A RANDOM VARIABLE RELATED TO THE ISPACING OF
SAMPLE VALUES

By B. SHERMAN!

University of Southern California

1. Introduction and summary. Let x be a random variable with continuous
distribution function F(a). Then ¥y = F(x) is a random variable uniformly dis-
tributed over [0, 1]. If 21, 22, - - - , Z» 1s an ordered sample of n values from the
population F(x) then 1, %2, ---, ya (y: = F(x;)) is an ordered sample of n
values from a uniform distribution over [0, 1]. For n large it is reasonable to
expect that the y; should be fairly uniformly spaced. Measures of the deviation
from uniform spacing can be devised in various ways. Thus Kimball [2] has
studied the random variable

n+1 1 2
a = ; (F(xi) — Flzi) — m),
where 7o = — » and T,y = -+ ®, conjecturing that o is asymptotically nor-
mally distributed. Moran [3] has studied the random variable
nd-1
= 21 (Flz) — Flxi)

which differs from a only by the quantity —2/(n + 1) + (n 4+ 1), and has
proved that 8 is asymptotically normally distributed. Somewhat related to these
two random variables is the quantity «’ introduced by Smirnoff [4]. This is

= T (F@) — Fr@) dFG),

although it is slightly more generally defined in Smirnoff’s paper. Here F*(z)
is the sample distribution function ([1], page 325) of a sample of n values from
the population with continuous distribution function F(z). The variable »* may
be written ({1}, page 451)

: _ 1 > y 2 — 1Y
w —T2—7L+ZZ—_—1<F($') 5n >

(2¢ — 1)/2n is the midpoint of the interval ((¢ — 1)/n, %/n). Thus, if [0, 1]
is partitioned into n equal subintervals then o’ measures the deviation of the
sample values y; = F(z), 7 = 1, 2, ---, n, from the midpoints of these in-
tervals. Smirnoff has investigated the asymptotic behavior of w’ obtaining a
rather complicated non-normal asymptotic distribution.

1] wish to thank Professors J. W. Tukey and 8. S. Wilks for their helpful suggestion
and criticism.
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340 B. SHERMAN

It is possible to construct a definition of deviation from uniform spacing which
permits a broader investigation than these random variables, This is

1 n+l 1
, = = F(z) — ) — — ,
© 2 ;1 (@) — Flae) n+1
where again 7, = — o and 2,41 = +« and F(z) is a continuous distribution

function. (In Theorems 3 and 4 it is assumed additionally that F’(z) exists and
is continuous except for a finite number of points). It is to be noted that

0= w, 1.

Generally speaking use of the absolute value in circumstances like this is an
undesirable procedure, but it turns out that w, is relatively easy to handle, al-
lowing a fairly simple calculation of its moments (which are independent of
F(x)). These are (u = min (k, n))

iy (n N\TEL (b 1\ (B = 1) (0 s\
ank'—E(wn)'_< k > sz=:0<8+1>< 8 ><n-|—1> ’

Thus in particular the mean of w, is

n+1
n 1
E(wn) = <n+1> _)’é;
and the variance is

2 — 2y _ 2 _ 20" + nln — D™ ~ n >2n+2
D (wn) = E(wn) E (wn) = (n + 2) (n + 1)n+2 <n + .

2¢ — 5
62

~

1.
n

These results will be established in Theorem 1. From the moments the charac-
teristic function of w, may be obtained, and indeed in finite terms. From the
characteristie function the distribution function of w, may be readily calculated.
The distribution function is written out explicitly at the end of Theorem 1.

To determine the asymptotic distribution of the standardized variable

Wn — E (wn)
D (wn) ’
it is sufficient to examine the behaviour asn — o« of the moments of this variable
or equivalently the moments of the variable

(=) (= -3)
% — 5 Toe)

Tor it is easy to show that if the moments of the standardized variable approach
the moments of a unique distribution function F(z) then the distribution func-
tion of the standardized variable approaches F(z). In this manner it is proved
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in Theorem 2 that the distribution function of the standardized variable ap-
proaches normality.
Since the asymptotic distribution of the standardized variable

Wy — E(wn)
D (wn)

is known it may be used as a test for goodness of fit if the number of sample
values is large. Thus suppose 21, @2, - -- , &, is an ordered sample of n values
from some population and we wish to test the hypothesis that the population has
the distribution function F(z). Then we, calculate the quantity

1 [1 b3 _1__| B ,]
D{w,) L2 =1 n+1 B
and if this quantity exceeds a certain value which depends on the level of sig-
nificance at which we are working we reject the hypothesis. Let us say that
P(X,. > A) = B. The probability of rejecting the hypothesis when it is indeed
true is then precisely B and this is small if A is sufficiently large. But suppose
that the hypothesis is false and the sample values come from a population whose
distribution function G(z) # F(x). Then we would desire the following property
to hold for the random variable X, , namely, for any fixed positive A the prob-
ability that X, exceeds A approaches 1 as n — . For in this case (and when n
is large) we are almost certain to reject the null hypothesis when it is false. A
test for goodness of fit which satisfies this criterion, i.e. where the probability
of rejection approaches 1 as n — o« when the null hypothesis is false, is called
consistent by Wald and Wolfowitz [5]. We wish to prove then that the test for
goodness of fit which uses the random variable X, is consistent. To express the
matter formally we wish to prove that (the probability density element of
2y, T, 0, Tois Nl dG(x) dG(z,) - -+ dG(x,) in the region

— 0o < << <2, < 4=

and zero outside that region).

2 [* e , B
lim f . f dG(x) -+ - dG(z,) = ?/_Erf‘, P g if Fixi ; GEI;’
Dy 1 if F(x G:z:,

where D, is the domain
—0o < << - <z < oo,
1 1 n+1 1 :|
— |z —| — E(w,
D(wn) [2 Py n+ 1 ()
The first assertion here is proved in Theorem 2. The second assertion is equivalent
to proving that for any fixed positive 4

Fx) — Fxia) —

= X,,

F(z) — F(@izr) — > A.

n-—>0

(0.1) lim f . f dG(21) dG () - -+ dG(za) = 0,



342 B. SHERMAN

where D; is the domain

—o < < ;< L2 < oo,
n-+1 1

1
E(O)n) - AD(wn) < 5 ; m

when F(z) # G(z). Now D(w,) is of order n V2, E(w,) = ¢ '+ terms of order
n~" and A is fixed. Hence it is sufficient to show that, if z;, 29, -+- , z, I8 an
ordered sample of n values from a population with distribution function G (z),
then the random variable

Flz) — Fgic) — ———

1n+1
Q, = =
2; n 41

(it is necessary to draw a distinction between w, and Q, since F(z) # G(x)) has

a mean L, — L 5 ¢ " and a variance D*(2,) — 0. For then we have, when n is

large enough so that the interval

[B(wn) — AD(wn),  E(wa) + AD(wn)]
fallsoutside [L — 4 |L —e¢ " [, L+ 3| L —e¢ " |Jand | L, — L| <}|L —e¢},
P(E(wa) — AD(wn) < @ < E(wn) + AD(w,))

=P(@%—LIz}L-¢")
SP(Q%— L. Z%|L—e))

ST = SHL -

F(z;) — F(@i) — l < E(wn) + AD(w,),

1

and this implies (0.1).
But now in Theorem 3 it is shown that the mean of the random variable Q,
is (writing k() = GF'(2), k(z) a monotonic function such that E(0) = 0 and

K1) = 1)
fomﬂ [1 —k <x +n_—%—“i> + k(x):r dz.

This expression approaches
1
f e—ls (z) dz
0

and this integral can assume the value ¢, which is its minimum relative to the
class of monotonic functions such that £(0) = Oand (1) = 1, only when k(x) =z
ie. F(z) = G(z). Finally in Theorem 4 we prove that D*(Q,) — 0 and thus it is
established that the test for goodness of fit based on X, is consistent.

2. Moments and asymptotic distribution of w, .

TaeEorREM 1. Let F(x) be a continuous distribution function. If xy, 2, -+ , Za
s an ordered sample of n values from the population whose distribution function is
F(x) then the random variable

ntl 1

1
wn“ﬁ; F(xi)—F(xi—l)—m »
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where Ty = — © and Tny1 = + «, has the momenis

ey (n+ENTR (n+ 1 (k= 1\ (n— s\
a"k_E(w”)_< k > s_;,(s—}-l s n+1/
where p = min (k, n).
The probability density element of the z; is ([6], page 90)
nl dF (21) dF (z5) -+ dF ()
inthedomain D,: — oo <2 <23 < +++ < 2, < -+ o and zero outside of this
domain. Then
o =t [+ [ Wh dP@) aPG@s) -+ dP (o).
Dy

If we make the transformation y; = F(z,), i1=1,2, -+ ,n, then

n+1
[ 1%
=1

where D, is the domain 0 < 31 < 2 < -++ < y» < 1, thus indicating that the
moments of w, (and therefore also the distribution function of w,) are indepen-
dent of F(x). Here yo = 0 and #,41 = 1. The transformation

Yi-1 —

1 k
m ] dy: dyz - -+ Ay,

U=, Y= U,
U = Yo — Y1, Yo = w + Uz,
= Yn — Yn-1, yn=u1+u2+"'+un7

Unil = Ynit1 — Yny Ynir = U+ U+ oo0 + U+ Unpa = 1,

whose Jacobian is 1, then yields

n+1 1 k
ank—n‘f ./.[2 ot U — m:l d'lhd?lg"'d’llm
1< 1
= n! hnd —
"'fD f[zé b n—i—ll
u 1 k
+ n+1 - (ug + u + - +un)] duy +++ dun,

where D, is the domain > w; < 1, us > 0,7 = 1,2, -+ -, m

i=1

The domain D, can be regarded as the union of 2" —2 subdomains in the

following way. First the hyperplane v + u + -+ + u. = n/(n + 1) divides
thel domain into two parts. In the part of the domain below the hyperplane,
i.e. where u; + us + -+ + u, < n/(n + 1), we have a subdomain defined
by the statement: k of the variables u; are greater than (n - 1)—1 and the



344 B. SHERMAN

Z) such subdo-

mains and it is clear that, because of the symmetry in the u,, the intregal of
|:§ i=1 1
gether Y, (Z = 2" —1such subdomains, k ¢ n because of the inequality

U+ U + -+ + u, < n/(m4+1). In the part of the domain above the hyper-

residual group of n — ku; are less than (n + 1) There are (

k
:l over each such subdomain is the same. There are alto-

mF Ut U =n/(n 4 1),

i.e. where u; + uy + -+ + u, > n/(n + 1), the reasoning is exactly the same
except that here k £ 0. Thus we may write

n—1 n k
Uty = n! r=20<:'?/) f“.[[z‘;l <n 1 1—u.):| duldug--- du,.
7 k
—i—n'rz_;()f f[;<u.—n_}_1):| duy dug «++ dua,

where D, is the domain

1 .
;ut +1y ui>m (1—1,2:" ,7‘),
0<'Mi<m (i=r—|—1,---,n),
and D, is the domain
n Z 1 .
ry N e—— =17 ’ooo
n+1<;u‘<1, w> oy @t 2,-00,1),
O<u.~<ﬁ——j_—1 (i=r+1,---,n).
If we introduce the variables
1 .
z,~=u.~—r—L-_T_——1 G=12---,1),
1 .
G= T W C=r+1,---,n),

we get

ok = ”Z@ff(E) G don
—I—n'é()f f<§z> dey « -+ den,
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where A,; 1s the domain

345

ZZ.’< ZZ.‘, 2 >0 (1:=1,2,"',7'),
=1 t=r4+1

1 .

n+1>zi>0 G=r+1,-,n),
and A,; is the domain

i§1z1<;z, +i§12i, 2>0 =12 ---,1),

1 .
n+1>zi>0 G=r+1,---,n).

To effect the integrations with respect to the variables z; , 2, - - -
2z, the volume between the hyper-

volume element in the r-space of 21, 22, - - -

planes z; + 2z, + --- + 2. = C, 2, > 0 and 2 + 2
r—1
z; > 0. This volume element iz d g = —L—
r! (r — 1)

Qi = n'Z

(r)./-l/n+1. “‘Z;l/n+1 |:/0~' gﬂz» (Tc_f—ll)!

|(Z

2, we take as

+ - 4+ 2 =C +dC,

dC. Thus

k
Z;) d2ep1 - dza

ra=(
n n 1/n+1 1/n+1 (1/n+1)+‘,=”§+121 Ck+r —1
+’”§(r>fo ) [fz . T-D dc [ des -
iyl
n—1 n 1/n+1 1/n+1 1
= pn! ( >f f —,(zr+1—|---~+zn)k+rdzr+1--'dzn
—~0 \” (1] 0 r
n 1/n+1 1/n+1
n 1
| ‘e -
+"‘r=1<r)fo fo &+ = 1
k+r
* <’ﬂ + 1 + Zryl + + n) dzr—i—l M dzn
n 1/n+1 1/n4+1
— n! n f f N S
"gl(r b h &+ N0 = D)
* (zr+1 + R +zn)k+r dzr+1 b dzn-

In order to perform these integrations we use the formula

dZs

> (1

=0

4 A
[ ] Bratat -+

" +n)'

() @+ oar,
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which is established immediately by induction on n. Then

- BRI ER () G
e R R e OO G

- EEC e O )

The first of these double sums is equal to

(n n-'kkl'c)vg 2 (-1 ( ) (n - Q) (lc -’: r) <n i 1>n+k

(1) 206 [Ber (7))

Let us assume first that » = k. The expression within the brackets is the coef-

ficient of 2" %in (1 — z)" *(1/(1 — z)**) = (1 — )" " and this is 0 only
when ¢ = n — k and then it has the value (n f q)' Thus the first double sum is

equal to

T RGO
( k > q-zn-:—k n—q/\g/\n+1
_(n+ K\ <=k n)(n—s)"“‘
_< k ) §<s)<s n+1) -
Similarly the second double sum is equal to
(n-{-k)'lg Ic—l) n n — s\"*
k =\ s s+1/\n+1/ ’
and the third is equal to
n+ kN & k=1 /2 [n— s\
) 2CID 06

Thus, using the identity

OO+CEICE)-CDO-CENETY,

we get
(n + k>_1 2 /n+ 1) <k - 1> <n - s)"“‘
Apr = Z .
k S \s+1 s n-+1
If however k > n then a similar argument shows that we get an expression for

anr Which differs from the above only in the upper limit of the summation, which
is » — 1 in this case. Thus the theorem is proved.

[y
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The distribution function of w, is

F) = 1+ ";V":l i (— 1y (n) <n + 1)

=0 =0 p/\¢+1
(=9 (ane (e )
n n+1 n 41 ?
where r is the non-negative integer determined by the inequality
r r+1
< A
n—+17 v < n+41

F(x) =0whenz £ 0, F(zr) = 1 whenz 2 n/(n + 1) and F(z) is a polynomial
of degree n in each of the intervals

71 —1 1 .
(m,m), 7;—1,2,"'7?;.
TueoreM 2. The random variagble w, is asymptotically normally distributed

(E(ws), D(wn)); t.e., the distribution function of the standardized variable

wr — E(ws)
D(ws)

approaches

\/1—2—— [z P qy
T Jeo

It is sufficient to prove that the moments of the standardized variable approach
the moments of the normal distribution. For in general it is known that if the
moments a.; of F,(x) approach the moments o, of a uniquely determined dis-
tribution function F(x), then F,.(x) converges to F(z) in every continuity point
of the latter (M. G. Kendall, Advanced Theory of Statistics, Vol. 1, Third edi-
tion, Charles Griffin and Co., 1943, pp. 110-112).

Now E(w) — : and Diwy) ~ 26 =81 _

¢
e? n n
wn — FElw,)

3
., - . 1
it is sufficient to prove that the moments of (?) <w,. — Z‘) tend to the moments

, so that the two vari-

3
and <’C_’> (w,, ~ %) have the same limiting distribution. Thus

of the normal distribution. In the following argument we take p = k since n — o,

@7 -0 EQ ()

_ nmIZm! (_l)m m  k—1 (_l)m—k n!ek
T (2e — 5)"»/2[ m! + ;; ; n+k)m—k)!

CECNEE]

(2.1)
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n 2m
Suppose now that it has been proved that E[(g) (w,. - 2) :I tends to a

finite limit as » — o, ie., that the limiting moments of order 2m exist,
m=12 --- ., If misodd

Oy
w6 - <o O - T

mi2 m
Hence, if m is odd, E[(%L) (w,. — %) ] is bounded as n — «. Now the ex-

IIA

pression in the bracket on the right of (2.1) can be expanded in a convergent
power series in n™* provided that n > m. Because of the factor 2 and because

the left hand side of (2.1) is bounded as n — « this power series must have Z—«Z ,

1

where p = m + (since m is odd), as its initial non-vanishing term. But then

the left hand side of (2.1) must approach 0 as n — . Thus if the limiting mo-
ments of even order exist the limiting moments of odd order are zero. We may
now restrict the discussion to even order moments.

Replacing m by 2m in (2.1)

n\" A _ n"(2m)! 1

E [(E) (“"‘ - E) ] T 2e— )" [<2m>!
&S (=Dknte n+ 1\ (k — 1\fn — s\"**
+1§i§(n+k)!(2m—k)!(s+l)( s )(m) ]

Let us introduce the index ¢ = k& — s — 1 which runs from 0 to 2m — 1.
Then

E [(g)m (‘”” - %)m] B (;em (~2—m§>!m [(2;»!

2m—1 2m k % ke
(—1)*nle <n+1)(k—1)(n_k+q+1> ]
+q§k-zq-:i-1(n+k)l(2m—k)!k——q q n + 1

_ a"@2m)! a ., ap _ O Uit :]
—(*2e—5)M[a°+ﬁ+n2+ +n’"+n’"+l+ .
m 2m
In order for lim E I:(%) (w,, — —i) } to exist it is necessary to show thata; = 0,
n—+®

m 2m 1
§=0,1,2, -+ m — 1. Then lim E[(@) (wn - 1) ] = Onm)! g e de-
s c e 2e—5m™
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termine the coefficient a., of n° in the expansion in powers of 7 of
iv': (=¥ nle* (n + 1) (k - 1)
w1 (0 + K)I(2m — k)I\k — ¢ q
_(n—k+q+1>"+'°= iaiq

n+ 1 <ot

(2.2)

we will then have

i
(23) a; = Z Ajgy .7 =12 --m
g=0
Tt can be established at once that a; = 0. For if we set ¢ = 0 in (2.2) and let
2
o5 (=DF 1 .
n — « then (2.2) has the limit ; Gm—HTk ~ —@mi’ To determine the

expansion of (2.2) in powers of n' it is sufficient to focus attention on the expan-

sion in powers of n~" of
n! e — k& n—k+ ¢+ I\
_t+t D) ---n—k+ g+ 2 (n—k+q+1)"+"
m+bnt+k—1)---(n+1) n+ 1

or equivalently on the expansion in powers of x of the function

(1/z)+k
(1+1)(1)~-(1—k+q+2) L e
X X X x
(1+k)(1+k—1)---(1+1) L
T X X X

_ 21 — 2 — 22) --- 1 - & —qg— 22) (1 —(k—q— 1)x)(llz)+k
(I + 22)(1 + 32) --- (1 + kz) 1+ =z
= xq(akqo + Qg + akq2x2 + . ) = qu(x).
Here aro = ¢ ¢ and the other coefficients may be obtained by a recursion

formula. Thus:

Grgp = 1 DB F(z) = 1 DSEV [F(z)D log F(x)]
p! p!

p—1 _
-1 (p s 1) D{E Y F(z) DS log F ().

But
D&Y log F(z) = DIP [(315 + k) log (1 — (k — ¢ — 1)a)
k—q—2 k
—(§+k>log(1+x> + 2° log (1 — iz) — Zlog(1+z‘x>]
=1 1==2
_ o qysH k—q—1 _
—s![(k g— 1 (_—s+2 2k+q+1)

1 P o : +
—_1)° k= — ) = 3 T (DT = st
+ (=1) (1 k ; 2) 2 7 2 (—1)°z 8 1 bigs



350 B. SHERMAN

50 that

1 &3 (p—1 13
Argp =~ E Z (p s ) (p i 1)!akq(p—a—-l) §lb = E) Zo g (p—s—1)Dkgs «

L og=0

Of brgs we need merely notice that it is a polynomial in % of degree s + 2 and
that by = —g k* + Ak + B, where A and B depend on ¢ only. We wish to

determine the value of @iy and to this end we solve the system of linear
equations

—k+q
Qg0 =€ ’

1
5 Zo Qkqp—s-1)bkgs — Grop = 0, p=12.-37—4¢q

Qio(i—gy is therefore a quotient of two determinants. The determinant in the
denominator has the value (—1)""? while the determinant in the numerator

can be expanded by its last column and is therefore the product of (—1)" % **¢
and a determinant By, whose entries dosg, @, 8 = 1, 2, -+ 7 — ¢, can be de-
scribed as follows. If 8 > a + 1 then dys = 0. daery = —1 and when 8 =< «,

1
dos = ~ brqca—p) , & polynomial of degree @ — B + 2. Thus Grgiigy = € "Bigs .

The determinant Bi,; is a polynomial of degree 2(z — ¢) in £ and the term of
this degree comes only from the product of the diagonal elements. For

—q
Bigi = | dag| = = == 1] duetay where o(a) £ a + 1and (e(1), 0(2), - - - o(i — @))
a=1
i—g
is a permutation of (1, 2,---7 — ¢). The term || darey has degree
a=1
i—q i—q
> (e — o) + 8(@) = 2 5(a) where 8(a) = 2 if o(a) < a and 8(a) = 1
a=1 . a=1

if o(a) = a+ l.ButtZié(oz) =20 — g da) =2 g(a) £ ae> cla) = a,

so that it is the product of the diagonal terms and only that product which gives
to the term of degree 2(7 — ¢) in the expansion. Thus

By = @——l—q)' (bego) ™% + terms of lower degree in I
__ 1 5\ aime 4 SR
= (’L_-—"-q—)l ( é) k + E) 11110 .

We are now in position to evaluate a,, .

2 E Kk
3 (—1)% <k - 1) .
B = k;qw:n @m — Blk — ¢! q Qieg (i—q)

2m (__1>keq ]{) 1
lc=§q;i-1 (2m — k)lk — ¢! ( q ) Bigi .

24) __ ¢ (_ 5)"'“ D (k -~ 1)
) 2) W 2m =Bk -\ ¢
2m (_1)keq (]C _ 1) l:?(i—<1>—1 . f:l
R DN e o (e I G Z AR

I
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To complete the evaluation of a;, we observe that

1
2m _ _ = fl — 2 _ ’
@5 k§+1 2m —( k;?:,fl_ D! (k 7 1) = {q! ! (m — g
| . 0 if I < 2(m — g).

(2.5) implies that a;, = 0 if 7 < m and therefore a; = 0 if j < m. The proof
-1 R

of (2.5) is brief. We note that '™ = > ¢; (k j_ ‘7) , where ¢; is independent
=0

of kand ¢;_y = (I — 1)!. Then

& (—=1)*%! (k - 1) & (=D 1 (2m - q)

M @m — Rk — I\ ¢ /) gk —qg— DI@m —g)t\k — ¢
@& : k! (2m - )(k + j)
= —1)* % IO("
%2 Y e — =ik - oI\
-1 . 2m .
cf(J+q+1)![ k<2m—q)( b+ )]
= —_— -1 . .
,Z% @m — ¢)'jlq! k-zq:ﬂ( ) k—g/\g+it+1
The expression within the brackets is the coefficient of 2™ %' in

1 .
1 -z A= ™ = (1 — )™ 2 and thisis zeroif j < 2(m — ¢) — 1
and 1if j = 2(m — ¢q) — 1. Accordingly

2m (_1)kkl k — 1)
k-;ﬂ @2m — gtk — 9)!( q

0 ifl = 2(m — q),

={em—q —1IRm —q —1+g+ 1! _ 1 o
@m — g2 — g — Iig! Tl il =2(m -9,

and (2.5) is established. Returning to (2.4), @;; = 0 when ¢ < m, while

I o 5)'"_“ _ 1 ) (_ §)’""‘ o
I = —igi\_ 3} " mi\q 3 ’

and now applying this expression to (2.3)

O = i 1 (m) (— é)m_q ¢ = L (2e — 5™

Zml \q 2 mi2m

. n\" N _ am@m)t _ (2m)!

,l,’f.’iE[(E) (“"‘ - E) ] T e =5 mizm’
and these are precisely the even order moments of the normal distribution.
n _ E(wn)

" 1} ; i . W
Thus (E) (w" B Z) is asymptotically normal and so is e

Thus
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2
The skewness 8, = (’-‘—3) and kurtosis 8, = 'i: of the standardized variable
g

o
wn — Elw,)

D(w,.) are
_ 1 (6 — 42¢ + 70)* - 356 2
== e =5 + 0™ = 4 0™,
P 2 1718+o<n'2> =328 4 o),

3. Consistency. According to previous discussion in order to prove the con-
sistency of the test for goodness of fit based on the asymptotically normal

variable ﬂn_D___(L‘*’n) it is sufficient to show that, if z;,2;, -- - , , is an ordered
sample from a population whose distribution function is G(x), then the limiting

n+1l

mean of the random varlable-;— > | F(z;) — F(zim) — | is not equal to
=]

n + 1
¢’ if F(xr) # G(z) and the limiting variance of this variable is zero. This is
the content of the next two theorems. In connection with these theorems it is to
be observed that, when y = F(z) is continuous, F '(), 0 < y < 1, can be
defined unambiguously by writing F'(y) = [Sup z: y = F(z)] except for g = 0,
and F'(0) = — ». The function k(z) = GF'(z) is then a non-decreasing
function mapping [0, 1] into [0, 1] and such that k(0) = 0 and k(1) = 1. Now
if F'(z) exists for all but a finite number of points and is never zero then F ()
is continuous and so is k(z). If further G'(x) and F’(z) exist and are continuous
except for a finite number of points then (F’(z) » 0)k’'(z) enjoys the same
property. These remarks justify the substitutions and partlal integrations that
are effected in the course of the next two theorems.

THEOREM 3. Let F(x) and G(z) be continuous distribution functions whose
derivatives exist and are continuous except for a finite number of points. If
21, Xz, - Ta 18 an ordered sample of n values from the population whose dis-
tribution function is G(x) then (k(z) = GF'(z))

F(z:) — Flzn) — 5+L1 D

n/(n+1) n _ 1 k()
=fo [1—k(x+——_ﬁ)+k(x)jl dx—>fe dz.

The integral f @ has, relative to the class of monotonic functions such that

k() = 0and k(1) = 1 the minimum value ¢ and assumes that value only when
k(z) =z te Flx) = G'(x)

Let us suppose first that F’(x) # 0. Then F'(z) is continuous and it is dif-
ferentiable at all but a finite number of points as is also the function
GF \(z) = k().

1 n+l

EQ) =E (_ >

o=
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7’,

Tf E( Fle) — Flows) — n_i_l I)

1
2 £
() w3 - )

+2;E<F@9—F@H)—{$TD,

3.1)

The joint probability density element of x,; and z; is
- n!
(T — 2)I(n — o)!

in the domain — » < z;; < z; < -+ « and zero outside that domain. Hence

Qi) 21 — Q)" dG(zin) dG(zs)

_;E( F(x;) —F(l‘i_1) hand %D
=13 [ [ rer ~ree - 2|
A= 2)7(1n = G@e) (1 = G @)™ 46 (rir) dG (z)
1
=5 F(Y) F(X) — o 1I

1 = GY) + X" T dG(X) dR(Y),

and making the transformation y = F(Y) and z = F(X) the integral on the
right can be written

[1 — k@) + k@I dk(z) dk(y)

+
y—(1/n+1) 1 g
tat-n [ | (y ) 1 Q) @I dkGe) dkG),
1/n41 Jo n+1
Integrating partially with respect to z, the expression on the right becomes
_n _ 1 _ k n—l
2 e -2 [ (v ) - e s

-2 f f [1 — k() + k@)™ dz dk(y)

1
1/n41

—(1/n+1) '
+nf [ — k() + k@I dr dk(y),
1/n+1 YO

= fntn — 1) f [(z-v+ )[1 — k) + B db(e) db)

i&u—mmﬂﬁw
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and now integrating with respect to y

1< 1 1 111 .
5 EE(IF(x.-) — Flzi) — ml) = -t éfo 1 — k@] dx
n/n+l

1 1 n 1 n n
+§f0 k(z)" dr — -/;/n+1 [ — k@) dz —fo k()" di

f"/"+1[1 k ! k@) | d
+ s - x+m + (l)jl x.

The other two terms in (3.1) are treated similarly. The probability density
element of z; is n(1 — G(@1))" " dG(z;) so that

, 1 _n "
%E(F‘W‘mb—éf_w
1
n
-3

. 1
T 2m+1)

Flz) — ﬁlﬁ‘ (1 — @)™ dG(x)

5 — ﬁl (1 = k@)™ dk()

1 1/n+41 .
- éfo (1 —k(z)" do

1
+3 [ -kE)d.
2 Jynt
Similarly we find that

1 , 1 1
32 (- P~ 551)) = s

1 nin+1 1 1
+ _f k()" dz — —f E(x)"™ dz.
2 Jo 2 Jimi

B@) = [ e [1 —k (a: + 7%1) + k(x)]" dz.

This result is, however, independent of the hypothesis F’(z) # 0. For if F'(x)
is sometimes zero we may select a sequence of distribution functions F.(x),
m = 1, 2, ---, which converges everywhere to F(z) and which is such that
Fn(z) # 0. The F.(z) otherwise satisfy the conditions of the theorem. If Qyua
is that function of z;, 72, - - , Z» obtained by replacing F(z) by F.(z) in Q,
then Q.. converges to Q, for every fixed set of z;, 3, - - - , Za and E(Qn.) con-
verges to E(Q,) since both Q.. and Q. are bounded by 1. Furthermore if z,
is any value such that F’(zr;) % 0 and y = F(x) then F,'(yo) converges to
F'(yo) = . For if 2, is a cluster point of the set F,'(yo), then there exists,
for a given ¢, a sufficiently large m such that | F(z)) — Fa(21) | < e (because
F.(z) — F(2)) while, for the same m, | Fn(z;) — % | < € because of the con-
tinuity of Fa(x). Thus | F(z) — %! < 2 and, since e is arbitrary,
yo = F(x) = F(xo). So 2, = x since F'(zy) # 0. Thus F.My) — F'(y) for any

Thus
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value of y such that if z is mapped into y by F(z) then F'(z) # 0. This set
on the y axis however includes all y except for a set of measure zero and so
F.'(y) — F(y) almost everywhere. So kn(y) = GF. (y) — GF ' (y) = k(y)
almost everywhere and ,

[1 — km (y + n—%—l) + km(y)]n - [1 —k (y + n—i—l) + k(y)]n

almost everywhere. Then

nin+1 1 n

B e PR vy

since both integrands are bounded by 1. Therefore the equality
n/n+1 1 n
o n-+1

is preserved as m — .
Now k(z) is a monotonic function and hence has a derivative almost every-
where. Then

[1 — & (x + ;i—l) + ’c(x)]"
[ (e ) - /)]

almost everywhere. If we write

H.(x) = [1 —k (x + #1) + k(z)]”

__kl
converges to ¢ ¥

n n
o and H,(z) = Owhenn+ i

'H.@)d —f"/"+1[1 k : ) k@ | doos [
./0‘ n(x) xr = A - (x+m + (17)] x—*_{e dx

asn — o, The curve y = ¢~ lies always above its tangents and the tangent at

whenOéxén <z £ 1, then

z=1isy = —%x + % . Thuse © = —%x + % for all z, equality holding only

when z = 1, and therefore eHE = —16 k'(z) + %, equality holding only
when k'(z) = 1.
So

1 1
f e de 2 _1 f k' (z) dz + g,
o e e
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equality holding if and only if £'(z) = 1 almost everywhere. But for any mono-
tonic non-decreasing function

l%unngmn—mm

equality holding if and only if k(x) is absolutely continuous. Hence

1 1
f @ dr > —lf k' (z) dx -}-g > 1,
0 e Jo e e

and the equality runs through if and only if k(z) is an absolutely continuous func-
tion such that k¥'(z) = 1 almost everywhere. But this is true of k(z) if and only
if k(z) = z and this in turn is true if and only if F(z) = G(x).

THEOREM 4. The random variable Q, has limiting variance zero; i.e., lim E(Q%) =

1 2 n—00
[ f @ dx:l.
0

As before we assume first that F'(z) £ 0. Then

E@) = B [(; ; F) = Fas) = )2]
(4.1) +EHF@)——IE,J+EH1— iln]

- S|

Suppose [Sup z: k(x) = 0] = o and [Inf z: k() = 1] = b. We may then obtain

F) —ﬂl—i]Jrll—F(x,.) -

Iﬂiﬂ, E l: Fx) — n—:—_l Qn:l in the following manner:
1
[ +1“}“E[““"] *EU ) = ] = o]

< [E (F(xl) _ 7%-1 _ a>2:|l/2 [E(@)]".

But 2, = 1 so that E(Q%) is bounded as n — «. On the other hand

E(Fw - - a) - (F(xo - - a) (1 = G))™ d6 ()
- nfo (x - m) A — k@)™ dk(z)

I ¥, n 1 n
=(a+m> +f02<x—a—m)(1—k(x)) dz.



SPACING OF SAMPLE VALUES 357

As n — = the expression on the right tends to ¢ + f 2(x — a) dzx = 0.
0

Thus the expression on the right of (4.2) goes to zero as n — « and therefore

F(z) — —Ti

In a similar manner we obtain

(4.3) lim E |:

n =+

] = lim E [aQ,] = af G .

n—w

1_F(xn) -

n—oo

(4.4) lim £ l:

sz,.] =(1-10) fol e g
)]

—ia+1-0b)
The first term on the right of (4.1) remains to be investigated. We have

_1
n+1
and

. 1 1 1
wp moE [z('”xl’ - ml + ll —F@) = ooy

1 1 2
1 L 1 2
(4.6) =i E [; (F(x.) — F(xia) — m) :I
+iE [i i Fe) — Floo) — — me,) - P - ]
2 jmid2 + 1
n_t .
The joint probability density element of x,_; and z; is
G — 2)?27» —51 (1 = GEe)) 6™ dG (i) dG(=)

so that

}LE [Z; (F(xf) = Flew) - n_qu)’]

- in(n — 1) f[ (F(Y) F(X) — —:L—l)z

=R XY <%

[l — G(Y) + GX)I"* dG(X) dG(Y)

-l [ (y e —) L — k) + k@I dkk) d).



358 B. SHERMAN

In this latter double integral we integrate first with respect to x and then with
respect to y obtaining

—n — 3 N L n
3 (- k) u ke - g [ (- ) e s
1 [ n k) + ke
0<z<y<1

and proceeding to the limit

1 [ 1Y
im 2[5 (red — ) - 515)

1 1 1
=—§foydy—5f(1—x)dx+§ f dx dy

(4-7) = I<e<y <]
k(z)y=k(y)
--te-da-wel
= —39 4(1 b) +§ dz dy.
I<z<<y<]
k(x)=k ()

The joint probability density element of z;—y, *:, Zj1, ; when j > 7 + 1 1s

n' =2 —i—2
G—=2!1G—1— 2! n—H! G(zi) " (G — G(z)]

[1 bl G(.’le)]n_j dG(xi_l) dG(-’lh) dG(xj—l) dG(x:i);

SO
%E[g J_gﬂ F(z) — F(zioy) — n—j—_——l ! l F(x;) — F(x;y) — ﬁ l]
_ %n(n — D — 2 — 30)<X<[£fuj<v<'llp(1/) — F(X) — njr 1‘
48 - ‘F(V) ~FO) - \ 1L —GV) + GO)
— G(Y) 4+ GX)"* dG(X) dG(Y) dG(U) dG(V)
=l -Dw-2a-3  [ff[ y—z— _ﬁ;

t<z<y<u<r<l
L= Q) + k(u) — k@) + k@) di(z) dk(y) dk(w) dk(v).

The joint probability density element of z;y, i, Ti is

G- 2)!(:: = Ty )T I =G d6 i) dG () A6
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and so
1 [ 1 1
3 E [g F(z) — F(zia) — P | ‘ ! F(2:y1) — F(zs) — T H
~taw-vw-2 [[[ |[Fom-reo - 7%1 ‘
01<X<Y<V<1
49) { F(V) = F(7) = 2 | = 609) + GOOP™ 60D dG(Y) da(y)
e
0<z<y<r<l
p— Y — ’ 1 — k@) + k@) dk(z) dk(y) dk@).

We introduce the symbol S(p, q) as follows

1 fg=p+ —,
+1
S(p7Q) =;

| 1

-1

| ifg>p+ —— e

Then in the integral on the right of (4.8) we perform a partial integration with
respect to u and add to the integral on the right of (4.9). We get

%n(n—l)(n'—2) fff n—_%_—ly

=
a1
0<z<y<r<1
- [1 = k() + k@1 dk(x) dk(y) dk()
—%n(ﬂ—l)(n—2) fff S(u, v)

0<z<y<ur<Ll
L — k@) + k(w) — k@) + k@1" dk(z) dk(y) dk(@) du,

and now integrating with respect to v in the triple integral and performing par-
tial integrations with respect to = and collecting terms the sum of (4.8) and
(4.9) becomes

nln — 1) _n(n—l) l
dn+ 1 2+ Db + n+ 1

[[ @i - ko + b@I™ dedk@) + ntn — 1

0<z<y<1

ff Slu,v) y

I<y<u<r<1

a1 l
y—: n+1

2n(n — 1)
n+1

[1 — k@™ dk(y) —

_L | (1 — ko) + b(w) — k@)™

- dik(y) dk(@) du + n(n — 1)
[l 53081 - k) + 5@ - k@) + k@™ db) dbG) do du.

I<z<<y<u<r<li
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Now some tedious, although in principle straightforward, calculations show
that the first three terms of this expression approach

1
(4.10) ._.i_ — %a — %(1 _ b) +f e~k'(x) dx,
)
that the triple integral approaches
1
(4.11) Ja+dell =B + 30 —a [ TMOay,
0

and that the quadruple integral approaches

1 1
2 [ ot Oma - [ eOm—a-b [ 7w
0 0

I<z<<u<l

(4.12) _ % ff dzdu + (1 — b)? + 31 — b) + &

<z u<l
k(zy=k(u)

Thus collecting the results of (4.3), (4.4), (4.5), (4.7), (4.10), (4.11), and
(4.12) we have

lim E@) = 2 f f @R g0 du.

I<z<<u<gl
Since the integrand is symmetrical in the variables u and z we may write

1 2
(4.13)  lim E(@Q)) = ff @@ g g [f @ dx],

0
<zl
I<u<gl

and this proves the theorem in the case F/(x) < 0.

Using the procedure of theorem 3 we may however extend the theorem to
include the possibility that F’(x) is sometimes zero. But it must be shown
additionally that the sequence F.(z) can be so chosen that Q,, converges to Q,
uniformly in 7, i.e. that, for a given €, | @us — Q. | < € for m sufficiently large
and for any value of n. If this is true then, observing that 0 £ Q... + Q, < 2,
| @5, — Q%] < 2¢ and

| B@n) — E@2) | < B(| Q% — Q4 |) £ 2¢

independently of n. Letting n — o

1 2
‘ [ f ¢t @ dx:, — lim E(Q))
0 n—r0

and nowletting m — « (the F,.(z) constructed beloware such that %, (z) — k' (z))

1 2
' l: f E® dx:| — lim E(QD
0 n-—w

= 2

< 2e
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Since e is arbitrary this implies (4.13), so that the theorem is extended to include
the possibility that F’(x) is sometimes zero. That the sequence F.(x) can be
chosen so that Q.. converges to @, uniformly in n can be shown as follows. The
set of points on the x axis for which F’(x) = 0 maps into a set of points on the
y axis of measure zero. For any m we may enclose this set on the y axis in an

open set S of measure less than % S is the union of disjoint open intervals

S;,t=1,2, . The sets T; = F'(S,) on the z axis are disjoint open inter-
vals. Now we may construct a dlstrlbutlon function F,(x) which coincides
with F(x) outside =7 , is such that F,,(z) = 0, and otherwise satisfies the condi-
tions of the theorem (stated explicitly in Theorem 3). The sequence F.(x) con-
verges to F(x). Furthermore

]an - Qﬁ I
= }7§ F(z) — F(xia) — —1—— ‘ - l% Ful@) — Fn(ri) — —lﬁ ”
2 =1 n+1 2 = n+1
@1 1 pey  pes __l_t_ Y P () — '
= ; F(xl) F(xz—J) n + 1 Fm(xt) Fm(xt—l) n__’_—]:
nt+l

<z E | [Flz) — Flzi)] — [Fn(®) — Falri)]].
For any particular set of values of z;, x2, - - - x, some (possibly none or pos-
sibly all) of the x; will fall into intervals of the 2T, . If this finite set of intervals,
each containing at least one x;, is say Tv, T2, -+, T%, then a simple analysis

of the sum on the right of (4.14) shows that it is less than twice the total length
of the intervals F(Th), F(T,), - -- F(T:) and this total length is less than;;—.

Thus | Qus — Q| < :Eand this result is independent of n.
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