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Abstract— In Multiple-Input Multiple-Output (MIMO)
systems, Maximum-Likelihood (ML) decoding is equivalent
to £nding the closest lattice point in an N dimensional
complex space. In [1], we have proposed several quasi-
maximum likelihood relaxation models for decoding in
MIMO systems based on semi-de£nite programming. In
this paper, we propose randomization algorithms that £nd
a near-optimum solution of the decoding problem by
exploring the solution of the corresponding semi-de£nite
relaxations.

1 INTRODUCTION

Recently, there has been a considerable interest in Multi-
Input Multi-Output (MIMO) antenna systems due to
achieving a very high capacity compared to single-
antenna systems [2]. In MIMO systems, a vector is trans-
mitted by transmit antennas. In the receiver, a corrupted
version of this vector affected by the channel noise and
fading is received. Decoding concerns the operation of
receiving the transmitted vector from the received signal.
This problem is usually expressed in terms of ”lattice
decoding” which is known to be NP-hard.

Quasi-maximum likelihood detection is a near opti-
mum algorithm for lattice decoding based on a binary
programming formulation and semi-de£nite relaxation
[1], [3]. More precisely, the distance minimization in
the Euclidean space is formulated in terms of a bi-
nary quadratic minimization problem. Then, the resulting
problem is transformed into a relaxation problem us-
ing Semi-De£nite Programming (SDP). The solution for
the distance minimization problem is a rank-one binary
matrix. However, the rank-one constraint is removed in
the relaxation problem. Therefore, the solution for the
relaxation problems is not necessarily a binary rank-one
matrix. This solution is changed to a 0–1 rank-one matrix
through a randomization procedure. The extreme points
of the feasible set for the relaxation problem are the
binary rank-one matrices. The randomization procedure
determinants some of the extreme points by using a
solution of the SDP relaxation. Among these extreme
points, the one which results in the smallest value for the
distance-minimization objective function is chosen as the
solution point.

The randomization procedure in [3] is based on
{−1, 1} elements. Usually, communication applications
deal with 0–1 vectors, and the formulation of the problem
with {−1, 1} elements is not always a simple task. Here,
we propose a method that depends on the bit values,
{0, 1}. Also, with a smaller number of iterations it
achieves a better performance compared to those which
are relying on {−1, 1} elements.

2 MIMO SYSTEM MODEL

A MIMO system with Ñ transmit antenna and M̃ receive
antenna is modelled as

ỹ =

√

SNR

M̃Ẽsav

H̃x̃ + ñ, (1)

where H̃ =
[

h̃ij

]

is the M̃ × Ñ channel matrix with
independent, identically distributed complex Gaussian
random variables with zero mean and unit variance, ñ is
an M̃ × 1 complex additive white Gaussian noise vector
with zero mean and unit variance elements, and x̃ is an
Ñ×1 vector whose components are the signals sent from
each transmit antenna and selected from a complex set
S̃ = {s̃1, s̃2, · · · , s̃K} with the average energy Ẽsav

. The
parameter SNR in (1) is the Signal to Noise Ratio (SNR)
per receive antenna.

Noting x̃i ∈ S, for i = 1, · · · , Ñ we have

x̃i = ui(1)s̃1 + ui(2)s̃2 + · · ·+ ui(K)s̃K , (2)

where

ui(j) ∈ {0, 1} and

K
∑

j=1

ui(j) = 1 ∀ i = 1, · · · , Ñ . (3)

Let u =
[

u1(1) · · · u1(K) · · · uN (1) · · · uN (K)
]T

and N = Ñ . Using the equations in (2) and (3), the
transmitted vector is expressed as

x̃ = S̃u, (4)

where S̃ = IN ⊗ [s̃1, · · · , s̃K ] is an N × NK matrix
of coef£cients, IN is an N × N Identity matrix, ⊗ is
the tensor product, and u is an NK × 1 binary vector
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such that Au = eN , where A = IN ⊗ eT
K and eN is

an N × 1 vector of all ones. This constraint states that
among each K components of the binary vector u, i.e.
ui(1), · · · , ui(K), there is only one element equal to ”1”.

To avoid using complex matrices, the system model
(1) is represented by real matrices in (5).

[

R (ỹ)
I (ỹ)

]

=

√

SNR

M̃Ẽsav





R

(

H̃
)

I

(

H̃
)

−I

(

H̃
)

R

(

H̃
)





[

R (x̃)
I (x̃)

]

+

[

R (ñ)
I (ñ)

]

⇒ y = Hx + n, (5)

where R(.) and I(.) denote the real and imaginary parts
of a matrix, respectively, y is the received vector, and x

is the input vector.

Let S denotes the real matrix





R

(

S̃
)

I

(

S̃
)



 ; therefore,

y = HSu + n (6)

expresses the MIMO system model by real matrices and
the input binary vector, u.

The maximum-likelihood (ML) detector in MIMO
systems is equivalent to

x̂ = arg min
s.t. xi∈S

‖ŷ −Hx‖2 (7)

In [4], it is shown that the decoding minimization prob-
lem can be expressed as:

minuT Qu + 2cT u

s.t. Au = eN

ui ∈ {0, 1}
n,

(8)

where n = NK, Q = ST HT HS, c = −ST HT ŷ, and
s = [s1, · · · , sK ]T .

3 SEMI-DEFINITE RELAXATION SOLUTION

In [1], a preliminary SDP relaxation of the minimization
problem has obtained by removing a rank-one constraint
in the problem and using Lagrangian duality [5]. This
relaxation has many redundant constraints and no strict
interior for the feasible set. There are numerical dif£-
culties in £nding the solution for a problem without an
interior point.

To overcome this drawback, the feasible set has been
projected onto a face of the semi-de£nite cone [1] and
based on the identi£ed redundant constraints, another
form of the relaxation has obtained. The resulting relax-
ation has strict interior, and; therefore, one can compute
the solution of the problem by an interior point method.
By investigating on the structure of the feasible set, the
relaxation has strengthen by a set of new constraints that

impose a zero pattern for the solution.
Let

LQ =

[

0 cT

c Q

]

, VK =

[

IK−1

−eT
K−1

]

,

V̂=

[

1 0
1
K
(eKN − (IN⊗VK)e(K−1)N ) IN⊗VK

]

. (9)

The resulting relaxation problem is [4]

min trace(V̂TLQV̂)R

s.t. GJ̄ (V̂RV̂T) = E00

R º 0, (10)

where R is our variable matrix of dimension (N(K−1)+
1)×(N(K−1)+1) , E00 is an (NK+1)⊗(NK+1) all
zero matrix except one element equal to 1 in its (0, 0)th
entry, and J̄ is the set of indices in (11) [4]

J̄ = {(i, j) : i = K(p− 1) + q, j = K(p− 1) + r,

q < r, q, r ∈ {1, · · · ,K}, p ∈ {1, · · · , N}}
⋃

{(0, 0)} . (11)

The operator G is known as the gangster operator, and
for a matrix Y and a given set of indices J , it is de£ned
by

(GJ (Y))ij =

{

Yij if (i, j) or (j, i) ∈ J
0 otherwise.

(12)

The relaxation in (10) is further tightened by consid-
ering the non-negativity constraints [6]. All the elements
of the matrix Y which are not covered by the equality
constraints in (10) are equal to or greater than zero. These
inequalities can be added to the set of constraints that we
have in (10) [4].

min trace(V̂TLQV̂)R

s.t. GJ̄ (V̂RV̂T) = E00

G
Ĵ
(V̂RV̂T) ≥ 0

R º 0, (13)

where the set Ĵ indicates those indices which are not
covered by J̄ . Note that there is a trade-off between the
Bit Error Rate (BER) performance and the complexity
of the decoding methods built on the introduced models.
The decoding method based on the model in (13), com-
pared to the model in (10), performs better in the sense
of BER, but with more computational complexity.

The most common method for solving SDP problems
of a moderate size is the Interior-Point Method (IPM).
The computational complexity of IPM is polynomial.
Nowadays, there are several IPM based solvers for solv-
ing SDP problems, e.g., DSDP, SeDuMi, SDPA, etc. In
our numerical experiments, we implement SeDuMi and
SDPA software packages.
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Solving the minimization problem (10) or (13) results
in a solution for the matrix R which is transformed to
the matrix Y by

Y = V̂RV̂
T
. (14)

It can be shown [4] that if the matrix Y is restricted to
be rank-one, then the optimal solution u for (8) can be
found by

Y =

[

1
u

]

[

1 uT
]

=

[

1 uT

u uuT

]

. (15)

The optimization problems in (10) and (13) result
in a solution that is not necessarily a binary rank-one
matrix. This solution is changed to a 0–1 rank-one
matrix through a randomization algorithm. We change
the conventional randomization algorithms to £t our
problem. Also, a new randomization procedure, with
a better decoding performance as that in the common
methods, is introduced which £nds the optimal binary
rank-one solution with fewer iterations compared to the
conventional methods.

4 RANDOMIZATION PROCEDURE

As mentioned in Section III, the SDP relaxation models
(10) and (13) lead to a matrix Y whose elements are
between 0 and 1. In order to change this matrix to an
appropriate solution for (8), the simplest way is to use
the properties of the optimal case.

Since the entries of u are binary numbers, the £rst
row/column of the symmetric matrix in the optimal case
of (15) is equal to its diagonal. In [4], it is shown
that this statement is valid for any matrix Y resulted
from the relaxation problems (10) or (13). Therefore, the
vector u is approximated by rounding off the elements
of the £rst row/column/diagonal of the matrix Y. This
transformation results in a loose upper bound for the
BER performance. However, the transformation of Y to
a rank-one matrix through a randomization procedure
results in a better solution for (8). In the following,
two randomization algorithms are considered for this
transformation.

Algorithm I: Goemans and Williamson [7] introduced
an algorithm that randomly rounds the solution to a
semi-de£nite programming relaxation. This approach is
followed in [3] for the quasi maximum likelihood de-
coding of a PSK signalling. This technique is based
on expressing the BPSK symbols by {−1, 1} elements.
After solving the relaxation problem in [3], the Cholesky
factorization is applied to the n × n matrix Y and the
Cholesky factor V = [v1, . . . ,vn] is computed, i.e. Y =
VVT . In [3], it is observed that one can approximate
the solution of the distance minimization problem, u,
using V, i.e. ui is approximated using vi. Thus, the

assignment of −1 or 1 to the vectors {v1, . . . ,vn} is
equivalent to specifying the elements of u. Fig. 1 shows
how the method in [7] works. It is shown that norm

−1 1 −1 1

(a) (b)

Random Plane

Fig. 1. Graphic representation for the randomization algorithm
in [7]

of the vectors {v1, . . . ,vn} is one, and they are inside
an n–dimensional unit sphere [3]. In the ideal case,
these vectors should be classi£ed in two different groups
corresponding to 1 and -1, see Fig. 1.(a). However, Fig.
1.(b) shows the general case for vectors vi when Y is
not a rank-one matrix. In order to assign −1 or 1 to
these vectors, the randomization procedure generates a
random vector uniformly distributed on this sphere. This
vector de£nes a plane crossing the origin. Among given
vectors vi, i = 1, . . . n, all the vectors at one side of
the plane are assigned to 1 and the remaining vectors
are assigned to −1. This procedure is repeated several
times and the vector u resulting in the lowest objective
function is selected as the answer.

In our proposed approach, the variables are binary
numbers. In order to implement the randomization pro-
cedure of [7], we bijectively map the computed solution
of the {0, 1} SDP formulation to the solution of the
corresponding {−1, 1} SDP formulation. More precisely,
we use the following mapping:

T =











1 0 · · · 0
−1 2 · · · 0

...
...

. . .
...

−1 0 · · · 2











,

Y{−1,1} = TY{0,1}T
T . (16)

Now, the solution for (8) can be found using a simi-
lar randomization method as in [3]. The computational
complexity of this randomization algorithm is polynomial
time [3].

Algorithm II: Most communication applications deal
with binary elements. Also, formulating the problem with
{−1, 1} elements is not always a simple task. Here, we
propose a new zero-one randomization procedure follow-
ing the randomization procedure in [7]. This algorithm
can be applied to {0, 1} problem formulation directly.
Therefore, the complexity of the whole randomization
procedure is reduced, since the preprocessing step -
bijective mapping form one to another model formulation
- is omitted.
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After solving the relaxation problem (10) or (13), the
cholesky factorization of Y results in a matrix V =
[v1, . . . ,vn] such that Y = VVT . In the ideal case of
(15), the elements of u, is either zero or one. Since the
solution of the relaxation problem does not lead to a
rank-one binary matrix Y, the norm of resulting vectors
vi is between zero and one. These vectors are depicted
in Fig. 2. It is clear that a sphere with a random radius
uniformly distributed between zero and one has the same
functionality as the random plane in Fig. 1. Now, in

(a) (b)

Random
Sphere

Fig. 2. Graphic representation for the proposed randomization
algorithm

order to assign 0 or 1 to these vectors, the random-
ization procedure generates a random number uniformly
distributed between 0 and 1. Among given vectors vi,
i = 1, . . . n, all the vectors whose norms are larger than
this number are assigned to 1 and the remaining vectors
are assigned to 0. This procedure is repeated several
times and the vector u resulting in the lowest objective
function is selected as the answer. Simulation results
con£rms that the proposed method results in a better
Symbol Error Rates (SER) performance for the lattice
decoding problem compared to SER resulting from the
method in [7]. Also, the computational complexity of the
randomization algorithm is decreased, due to the removal
of the preprocessing step.

5 SIMULATION RESULTS

In our simulations, we have considered a MIMO sys-
tem with 4 transmit and 4 receive antennas employing
16QAM. We show the SER of the proposed algorithms
and ML decoding vs. the signal to noise ratio per bit,
Eb/N0. To solve the minimization problem in (10), we
use either SDPA or DSDP packages. One of the main
advantages of the model (10) is that all the constraints
represented by the gangster operator can be represented
by rank-one constant matrices. Both SDPA and DSDP
packages have special considerations for these kinds of
constraints. Specially, in the DSDP package, the com-
plexity of solving a problem having rank-one constant
matrices is considerably decreased. The randomization
procedure implemented for this model is based on algo-
rithm II. Fig. 3 shows the effect of using randomization
algorithm I and II on the relaxation model (10).

The solution of the relaxation model in (13), for the
most tested instances, corresponds to the optimal solution
of the original problem (8). In the other words, because
the model in (13) is strong enough, there is no need for
the randomization algorithm. Comparison between the
SER of the proposed algorithm and the ML decoding for
the relaxation model (13) is presented in Fig. 3 [1]. Note
that there is a trade-off between the complexity of using
the non-negative constraints and that in the randomiza-
tion procedure. Several compromises for improving the
performance of the ML decoding can be done, e.g.,
including only some of the non-negative constraints in
(13) and/or using a randomization procedure with a fewer
number of iterations.
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