table 5: Experiments for the Uniform Random Testing Algorithm (time in
seconds)

Axpath Apower Amodulo ASY Aplotter

av. time (state) 38s 5.25s 22min 136min -
av. grammar size 31.3+98.8 32.2+36.8 65.2+72.9 342.7+692.9 26+31
av. time (transition) 91s 6.3s 33min 219min 15.3s
av. grammar sizes 30.5+94.8 30.7+34.3 66.2+73.7 98.3+205.6 23.8+27.3

Table 6: Computation time of the pr(q)’s (traces of size 60)
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Axpath Apower Amodulo ASY Aplotter

av. time (one pair of states) 13.4s 0.9s 408s 110min 1.16s
total (state) 7min19s 79s 34h12min 847h (*) -
total (transition) 25min 81s 60h39min 1200h (*) 9min
total (simplified, state) 1min - 9h (*) 120h (*) -
total (simplified, transition) 8min (*) - 18h (*) 350h (*) -

Table 7: Computation time of the pr(p, q)’s (traces of size 60) and of the linear
systems

in Fig. 5, all NPDA-traces visiting 9 also visit 10, and conversely. Therefore
pr(9, q) = pr(10, q) for every state q. Moreover, all NPDA-traces visit 1; it
follows that pr(1, q) = pr(q) for every q. With this kind of observations, the
number of probabilities pr(p, q) to be computed falls down. Similar remarks can
be done for the transitions. With these observations, Table 7 shows that the
(estimated) computation time is significantly better. For Aplotter and Apower,
the time is not provided since even the brute force computation time is already
small. Before finishing with Table 7, let us notice that computing the linear
programming system for ASY for both criteria seems to be intractable with the
implemented prototype. Moreover, the possible simplifications to compute the
probabilities (for different examples) have not been implemented in the proto-
type; however several simple dependencies could be detected automatically. The
estimated probabilities have been obtained by counting the number of pr(p, q)’s
that are enough to obtain the system using these simplification; and by multi-
plying this number by the average time to compute one pr(p, q). The indicated
values give therefore the order of magnitude of an expected time.

Analysis of the Experimental Results. Firstly, it has to be noticed that
the examples used for the experiments are of the size comparable to the size
of pushdown systems modelling recursive programs, as it is reported in a pa-
per by F.Song and T.Touili [43] on verification of Windows drivers: involved
pushdown automata have in general less than 10 states and about few dozens
of transitions.

Secondly, as mentioned before, it is frequently admitted that C/C++ imple-
mentations are 10 to 100 times faster than Python implementations, particularly
for programs managing large data structures. Therefore, having a C/C++-
based tool can make the approach very useful for practical applications, with
tractable computation times.

Thirdly, the experimental results analysis shows that the computation of
the cleaned grammars for the random biased approaches is an expensive step.
However, each (simplified) grammar can be computed independently. Therefore,
the approach can be trivially distributed on several computers, for instance one
for each computed probability. For example, for Axpath and for the criterion All
transitions, there are about 200 probabilities pr(t1, t2) to compute (let us remind
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that pr(t1, t2) = pr(t2, t1)). Using 10 computers in parallel can divide the
computation time by 10: experiments show that each probability is computed
in a similar time, making the parallelisation very efficient.

To conclude, experimental results show that the uniform random testing
approach (corresponding to Algorithm 1 and 4 of Section 5.3) is easily applicable,
and practical applications are tractable. The random biased testing based on
either already visited states or transitions (corresponding to Algorithms 2 and 5
of Section 5.3) can be easily performed too, even with a Python prototype
(see Table 6). Optimising the quality of the testing approach (corresponding
to Algorithms 3 and 6 of Section 5.3) requires more resources. Excepted for
ASY, testing with the criterion All states is tractable but, for the criterion
All transitions, several optimisations—additional computation simplifications,
C++, distributed computation—have to be investigated to obtain reasonable
computation times. Notice that for ASY, both computation simplifications and
a C++ implementation would provide an expected reasonable time of few hours.

6 Case Study: the Shunting Yard Algorithm
In this section, the application of the random generation techniques is presented
within the model-based testing context. For this purpose a web implementation6

of the shunting yard algorithm is analysed.

6.1 Description
This section describes the shunting yard algorithm [?] proposed by Dijkstra
for converting mathematical expressions from the usual infix notation into the
reverse Polish notation. Its name is due to its operation reminding this of a rail-
road shunting yard. The reverse Polish notation is a stack-based notation, close
to the syntax tree notation, and used for instance by HP pocket calculators. For
example, the expressions 3+4 or 3+4∗ (2−1) become 3 4 + and 3 4 2 1 − ∗ +
in the reverse Polish notation.

Since the shunting yard algorithm is stack-based, it can fruitfully be modelled
by a pushdown automaton. The conversion uses two text variables (strings), for
the input and the output, and a stack containing operators that have not been
handled yet. To convert, the algorithm reads a symbol from the input, and
then handles it depending on the read symbol and on the last operator on the
top of the stack. Figure 14 displays a textual description of the shunting yard
algorithm simplified by removing the function tokens and the ˆ operator.

6.2 Underlying Automaton for the Shunting Yard Algo-
rithm

As explained before, using pushdown automata as a model fits well with the
needs of the shunting yard algorithm exploiting a stack. Starting from the

6http://en.wikipedia.org/wiki/Shunting-yard_algorithm
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Shunting yard
Input: a list e of characters which is an arithmetic expression in the usual form.
Each element of e is either a number in {0, . . . , 9}, or a parenthesis symbol, or
an arithmetical symbol.
Output: a list t encoding the same expression in the reverse Polish notation.
Algorithm:

t is the empty list.
s is a local empty stack.
While e is non empty do

Let c be the first element of e.
Remove the first element of e.
If c is a number, then add it to the end of t. EndIf
If c is an operator, then

While the top of the stack s contains an operator o with a greater
or equal precedence

to that of c do
pop o out of the top of s
add o to the end of t.

EndWhile
Push c onto s.

EndIf
If c is a left parenthesis then push c into s. EndIf
If c is a right parenthesis then

While the top of the stack s contains an element o which is not a
left parenthesis do

pop o out of the top of s
add o to the end of t.

EndWhile
pop the top of s (which is a left parenthesis)

EndIf
EndWhile
While s is non empty do pop the top element of s onto the end of t.

EndWhile
Return t.

Figure 14: Shunting yard algorithm
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description in Fig. 14, the shunting yard algorithm is modelled by a PDA whose
underlying automaton is depicted in Fig. 15. For the readability reasons, the
model takes into account only the "+" and "*" operators. Notice however that
using these operators suffices for illustrating and validating this paper proposals.
In this automaton, the stack symbols are Z (for the empty stack),X+, X( andX∗
to encode that the stack contains respectively +, ( and ∗. The read transitions
model what is read from the input, while the write transitions model what is
written in the output. Notice that the x’s used on the transitions between q0

and qd can be replaced by any digit in {0, 1, . . . , 9}. The EOI action encodes
that there is nothing more to be read on the input. Pairs of transitions of
the form (q+,pop(Z), q1)(q1,push(Z), q+end) model the checking of whether the
stack (in the implementation) is empty (on the model it checks that the stack
contains only Z).

For instance, let us consider the input string 3 ∗ 4 + 2. In the underlying
automaton the corresponding path is:

(qinit,push(Z), q0)(q0, read 3, qd)(qd,write 3, q0)(q0, read ∗, q∗)(q∗,pop(Z), q4)(q4,push(Z), q∗end)

(q∗end,push(X∗), q0)(q0, read 4, qd)(qd,write 4, q0)(q0, read +, q+)(q+,pop(X∗), q+∗)

(q+∗,write ∗, q+)(q+,pop(Z), q1)(q1,push(Z), q+end)(q+end,push(X+), q0)(q0, read 2, qd)

(qd,write 2, q0)(q0, EOI, q8)(q8,pop(X+), q6)(q6,write +, q8)(q8,pop(Z), qf )

6.3 Experiments
This section reports on the experiments performed on a C implementation of
the shunting yard algorithm available on the web7 and slightly simplified to
handle the “+” and “*” operators. This simplified code is given in Figures 16
and 17. Firstly, the approach is evaluated by measuring the proportion of the
code lines executed, and the proportion of the transitions used. Secondly, it
is also evaluated using mutation operators: 10 modified pieces of code have
been generated using a freely available tool, called Mutate8. Following the
classical classification of mutants [?], four out of ten mutants are of the Oido type
(increment/decrement), one of the Varr type (Array reference replacement), one
of the SSWM type (Switch Statement Mutation), and four are of the ONLG
(Logical Negation) type. Notice that the tested code implements the detection
of the syntax errors in the input files, and the parts of the code handling wrong
inputs are not handled by the model since our push-down automaton is designed
for only valid inputs. Therefore, random test case cannot reach all the lines of
the codes. This is why the mutants have been chosen to be on reachable parts.

Like in Sec. 5, for the experimental purposes the developed prototype has
been used. Again, thanks to this prototype a pushdown automaton is trans-
formed into a normalised pushdown automaton, which is used to automatically

7http://en.wikipedia.org/wiki/Shunting-yard_algorithm
8Its code is available, e. g., at http://members.femto-st.fr/pierre-cyrille-heam/

mutatepy
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Figure 15: The underlying automaton for the shunting-yard algorithm

produce a context-free grammar. In its turn, the obtained grammar is used to
automatically generate executions thanks to the GenRGenS tool.

Our prototype computes, for each execution, the corresponding input se-
quence for the program (which is read on the automaton) and compares the
output of the automaton with the output of the program. If they are equal,
the test is successful, otherwise it fails: outputs of the automaton constitute the
oracle for the test campaign. The coverage of the C code source lines and of
the automaton transitions have been computed too. Finally, the prototype also
reports on the killed (detected) mutants.

For the first experiment, the goal is to detect all the mutants, with the
following experimental protocol: for each mutant, a test pointing out the related
code error has to be generated. The second experiment goal is to generate
random test until all transitions are covered by the test suite. For the last
experiment, the goal is to cover most of the code lines. However, as explained
before, several lines handling wrong inputs cannot be reached. Therefore the
goal is to cover 100% of the reachable lines, representing about 79% of the lines
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#include <string.h>
#include <stdio.h>
#define bool int
#define false 0
#define true 1
int op_preced(const char c){

switch(c) { case ’*’: return 3; case ’+’: return 2;}
return 0;}

bool op_left_assoc(const char c){
switch(c) {case ’*’: return true; case ’+’: return true; }
return false;

}
#define is_operator(c) (c == ’+’ || c == ’*’)
#define is_ident(c) (c >= ’0’ && c <= ’9’)

bool shunting_yard(const char *input, char *output){
const char *strpos = input, *strend = input + strlen(input);
char c, *outpos = output;
char stack[32]; // operator stack
unsigned int sl = 0; // stack length
char sc; // used for record stack element
while(strpos < strend) {

c = *strpos;
if(c != ’ ’) {

if(is_ident(c)) {
*outpos = c; ++outpos;

}
else if(is_operator(c)) {

while(sl > 0) {
sc = stack[sl - 1];

if(is_operator(sc)&&((op_left_assoc(c)&&(op_preced(c)<=op_preced(sc)))||(op_preced(c)<op_preced(sc)))){
// Pop op2 off the stack, onto the output queue;
*outpos = sc;
++outpos;
sl--;}

else {
break;}

}

stack[sl] = c;
++sl;}

else if(c == ’(’) {
stack[sl] = c;
++sl; }

else if(c == ’)’) {
bool pe = false;

while(sl > 0) {
sc = stack[sl - 1];
if(sc == ’(’) {

pe = true;
break;}

else {
*outpos = sc;
++outpos;
sl--;}

}

if(!pe) {
printf("Error: parentheses mismatched\n");
return false;}

sl--;
if(sl > 0) {

sc = stack[sl - 1];}
}
else {

printf("Unknown token %c\n", c);
return false; // Unknown token

}
}
++strpos;

}
while(sl > 0) {

sc = stack[sl - 1];
if(sc == ’(’ || sc == ’)’) {

printf("Error: parentheses mismatched\n");
return false;}

*outpos = sc;
++outpos;
--sl;}

*outpos = 0; // Null terminator
return true;

}

Figure 16: Tested C-implementation of the shunting yard algorithm 1/2
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int main (int argc, char *argv[],char **envp) {
const char *input = argv[1];
char output[128];
if (argc != 2) {

printf("Error:%d arguments expected",argc-1);
if (argc > 1) {

printf(" ( ");
int i;
for(i=1;i<argc-1;i++) {

printf("%s , ",argv[i]); }
printf("%s ) ",argv[argc-1]);

}
printf("Error: a unique argument is expected\n");
return -1; }

if(shunting_yard(input, output)) {
printf("input: %s\n", input);
printf("output: %s\n", output); }

return 0;
}

Figure 17: Tested C-implementation of the shunting yard algorithm 2/2

of the application. Each experiment has been performed 20 times. The minimal,
the maximal and the average numbers of tests required to reach the goal are
given in Table 8. Each result has been obtained on a usual commercial laptop
in few seconds.

In conclusion, the experiments show that the proposed testing technique is
very efficient with a very reasonable size of tests and a small number of tests.

Killing mutants Covering transitions Covering 79% of the code
length of the paths min max aver. min max aver. min max aver.

10 2 16 7.8 7 48 15.3 3 17 6.9
15 1 7 3.7 4 19 8.8 2 7 4.5
20 2 11 3.2 3 10 5.4 2 6 2.9

Table 8: Experimental results for the shunting yard algorithm

7 Discussion and Conclusion
Choosing Testing Parameters. The proposed testing framework makes use
of two parameters: the number and the length of the test cases. For the number
of test cases, several approaches can be adopted. For instance, it is possible to
generate test cases until a given coverage criterion is fulfilled as it is done with
Algorithms 1 and 4 in Section 5.3. In this case, the average number of test cases
is 1
pmin

, where pmin is the minimal probability to cover an element of the coverage
criterion under consideration. Following A.Denise et al. paper [4], the number
of test cases can also be fixed a priori—using the formula N ≥ log(1−pquality)

log(1−pmin) —
in order to obtain a chosen probability pquality to cover all elements of the
coverage criterion. The same formula can be adopted for the approaches based
on the resolution of the linear system. For a random biased approach close
to Algorithms 4 and 6 in Section 5.3, the average number of tests to ensure
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a desirable a priori defined quality is hard to compute since there are many
dependences. It is however bounded by the number of tests required by the
unbiased approach. Of course, the number of generated test cases may also
depend on the context: for a test campaign requiring manual manipulations it
can be reduced. Conversely, for massive testing, like Fuzz testing, it must be
huge.

The choice of the length n of the generated traces (tests cases) depends
on the system under test and on the context. For performance testing, several
lengths may be chosen to observe the evolution of the resource consumption. For
robustness testing, very important lengths can be chosen to observe the system’s
behaviour in extreme cases. For functional testing, the goal is to find a length n
allowing to cover all states or transitions. Let us notice that several lengths may
be chosen: for instance, it happens when a state can only be visited by traces
of odd length, whereas another one is only covered by traces of even length. An
experience-based and convenient way could be to compute the probabilities (and
the related grammars) for covering each state (transition) for lengths up-to ten
times the number of states of the NPDA. Another way to define the length n
could be to use the following (sketched) procedure. Given for the states coverage
criterion, it can be defined in a dual way for the transitions coverage criterion.

1. Compute the set Qreach of states that can be visited by an NPDA-trace;
some states representing for instance the dead-code may be not reachable.

2. For each state q ∈ Qreach, compute nq the length of the smallest NPDA-
trace visiting q.

3. Perform the pre-computation step (of the random generation procedure)
for all states and all k less or equal to n = max{nq | q ∈ Qreach}. Choose
n as maximal length of the test cases.

Step 1 can be performed in an efficient automatic way using existing works [44].
Step 2 can be done on the fly while performing Step 1, or by adapting the
approach developed in a paper by S.Basu et al. [45]. Consequently, computing
n can be done efficiently.

Comparison with the Random Generation of DFA-traces. In the pa-
per by A.Denise et al. [4], the random testing approach without any coverage
criterion is applied to graphs with few thousands of states and for traces of com-
parable lengths. Larger graphs cannot be handled by that approach directly,
because of important memory resources needed to store the pre-computation ta-
ble. To address this problem, the approach has been adapted to cope with large
graphs implicitly defined by a synchronisation of smaller graphs. The NPDA-
based approach proposed in the paper cannot handle so large models. However,
as exposed in Section 5, on pushdown models, the approach of A.Denise et
al. [4] ignoring the stack operations is not fruitful since it provides non consis-
tent paths. A pushdown model can be extended to a graph model where all
paths are correct wrt. the stack operation: it suffices to compute the graph of
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the NPDA configurations as defined in Section 2.1. However, this graph is in
general infinite. It can be approximated by bounding the depth of the stack.
However, for Amodulo, with 4 stack symbols and 18 states, and with a stack
depth bounded by 5, the corresponding graph can have up to 18 ∗ 45 = 18432
nodes. Even if several of these nodes/configurations are unreachable, the tech-
nique consisting in bounding the stack—or, equivalently, for structural testing in
bounding the function invocations—leads to huge graphs that cannot be directly
handled in the framework of the approach by A.Denise et al.[4].

Limits and Strength of the Approaches. The experimental results ex-
posed in Section 5 show that for the uniform random generation of test cases,
the expensive step is the computation of the cleaned context-free grammar. For
the ASY automaton, the computation of a probability pr(p, q) can be done in
about 110 minutes. The related automaton Ap,qSY has 96 states and 144 transi-
tions. Even if this computation time can be improved thanks to a better imple-
mentation, a hundred of states and of transitions is approximately the maximal
NPDA size that can be exploited for the uniform random testing approach in a
short time.

For the random biased testing approach with Algorithms 2 or 5 in Section 5.3,
the computation of a grammar—for each state or each transition—is required. It
is possible for all the examples considered in Section 5, even if theASY size seems
to be close to the maximal size acceptable for a treatment in a reasonable time.
Notice also that this limit corresponds to the size of NPDA automatically built
in recent works [43] using the PuMoX tool [5], for many industrial examples.

The approach consisting in solving a linear programming system to optimise
the probability to fulfil a coverage requirement is time-consuming. Experimental
results show that it is limited to the All states criterion and to automata with
few states, as Axpath. Notice that several industrial examples studied in the
literature [43] have the size of this order. Moreover, several optimisations can
be foreseen in order to address this problem for larger NPDA. This way one can
hope to handle NPDA of the size of Amodulo, but there is still work to do.

Using random biased approaches consisting in generating a trace to visit a
non already covered element—Algorithms 2 and 4 of Section 5.3—allows a sig-
nificant reduction of the size of the test suites. Moreover, these two algorithms
do not require an expensive computation time. Optimising the minimal proba-
bility to cover an element by solving a linear system is more expensive. When
probabilities of covering elements are not well distributed (for instance for states
for Axpath), this approach can be very fruitful. Conversely, when probabilities of
covering elements are well distributed, the benefit is insignificant (for instance
for transitions for Axpath). The efficiency of this approach deeply depends on
the topology of the NPDA.

Conclusion. In this paper a random testing approach using pushdown mod-
els is developed. Although this approach is not as efficient as the approach
proposed in the seminal paper by A.Denise et al. [4], it is still tractable (poly-
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nomial complexity). In addition, it deeply increases the chance of computing
paths corresponding to real executions. In the structural testing context, an
example shows the importance of handling stack operations in order to model
recursive functions invocations. In the model-based testing context, the ap-
proach is fruitful for programs or systems managing a stack, like the shunting
yard algorithm. The paper provides a qualitative and quantitative study of the
testing procedures, and it is explained how to use a biased random generation
to combine random testing and coverage criteria in an optimised way. An im-
portant perspective consists in adapting the developed framework to randomly
generate test cases under a distribution given by some statistical information
on the systems, i.e., for the statistical testing purpose.
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