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Abstract. The parabolic or forward scattering approximation to the equa- 
tion describing wave propagation in a random medium leads to a stochastic 
partial differential equation which has the form of a random SchrOdinger 
equation. Existence, uniqueness and continuity of solutions to this equation 
are established. The resulting process is a Markov diffusion process on the 
unit sphere in complex Hilbert space. Using Markov methods a limiting 
Markov process is identified in the case of a narrow beam limit; this limiting 
process corresponds to a simple random translation of the beam known as 
"spot-dancing." 

1. Introduction 

Consider the reduced, scalar wave equation 

v 2 . ( x ) +  ~2n~(x)u = 0, x ~ R 3, (1.1) 

when the index of refraction n (x) is a random function. Here k denotes the free 
space wave number. In many physical problems one is interested in solutions of 
(1.1) that propagate mainly in one direction, say the x 3 direction, with negligible 
backscattering. Such solutions can be obtained by solving a simpler equation, a 
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parabolic or Schri3dinger equation. 
If we write 

U(X1, X2, X3) = U(X1, X2, x3)e ikx' (1.2) 

and assume that v varies slowly in the x 3 direction so that the a 2 v / a x  2 can be 
neglected, then v satisfies the equation: 

2 ik  O v / O x  3 + Ao + k Z ( n Z ( x ) - l ) v  = 0 (1.3) 

in which A is the Laplace operator in the transverse coordinates 

A = O /Ox? + O /Ox . (1.4) 

Equation (1.3) is the parabolic or forward scattering wave equation (Klyat- 
skin and Tatarskii (1970)). It is to be solved as an initial value problem for x 3 > 0 
with V(Xl, x 2 , 0  ) given. The range of validity of the parabolic approximation is 
discussed in the literature but there seems to be no general mathematical analysis 
of the passage from (1.1) to (1.3). In any case the approximation will be valid 
when k -~ is small compared to the correlation lengths of n 2 ( x ) - I  in the 
directions x I and x 2 which are transverse to the propagation direction x 3. 

If we divide (1.3) by 2k, rescale x 2 and x 3, let t = x 3 and put 

Ix = ½k(n  2 - 1) (1.5) 

we obtain the scaled form of (1.3) 

i OV/Ot  + A V  + IXV = O, t > 0 

x = ( x l ,  x 2 )  R 

v(o ,  x l ,  = Vo(<,  (1.6) 

Here Ix(t, x 1, x2) is a given real-valued stochastic process and Vo(xl ,  X2) is a given 
complex-valued function that may or may not be random. The analysis of the 
stochastic partial differential equation (1.6) can be carried out under different 
hypotheses regarding the random coefficient IX. For example the method of 
smooth perturbations can be used when IX is small (Keller (1964), Tatarskii 
(1971)). The Rytov method can also be used (Tatarskii (1971)). However, in many 
physical problems the predictions of low order perturbation theory (usually 
second order) are at variance with empirical observations. This has motivated the 
study of (1.6) without perturbation methods in the region of "saturated" fluctua- 
tions. 

In particular saturated fluctuations arise for large distances along the axis of 
propagation. In such cases the correlation length of IX in the direction of 
propagation is small compared to the range along the axis of propagation over 
which the solution is sought. Therefore with an appropriate rescaling of the t-axis 
it is convenient to assume that IX is Gaussian white noise in the t variable and 
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then view (1.1) (with the appropriate Stratonovich correction) as an It6 stochastic 
partial differential equation. The parabolic and Gaussian white noise approxima- 
tions have been used extensively in the study of wave propagation in a random 
medium (cf. Tatarskii (1971), Klyatskin (1975) and Strohbehn (1978)). A more 
detailed discussion of the mathematical conditions under which these approxima- 
tions are valid and their physical significance are given in Dawson and Papani- 
colaou (1984). 

It is the objective of this paper to study the process V defined by (1.6) with # 
as above using the methods of both stochastic partial differential equations and 
infinite dimensional Markov processes. In particular the latter are required in the 
study of certain limiting regimes and are illustrated in this paper by applying 
them to the large noise narrow beam limit in section 4. 

2. The Random Sehri~dinger Equation 

This section is devoted to the definition and analysis of the stochastic process 
obtained from the stochastic partial differential equation (1.6) in the Gaussian 
white noise limit. 

We first describe the underlying noise process/~ which we will denote by W', 
the formal white noise process. Let 5 : (R 2) denote the space of C°°-functions 
which together with their derivatives of all orders decrease rapidly at infinity. 
5 : ' ( R  2) is the dual space of tempered distributions. Let {W(t):t>O} be a 
5:  '( R 2 )-valued Wiener process (cf. It6 (1983)) whose law is a probability measure 
on ~:-- C([0, oo), 5: '(R2)) which is characterized by the following properties: 

for each q~ ~ 5:(R2), (q~, W(t)) is a one dimensional Wiener process 
where ( - , - )  denotes the natural bilinear functional on 5 : (R2)×  (2.1) 
5°'(R2), and 

for each 4,, ~p ~ 5 : (R2) ,  

r(,, +):= e((, ,  W(s))) 

= min(s,t)f2ffp(yl)~(y2)Q(yl-Y2)jRjl~ d y l d y  2 (2.2) 

where Q(.)  is a continuous symmetric positive definite function, since F(q~, +) is 
a covariance functional. 

Property (2.2) implies that W(.) is spatially homogeneous, that is, (q,, W(t)) 
has the same probability law as (0yq~, W(t)) where 0rq~(yl)= ~(y + Yx). From the 
continuity of Q(.)  it also follows that for fixed t, W(t,y) is an ordinary random 
function of y so that (~, W(t)) can be written as an integral 

(ep, W( t ) ) = fRzW( t,y)q~(y) dy, 

in fact, the mapping y ~ W(t,y) is continuous from R 2 into L2(~)  (cf. Meiden 
(1980)). 
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In the spectral representation of Q 

Q(y) = a2 fR2e-i(y,x)p( dx), (2.3) 

Bochner's theorem implies that p(-) is a probability measure with 0 2 a constant. 
Then W(-) has the spectral representation 

W(t ,y )  = ~2e-i(x'y)M( t, dx) (2.4) 

where for each t > 0, M(t, .) is a complex Gaussian finitely additive random 
measure with orthogonal increments, that is, if A and B are Borel subsets of R 2, 

E ( M ( t , A ) )  = O, and 

E ( M ( t , A ) M ( t , B ) * )  : oZp(A•B).t ,  

(2.5a) 

(2.5b) 

(where * denotes complex conjugate). In addition M(t, .) inherits from W(t, .) 
the property of independent increments in time. Finally since M(. )  is a random 
spectral measure, 

M(t,  A) = M(t, - A)* (2.6) 

which follows from the fact that W(-) is real-valued. 
Taking the limit of equation (1.6) when /~ dt approaches the Gaussian white 

noise dW in the t-direction, leads to the Itb-SchrOdinger equation: 

dV(t,y) = [ -  iAV(t ,y)-  ½o2V(t,y)] dt + iV(t,y) dW(t, dy) (2.7) 

for t >__ O, y = (Yl, Y2) and A = 02/Oy] + oa/Oy~. 
It turns out that it is more convenient to study the Fourier transformed 

version of (2.7) 

dX(t,x) = [ilxl 2 - ½o 2] X(t ,x)  dt + i f ~ x ( t , x -  ~)M(dt, d~), (2.8) 

where 

X(t ,  x ) :=  (1/2~r)2fn2ei(X'y)v(t, y) dy, 

and where for C:= [t 1, t2] , A Borel in R 2, M(C, B):= M(t2, B ) -  M(tl, B). The 
terms - ½o 2V and - ½o2X in Equations (2.7), (2.8) are the Stratonovich correc- 
tion terms and arise since these equations were derived as the white noise limits of 
equations having smooth random coefficients (cf. Stratonovich (1965)). 
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There are several possible definitions of what is meant by a solution to an 
equation of the form (2.7) or (2.8) (refer to Miyahara (1982) for these definitions 
and a discussion of the relation between them). In this paper we consider an 
evolution (or "mild") solution. X(.,  .) is said to be an evolution solution of 
Equation (2.8) if: 

X( t ,x )  = TtX(0,x)+ i fot~2T t s ( X ( s , x _ ~ ) ) . M ( d s ,  d~) ' (2.9) 

where 

Ttf(x) := exp( ( i lx lZ-½o2) t ) . f (x ) .  

The right hand side of (2.9) is interpreted as an It6 stochastic integral (cf. Dawson 
and Salehi (1980, Section 2)). 

An evolution solution to Equation (2.8) can be obtained by the method of 
Wiener-It5 expansions (cf. Dawson and Salehi (1980), Miyahara (1982)). To 
implement this we define recursively: 

Xo(t,x)  =  tx(o,x) 

Sn+ l( t , x  ) = i fot£2Tt_sX,(s ,x-  ~) . M( ds, d~). (2.10) 

Assume that IIX(0, ")IIL2(R2)=1, supE( IX(O,x)l 2 ) < ~ ,  and that X(0, .) is inde- 
x 

pendent of M( . , . ) .  

Theorem 2.1. The series 

X ( t , . )  = ~ Xn(t , . )  (2.11) 
n = 0  

converges strongly in L2(R 2) with probability one and converges in the L2(~ X 
R 2, P × 2Q-norm where 2~ denotes Lebesgue measure. The resulting process X(., .) 
is an LZ( R2)-valued evolution solution to Equation (2.8), that is 

] X ( t ' x ) - T t X ( O , x ) - i  fo'~2Tt s X ( s , x - ~ ) ' M ( d s ,  D~) L2(R 2) = 0 (2.12) 

with probability one. 

Proof The processes (Xn(t,-)} can be represented as multiple Wiener integrals 
of degree n and consequently are orthogonal in LZ(P) (cf. Dawson and Salehi 
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(1980, Theorem 2.1)). Then 

EIX.+ x( t,x)l 2 = 02fo '£ ,exp( -  o20 - s)) . E I X . ( s , x -  ~)120(d~) as. 

Therefore by Fubini's theorem 

E ( S l x,+x (t,x) 12 dx) = ,~2 £'[ f El X,(s,x) 12 dx] " exp( -- o2(t -- s ) ) ds. 

This yields: 

E(Sixo(,,x) I'd,<)= exp( -  o2t), 

E(/Ix,(,,x)l'ax = o2exp(--o2t)'t, 

E(S,,IX,(t,x)IZdx) = ((ozt)'iin!).exp(-o't). (2.13) 

Similarly> 

supelX,( t ,x)[2  N ( (oz t ) ' ln! ) .exp(-oz t ) .  supE(IX(0,x) I' ). (2.14) 
X X 

By the orthogonality in L2(P) of the X n it can be shown that 

E Xk(t, = ~_, ( (ozt)k/k!) .exp(-ozt) .  (2.15) 
k = n  k ~ n  

From (2.15) and the Borel-Cantelli lemma we can verify that (2.11) converges in 
the LZ(RZ)-norm with probability one and also in the L2(a × R 2, P × X)-norm. 
Furthermore, summing (2.13) and (2.14) yields, 

E(llx(t)lli,(.2>) = 1, supEIx(t,,<)l'__< supE(Ix(o,,<)l'). (2.16) 
X 

To verify (2.12) first note that the stochastic integral on the right hand side exists 
since 

fot~2exp( - oa( t - s ) ) .  E(I X(s , x -  ~) I2)p( d~) ds 

< (1-exp(-o2t)).supE(lX(O,x)l  2) < oe. 
X 
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Furthermore, 

') 
"OUR \ n = N + l  

- - , 0  a s N ~  ~ .  

Therefore 

loT. = .=Zoi f_ .x . ( s ,x -  ~).g(ds, d~) 

= ~ Xo(t,x) = X ( t , x ) - X o ( t , , , )  a.s. 

and the proof of (2.12) is complete. [] 

Remark 2.1. The pathwise uniqueness can also be obtained as in Dawson and 
Salehi (1980). However we omit this but prove the uniqueness in law by the 
method of duality in the next section. 

Remark 2.2. We define the moment functions: 

m 2 ( t ; x l , x 2 ) :  = E(X(t,xl)X*(t,x2) ) 
m 4 ( t ; x l , x 2 ; x 3 , x 4 ) :  = E( X(t,xl)X(t,x2)X*(t,x3)X*(t,x4) ). 

Using It6's lemma for Hilbert space valued processes (cf. Miyahara (1982, 
Theorem 2.4)), we obtain the following moment equation 

Om2(t;Xl,X2)/Ot = _ 02mz( t ;xa ,x2)  - i(Ixll 2 - I x 2 1 2 ) m 2 ( t ; x l , x 2 )  

+ o2fm2(t;xl-r,x 2 - r)p (dr )  (2.17) 

and a similar equation for m4(t; ..... , .). Using these equations it is easy to verify 
that the moment functions are well defined and integrable for all times t. 

It is easy to verify that the stochastic process given by the evolution solution 
of Equation (2.8) has a weakly right continuous version. We now proceed to 
prove that it is actually a weakly continuous process. 
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Theorem 2.2. ][X(t)l]r2(R2 ) < I[X(0)][L2(R:) for all t > 0 with probability one. 

Proof Let {e , )  be an orthonormal basis in L2(R2). Using It6's Lemma for 
Hilbert space valued processes (cf. Miyahara (1982, Theorem 2.4)) 

(e , ,  X(  t ) ) (en,  X*(  t)) - (en, X(O))(en, X*(0)) 

1 2 r t  
-- ~ o  Jo (en' X ( s ) ) ( e , ,  x * ( S ) )  ds 

l fof j f  2 t 
-~- 5 ° 2 2 2 en(x l )en(x2)X(s ' x l  -- 6) 

X X * ( s , x  2 -  ~ ) p ( d ~ )  d x 1 ,  d x  2 

+if' [f X(s,x-~)e.(x)dx.(e.,X*(s))M(ds, d~) 
0Ral. R 

-- f R 2 X * ( s , x -  ~ ) e , ( x ) d x . ( e , ,  X ( s ) } M * ( d s ,  d~)].  

Summing on n, 

IlX(t) 2 _ IIL2¢R=) IIX(0) II~z¢R=) 
1 2 t t  " " 2 

- 21°2fotl]X(s)]l~2'g~)ds + 5 ° Jo []X(s)l]L2(";)ds 

+ i  fo'fR2£2[ X * ( x ) X ( x -  f;) dx  M(  ds, dr;) 

- X ( x ) X * ( x -  6) d,, M*(ds, dr)]. (2.18) 

The stochastic integral on the right hand side of (2.18) is well-defined since as 
noted above the fourth moment function is integrable. Property (2.6) of the 
spectral measure then implies that the last term is zero and therefore 

I[X(t)IIL2(R~) = [IX(0)IIL2(R=) (2.19) 

with probability one. The result then follows by the weak continuity. [] 

Theorem 2.3. The process X( t ) is almost surely a weakly continuous function from 
[0, oc) to L2(R2). 
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Proof Let {en: n =0 ,1 ,2  . . . .  } denote a complete orthonormal system for 
L2(R2). Then 

M~( t ) :=  (e , ,X( t ) ) -  fot(e,,(ifxl2-1/2o2).X(s))ds (2.20) 

is a P-complex martingale. Moreover M,(t).M*(t)-(M,(t)) is a P-martingale 
where the increasing process (M,(t)) is given by: 

2 t 
(M~( t ) )  = o fofR2fR2X(S,Xl--~)X*(S,Xz--~)en(Xl)  

× e , (x2)p(d~)  dx I dx  2 ds. (2.21) 

Since IPX(s)JlL2<R2> _-< IIX(0)IIL2<R=>, Schwarz's inequality implies that for t > s, 

(M, ( t ) ) -  {M,(s)) < o2(t-s) a.s. (2.22) 

Hence for k > 1, it follows from the Burkholder-Gundy inequalities that for 8 > 0, 

E( sup IMn(s ) -Mn( t ) l  k) ~ Ck02¢~ l/2k (2.23) 
t<_s<_t+8 

where c k is a constant. Inequality (2.23) together with the Kolmogorov criterion 
implies the a.s. continuity of @n, X(t)) and hence the a.s. weak continuity. [] 

3. The Markov Diffusion Process 

Let H denote the unit ball in the complex Hilbert space L2(R 2) endowed with 
the weak topology so that it is compact. In this section we identify the random 
wave process as a Markov diffusion process on H using the viewpoint of an 
appropriate martingale problem. 

A martingale problem is described by a pair ( 9 ,  ~q~) where N c C(H) and £f  
is a linear operator defined on 9 .  Let a : =  C([0, 00), H). Then a solution to the 
martingale problem is a mapping h ~ Ph from H to M1(~2 ), the space of 
probability measures on ~2, such that 

Ph (X(0) = h) = 1, and (3.1) 

f0' for every F ~ 9 ,  F ( X ( t ) ) -  SFF(X(s))ds is a Ph martingale for (3.2) 

each h ~ H. 
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The operator .5 a associated with the stochastic evolution equation (2.8) 
involves first and second variational derivatives and is given by: 

~CPF( h, h* ) = - 1 fh*(x)(SF/Sh*(x))dx] ~02 [ f h(x)( SF/Sh(x) ) dx + 

- i flxl%(x)(SF/Sh(x)) dx + i flxl2h*(x)(SF/Sh*(x)) dx 

× (82F/Sh(x) 8h(y))p(dr) dxdy 

loff, J, JR h*("-r)h*(y+r) 
× (82F/Sh*(x) 8h*(y))p(dr) d x d y  

+ offRJRJRh(x--r)h*(y--r) 

× (82F/Sh(x) 8h*(y))p(dr) dx dy (3.3) 

where 6F/Sh(x) and 82F(Sh(x)Sh*(y) denote the first and second variational 
derivatives, respectively. 

A polynomial function on H with coefficients in 5 p is of the form: 

k 
F(h, h*) = ~] Fl,,m(h, h*) (3.4) 

m,n=l 

where f,,m ~ ~z'( R2(m+n)) and 

Ffn,m(h,h* ) ~- Fh(fn,m):~ fR2"'" fR/n ,rn(Xl , ' " ,Xn;Xn+l  . . . . .  Xn+m) 

-h(xl ) . . .h(xn)h*(xn+l) . . .  h*(xn+m) dXl.., dx~+ m. (3 5) 

We denote by ~0 the algebra of such polynomial functions on H. Since it 
separates points, it is dense in C(H) and is convergence determining. 

For F ~ N0, ~ is given by: 

.~  Ffn,m( h , h* ) = , ~  Ffn,m( h , h* ) 

-~-[1 -~- ~a2((n -31- m) 2 -  2(]~/-~ m))]  Ffn.m ( h, h ge ) (3.6) 
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ff~Ffn,m( h , h* ) = ff~CFh(f~,l?l ) 

1 2 n + m  
X # F h ( L , . , )  = ~ o  E 

j , k = l  
j ~ k  

[Fh(Kjkfo  )-Fh(fn m)] 

and 

n+m 
V:= - i  Ixjl 2 + i ~ Ixjl 2, 

j=l  j = n + l  

Kjkfn ,m = -- fR2fn,m(X 1 . . . .  , ( x j - r )  . . . .  , (x  k "~-][') . . . . .  X n ; X n + l , . . . , X n + m ) P (  dr  ) 

f o r l  < j , k  < n, 

= - - f R / n , m ( X  1 . . . . .  Xn'~Xn+ 1 . . . . .  ( x j - r )  . . . .  , ( x k + r ) , . . . , x , + m ) p ( d r  ) 

for n + l  < j , k  < n + m ,  and 

= fR2f.,=(X 1 . . . . .  (Xj --r) . . . . .  x . ; x . + l , . . . ,  (xk -- r ) , . . . , x . + m ) p ( d r  ) 

for 1 < j < n , ( n + l )  < k < ( n + m ) .  

Theorem 3.1. (a) The probability law Px(o) of the evolution solution of the Equation 
(2.8) is a solution of the ( ~o, £#)-martingale problem. (b) The ( ~o, Sfl)-martingale 
problem has a unique solution and is the law of a strong Markov process with state 
space H. (c) For h ~ H l : = { h : h ~ H ,  IIh[l=l}, Ph is the probability law of a 
strongly continuous Markov diffusion process on H 1. 

Proof (a) Let (X( t ) :  t => 0) denote the evolution solution of Equation (2.8) 
constructed in Section 2 and let F ~ ~0. Using It6's lemma for Hilbert-space-val- 
ued processes (cf. Miyahara (1982, Theorem 2.4)), it can be shown that 

Ffn,m( X (  t ), X~tC( t ) ) - Ffn.m( X(O),  X *(O) ) -- fot~Ffn,m( X (  s ), X *( s ) ) ds 
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is given by the stochastic integral 

X[ j=l  ~ X ( S ' X l ) " ' X ( s ' x j - ~ ) ' " X * ( s ' x " + m ) M ( d s ' d t )  

n+m ] 
- E 

j=n+l  

× d x  1 ' dxn+ m (3.7) 

which is a Pxm)-martingale. From this it follows that the probability law of X(.) 
is a solution to the (N0, £°)-martingale problem. 

(b) The uniqueness is proved by the method of duality. Observe that 9F # is 
the restriction of a N0-valued Markov jump processes (~(t) :  t > 0} with jumps: 

Rate l : f , , , ,  --* Vf,, m 

Rate ½o2: f~,m ~ Kjk f , ,m  

Rate o 2: f , , , ,  ___, Kjkf~,,, 

f o r 1 <  j , k  < n o r ( n + 1 )  < j ,  k < ( n + m ) ,  

f o r 1 <  j < n , ( n + l )  < k < ( n + m ) .  (3.8) 

It then follows from the duality relationship between X(-) and ~(-) (cf. Dawson 
and Kurtz (1982, Theorem 3.1)) that any solution of the (N 0, £Z)-martingale 
problem must satisfy 

En(Ff,.m(X(t),X*(t)) = EL,,m(Fh(~(t)).exp(½o2((n+m)2-2(m+n))t). 
(3.9) 

Then using the results of Stroock and Varadhan (1979, Section 6.2) it follows that 
there is at most one solution to the martingale problem and that it is the law of a 
strong Markov process on H. 

(c) Let Pn be the solution of the (N0, £Z)-martingale problem when h ~ H 1. 
Let r denote the stopping time 

~ ' : = i n f ( t : l l x ( t ) l l ~ l - a  } f o r somea  > O. 

Assume that P ( r  < b) > 0 for some b < ~ .  Then by theorem 2.2 and the strong 
Markov property, 

e(llX(b)ll <1) > 0 

thus yielding a contradiction of (2.19). Thus P ( r  < oo)= 0 and it follows that 
X ( t )  ~ H 1 for all t with probability one. 
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It remains to show that a weakly continuous function of t lying entirely in H I 
is actually strongly continuous. Assume that 

a . ( t ) e .  ~ ~ a n(t0)en weakly and that ~ l an(t)l  2 = 1  f o r a l l t  
n = 0  n = 0  n = 0  

and 

[a.(to)l 2 = 1. 
n = 0  

It suffices to show that for e > 0, 

lira ~, an(t)en- E an(to)e, < (3.10) 8. 
t ~ t o  n = 0  n = 0  

Choose N such that ~ Jan(to)J2< ¼e. Then choose * />0  such that for 
n = N  

N 

I t - t o [ < 7 ,  ~ lan(t)-an(to)12<e/8. Then (3.10) can be verified. Thus the 
n = l  

proof  of the strong continuity is complete. [] 

Remark. The norm IIX(t)IIL2(R2) denotes the total energy in the wave as a 
function of t. Thus the physical significance of part (c) of Theorem 3.1 is the 
conservation of energy. 

Theorem 3.1 completes the characterization of the random wave process 
{X( t ) :  t > 0}. In applications the main interest is in the identification of the 
probability distribution of the random variable IX(t,x)l for x ~ R 2. Although 
Theorem 2.1 provides an explicit solution for the stochastic evolution equation 
(2.8), it provides no solution to this problem since there is no procedure for 
finding the probability distribution of a random variable described by a Wiener-It6 
series. For this reason various limiting regimes in which these distributions can be 
evaluated have been studied in the literature. In the next section we consider one 
such limiting regime, namely, the narrow beam spot-dancing limit. 

4. The Narrow Beam Spot-Dancing Limit 

The random wave process is completely determined by the spectral measure O(" ). 
In order that the stochastic evolution equation be a good approximation to the 
original random wave equation certain conditions on the parameters must be 
satisfied. However, consistent with these constraints there are a number of 
limiting regimes which are of physical interest (cf. Dawson and Papanicolaou 
(1984)). In this section we consider one of these. It is given by the family { o~, O~} 
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such that: 

a 2 = o2,/e, (4.1a) 

flrl~p~(dr) = 1/o~,  and (4.1b) 

o2 flrl4&(dr) = o(~). (4.1c) 

For  simplicity of exposition we also assume that &(dr)  is isotropic, that is, 
invariant under rotations in R 2. 

It is therefore appropriate to investigate the possible existence of a limiting 
process as e $0. The method developed in Section 2 to study the stochastic 
evolution equation (2.8) encounters serious difficulties in this case. To demon- 
strate this recall from (2.13) that for each n, 

E flXn(t,x)l~dx = ( (a2 t )n /n ! ) . exp( -a2 t )  --~ 0 a s a  2 --* ~ .  

Next we consider the behaviour of the dual process ~(t) for small e. From 
(3.7) and (3.8) we conclude that 

10"2[/'// -1- m ) 2 - - 2 ( m  + n)--2n(n --  1 ) - - 2 m ( m  - - 1 ) ]  f,,,m d/dt(eIo,~(~(t)) = ~ ~ t ,  

+ O(e) o?/2 lo2tn 2 = - ~  ~,  - m )  f~,m + 0 ( 1 )  (4.2) 

Therefore if m 4= n, then limEh(Ff, m(X~(t), X*(t))) = 0 for t > O. In view of this 
~$0 

we cannot hope to prove the weak convergence of X~(.) as e $ 0 to a limiting 
Markov diffusion process on H 1. Nevertheless a well-defined limit theorem can 
be established in a slightly different context. 

Let H q =  ( h ® h * :  h ~ H} with the topology induced by the weak topology 
and H~:= {h®h*:h ~ HI} with the topology induced by the strong topology. 
Consider the H~-valued stochastic process defined by: 

z~(t;x,y):= x ~ ( t , x ) X 2 ( . y ) .  (4.3) 

Let ~ ( c C ( H S ) ) : = f F L m ~  o with n = m }  and F£ ( h ® h * ) : = F f  ( h ) =  
F~'~ h* (fn, ~)- Then Z~ is a solution of the ( ~ ,  ~S)-marting~le problem wfiere for 
F ~N~,  

.~eSFf...(h®h *) = ..~#Fh®h.(fn,n)+[l+202n(n--1)]Fh®h.(fn,n). (4.4) 

Note  that &o{ : ~ ~ N~ and that the (N~, &°~')-martingale problem has a unique 
solution by duality. Therefore Z~ is a HS-valued Markov diffusion process. We 
next establish the uniqueness for the limiting martingale problem. 
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Lemma 4.1. The HS-valued martingale problem associated with the pair ( ~ ,  &ej) 
where 

2n 2n 

,~ejFf,,°(h®h*) = O2Fh®h. E E (~j'~k)fn,n 
j = l  k = l  

+ Fheh. (V-f~,,,) (4.5) 

has at most one solution, P°~h. on C([0, ~) ,  HS). 

Proof Let Z0(- ) denote a solution. Then uniqueness in law follows from the 
duality relation: 

(4.6) 

where 4' ( .)  satisfies the deterministic evolution 

2n 2n 

04'/Ot = 02 • E (Vj 'Vk)4 '  + V-4',  4'(0) = f~,,,. (4.7) 
j = l  k = l  

Let (b( t ) :  t > 0} denote a Brownian motion in R 2 with generator o2V.V.  From 
(4.1) and the Feynman-Kac formula the solution of (4.7) is given by 

4 ' ( t ;x  I . . . . .  x2~ ) = E [  L,.(xl  +h(t) ..... x.  +b(t)) 

• exp - i  Y'~ Ix j+b(s)12ds+i  
j = l  j = n + l  

[] (4.8) 

Remark 4.1. The class of functions N~ can be extended to include generalized 
functions of the form: 

f~,n(Xl . . . . .  Xn; Xn+l,...,X2n ) = f ( x  1 . . . . .  Xn)" 8(x ,+  1 - -x l ) . . .  8(x2n - x , ) .  

In this case 4' (t) = E ( f ( x  I + h(t) . . . . .  x .  + h(t)). Therefore in this case, the prob- 
ability-measure-valued process I X(t,x)[ 2 dx  is Markov and has the representa- 
tion: 

Ig( t ,x) l  2 = I S ( 0 , x + b ( t ) ) l  2. (4.9) 

This random displacement of the energy distribution has given rise to the 
descriptive phrase "spot-dancing". Representation (4.9) also implies that the limit 
process Z 0 is a strongly continuous H~-valued Markov diffusion process. 
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Theorem 4.1. For h ~ H, the probability laws P~®h* of Z e converge weakly as 
probability measures on C([0, oe), H s) to the law POoh. of the process Z o associated 
with the ( ~),  Sf~)-martingale problem. 

Proof As a first step we verify that the probability measures P~®h* are uni- 
formly tight. Since H s is endowed with the weak topology and thus is compact, it 
suffices to show that for fixed f(x ,y)  that the process 

f f z ~ ( t ;  x ,y ) f (x ,y )  dx dy 

are weakly compact in D([0, oo), R). 
Using the assumed properties of P('),  Taylor's formula with remainder and 

(4.4), it follows that for Ff.,. ~ ~d 

t S FI.,.(Z~(t)) - [~oFi(Z~(s)) ds + IIL,,II4" O(e)t:= M~ 
"0 

(4.10) 

is a bounded martingale where []f,,,ll4 := max sup If(Ukl)(Xl,...,x2,)l where 
i , j , k , l  xl...x2n 

the latter refers to the mixed fourth partial derivative. 
In the special case n = 1, the martingale M t associated with 

f f Z ~ ( t ; x , y ) f ( x ; y ) d x d y -  f o t f f z~ ( s ; x , y )V (x , y ) f ( x ; y )dxdyds  

- fot f fZ~(s;x,y)[  Axf(X; y) + Ayf(X;y)+  2( V l 'V2) f (x ;y ) ]  dxdyds  

(4.11) 

has a representation of the form: 

M t : i f o t f f f f ( x , y ) X ~ ( s , x - ~ ) X * ( s , y ) M ( d s ,  d ~ ) d x d y  

t * 
- i  f o f f f f ( x , y ) X ~ ( s , x ) X ;  ( s , y - ~ ) M * ( d s ,  d~ )dxdy .  (4.12) 

Then MtM ff - (M)t  is a P~.h.-martingale where the increasing process 

2[H (M)t  = f t  E f~ (x ;y )X~(s , x )X*(s , y )dxdy+ f f f J ( x ;y )X~(s , x )  
O j = l  

X X*(s ,y)  d x d y  ds 

+ O(e) t ;  where fJ (x ,  y) = Of/Oxj,f2J(x,y) = Of/Oyj. (4.13) 
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The uniform tightness of the measures Pf,.h* follows from the criterion of Holley 
and Stroock (1981, Theorem 1.2). 

Now let POoh. be any limit of Pf,®h*. From (4.10) it follows that for 

t s 

o(Zo(t)) - foS°oF (Z0(,)) ds (4.14) 

is a P°®h.-martingale thus yielding existence for the ( ~ ,  ~0~)-martingale prob- 
lem. Since the uniqueness was proved in Lemma 4.1, this proves that P° .h .  is a 
HS-valued Markov diffusion process and completes the proof of the weak 
convergence. [] 

Remark 4.2. Consider the Gaussian beam: 

Y(0,x) = exp(-1x12/2c 2). (4.15) 

Then (4.9) implies that 

(1/c2)1ogl Y(t,x)l 2 = Ix + b(t)l 2 (4.16) 

and therefore has a non-central chi-square distribution with two degrees of 
freedom. This distribution which is known as the Rice-Nakagami distribution in 
the wave propagation literature has probability density function of the form: 

f ( u )  = e x p ( - ( u + c 2 ) / 2 c 2 ) . I o ( c l u l / 2 / c 2 ) ,  u > O, (4.17) 

where I0(-) is the zeroth order modified Bessel function. 
The spot-dancing phenomenon and its relation to the Rice-Nakagami distri- 

bution were first discovered by Furutsu (1972) and Furutsu and Furuhama 
(1973). The method of Furutsu was based on an explicit calculation of the 
moments of all orders and the observation that the results obtained at a fixed t 
agreed with that given by a Gaussian random displacement of the beam. 
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