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Abstract. I present a few simple models of the mass function of col-
lapsed objects. The emphasis is on apparently unrelated models which
end up giving the same answer for the number density and merger histo-
ries of virialized clumps. I also comment brie
y on models of the spatial
distribution of the clumps, and how they can be used to model the spatial
distribution of the mass.

1. Introduction

In what follows I will describe a few simple, toy models of the growth of clus-
tering. The emphasis will be on the interrelations between these models, more
than on the exact agreement with the results of simulations. All the models I
will discuss are hierarchical in the sense that small things form �rst, and big
things form later by mergers of the small things; there is no fragmentation.

2. The mass function and merger histories of collapsed objects

In the following discussion I will focus on how one might estimate the probability
that a randomly chosen particle belongs to a clump which contains m particles.
All the models use the initial spatial distribution of the mass to estimate how
clusters grow. This means that the models are most likely to be accurate if the
mass was cold initially.

2.1. Gravity as an e�ective length-scale

To begin, consider a distribution of particles arranged at random along a line|
we will consider three-dimensional distributions shortly. This random distribu-
tion is supposed to represent the initial spatial distribution. We wish to model
what gravitational evolution does to this distribution. Presumably, gravity be-
ing a force of attraction, near neighbours will begin to move towards each other.
Suppose that if two particles collide, they merge. We would like to estimate the
number of clumps containing m particles at a time t after the initial distribution
of single particles started to cluster. There are two natural choices for the order
in which things happened.

The �rst is to assume that clusters grow by a process similar to percolation.
The intuitive idea is that gravity can rearrange things only on small scales at
early times, but on increasingly larger scales at later times|the length scale
associated with gravity increases with time. To model this, draw a line outwards
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from each particle; assume that the length of this line increases monotonically
with time. Two particles are said to be friends, and to have merged with each
other, if the line from one of them touches the other. If we de�ne clumps by
requiring that friend-of-friends are in the same clump, then this de�nes a set of
clusters as a function of link-length. The size of a typical cluster must grow as
the friend-of-friend length increases; large link-lengths mean late times, re
ecting
the fact that massive clusters are not present initially, but are more common
later.

If we keep track of the clumps at time t1 which are part of a larger clump
at t2 > t1, then we have stored some information about the merger history of an
object. This means that we can start to address questions such as: How does
the distribution of clump sizes evolve? Are the most massive objects at t2 made
of the most massive objects which were present at t1? How di�erent are the
merger histories of objects which contain the same number of particles?

The link-length model above provides analytic answers to all these questions
if the initial distribution of points was Poisson. In the one-dimensional case, the
probability that a clump contains m particles when the critical link-length is l
equals

�(m; l) =

"
m�1Y
i=1

Z l

0
exp(��nxi)�ndxi

#
e��nl = e��nl

h
1�e��nl

im�1
wherem � 1; (1)

and �n denotes the average density of particles. The term in square brack-
ets can be understood as follows. The probability that the particles are at
(dl1; � � � ; dln) equals Q �ndli times the probability that there are no particles in
between:

Q
exp(��nli), where li denotes the distance between particles i and

i + 1. If we change one of the lis to any value between zero and l, but keep
the other ljs �xed, then we will still produce a valid con�guration; hence the
integration over the allowed range for each li. The endpoint of the clump is
determined by requiring that there be no particle closer than l to it, hence the
�nal exponential on the right hand side of the square brackets.

In what follows, it will prove convenient to de�ne

b � 1� exp(��nl): (2)

Initially l = 0, so equation (1) says that all clumps have size m = 1 initially. At
later times, l!1, and the clump distribution tends to an exponential. In the
process, b changes from zero to unity.

The fraction of mass which is in m clumps is

f(m; b) =
m�(m; b)P
m�(m; b)

= (1� b)m�(m; b): (3)

The number density of m-clumps is the average density �n times f(m; b)=m, and
is often called the universal mass function.

Consider an m-clump at t2 when the link-length was l2 � l1. At t1 � t2 the
link-length was shorter, and so not all m particles would have been `friends-of-
friends'. In other words, at t1 � t2, the m-clump was partitioned into smaller
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subclumps. A modi�cation of the argument above allows us to write down the
distribution of subclump sizes. Namely,

p(n1; � � � ; nm; l1jm; l2) = n!
�(n; l21)

�(m; l2)

mY
i=1

�(i; l1)
ni

ni!
; (4)

where ni denotes the number of subclumps which contain i particles; the total
number of particles is

P
ini = m and they are partitioned into

P
ni = n clumps.

The n! factor comes from not caring about the order of the subclumps, the factor
of �(m; l2) in the denominator comes from the fact that we know we have an
m-clump at t2, and �(n; l21 � l2 � l1) comes from noting that the distance
between the right-end of one subclump and the left-end of the next subclump
must be greater than l1 but less than l2. This gives a factor of exp(��nl1) �
exp(��nl2), which we write as exp(��nl1)[1�e��n(l2�l1)], for each subclump except
the rightmost, for which the factor is simply exp(��nl2). The term in the product
sign is just the probability of having the correct set of subclumps, and assuming
that if subclumps which contain the same number of particles are exchanged,
the partition of m is unchanged.

Because �(i; l1) depends on i only in the exponent, equation (4) can be
simpli�ed considerably:

p(n1; � � � ; nmjm) =

�
n!Qm

i=1 ni!

��
b2 � b1
b2

�n�1 �b1
b2

�m�n
; (5)

where the bis are de�ned by equation (2). This partition function contains all the
information required for quantifying how di�erent the various trees in the forest
of possible merger histories of an m-clump are. For example, the probability
that an m-clump was in n pieces at t1 < t2 is given by summing over the set
�(njm) of partitions of m which have n parts:

p(n; b1jm; b2) =
X

�(njm)

p(n1; � � � ; nmjm) =

 
m� 1

n� 1

!�
b1
b2

�m�n �b2 � b1
b2

�n�1
;

(6)
the number of subclumps follows a Binomial distribution.

The average fraction of M which is in m-subclumps at b1 is

f(m; b1jM ; b2) =
X
�(M)

mnm
M

p(n1; � � � ; nM jM): (7)

The conditional mass function is related to this fraction similarly to how the
unconditional mass function is related to f(m; b): namely, N (m; b1jM; b2) =
(M=m)f(m; b1jM; b2).

It is useful to rewrite the partition function (equation 4) above as follows.
Let p(Sn = m) denote the probability that the sum of n independent variables
each distributed according to equation (1) equals m. Then

p(Sn = m; b) =

 
m� 1

n� 1

!
(1� b)n bm�n: (8)
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This, with equation (6) for the probability of having m subclumps, allows one
to verify that equation (4) also equals

p(n1; � � � ; nmjm) =
p(n; b1jm; b2)

p(Sn = m; b1)
n!

mY
i=1

�(i; l1)
ni

ni!
: (9)

Thus, the partition function expresses the fact that, other than the requirement
that the sum of the masses of the subclumps should equal the mass of the parent
halo, there are no additional correlations between subclumps.

All the above was worked out for the special case of a Poisson distribution of
points on a line. To generalize these results to two (or d) dimensions we must be
able to compute the area (volume) of interestection of n circles (d-dimensional
spheres). Expressions for these quantites are in Kratky (1978, 1981). Rather
than showing the results of doing this here, I will now turn to another model of
hierarchical clustering.

2.2. Gravity and a critical density for collapse

The link-length model above was useful for illustrating how one might write
down expressions for the merger histories of clumps. It is a bad model for
gravity for the following reason. The m� 1 separations between the m particles
of an m-clump may all be a small fraction of the critical link-length l, but it is
also possible that they are all a substantial fraction of l. As a result, the model
allows m-clumps to have range of sizes. The model says that the gravitational
in
uence of a clump extends over the region it occupies plus 2l (from the two
end points). Because m-clumps come in a range of sizes, this would say that
the gravitational in
uence of some m-clumps extends over a greater range than
others. However, one might have thought that it is the mass of a clump which
determines the range of its in
uence, and not the space which it occupies.

To allow for this, we must modify the criterion used for identifying clumps.
Rather than using only the list of initial separations, use the initial densities.
Assume that an initial region has collapsed to form a clump if the density within
it exceeds a certain threshold value. In addition, assume that when a region col-
lapses, all the particles within the region remain within it. This means that
one is interested in �nding regions which are isolated in the following sense: the
points within the region must be suÆciently close to each other that density
within the region exceeds the critical value, but this set of points must be suÆ-
ciently isolated from any other set so that the density within any larger region
containing the points is less than the critical value.

In this case, the probability a clump contains m particles is

�(m; b) =
(mb)m�1e�mb

m!
where b =

1

1 + Æc
and m � 1 (10)

where 1 + Æc denotes the ratio of the critical density required for collapse to
the average background density (Sheth 1995). In this model, we assume that
Æc(t)� 1 initially, and that it decreases with time. Notice that this distribution
di�ers from equation (1) at low masses. At late times, this distribution tends
to one which astronomers associate with Press & Schechter (1974), rather than
the simple exponential distribution of the previous subsection. The forest of
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merger trees associated with this model is given by inserting equation (10) in (9),
using the distribution p(Sn = m; b) associated with equation (10) rather than
equation (8), and using the Binomial distribution of subclumps (equation 6)
(Sheth 1996).

In both this and the previous model, cosmology only enters when translat-
ing the critical link-length or density to cosmological time. The order in which
mergers happen is the same for all cosmologies; it depends only on the initial dis-
tribution of density 
uctuations. This is a powerful and simplifying idealization
which is in good qualitative agreement with numerical simulations of clustering
from cold, initially Gaussian density 
uctuation �elds.

The mass function and merger histories associated with equation (10) are
in quantitative agreement with simulations, whereas the model associated with
equation (1) is not. The quantitative agreement between the model description
of the forest of merger histories and the simulations shows that any additional
correlations between subclumps, other than those required by mass conservation,
must be small.

2.3. Random walks and the excursion set approach

The mass function (equation 10) above can be derived by rephrasing the critical
density requirement slightly. If one imagines computing the density � in con-
centric spheres centred on a randomly chosen particle in a Poisson distribution,
then �(v) will execute a random walk as v increases. The requirement that the
density exceed a certain value at v but be less than this value for all V > v
means that the problem of computing the mass function can be cast in terms of
a barrier crossing problem associated with random walks (Epstein 1983). The
continuum limit of this process has been studied by Bond et al. (1991), and
has come to be called the excursion set model of the clump mass function. This
approach allows one to compute the conditional mass function as well|it is the
continuum limit of the distribution one gets by inserting equation (10) in equa-
tion (7)|but the full partition function of merger histories associated with this
model has not yet been worked out (Sheth & Pitman 1997 discuss a special case
in which the merger history forest can be solved for). Progress can be made,
however, if one uses the idea that, other than mass conservation, there are no
additional correlations to account for. The resulting model is in good agreement
with simulations (Sheth & Lemson 1999).

I have not seen a random walk derivation of the exponential distribution
associated with the link-length model I presented earlier.

2.4. Binary merger models

The models described above are also solutions of the Smoluchowski binary
merger model:

dn(m; t)

dt
=

m�1X
i=1

K(i;m� i)

2
n(i; t)n(m� i; t)� n(m; t)

X
i>0

K(m; i)n(i; t): (11)

The expression above expresses the fact that the number of clumps of mass m
increases if smaller clumps merge with each other to form anm-clump, and it de-
creases because m-clumps are themselves merging with other clumps. Note that
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there is no fragmentation in this model|the destruction rate which is the second
term on the right hand side is a consequence of mergers, not fragmentation.

If we set n(m; t) = (1� b)�(m; b), where b � 1� exp(�t), then equation (1)
solves the case in which K(i; j) is a constant, independent of both i and j. It
has been used to describe the growth of linear polymers. Our second model,
equation (10), is the solution to K = i + j; it is associated with the growth of
branched polymers (e.g. Sheth & Pitman 1997).

One of the virtues of writing these models using Smoluchowski's equation is
that it shows clearly how the formation rate of m-clumps evolves with time. It
is given by the �rst term on the right hand side of equation (11). It is a simple
matter to verify that the continuum limit of this expression equals that which
was recently found by Percival & Miller (1999) from the random walk approach.

2.5. Peaks in Gaussian random �elds

Another model for the clump distribution is to suppose that clumps are associ-
ated with peaks in the initial density �eld. Following Bardeen et al. (1986), one
often smoothes the initial density 
uctuation �eld with a �lter of scale R, and
then identi�es peaks in the smoothed �eld. In this case, the density of peaks of
height � is

n(�) d� =
exp(��=2)
(2�)2R3

�

G(
; 
�1=2) d� (12)

where � = Æ2c=�
2
0(R), R� =

p
3�1=�0, 
(R) = �21=�0�2 and �0, �1 and �2

depend on the shape of the power spectrum of the initial density 
uctuation
�eld (Section IV in Bardeen et al. 1986) and

G(
; y) =

Z 1

0
dx f(x)

exp[�(x� y)2=2(1 � 
2)]p
2�(1 � 
2)

with f(x) given by equation (A19) in Bardeen et al. If we de�ne

f(�) d� � (m=��)n(�) d�; (13)

and use the fact that the mass under a Gaussian �lter is m = �� (2�)3=2R3, then
we have a quantity which one might interpret as the fraction of mass which is
in peaks of height �.

Unfortunately, this is not really the sort of quantity we can compare with a
mass function of collapsed clumps. In simulations clumps have a range of masses,
whereas in this picture all peaks have the same mass m whatever their height
�. Although it is tempting to identify the higher peaks with the more massive
objects, the expression above does not show how to do this self-consistently.

If, instead, we smoooth the density �eld with a range of �lter sizes R, and
identify collapsed objects with peaks of height Æc=�0(R), then, because �0(R)

decreases as R / m1=3 increases, we have a model in which massive objects
are associated with higher peaks. In this case, the associated mass function of
collapsed peaks is given by

�f(�) =
exp(��=2)p

2�

�
R

R�

�3 H(
; 
�1=2)

3

R2�2(R)

�0(R)

dm=m

d�=�
; (14)
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where

H(
; y) =

Z 1

0
dxxf(x)

exp[�(x� y)2=2(1 � 
2)]p
2�(1 � 
2)

;

and we have again set m=�� = (2�)3=2R3. At large �, H � 
�1=2G, and this
expression is the same as the previous one. At smaller �, however, this expression
di�ers from equation (12).

If the initial spectrum of density 
uctuations was a power law, P (k) / kn,
then equation (14) for the mass function associated with peaks becomes

�f(�) =

r
�

2�
exp

�
��
2

�
H(
; 
�1=2)

�1=2
(5 + n)2

12
p
6(3 + n)

: (15)

Note that this expression explicitly depends on the shape of the power spectrum.
This should be compared with the continuum limit of equation (10),

�f(�) =

r
�

2�
exp

�
��
2

�
; (16)

which is often called the Press{Schechter formula. Note that, when expressed
as a function of � rather than m, this mass function is the same for all P (k).

The mass function which actually �ts numerical simulations is better ap-
proximated by

�f(�) = A(p)
�
1 + (a�)�p

�ra�

2�
exp

�
�a�

2

�
; (17)

where a � 0:7, p = 0:3 and A(p) is determined by requiring that
R
d�f(�) = 1;

A � 0:322 (Sheth & Tormen 1999). Like the Press{Schechter function, this mass
function also has no dependence on the shape of P (k).

These various mass functions are shown in Fig. 1. Whereas the Press-
Schechter, excursion set, critical collapse density, binary merger model, is not
in quantitative agreement with the mass function of collapsed objects in the
simulations, it is at least qualitatively consistent. The peaks model �ts the
simulations rather well at high masses (large �) but is not so accurate at smaller
masses. (I set n = �1:5 in the peaks formula which is about the right value for
�CDM models.)

Equation (16) is associated with the assumption that clumps form from
a spherical collapse (e.g. Press & Schechter 1974; Bond et al. 1991). Mod-
ifying the excursion set argument to allow for ellipsoidal collapse is relatively
straightforward (Sheth, Mo & Tormen 2000). In essence, the spherical model
has Æsc � 1:686 with no m dependence for the critical collapse density, whereas
ellipsoidal collapse has Æec(m). At largem, Æec(m)! Æsc; this simply re
ects the
fact that only the most massive clusters are spherical. Accounting for the dif-
ference between ellipsoidal and spherical collapse appears to increase agreement
between the excursion set predictions and the simulations.

Modifying the peaks mass function to include the e�ects of ellipsoidal col-
lapse can be done by using the mass dependent Æec(m) when identifying peaks;
this is relatively straightforward and I have not bothered to show the results
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Figure 1. Various formulae for the mass function of collapsed objects.
Filled circles show the mass function measured in numerical simulations
of clustering in a cold dark matter dominated universe. Solid curve
shows the excursion set spherical collapse formula, short dashed line
shows the result of using a �xed smoothing scale to de�ne peaks, and
then simply counting peaks as a function of height, and long dashed line
shows the result of assuming that more massive objects are associated
with peaks on large smoothing scales, whereas less massive objects are
peaks on smaller scales.
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here. Extending the peaks model to provide a description of the forest of merger
histories remains an open problem (but see Manrique et al. 1998 for an initial
attempt to do this). Also, I have not seen any discussion of how one might
include a mass dependent Æec(m) into the Smoluchowski binary merger model
of the mass function.

3. The spatial distribution of mass

In this section I describe two approaches to modelling how the distribution of
the density �eld evolves in the nonlinear regime. Both approaches are quite
di�erent from the linear and higher order perturbation theory approaches (e.g.
Scoccimarro, these proceedings) which solve the equations of motion to make
their estimates.

The essential idea is that if all the mass is in collapsed objects, then one can
describe the distribution of the mass by making models of the number and spatial
distribution of clumps, and of the internal distribution of mass within clumps
(Neyman & Scott 1959; Scherrer & Bertschinger 1991). Numerical simulations
show that the density run within a clump depends on clump mass; Navarro,
Frenk & White (1997) have provided a simple �tting formula for this mass
dependence. The previous section described models of the mass function of
collapsed objects. All that remains is to build a model for the spatial distribution
of clumps.

Mo & White (1996) described how knowledge of the merger history tree of
clumps allows one to describe the spatial distribution of clumps. They argued
that the two point correlation function of clumps can be computed if the second
moment of the distribution of clump merger histories is known. At large sepa-
rations, they argued that knowledge of only the conditional and unconditional
clump mass functions was necessary for modelling the clump correlation func-
tions. Sheth & Tormen (1999) showed that, in fact, in this limit, knowledge of
only the unconditional mass function is suÆcient.

Mo, Jing & White (1997) used equation (16) to write down estimates of the
variance and higher order moments of the large scale clump distribution. They
also did this for the `�xed smoothing scale' peaks mass function of equation (12).
The corresponding expressions for the peak mass function in equation (14) are
got by replacing their equation (25) with

hk =
(�1)k
k!

(
�1=2)k

H(
; 
�1=2)

@kH(
; 
�1=2)

@yk

�����
y=
�1=2

:

In the approach above, one solves for the distribution of the mass by writing
down estimates of the two-point and higher order correlation functions. If one is
interested in writing down the probability that a randomly placed cell contains
mass M , then one must compute the appropriate sum over all these correlation
functions.

It is possible to build model for this probability distribution function di-
rectly (Sheth 1998). The idea is to modify slightly the random walk, excursion
set model of the clump mass function. In this modi�ed excursion set approach,
the same model which yields equations (10) and (16) for the mass function says
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that the probability that a random cell contains mass m is Generalized Poisson
and Inverse Gaussian, respectively. Remarkably, this Inverse Gaussian distribu-
tion is also predicted by the perturbation theory based model of Scoccimarro &
Frieman (1999).

The fundamental quantity in the excursion set model for the clump mass
function is the distribution of �rst crossings, by Brownian motion random walks,
of a barrier of �xed height B = Æsc. If one thinks of clumps as being objects
which have collapsed to a very small size, then the clump mass function is like
the distribution of mass in cells of vanishingly small size which are not empty.
This allows one to generalize the model to the case in which the cells have some
non-zero size. To do so, one must study the �rst crossing distribution of a
barrier whose shape B(M=V ) depends on cell size V . If f(M) dM denotes the
probability that the �rst crossing of B(M=V ) happens at M , then

f(M) dM =
M

��V
p(M jV ) dM; (18)

where p(M) dM denotes the probability that a cell of size V contains M (Sheth
1998). Of course, the �rst crossing distribution, and so the associated probability
that a cell contains mass M , both depend on the functional form of B. In 1998,
I used the spherical collapse model to specify the shape of this function.

In the limit of large V , the associated distribution of �rst crossings of this
barrier is well approximated by

f(M) dM � p(B) dB; (19)

where B depends on M and V . If the initial distribution of 
uctuations was
Gaussian then we should set p(x) to be Gaussian. If we then insert this in
equation (18), we have a model for the large scale probability distribution of
the mass. The result of doing this is very similar to the model of the nonlinear
probability distribution derived by Fosalba & Gazta~naga (1998).

Fosalba & Gazta~naga argued that their analysis could not be applied on
small scales. Our excursion set model, however, can be used even on smaller
scales. The only caveat is that the �rst crossing distribution is more complicated
than the simple transformation of the Gaussian given above. In this sense, the
excursion set model can be thought of as providing a simple way to extend the
results presented in Fosalba & Gazta~naga to smaller, more nonlinear scales.

4. Discussion

It has become common practice to announce that cosmology, as a subject, has
matured. While this is welcome news, I fear that this maturity also signi�es a
sort of loss of innocence. Interest has shifted from simple models which capture
the essence of the nonlinear physics of gravitational instability, to detailed nu-
merical simulations of the growth of clustering, in which the problem is solved
by brute force, sometimes with no net increase in physical insight|the expo-
nential growth in computing power in recent years has not been accompanied
by a corresponding increase in our understanding of how clustering evolves.
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Some aspects of the �rst two simple models of the growth of hierarchical
clustering described above are quite general; they are not restricted to the non-
linearities associated with gravitational instability in an expanding Universe.

This work was supported by the DOE and NASA grant NAG 5-7092 at
Fermilab.
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